Advanced Topics in Applied Probability - Introduction to Lattice Models

Exercises denoted by (\star) are harder or use additional theory.

Exercises – Set 3

1. (Quasi-inverse) Let $\phi: X \to Y$ be a map between two metric spaces (X, d_X) and (Y, d_Y) . We say that $\psi: Y \to X$ is a quasi-inverse of ϕ if there exists $C \in (0, \infty)$ such that

$$d_X((\psi \circ \phi)(x), x) \le C \quad \text{for all } x \in X, d_Y((\phi \circ \psi)(y), y) \le C \quad \text{for all } y \in Y.$$

- (a) Suppose $\phi: X \to Y$ is a quasi-isometry. Show that it has a quasi-inverse, which is a quasi-isometry as well.
- (b) We say that (X, d_X) and (Y, d_Y) are quasi-isometric if there exists a quasi-isometry between them. Show that for metric spaces, being quasi-isometric is an equivalence relation.
- 2. (Quasi-isometric trees) Let T and T' be two infinite trees of bounded vertex degree, and all of whose degrees are at least three. Prove that T and T' are quasi-isometric.
- 3. (*) (**Recurrence/transience criterion**) Let $f: \{0, 1, 2, ...\} \rightarrow \{0, 1, 2, ...\}$ be a function such that

$$f(n) \le f(n+1) \le f(n) + 1$$
 for each $n \ge 0$

Show that the SRW starting from 0 on the subgraph of \mathbb{Z}^{d+1} induced by the vertex set

$$V := \{ (x, y_1, y_2, \dots, y_d) \in \mathbb{Z}^{d+1} \mid x \ge 0, \ |y_j| \le f(x) \text{ for all } j = 1, 2, \dots, d \}$$

is transient if and only if

$$\sum_{n=1}^{\infty} (1+f(n))^{-d} < \infty.$$

[Hint: for direction " \Leftarrow ", one can e.g. consider certain random paths from the origin to infinity built from coordinates of type x and $y_j = \lfloor U_j f(x) \rfloor$ for j = 1, 2, ..., d, where U_j are i.i.d. uniform random variables on [0, 1].]

4. (Recurrence/transience is quasi-isometry invariant) Let G = (V, E) and G' = (V', E') be two countably infinite graphs and $\phi: V \to V'$ a quasi-isometry. Let $0 \in V$ be a chosen "origin" vertex and let j be a $0/\infty$ flow such that |j| = 1 and $\mathcal{E}(j) < \infty$. Define for each oriented edge $\langle a, b \rangle \in E'$ the flow

$$j_{a,b}' := \sum_{\substack{\langle u,v\rangle \in E \\ (\text{oriented})}} j_{u,v} \, \mathbf{1}\{\langle a,b\rangle \in \phi(\langle u,v\rangle)\}$$

where all edges are considered as oriented and for each $\langle u, v \rangle \in E$, we take $\phi(\langle u, v \rangle)$ to be a chosen oriented path from $\phi(u)$ to $\phi(v)$ on G' which has minimal length (note that there might be many choices and we pick one once and for all). Show that j' is a $\phi(0)/\infty$ flow such that |j'| = 1 and $\mathcal{E}(j') < \infty$. 5. (Cylinder sets for UST) [The purpose of this problem is to formalize what the weak limit of USTs on \mathbb{Z}^d means.] Consider the lattice \mathbb{Z}^d regarded as a graph (V, E) and with $d \ge 2$. Let $\Omega = \{0, 1\}^E$ be endowed with the cylinder sigma-algebra \mathcal{F} generated by the cylinder sets

$$\left\{ \left(\omega(e) \right)_{e \in E} \mid \omega(e_1) = \varepsilon_1, \, \omega(e_2) = \varepsilon_2, \, \dots, \, \omega(e_k) = \varepsilon_k \right\}$$
(1)

for integers $k \in \mathbb{N}$, distinct edges $e_1, e_2, \ldots, e_k \in E$, and Boolean numbers $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k \in \{0, 1\}$.

Similarly, let Ω be endowed with the (Tychonoff) product topology, in which the cylinder sets (1) form a basis of all open sets. Note that the product topology is strictly coarser than the *box topology*, in which a basis of all open sets would be given by Cartesian products of open sets.

For each fixed $n \in \mathbb{N}$, consider the UST probability measure \mathbb{P}_n on $Q_n := [-n, n]^d \cap \mathbb{Z}^d$ regarded as a graph (V_n, E_n) , that is, the uniform measure on the set of spanning trees of this graph. View \mathbb{P}_n alternatively as a probability measure on (Ω, \mathcal{F}) , denoted μ_n , by viewing the UST $T_n = (T_n(e))_{e \in E}$ as a random element of Ω with $T_n(e) = 1$ if and only if $e \in T_n$. In particular, all elements in Ω which have a nonzero coordinate at an edge $e \notin E_n$ have μ_n -probability zero, as also do all elements in Ω which would result in a graph which is not a spanning tree of (V_n, E_n) .

In this way, we have a sequence of probability measures $(\mu_n)_{n\in\mathbb{N}}$ on (Ω, \mathcal{F}) .

- (ü) Recall why the box topology doesn't work for the below statements.
- (a) (*) Recall e.g. from your basic probability course (or Ch.2.3 in Grimmett's book) the notion of *weak convergence* of measures.
- (b) (*) Recall that on (Ω, \mathcal{F}) with \mathcal{F} the cylinder sigma-algebra, we have that μ_n converge weakly to μ as $n \to \infty$ if and only if

$$\lim_{n \to \infty} \mu_n[C] = \mu[C] \qquad \text{for all cylinder sets } C \in \mathcal{F}.$$
 (2)

- (c) (\star) Recall that for (Ω, \mathcal{F}) as above, if the limit (2) exists, then it defines a measure μ on (Ω, \mathcal{F}) , and furthermore, this limit μ is a probability measure.
- (d) Phrase the cylinder set (1) in terms of an event for the UST $T_n = (T_n(e))_{e \in E}$ on Q_n . Then show that all such "cylinder events" can be expressed as linear combinations of events of the form $\{e_1, e_2, \ldots, e_k \in T_n\}$. [Hint: Inclusion/exclusion to express events like $\{e \notin T_n\}$.]
- (e) Recalling from the lecture that we know already that $\lim_{n\to\infty} \mu_n[e_1 \in T_n]$ exists for one edge, show that for each $k \in \mathbb{N}$, the limit

$$\lim_{n \to \infty} \mu_n[e_1, e_2, \dots, e_k \in T_n]$$

exists, and conclude that the limit (2) exists for the UST measures μ_n .

[Hint: Recall Rayleigh's principle and the proof ingredients for one edge.]

(f) (\star) Fix vertices $u, v \in V$ and consider the event

$$\{u \text{ is connected to } v\} := \bigcup_{\substack{\gamma \text{ lattice path} \\ \text{from } u \text{ to } v}} \left\{ \left(\omega(e)\right)_{e \in E} \middle| \omega(e) = 1 \text{ for all egdes } e \in \gamma \right\}.$$

What is the probability of such an event for $T_n \sim \mu_n$? What can happen in the limit $n \to \infty$?

Upon finding mistakes and/or typos, please contact me!