Institute for Applied Mathematics SS 2020 Prof. Dr. Anton Bovier, Kaveh Bashiri

Stochastic Processes Sheet 6

Hand in Friday, June 5, 2020

Remark. In this exercise you may use the following facts.

- 1. The law of an \mathbb{R}^n -valued random vector X is uniquely determined by its multidimensional characteristic function given by $\mathbb{R}^n \ni u \mapsto \mathbb{E}[e^{i \langle u, X \rangle}]$.
- 2. Let $(X_k)_{k\in\mathbb{N}}$ be a sequence of \mathbb{R}^n -valued random vectors with multi-dimensional characteristic functions given by ϕ_k . Let X be an \mathbb{R}^n -valued random vector with multidimensional characteristic function given by ϕ . If $\lim_{k\to\infty} \phi_k(u) = \phi(u)$ for all $u \in \mathbb{R}^n$, then the sequence $(X_k)_{k\in\mathbb{N}}$ converges in law to X.

Exercise 1

- 1. Let X be an \mathbb{R}^n -valued Gaussian vector with mean zero and covariance matrix C. Show that the components X_1, \ldots, X_n of X are independent if and only if the covariance matrix C of X is diagonal.
- 2. Let N be a real valued Gaussian random variable with mean zero and variance 1 and let Z be another random variable, independent of N, with $\mathbb{P}(Z = 1) = \mathbb{P}(Z = -1) = 1/2$. Let Y = NZ. Show that
 - (a) Y is also a Gaussian random variable;
 - (b) Cov(N, Y) = 0, but N and Y are not independent;
 - (c) (N, Y) is not jointly Gaussian.

Exercise 2

[2 Pkt]

Let X be an \mathbb{R}^n -valued Gaussian vector with mean zero and covariance matrix C. Let A be an invertible $n \times n$ matrix. Show that AX is a Gaussian vector as well, and compute its covariance matrix.

[6 Pkt]

Exercise 3

 $\begin{bmatrix} 6 \ Pkt \end{bmatrix}$

Let $X_k, k \in \mathbb{N}$ be independent Gaussian random variables with mean 0 and variance 1. For $n \in \mathbb{N}$ and $t \in [0, 1]$ let

$$Z_n(t) := \frac{1}{\sqrt{n}} \sum_{k=1}^{\lfloor nt \rfloor} X_k,$$

where [x] represents the largest integer smaller than x (i.e. $[\pi] = 3$). Hence, for all n, $(Z_n(t))_{t \in [0,1]}$ is a stochastic process with state space \mathbb{R} .

- 1. Compute for every partition $0 \le t_1 < \ldots < t_N \le 1$, $N \in \mathbb{N}$, the covariance matrix $(\operatorname{Cov}(Z_n(t_i), Z_n(t_j)))_{ij}$ and show that for $n \to \infty$ this matrix converges to a matrix C with $C_{ij} = t_i \wedge t_j$.
- 2. Show that the finite dimensional distributions of Z_n converge in law to the "Brownian motion" as $n \to \infty$ (see Section 3.3.2 from the Lecture Notes). This means that for every partition $0 \le t_1 < \ldots < t_N \le 1$, $N \in \mathbb{N}$, the vectors $(Z_n(t_1), \ldots, Z_n(t_N))$ converge in law to an N-dimensional Gaussian random vector with mean zero and covariance matrix C where $C_{ij} = t_i \wedge t_j$.

Exercise 4

[4 Pkt]

 $\begin{bmatrix} 2 \ Pkt \end{bmatrix}$

Show that the results of exercise 3.2. remain true, if instead of requiring that the $X_k, k \in \mathbb{N}$ are Gaussian we just assume that the $X_k, k \in \mathbb{N}$ are independent and identically distributed with $\mathbb{E}[X_1] = 0$ and $\operatorname{Var}[X_1] = 1$.

Hint: The following identity might be useful:

$$(Z_n(t_1), \dots, Z_n(t_N))^T = \begin{pmatrix} Z_n(t_1) \\ Z_n(t_1) + (Z_n(t_2) - Z_n(t_1)) \\ \vdots \\ Z_n(t_1) + \sum_{i=1}^{N-1} (Z_n(t_{i+1}) - Z_n(t_i)) \end{pmatrix}.$$

Exercise 5

Prove the Chapman-Kolmogorov equations (Lemma 3.17 in the lecture notes).