| MB05 | Stochastik | Anton Bovier | 
			|  | 
					| 20151   611100905   Vorlesung    SWS |  
				| Termine: | 
						| Mi 10-12 | Kleiner Hörsaal,  Wegelerstr. 10 |  |  | Mo 10-12 | Kleiner Hörsaal,  Wegelerstr. 10 |  |  |  | Link to Basis |  | 
		| MB05 | Übungen zu Stochastik | Anton Bovier | 
			|  | 
					| 20151   611300905   Seminar/Übungen    SWS |  
				| Termine: | 
						| Fr 12-14 | SemR 0.008,  Endenicher Allee 60 | Gruppe 3 |  | Di 12-14 | SemR 0.008,  Endenicher Allee 60 | Gruppe 1 |  | Di 12-14 | SemR 1.007,  Endenicher Allee 60 | Gruppe 4, NEU! |  | Do 16-18 | SemR 0.008,  Endenicher Allee 60 | Gruppe 2 |  |  | Link to Basis |  | 
		| S1G1 | Seminar |  | 
			|  | 
					| 20151   611100109   Seminar    SWS |  
				| Termine: | 
						| Di 10-12 | SemR 1.007,  Endenicher Allee 60 |  |  | Do 10-12 | N 0.008 - Neubau,  Endenicher Allee 60 | Vorbesprechung: Di, 24.02.15, 13:00, N0.008 |  | Mi 12-14 | SemR 0.006,  Endenicher Allee 60 | Vorbesprechung: 24.2.15, 13.30, Raum We6, 5.002 |  | Fr 12-14 | - |  |  | Do 14-16 | SemR 0.003,  Endenicher Allee 60 | Vorbesprechung: Do, 29.01.15, 16:00, Raum 4.050 EN60 |  | Fr 14-16 | SemR 1.007,  Endenicher Allee 60 |  |  | Mo 16-18 | N 0.003 - Neubau,  Endenicher Allee 60 |  |  |  | Link to Basis |  | 
		| S2F1 | Hauptseminar Stochastik | Karl-Theodor Sturm | 
			|  | 
					| 20151   611112011   Hauptseminar    SWS |  
				| Termine: | 
						| Fr 14-16 | SemR 0.006,  Endenicher Allee 60 |  |  |  | Link to Basis |  | 
		| S2F1 | Hauptseminar Stochastik - Stochastische Modelle | Andreas Eberle | 
			|  | 
					| 20151   611111011   Hauptseminar    SWS |  
				| Termine: | 
						| Fr 14-16 | SemR 0.007,  Endenicher Allee 60 |  |  |  | Link to Basis |  | 
		| S4F2 | Graduate Seminar on Stochastic Analysis - Interacting Particle Systems | Andreas Eberle | 
			|  | 
					| 20151   611501024   Hauptseminar    SWS |  
				| Termine: | 
						| Di 14-16 | N 0.007 - Neubau,  Endenicher Allee 60 |  |  |  | Link to Basis |  | 
		| S5G1 | Master´s Thesis Seminar |  | 
			|  | 
					| 20151   611500101   Seminar für Examenskandidaten    SWS |  
				| Termine: | 
						| - | - | woech more lecturers according to prior agreement |  | Fr 12-14 | - |  |  | Do 16-17 | SemR 0.011,  Endenicher Allee 60 | appointments with examiners according to prior agreement |  |  | Link to Basis |  | 
		| V1G6 | Algorithmische Mathematik II | Martin Rumpf Anton Bovier | 
			|  | 
					| 20151   611100106   Vorlesung    SWS |  
				| Termine: | 
						| Mo 10-12 | Großer Hörsaal,  Wegelerstr. 10 |  |  | Mi 10-12 | Großer Hörsaal,  Wegelerstr. 10 |  |  |  | Link to Basis |  | 
		| V1G6 | Übungen zu Algorithmischer Mathematik II | Martin Rumpf Anton Bovier | 
			|  | 
					| 20151   611300106   Übung    SWS |  
				| Termine: | 
						| Fr 08-10 | SemR 0.003,  Endenicher Allee 60 | Gruppe 7 |  | Fr 08-10 | SemR 0.007,  Endenicher Allee 60 | Gruppe 8 |  | Di 10-12 | SemR 0.007,  Endenicher Allee 60 | Gruppe 1 |  | Do 10-12 | SemR 0.003,  Endenicher Allee 60 | Gruppe 4 |  | Do 12-14 | SemR 0.003,  Endenicher Allee 60 | Gruppe 5 |  | Fr 12-14 | SemR 0.003,  Endenicher Allee 60 | Gruppe 9 |  | Fr 14-16 | SemR 0.003,  Endenicher Allee 60 | Gruppe 10 |  | Di 16-18 | SemR 0.007,  Endenicher Allee 60 | Gruppe 3 |  | Do 16-18 | SemR 0.003,  Endenicher Allee 60 | Gruppe 6 |  |  | Link to Basis |  | 
		| V2F2 | Einführung in die Statistik | Martin Huesmann | 
			|  | 
					| 20151   611100703   Vorlesung    SWS |  
				| Termine: | 
						| Mo 12.00-14.00 | Großer Hörsaal,  Wegelerstr. 10 |  |  | Mi 12.00-14.00 | Großer Hörsaal,  Wegelerstr. 10 |  |  |  | Link to Basis |  | 
		| V2F2 | Übungen zu Einführung in die Statistik | Martin Huesmann | 
			|  | 
