Stochastic Processes Sheet 11

Hand in Friday, July 10, 2020

Exercise 1

[7 Pkt]
The Wright-Fisher model describes the evolution of a population of individuals with phenotype A or B. The total population size at each generation is kept constant and is equal to N. The Wright-Fisher model is a stochastic process $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ with state space $S=\{0, \ldots, N\}$, where

$$
X_{n}=\text { number of individuals of type } A \text { in the } n \text {th generation. }
$$

Thus the number of individuals of type B is just $N-X_{n}$. In this model, the evolution is given as follows. Given a population at time n, each of the descendants (population at time $n+1$) takes the type from a randomly (with a uniform distribution) chosen parent of the nth generation. Show that

1. $\left(X_{n}\right)_{n}$ is a Markov Chain and compute the transition probability,
2. $\left(X_{n}\right)_{n}$ is a martingale,
3. the states 0 and N are absorbing,
4. $\mathbb{E}_{x}\left[\tau_{\{0, N\}}\right]<\infty$ for all $x \in\{0, \ldots, N\}$,
5. Compute (using e.g. Doob's Optional Stopping Theorem) the probability that the process started at $x \in\{0, \ldots, N\}$ is absorbed in N (resp. in 0).

Exercise 2

Consider the simple random walk on $\{-N,-N+1, \ldots, N\}$. Let for $x \in\{-N,-N+$ $1, \ldots, N\}$

$$
h(x)=\mathbb{P}_{x}\left[\tau_{N}=\tau_{\{N\} \cup\{-N\}}\right]=\mathbb{P}_{x}\left[\tau_{N}<\tau_{-N}\right] .
$$

Assume we want to condition this process on hitting $+N$ before $-N$. Compute $h(x)$ and use this to compute the transition rates of the h-transformed walk

Exercise 3

Let $\left(X_{n}\right)_{n}$ be a Markov Chain taking values in \mathbb{N}_{0} and with transition matrix P given by

$$
\begin{aligned}
& P(0,0)=1, \\
& P(k, m)=e^{-k} \frac{k^{m}}{m!} \quad \text { for } k \in \mathbb{N} \text { and } m \in \mathbb{N}_{0} .
\end{aligned}
$$

1. Which states are recurrent?
2. Show that the identity function $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}, k \mapsto k$, is harmonic.

Exercise 4

Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be the Brownian motion. Define the processes $\left(B_{t}^{(1)}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}^{(2)}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}^{(3)}\right)_{t \in \mathbb{R}_{+}}$ by

1. $B_{t}^{(1)}=-B_{t}$,
2. $B_{t}^{(2)}=B_{t+r}-B_{r}$ for some $r>0$,
3. $B_{t}^{(3)}=\frac{1}{c} B_{c^{2} t}$ for some $c>0$.

Show that $\left(B_{t}^{(1)}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}^{(2)}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}^{(3)}\right)_{t \in \mathbb{R}_{+}}$are Brownian motions as well.

