Institute for Applied Mathematics SS 2020

Prof. Dr. Anton Bovier, Kaveh Bashiri

Stochastic Processes Sheet 8

Hand in until Friday, June 19, 2020

Exercise 1 [5 Pkt]

Let $(Y_n)_{n\in\mathbb{N}}$ be a Markov chain on the finite state space $S=\{1,\ldots,m\}$ with transition matrix $P=\{p_{ij}\}$, i.e. $\mathbb{P}(Y_{n+1}=i|Y_n=j)=p_{ij}$. Let $x=(x(j))_{j=1,\ldots,m}$ be the left-eigenvector of the transition matrix, i.e. there exists some $\lambda\in\mathbb{R}$ such that $\sum_j p_{ji}x(j)=\lambda x(i)$ for all i. Let $Z_n=\lambda^{-n}x(Y_n)$. Show that $(Z_n)_{n\in\mathbb{N}_0}$ is a martingale.

Exercise 2 [5 Pkt]

Let $(Y_n)_{n\in\mathbb{N}_0}$ be independent standard normal random variables. Let $S_n=\sum_{i=1}^n Y_i$ and $X_n=e^{S_n-\frac{n}{2}}$ for $n\geq 1$. Prove that

- 1. $(X_n)_{n\in\mathbb{N}_0}$ is a martingale,
- 2. $\lim_{n\to\infty} X_n = 0$ a.s,
- 3. $\lim_{n\to\infty} \mathbb{E}[X_n^p] = 0$, if and only if p < 1. (Hence, although the limit of $(X_n)_n$ is in L^1 , $(X_n)_n$ does not converge to zero in L^1 .)

Exercise 3 [5 Pkt]

Let X_n , $n \in \mathbb{N}$ be a sequence of random variables. Define $\mathcal{T}_n = \sigma(X_k, k \geq n)$ and $\mathcal{T} = \bigcap_{n \in \mathbb{N}} \mathcal{T}_n$. The σ -algebra \mathcal{T} is called the *tail* σ -algebra, and elements from \mathcal{T} are called *tail events*. Furthermore, call a $\mathbb{R} \cup \{\pm \infty\}$ -valued random variable η degenerate, if there exists a $c \in \mathbb{R} \cup \{\pm \infty\}$, such that $\eta = c$ a.s.

1. Which of the following events are \mathcal{T} measurable?

$$\left\{ \lim_{n \to \infty} X_n \text{ exists} \right\}, \qquad \left\{ \sup_n X_n < c \right\}, \qquad \left\{ \lim_{n \to \infty} X_n < c \right\} \\
\left\{ \sum_{n=1}^{\infty} X_n \text{ converges} \right\}, \qquad \left\{ \sum_{n=1}^{\infty} |X_n| < c \right\}.$$

2. Now suppose that X_n , $n \in \mathbb{N}$ is a sequence of independent random variables. Let $S_n = \sum_{i=1}^n X_i$. Show that $\limsup_{n \to \infty} X_n$ and $\limsup_{n \to \infty} \frac{S_n}{n}$ are degenerate random variables.

Exercise 4 [5 Pkt]

Let $(Y_i)_{i\in\mathbb{N}}$ be a sequence of i.i.d. random variables on the probability space (Ω, \mathcal{F}, P) , where Y_1 is not degenerate. Let $X_n := \sum_{k=1}^n Y_k$ and

$$\phi: \mathbb{R} \to \mathbb{R} \cup \{\infty\}, \quad \phi(u) = \log E[\exp(uY_1)],$$
$$\mathcal{U} := \{u \in \mathbb{R} | \phi(u) \in \mathbb{R}\}.$$

- 1. Find a function $g: \mathbb{N} \times \mathcal{U} \to \mathbb{R}$, such that $M_n(u) := \exp(uX_n g(n, u))$ is a martingale for all $u \in \mathcal{U}$.
- 2. Explain why $(M_n(u))_n$ with $u \in \mathcal{U}$ converges almost surely and verify that $0 \in \mathcal{U}$. Show that for $u \neq 0$, $\phi(tu) < t\phi(u)$ for all $t \in (0,1)$ and that the martingale $(M_n(u))_n$ converges almost surely to zero.

Hint: To show $\phi(tu) < t\phi(u)$, ask yourself which are the only cases, where equality holds in Jensen's inequality!