					| 20151   611300703   Übung    SWS |  
				| Termine: | 
						| Do 14-16 | SemR 1.008,  Endenicher Allee 60 | Gruppe 2 |  | Mi 16-18 | SemR 0.008,  Endenicher Allee 60 | Gruppe 1 |  | Do 18-20 | SemR 1.008,  Endenicher Allee 60 | Gruppe 3 |  |  | Link to Basis |  | 
		| V3F1/F4F1 | Stochastic Processes / Stochastische Prozesse | Karl-Theodor Sturm | 
			|  | 
					| 20151   611100702   Vorlesung    SWS |  
				| Termine: | 
						| Di 08-10 | Kleiner Hörsaal,  Wegelerstr. 10 |  |  | Fr 10-12 | Kleiner Hörsaal,  Wegelerstr. 10 |  |  |  | Link to Basis |  | 
		| V3F1/F4F1 | Exercises to Stochastic Processes / Übungen zu Stochastische Prozesse | Karl-Theodor Sturm | 
			|  | 
					| 20151   611300702   Übung    SWS |  
				| Termine: | 
						| Do 10-12 | SemR 0.008,  Endenicher Allee 60 |  |  | Do 12-14 | SemR 0.011,  Endenicher Allee 60 |  |  | Fr 14-16 | SemR 0.008,  Endenicher Allee 60 |  |  | Do 14-16 | SemR 0.008,  Endenicher Allee 60 |  |  |  | Link to Basis |  | 
		| V4F1 | Stochastic Analysis | Andreas Eberle | 
			|  | 
					| 20151   611500701   Vorlesung    SWS |  
				| Termine: | 
						| Di 12-14 | Kleiner Hörsaal,  Wegelerstr. 10 |  |  | Do 12-14 | Kleiner Hörsaal,  Wegelerstr. 10 |  |  |  | Link to Basis |  | 
		| V4F1 | Exercises to Stochastic Analysis | Andreas Eberle | 
			|  | 
					| 20151   611700701   Übung    SWS |  
				| Termine: | 
						| Mo 12-14 | SemR 0.011,  Endenicher Allee 60 |  |  | Mi 16-18 | SemR 0.006,  Endenicher Allee 60 |  |  |  | Link to Basis |  | 
		| V5F4 | Selected Topics in Stochastic Analysis - Introduction to Optimal Transport and Applications | Matthias Erbar | 
			|  | 
					| 20151   611500709   Vorlesung    SWS |  
				| Termine: | 
						| Mo 08-10 | SemR 1.008,  Endenicher Allee 60 |  |  |  
							| Literatur: | References: • C. Villani, Topics in optimal transportation • C. Villani, Optimal transport, old and new • L. Ambrosio, N. Gigli, A user’s guide to optimal transport • F. Otto, The geometry of dissipative evolution equations: The porous medium equation, article • K.-Th. Sturm, The geometry of metric measure spaces, article |  
							| Bemerkung: | The optimal transport problem has a long history dating back to Monge in the 18th century. In modern terms the problem is, given two probability distributions to find a transport map pushing one forward to the other that minimizes the total transport cost. In the last two decades the theory has received new attention and seen an enormous development. Striking connections to a number of mathematical fields have been established ranging from probability and economics to PDE and Riemannian geometry, where optimal transport is used as a powerful and versatile tool. In the first part of the lecture we will consider the optimal transport problem in a general setting and cover the beautiful theory leading to existence and characterization of solutions. The second part of the lecture will give an introduction to some recent applications of optimal transport. Possible topics include: • Otto’s geometric interpretation of evolution PDEs: Heat and porous medium equations e.g. as gradient flows in the space of probability measures, Theory of gradient flows in metric spaces • Geometry of singular spaces: How to define a notion of Ricci curvature lower bounds for metric spaces equipped with a measure using optimal transport and properties of such spaces • Using optimal transport to prove geometric and functional inequalities, e.g. isoperimetry and concentration • Variants of the transport problem  Prerequisites: A solid background in measure theory is desirable. Some basic knowledge of Riemannian geometry and PDE will be helpful but is not strictly required. |  | Link to Basis |  |