Stochastic Processes Sheet 8

Hand in until Friday, June 19, 2020

Exercise 1

Let $\left(Y_{n}\right)_{n \in \mathbb{N}}$ be a Markov chain on the finite state space $S=\{1, \ldots, m\}$ with transition matrix $P=\left\{p_{i j}\right\}$, i.e. $\mathbb{P}\left(Y_{n+1}=i \mid Y_{n}=j\right)=p_{i j}$. Let $x=(x(j))_{j=1, \ldots, m}$ be the lefteigenvector of the transition matrix, i.e. there exists some $\lambda \in \mathbb{R}$ such that $\sum_{j} p_{j i} x(j)=$ $\lambda x(i)$ for all i. Let $Z_{n}=\lambda^{-n} x\left(Y_{n}\right)$. Show that $\left(Z_{n}\right)_{n \in \mathbb{N}_{0}}$ is a martingale.

Exercise 2
Let $\left(Y_{n}\right)_{n \in \mathbb{N}_{0}}$ be independent standard normal random variables. Let $S_{n}=\sum_{i=1}^{n} Y_{i}$ and $X_{n}=e^{S_{n}-\frac{n}{2}}$ for $n \geq 1$. Prove that

1. $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ is a martingale,
2. $\lim _{n \rightarrow \infty} X_{n}=0$ a.s,
3. $\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}^{p}\right]=0$, if and only if $p<1$. (Hence, although the limit of $\left(X_{n}\right)_{n}$ is in L^{1}, $\left(X_{n}\right)_{n}$ does not converge to zero in L^{1}.)

Exercise 3

Let $X_{n}, n \in \mathbb{N}$ be a sequence of random variables. Define $\mathcal{T}_{n}=\sigma\left(X_{k}, k \geq n\right)$ and $\mathcal{T}=\bigcap_{n \in \mathbb{N}} \mathcal{T}_{n}$. The σ-algebra \mathcal{T} is called the tail σ-algebra, and elements from \mathcal{T} are called tail events. Furthermore, call a $\mathbb{R} \cup\{ \pm \infty\}$-valued random variable η degenerate, if there exists a $c \in \mathbb{R} \cup\{ \pm \infty\}$, such that $\eta=c$ a.s.

1. Which of the following events are \mathcal{T} measurable?

$$
\begin{array}{rrr}
\left\{\lim _{n \rightarrow \infty} X_{n} \text { exists }\right\}, & \left\{\sup _{n} X_{n}<c\right\}, & \left\{\limsup _{n \rightarrow \infty} X_{n}<c\right\} \\
\left\{\sum_{n=1}^{\infty} X_{n} \text { converges }\right\}, & \left\{\sum_{n=1}^{\infty}\left|X_{n}\right|<c\right\} .
\end{array}
$$

2. Now suppose that $X_{n}, n \in \mathbb{N}$ is a sequence of independent random variables. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Show that $\limsup _{n \rightarrow \infty} X_{n}$ and $\limsup _{n \rightarrow \infty} \frac{S_{n}}{n}$ are degenerate random variables.

Exercise 4

Let $\left(Y_{i}\right)_{i \in \mathbb{N}}$ be a sequence of i.i.d. random variables on the probability space (Ω, \mathcal{F}, P), where Y_{1} is not degenerate. Let $X_{n}:=\sum_{k=1}^{n} Y_{k}$ and

$$
\begin{aligned}
& \phi: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}, \quad \phi(u)=\log E\left[\exp \left(u Y_{1}\right)\right], \\
& \mathcal{U}:=\{u \in \mathbb{R} \mid \phi(u) \in \mathbb{R}\} .
\end{aligned}
$$

1. Find a function $g: \mathbb{N} \times \mathcal{U} \rightarrow \mathbb{R}$, such that $M_{n}(u):=\exp \left(u X_{n}-g(n, u)\right)$ is a martingale for all $u \in \mathcal{U}$.
2. Explain why $\left(M_{n}(u)\right)_{n}$ with $u \in \mathcal{U}$ converges almost surely and verify that $0 \in \mathcal{U}$. Show that for $u \neq 0, \phi(t u)<t \phi(u)$ for all $t \in(0,1)$ and that the martingale $\left(M_{n}(u)\right)_{n}$ converges almost surely to zero.
Hint: To show $\phi(t u)<t \phi(u)$, ask yourself which are the only cases, where equality holds in Jensen's inequality!
