Institute for Applied Mathematics SS 2017 Prof. Dr. Anton Bovier, Kaveh Bashiri

Stochastic Processes Sheet 1

Hand in Friday, 28th April 2017 before the lecture

Exercise 1

 $\begin{bmatrix} 5 \ Pkt \end{bmatrix}$

Find the open, closed and compact subsets of the metric space (\mathbb{Z}^d, ρ) , where \mathbb{Z} is the set of integer numbers and ρ is the euclidean metric in \mathbb{R}^d . Define the corresponding Borel- σ -algebra $\mathcal{B}(\mathbb{Z}^d)$.

Exercise 2

 $\begin{bmatrix} 5 \ Pkt \end{bmatrix}$

 $\begin{bmatrix} 5 \ Pkt \end{bmatrix}$

Let $\{(X_n, \mathcal{A}_n, \mu_n)\}_{n \in \mathbb{N}}$ be a family of measure spaces, where the sets X_n are pairwise disjoints. We define the measure space (X, \mathcal{A}, μ) , where $X = \bigcup_n X_n$,

$$\mathcal{A} = \{ B : B \cap X_n \in \mathcal{A}_n \text{ for all } n \}$$

and $\mu(B) = \sum_{n} \mu_n(B \cap X_n)$. Show that

- 1. \mathcal{A} is a σ -algebra;
- 2. μ is a measure;
- 3. μ is σ -finite if and only if all μ_n are σ -finite.

Exercise 3

Let (X, \mathcal{A}, μ) be a measure space. Let $A_1 \triangle A_2 = (A_1 \setminus A_2) \cup (A_2 \setminus A_1)$ for $A_1, A_2 \in \mathcal{A}$. Show that:

- 1. If $A_1, A_2 \in \mathcal{A}$ and $\mu(A_1 \triangle A_2) = 0$, then $\mu(A_1) = \mu(A_2)$.
- 2. If the measure space is complete, from $A_1 \in \mathcal{A}$ and $\mu(A_1 \triangle A_2) = 0$, it follows that $A_2 \in \mathcal{A}$.

Remark: A measure space (X, \mathcal{A}, μ) is complete if the σ -algebra \mathcal{A} contains all the subsets of μ -null sets, i.e., if $B \in \mathcal{A}$, $\mu(B) = 0$ and $A \subset B$ then $A \in \mathcal{A}$.