Institute for Applied Mathematics SS 2020 Prof. Dr. Anton Bovier, Kaveh Bashiri

Stochastic Processes Sheet 4

Hand in Friday, May 22, 2020

Exercise 1

[6 Pkt]

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. Let X and Y be absolutely integrable random variables.

- 1. Show that the map $X \to \mathbb{E}(X|\mathcal{G})$ is linear.
- 2. Show that if $\mathcal{B} \subset \mathcal{G}$ is a σ -algebra, then $\mathbb{E}[\mathbb{E}(X|\mathcal{G})|\mathcal{B}] = \mathbb{E}(X|\mathcal{B})$ a.s.
- 3. Show that if $X \leq Y$ a.s., then $\mathbb{E}(X|\mathcal{G}) \leq \mathbb{E}(Y|\mathcal{G})$ a.s.
- 4. Show that $|\mathbb{E}(X|\mathcal{G})| \leq \mathbb{E}(|X||\mathcal{G})$ a.s.;
- 5. Assume that there exists $n \in \mathbb{N}$ and $p_1, \ldots, p_n \in \mathbb{R}$ such that $\mathbb{P}(Y \in \{p_1, \ldots, p_n\}) = 1$ and $\mathbb{P}(Y = p_i) > 0$ for $i = 1, \ldots, n$. Compute $\mathbb{E}(X | \sigma(Y))$.

Exercise 2

 $\begin{bmatrix} 4 & Pkt \end{bmatrix}$

Let $\Omega = {\omega_1, \ldots, \omega_5}$ and let $\mathcal{F} = 2^{\Omega}$ be the power set Ω . Let \mathbb{P} be the unique probability measure such that

$$\mathbb{P}\big[\{\omega_1\}\big] = \frac{1}{10}, \quad \mathbb{P}\big[\{\omega_2\}\big] = \mathbb{P}\big[\{\omega_3\}\big] = \mathbb{P}\big[\{\omega_4\}\big] = \frac{1}{5}, \quad \mathbb{P}\big[\{\omega_5\}\big] = \frac{3}{10}.$$

Consider the σ -algebra $\mathcal{F}_1 = \sigma(\{\omega_1, \omega_4\}, \{\omega_5\}, \{\omega_2, \omega_3\})$ and the random variable X defined by the following: $X(\omega_1) = 1$, $X(\omega_2) = 2$, $X(\omega_3) = 4$, $X(\omega_4) = 7$ and $X(\omega_5) = 12$. Compute $\mathbb{E}[X|\mathcal{F}_1]$.

Exercise 3

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra.

1. Prove the conditional Markov inequality, i.e. show that, if $f : \mathbb{R}_+ \to \mathbb{R}_+$ is nondecreasing and such that f(|X|) is integrable, then

$$\mathbb{P}[|X| \ge \alpha |\mathcal{G}] \le \frac{1}{f(\alpha)} \mathbb{E}[f(|X|)|\mathcal{G}] \quad \mathbb{P}\text{-a.s.}$$

2. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a convex function, X and $\phi(X)$ be integrable random variables. Prove the conditional Jensen inequality

$$\phi(\mathbb{E}[X|\mathcal{G}]) \le \mathbb{E}[\phi(X)|\mathcal{G}].$$

Hint: You can use that for $x, y \in \mathbb{R}$ there exists a measurable function $c : \mathbb{R} \to \mathbb{R}$ such that

$$\phi(x) \ge \phi(y) + c(y)(x - y).$$

Exercise 4

Let X be integrable and let Y be bounded and \mathcal{G} -measurable. By using the monotone class theorem, show that

$$\mathbb{E}(XY|\mathcal{G}) = Y\mathbb{E}(X|\mathcal{G}) \quad \text{a.s.}$$

 $\begin{bmatrix} 5 \ Pkt \end{bmatrix}$