Advanced Topics in Stochastic Analysis
Introduction to Schramm-Loewner evolution

Mondays 12—14 and Thursdays 8-10 in Endenicher Allee 60 - SemR 1.008

Exercises — Set 9

In this exercise sheet, we will discuss the ingredients to prove that SLE(k) is almost surely generated by
a (continuous transient) curve, for any s € (0,00) \ {8}. Unfortunately, the proof fails for k = 8, as we’ll see.

Theorem. Let k € (0,00) \ {8}. The SLE(k) is almost surely generated by a curve .

Notation:

® (gt)¢>0 is the Loewner chain associated to the SLE with the following parameterization:
a

01 g (2) = ———r,
19:(2) g1(z) — Wi
where a = 2/k, the driving function is Wy = — B, and K; are the hulls and H; := H\ K;.

go(2) = z, z € Hy,

o (hg)s>0 is the solution to the reverse LE (this is almost the same as “backward LE”)
—a

atht(z) = ht(Z) _ Wt’

ho(z) = =z, z € H.

o We denote f;(z) := g; }(2) and f;(z) := g; *(z + W;). Note that LE for g, gives an ODE for (ft)e>o:

osiw) = T ) =w, wem B

e For all (y,t) € [0,00) x [0, 1], we denote by V(y,t) := fi(iy).
o We make a dyadic partitioning of ¢ € [0, 1]:
Dy = {k272" | k=0,1,...,2>"}, neN.
We are going to control the values of V' when y = 27" > 0 is small and the time scale is as in Dsy,.
Our goal: By [2, Proposition 4.28], the Theorem follows if we show that V is well-defined and continuous

as y \( 0, so that the curve
t) ;= lim V(y,t) = lim g; ' (iy + W
7(t) N0 (y,t) y\‘ogt (iy t)

generating the hulls (K¢)icjo,1) is well-defined and f; extends continuously to H.

To establish the goal, it suffices to find a bound function §: [0,00) — [0, c0) such that li\r“r(lJ 0(e) =0 and

V(y,t) =V(z,s)| <d(z+y+t—sl), ts€[0,1], zy>0. (2)
By [2l Lemma 4.32], it turns out that to get this estimate, the following ingredients are sufficient:

(a): There exists a sequence (ry, )nen such that r, > 0, and lim r, =0, and lim o 0, and
n—o0 n— oo 108 T

(b): |f1(i27™)| < 2"y, for all ¢ € Dy, and
(c): there exists ¢ € (0,00) such that |Wy s — Wi < ey/n27", for all t € [0,1] and s € [0,272"].

We'll see why in Exercises 6-9 below.



Exercises, Part 1: We establish properties (a), (b), (c) for the SLE.

0.

Check that for fized time ¢ > 0, the function z — f/(z) and the function z — k}(z) have the same law
(but it is not true that the joint law of (f/(2));>0 and the joint law of (h}(z)):>0 would be the same!).
Therefore, instead of estimating | f{(z)|, it suffices to estimate |h}(z)].

. Set-up: For fixed z € H, we consider the process Z; = h;(z) — Wy solving the SDE

Zo =z, dzt:—ZidtJr dB,, t>0.
t

(Because t +— Im Z; is increasing, this is OK for all times.) This is more useful after the time-change

t(t) :=1inf{s >0 | {E(Zzi = e*}. Then the imaginary part of Z; := Z,(4) is exponentially increasing:

Im Z; = Tm(z)e, d(Re Z;) = —a(Re Z;) dt + | Z;| dBy,
where B is standard 1D BM. Tt is useful to consider

. ReZ, e “ReZ, ~ -
Ky o= o2t , =
Im Z; Im(z)

which satisfy the SDEs

~ ~ ~ ~ 1- 1 K2 .
th = —QaKt dt + Lt dBt, st = <2Lt — (2 + 2&) Et ) dt + Kt dBt
t

To simplify this, we can write

Kt = sinh jt

jt = sinh_l Kt — ~ ~
L; = cosh J;,

~ 1 ~ ~
and dJ; = — (2 + Za) tanh J; dt + dBs.

