Advanced Topics in Stochastic Analysis - Introduction to Schramm-Loewner evolution

Mondays 12-14 and Thursdays 8-10 in Endenicher Allee 60 - SemR 1.008

Exercises – Set 10

- 1. Let γ be the SLE(κ) curve for $\kappa \in (0, 4]$, and let $(g_t)_{t \ge 0}$ be the corresponding conformal maps normalized at ∞ and $(W_t)_{t \ge 0}$ the driving process. Let $A \subset \mathbb{H}$ be a hull such that $0 \notin A$ and ∂A is a Jordan curve. Assume that $T := \inf\{t \ge 0 \mid \operatorname{dist}(\gamma(t), A) = 0\} < \infty$, denote $z = \gamma(T) \in \partial A$, and choose $\delta > 0$ small enough such that $\ell := [z, \delta \hat{n}] \subset A$, where \hat{n} is the inward unit normal vector of ∂A .
 - (a) By considering a complex Brownian motion started from ℓ , show that there exists a constant r > 0 such that

$$g_T(\ell) - W_T \subset \{ w \in \mathbb{H} \mid \mathrm{Im}(w) \ge r |\mathrm{Re}(w)| \}.$$

(b) Show that for every r > 0, there exist $C, \alpha \in (0, \infty)$ such that if $\gamma : [0, 1] \to \mathbb{H}$ is a curve with $0 < |\gamma(0)| = \varepsilon < 1 = |\gamma(1)|$ and

 $\gamma[0,1] \subset \{ w \in \mathbb{H} \mid \mathrm{Im}(w) \ge r |\mathrm{Re}(w)| \},\$

then for the Brownian excursion E in \mathbb{H} , we have

$$\mathbb{P}_0[E[0,\infty) \cap \gamma[0,1] = \emptyset] \le C\varepsilon^{\alpha}.$$

Why is the assumption that $\gamma[0, 1]$ lies inside a cone needed?

(c) For $m \in \mathbb{N}$, define the stopping times $\sigma_m := \inf\{t \ge 0 \mid |\gamma(t) - z| = \frac{1}{m}\}$, so $\sigma_m \nearrow T$ as $m \to \infty$. Deduce that for the Brownian excursion E in \mathbb{H} , we have

$$\lim_{m \to \infty} \mathbb{P}_{\gamma(\sigma_m)}[E[0,\infty) \cap A = \emptyset\} = 0.$$

2. Let $\kappa > 0$ and $\rho > -2$. Consider the SLE (κ, ρ) process, i.e., the Loewner chain with driving process $(W_t)_{t\geq 0}$ and force point $(X_t)_{t\geq 0}$ satisfying the SDE system

$$dW_t = \frac{\rho}{W_t - X_t} dt + \sqrt{\kappa} dB_t, \qquad W_0 = 0,$$

$$dX_t = \frac{2}{X_t - W_t} dt, \qquad X_0 = x \in \mathbb{R}.$$

(parameterized by half-plane capacity), up to a blow-up time. Let $(Z_t)_{t>0}$ be the solution to

$$dZ_t = \left(\frac{\rho+2}{\kappa}\right) \frac{1}{Z_t} dt + dB_t, \qquad Z_0 = 0,$$

again up to a blow-up time. Check that

$$\int_0^t \frac{\mathrm{d}s}{Z_s} < \infty$$

and using this, deduce that the SLE(κ, ρ) process is well-defined also when $x \nearrow 0$ or $x \searrow 0$.