Institute for Applied Mathematics SS 2020 Prof. Dr. Anton Bovier, Kaveh Bashiri

Stochastic Processes Sheet 3

Hand in Friday, 15th of May, 2020

Exercise 1 [5 *Pkt*] Use Jensen's inequality to prove the Hölder inequalties for $p, q \in (0, \infty)$ such that $\frac{1}{p} + \frac{1}{q} = 1$.

Exercise 2

Let μ be a finite measure on a measurable space (Ω, \mathcal{A}) . Let $f : \Omega \to \mathbb{R}$ be measurable, nonnegative and integrable. Define

$$\mu_f(A) = \int_A f \, d\mu \qquad \forall A \in \mathcal{A}$$

Show that μ_f is a measure on (Ω, \mathcal{A}) .

Exercise 3

Let \mathcal{M} be the set of all measures on the measurable space (Ω, \mathcal{A}) .

- 1. Let $\mu \sim \nu$, if and only if $\mu \ll \nu$ and $\nu \ll \mu$. Show that $\mu \sim \nu$ is an equivalence relation.
- 2. Show that for finite measures μ and ν , $\mu \sim \nu$ is equivalent to $0 < \frac{d\nu}{d\mu} < \infty \mu$ -a.e.

Hint: You may use the Radon-Nikodým theorem

Exercise 4

Let (Ω, \mathcal{A}) be a measurable space, where the σ -algebra \mathcal{A} contains all points, i.e. $\{\omega\} \in \mathcal{A}$ for all $\omega \in \Omega$. Let μ and ν be finite and discrete measures on \mathcal{A} .

- 1. Give a necessary and a sufficient condition for $\nu \ll \mu$.
- 2. Assume $\nu \ll \mu$. Calculate all densities of ν with respect to μ .

Hint: The measure μ is called *finite and discrete* if there are at most countably many $\omega_i \in \Omega$ and $p_i > 0$ with $\sum_i p_i < \infty$, such that

$$\mu = \sum_{i} p_i \delta_{\omega_i}$$

 $\begin{bmatrix} 5 \ Pkt \end{bmatrix}$

 $\begin{bmatrix} 5 \ Pkt \end{bmatrix}$

 $\begin{bmatrix} 5 \ Pkt \end{bmatrix}$