Institute for Applied Mathematics SS 2020 Prof. Dr. Anton Bovier, Kaveh Bashiri

Stochastic Processes Sheet 9

Hand in Friday, June 26, 2020

Exercise 1

1. Let $(X_n)_{n \in \mathbb{N}}$ be a submartingale such that $\mathbb{E}[e^{tX_n}] < \infty$ for all $n \in \mathbb{N}$ and for all $t \in \mathbb{R}$. Prove that

$$\mathbb{P}\left(\max_{1\leq k\leq n} X_k \geq x\right) \leq e^{-tx} \mathbb{E}[e^{tX_n}],$$

for all t > 0 and $x \in \mathbb{R}$.

2. Let $(\xi_n)_{n \in \mathbb{N}}$ be i.i.d random variables with $\mathbb{P}(\xi_1 = 1) = 1/2 = \mathbb{P}(\xi_1 = -1)$. Let $X_n = \sum_{k=1}^n \xi_k$. Prove that

$$\mathbb{P}\left(\limsup_{n \to \infty} \frac{X_n}{\sqrt{2n \log n}} \ge 1 + \epsilon\right) = 0$$

for all $\epsilon > 0$.

Hint: Use $X_n \leq \max_{1 \leq k \leq n} X_k$, part 1., the fact that $\log \cosh x \leq x^2/2$ and the Borel Cantelli lemmas.

Exercise 2

Let M be a martingale in L^2 with $M_0 = 0$. As in Definition 4.26, let $[M] = ([M]_n)_n$ be given by

$$[M]_n \equiv \sum_{k=1}^n (M_k - M_{k-1})^2 \text{ for all } n \in \mathbb{N}.$$

Show that

- 1. $M^2 [M] = (C \bullet M)$, where $C = (C_n)_n$ is given by $C_n = 2M_{n-1}$ for all $n \in \mathbb{N}$,
- 2. If M is bounded in L^2 , then $(C \bullet M)$ is bounded in L^1 ,
- 3. $(C \bullet M)$ is a martingale.

 $\begin{bmatrix} 6 \ Pkt \end{bmatrix}$

 $\begin{bmatrix} 4 & Pkt \end{bmatrix}$

Exercise 3

Suppose that (Ω, \mathcal{F}, P) is a probability space and $(\mathcal{F}_n)_n$ is a filtration. Let τ , τ_1 and τ_2 be stopping times with respect to $(\mathcal{F}_n)_n$. Show that

- 1. In the definition of stopping times, one could require that $\{\tau_i \leq n\} \in \mathcal{F}_n$ for all n instead of $\{\tau_i = n\} \in \mathcal{F}_n$ for all n,
- 2. $\tau_1 + \tau_2, \tau_1 \vee \tau_2 := \max\{\tau_1, \tau_2\}, \tau_1 \wedge \tau_2 := \min\{\tau_1, \tau_2\}$ are stopping times,
- 3. \mathcal{F}_{τ} is a σ -algebra,
- 4. If $\tau_1 \leq \tau_2$, then $\mathcal{F}_{\tau_1} \subset \mathcal{F}_{\tau_2}$,
- 5. $\mathcal{F}_{\tau_1 \wedge \tau_2} = \mathcal{F}_{\tau_1} \cap \mathcal{F}_{\tau_2},$
- 6. If $F \in \mathcal{F}_{\tau_1 \vee \tau_2}$, then $F \cap \{\tau_2 \leq \tau_1\} \in \mathcal{F}_{\tau_1}$,
- 7. $\mathcal{F}_{\tau_2 \vee \tau_1} = \sigma(\mathcal{F}_{\tau_1}, \mathcal{F}_{\tau_2}),$
- 8. If X is an adapted process, then X_{τ} is \mathcal{F}_{τ} -measurable.