Finally, the process h; := h, (1) satisfies

- 7\2 _ 7 \2 )
outog iy(z) = o BT ZIMAS o (12 2 o (1o — 2 ) — o (a(eann T - 1)
|Z4[? L7 (cosh Jy)?

Task: Prove that the following process is a martingale:
M, = |h}(2)|P (Im Z;)P~% (sin ©,) ™2, where O := arg(Z;)

and (p,r) € R? satisfy r2 — (14 2a)r + ap = 0. [Hint: Identify sin ©; with an expression involving J;.]

. Task: Prove that

E (IR (sinB0) ] = (Im”> o (—at (p- 1))

||

and if p,r > 0, then we have

P [|M(Z)| > A} <ATP <Im(z)>_2r exp (fat ( - g)) , A>0. (3)

|2

. Using the estimate , one can obtain the following estimate for the derivative h; in the original time

parameterization (see [2, Corollary 7.3] and [I, Corollary 5.1]): For every r € [0,1 + 2a], there exists a
constant c(k,r) € (0,00) such that for all t € [0,1], € R, and y € (0,1] and X € [ef, i], we have

Pl +in) = < () s (@)



where p =p(r) = £ ((1+2a)r — %) > 0 and

ATPTE, p—=L>0,
6(1/7)‘): 1+10g)%,/v p_gzov
yP~a, p— = <0.

Recall that a = 2/k. We still have freedom to choose the parameter r > 0. Note that by choosing
14da _ i + %, which maximises the quantity 2p — ~, we have

1
To 1 4
219(7"0)—; = KT (<2+/<;> —7“0) = krg > 2

and sr2 = 2 if and only if kK = 8.

Task: Verify that if x € (0,00) \ {8}, then choosing these (ro, p(ro)), the estimate (4) gives for z = 0,

y=2"" and A = 2”1~ with n € N is large enough and o € (0, 1-— m) small enough,

r=Tog=

P [|hi(i27)| > 207 < e+, (5)
for some € > 0. [NB: There are two different cases: x < 8 and xk > 8]

4. Task: Using the dyadic partitioning Dy, for ¢t € [0,1], show that implies that for any a small
enough, there exists a random variable C' such that almost surely, C' < co and

hG2 )| < 02M= teD,,, neN.
5. Task: Conclude that all properties (a), (b), (c) indeed hold.

Exercises, Part 2: Why do properties (a), (b), (c) imply our goal?
Let’s begin by arguing backwards: Let t € [0,1], s € [0,272"] and 0 < 2,y < 27" and write
fiGy) = frrs ()] < [fiGy) = fi(27) [+ [£:G27") = firs (27| + | fras(i277) = firs(ia)]. (6)

6. Task: Estimate the middle term in () in terms of ~sup |f/(i27™)], by using the ODE for fi.
w€lt,t+s]

7. Task: Estimate the first term in (6) in terms of sup | f/(iv)], with a sum over j = n,n+1,.. ..
ve[2-,2-9H1]

(The third term can be estimated similarly.)

8. Tools: Using property (b), the ODE for f;, and Gronwall’s Area theorem, one can show that
If1G27™ + Wyg-2n)| < €827,  te[k27?,(k+1)27%"], k=0,1,...,272"~1, neN.
Using Koebe distortion theorem, one can show that for any conformal map ¢ on H, we have
(W) <1447 (), (), Im(w) 2y > 0.
Task: Using these facts and property (c), prove that there exists 5 > 0 such that
|fi(i27")| < ee®VP2rr,,  te€0,1], neN,
and furthermore,
fi(iy)] < ce®Vronr,,  tel0,1], ye[2T, 27", neN (7)

9. Task: Conclude using that all terms in the expression @ have the desired bound, so holds.

References

[1] Antti Kemppainen. Schramm-Loewner evolution. SpringerBriefs in Mathematical Physics, 2017.
http://wiki.helsinki.fi/display/mathphys/sle-book

[2] Gregory Lawler. Conformally Invariant Processes in the Plane. American Mathematical Society, 2005.
http://pi.math.cornell.edu/~lawler/book.ps


http://wiki.helsinki.fi/display/mathphys/sle-book
http://pi.math.cornell.edu/~lawler/book.ps

