Hauptseminar Angewandte Stochastik - Ferrari, SS 2009
Zeit und Ort | Donnerstag, 12-14, Seminarraum 011 LWK |
Beginn | Erste Semesterwoche: 16. April 2009 |
Betreuung | Patrik Ferrari (LWK 347) und Nicola Kistler (LWK 342) |
Pre-Seminar Meeting | Montag, 12-12:30 (nur für die Studenten, die am kommenden Donnerstag ein Seminar halten) |
Inhalt
Continuous time Markov Chains
1. | Continuous time random processes, properties of exponential distribution | 23. April 2009 | Bogdanov |
2. | Poisson process on R and birth processes | 23. April 2009 | Wiens |
3. | Jump chain, holding times and explosion | 30. April 2009 | Anschlag |
4. | Forward and backward equations | 30. April 2009 | Fuchs |
5. | Hitting times, absorption probabilities, recurrence and transience | 7. Mai 2009 | Jansen |
6. | Invariant distributions, convergence to equilibrium and ergodic theorem | 7. Mai 2009 | Stümper |
7. | Application to Monte Carlo, H-theorem for Metropolis algorithm | 14. Mai 2009 | Veken |
8. | Application to queues | 14. Mai 2009 | Becker |
Point processes
9. | Definition of point processes and examples like Poisson point process | 28. Mai 2009 | Winter |
10. | Correlation function, relation with moments, gap probability; determinantal class | 28. Mai 2009 | Vogelsang |
11. | Application to GUE random matrix eigenvalues | 18. Juni 2009 | Nohn |
12. | Non-coinciding probabilities for birth-death processes: Karlin-McGregor theorem (and its graph generalization) | 18. Juni 2009 | Beisegel |
13. | Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem, Teil I | 25. Juni 2009 | Lechtenberg |
14. | Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem, Teil II | 25. Juni 2009 | Fei |
Renewals
15. | Definition of Renewals, renewal equation and theorem | 2. Juli 2009 | Günther |
16. | Applications of renewal processes | 2. Juli 2009 | Heidebrecht |
17. | Renewal-reward processes | 9. Juli 2009 | Beins |
18. | Renewals and queues: some applications | 9. Juli 2009 | Eckstein |
Literatur
• | Zu 1-8: J.R. Norris, Markov Chains, Cambridge Press |
• | Zu 9,15-19: G. Grimmett and D. Stirzaker, Probability and Random Processes, Oxford Press |
• | Zu 9-11: P.L. Ferrari, TU Lecture on random matrices 2007, and Lecture notes of the Beg Rohu Summer School 2008 |
• | Zu 12: S. Karlin and L. McGregor Coincidence probabilities, Pacific J. 9 (1959) 1141-1164. |
• | Zu 13-14: D. Aldous and P. Diaconis Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc. 36 (1999) 413-432. |