Advanced Topics in Stochastic Analysis - Introduction to Schramm-Loewner evolution

Mondays 12-14 and Thursdays 8-10 in Endenicher Allee 60 - SemR 1.008

Exercises – Set 3

- 1. Let U, V be simply connected domains whose boundaries are Jordan curves (i.e., homeomorphic images of the circle $\partial \mathbb{D}$). Let $z_1, z_2, z_3 \in \partial U$ and $w_1, w_2, w_3 \in \partial V$ appear in counterclockwise order along the boundary. Show that there exists a unique conformal bijection $f: U \to V$ such that $f(z_i) = w_i$ for i = 1, 2, 3.
- 2. Define the function classes

$$S := \{ f \text{ conformal on } \mathbb{D} \mid f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \text{ in } \mathbb{D} \}$$

$$\Sigma := \{ g \text{ conformal on } \mathbb{D}^* \mid g(z) = z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots \text{ in } \mathbb{D}^* \}, \qquad \mathbb{D}^* := \hat{\mathbb{C}} \setminus \mathbb{D}.$$

(a) Let $f \in S$. Check that $g(z) := \frac{1}{f(1/z)} \in \Sigma$ and $0 \notin g(\mathbb{D}^*)$, and

$$g(z) = z - a_2 + \frac{a_2^2 - a_3}{z} + \cdots$$

(b) Let $g \in \Sigma$ and $0 \notin g(\mathbb{D}^*)$. Check that $f(z) := \frac{1}{g(1/z)} \in S$ and

$$f(z) = z - b_0 z^2 + (b_0^2 - b_1) z^3 + \cdots$$

(c) Let $f \in S$. Show that there exists $h \in S$ such that

$$h(-z) = -h(z),$$

$$(h(z))^2 = f(z^2),$$

$$h(z) = z + \frac{a_2}{2}z^3 + \cdots \text{ for all } z \in \mathbb{D}.$$

[Hint: Consider $g: z \mapsto \sqrt{\frac{f(z)}{z}}$, and then $z \mapsto zg(z^2)$.]

3. (Schwarz reflection principle) Let $f \in Hol(B_+)$, where $B_+ = B(0, r) \cap \mathbb{H}$. Write f(z) = u(z) + iv(z) for $u, v \colon B_+ \to \mathbb{R}$ harmonic. Suppose that

$$\lim_{z \to x} v(z) = 0 \qquad \text{for all } x \in (-r, r).$$

- (a) Show that v has a unique harmonic extension to B(0,r), and $v(\bar{z}) = -v(z)$ for all $z \in B(0,r)$.
- (b) Show that f has a unique holomorphic extension to B(0,r), and $f(\overline{z}) = \overline{f(z)}$ for all $z \in B(0,r)$.
- 4. Let $K, K_1, K_2 \subset \overline{\mathbb{H}}$ be hulls and r > 0 and $x \in \mathbb{R}$.
 - (a) Show that $hcap(rK) = r^2 hcap(K)$.
 - (b) Show that hcap(K + x) = hcap(K).
 - (c) Show that $hcap(K_1 \cup K_2) = hcap(K_1) + hcap(g_{K_1}(K_2))$, where $g_{K_1} \colon \mathbb{H} \setminus K_1 \to \mathbb{H}$ is the conformal bijection normalized at ∞ .