Stochastic Processes
 Sheet 10

Hand in Friday, July 3, 2020

Exercise 1

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be iid random variables with $\mathbb{P}\left(X_{1}=-1\right)=\mathbb{P}\left(X_{1}=+1\right)=\frac{1}{2}$. Let $S_{0}=0$ and let $S_{n}=\sum_{i=1}^{n} X_{i}$ for all $n \geq 1$. Further, define for $a, b \in \mathbb{N}$ the following hitting times

$$
\tau_{-a}=\inf \left\{n>0 \mid S_{n}=-a\right\} \quad \text { and } \quad \tau_{b}=\inf \left\{n>0 \mid S_{n}=b\right\}
$$

Set $\tau=\tau_{-a} \wedge \tau_{b}$. Prove that

1. $\mathbb{E}(\tau)<\infty$,
2. $\left(S_{n}^{2}-n\right)_{n}$ is a martingale,
3. $\mathbb{E}\left(S_{\tau}\right)=0$,
4. $\mathbb{P}\left(\tau_{-a}<\tau_{b}\right)=\frac{b}{a+b}$, (Hint: Use the Optional Stopping Theorem!)
5. $\mathbb{E}(\tau)=\mathbb{E}\left(S_{\tau}^{2}\right)$.

Finally, compute $\mathbb{E}(\tau)$.

Exercise 2

Suppose that $P(x, d y)$ is a transition kernel on a state space (S, \mathcal{B}). We say that a probability measure μ on (S, \mathcal{B}) satisfies the detailed balance condition w.r.t. P if and only if for all measurable $f: S \times S \rightarrow \mathbb{R}_{+}$,

$$
\iint \mu(d x) P(x, d y) f(x, y)=\iint \mu(d y) P(y, d x) f(x, y) .
$$

a) Show that a measure that satisfies the detailed balance condition is invariant.
b) Suppose that $\left(X_{n}\right)$ is a stationary Markov chain with one step transition kernel P and with initial distribution μ. Show that $X_{n} \sim \mu$ for all $n \geq 0$.
c) Now let $p \in(0,1)$, and consider a Markov chain with state space \mathbb{Z}_{+}and transition probabilities $P(x, x+1)=p$ for $x \geq 0, P(x, x-1)=q:=1-p$ for $x \geq 1$, and $P(0,0)=q$.
(i) Find a nontrivial invariant measure.
(ii) Show that if $p<q$ then there is a unique invariant probability measure.
(iii) Show that if $p \geq q$ then an invariant probability measure does not exist.

Exercise 3

Show that a Markov chain with stationary probability kernels and initial distribution $P_{0}=$ π is a stationary stochastic process if and only if π is an invariant probability distribution.

Exercise 4

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a Markov chain taking values in $E=\{0,1, \ldots, N\}$ and with transition matrix P given by

$$
P(x, y)= \begin{cases}p & \text { if } y=x+1 \\ 1-p & \text { if } y=0 \\ 0 & \text { otherwise }\end{cases}
$$

for $0 \leq x \leq N-1$ and for $0<p<1$, with the state N being an absorption state. Define $\tau=\inf \left\{n \geq 0: X_{n}=N\right\}$, i.e. the first time that X reaches N.

1. Use the Markov property to prove that $u(x)=\mathbb{E}_{x}[\tau], x \in\{0,1, \ldots, N\}$ satisfies the following equation

$$
u(x)= \begin{cases}0 & \text { if } x=N \\ 1+\sum_{y \in E} P(x, y) u(y) & \text { otherwise }\end{cases}
$$

2. Compute $\mathbb{E}_{x}[\tau]$.
3. How many tosses of a fair coin are necessary on average to get six heads in a row?
