Stochastic Processes Sheet 6

Hand in Friday, June 5, 2020

Remark. In this exercise you may use the following facts.
1 . The law of an \mathbb{R}^{n}-valued random vector X is uniquely determined by its multidimensional characteristic function given by $\mathbb{R}^{n} \ni u \mapsto \mathbb{E}\left[\mathrm{e}^{i\langle u, X\rangle}\right]$.
2. Let $\left(X_{k}\right)_{k \in \mathbb{N}}$ be a sequence of \mathbb{R}^{n}-valued random vectors with multi-dimensional characteristic functions given by ϕ_{k}. Let X be an \mathbb{R}^{n}-valued random vector with multidimensional characteristic function given by ϕ. If $\lim _{k \rightarrow \infty} \phi_{k}(u)=\phi(u)$ for all $u \in \mathbb{R}^{n}$, then the sequence $\left(X_{k}\right)_{k \in \mathbb{N}}$ converges in law to X.

Exercise 1

1. Let X be an \mathbb{R}^{n}-valued Gaussian vector with mean zero and covariance matrix C. Show that the components X_{1}, \ldots, X_{n} of X are independent if and only if the covariance matrix C of X is diagonal.
2. Let N be a real valued Gaussian random variable with mean zero and variance 1 and let Z be another random variable, independent of N, with $\mathbb{P}(Z=1)=\mathbb{P}(Z=-1)=$ $1 / 2$. Let $Y=N Z$. Show that
(a) Y is also a Gaussian random variable;
(b) $\operatorname{Cov}(N, Y)=0$, but N and Y are not independent;
(c) (N, Y) is not jointly Gaussian.

Exercise 2

Let X be an \mathbb{R}^{n}-valued Gaussian vector with mean zero and covariance matrix C. Let A be an invertible $n \times n$ matrix. Show that $A X$ is a Gaussian vector as well, and compute its covariance matrix.

Exercise 3

Let $X_{k}, k \in \mathbb{N}$ be independent Gaussian random variables with mean 0 and variance 1. For $n \in \mathbb{N}$ and $t \in[0,1]$ let

$$
Z_{n}(t):=\frac{1}{\sqrt{n}} \sum_{k=1}^{[n t]} X_{k},
$$

where $[x]$ represents the largest integer smaller than x (i.e. $[\pi]=3$). Hence, for all n, $\left(Z_{n}(t)\right)_{t \in[0,1]}$ is a stochastic process with state space \mathbb{R}.

1. Compute for every partition $0 \leq t_{1}<\ldots<t_{N} \leq 1, N \in \mathbb{N}$, the covariance matrix $\left(\operatorname{Cov}\left(Z_{n}\left(t_{i}\right), Z_{n}\left(t_{j}\right)\right)\right)_{i j}$ and show that for $n \rightarrow \infty$ this matrix converges to a matrix C with $C_{i j}=t_{i} \wedge t_{j}$.
2. Show that the finite dimensional distributions of Z_{n} converge in law to the "Brownian motion" as $n \rightarrow \infty$ (see Section 3.3.2 from the Lecture Notes). This means that for every partition $0 \leq t_{1}<\ldots<t_{N} \leq 1, N \in \mathbb{N}$, the vectors $\left(Z_{n}\left(t_{1}\right), \ldots Z_{n}\left(t_{N}\right)\right)$ converge in law to an N-dimensional Gaussian random vector with mean zero and covariance matrix C where $C_{i j}=t_{i} \wedge t_{j}$.

Exercise 4

Show that the results of exercise 3.2. remain true, if instead of requiring that the $X_{k}, k \in \mathbb{N}$ are Gaussian we just assume that the $X_{k}, k \in \mathbb{N}$ are independent and identically distributed with $\mathbb{E}\left[X_{1}\right]=0$ and $\operatorname{Var}\left[X_{1}\right]=1$.
Hint: The following identity might be useful:

$$
\left(Z_{n}\left(t_{1}\right), \ldots Z_{n}\left(t_{N}\right)\right)^{T}=\left(\begin{array}{c}
Z_{n}\left(t_{1}\right) \\
Z_{n}\left(t_{1}\right)+\left(Z_{n}\left(t_{2}\right)-Z_{n}\left(t_{1}\right)\right) \\
\vdots \\
Z_{n}\left(t_{1}\right)+\sum_{i=1}^{N-1}\left(Z_{n}\left(t_{i+1}\right)-Z_{n}\left(t_{i}\right)\right)
\end{array}\right) .
$$

Exercise 5

Prove the Chapman-Kolmogorov equations (Lemma 3.17 in the lecture notes).

