Institute for Applied Mathematics SS 2020 Prof. Dr. Anton Bovier, Kaveh Bashiri

Stochastic Processes Sheet 10

Hand in Friday, July 3, 2020

Exercise 1

[7 Pkt]

Let $(X_n)_{n\in\mathbb{N}}$ be iid random variables with $\mathbb{P}(X_1 = -1) = \mathbb{P}(X_1 = +1) = \frac{1}{2}$. Let $S_0 = 0$ and let $S_n = \sum_{i=1}^n X_i$ for all $n \ge 1$. Further, define for $a, b \in \mathbb{N}$ the following hitting times

 $\tau_{-a} = \inf\{n > 0 \mid S_n = -a\}$ and $\tau_b = \inf\{n > 0 \mid S_n = b\}.$

Set $\tau = \tau_{-a} \wedge \tau_b$. Prove that

- 1. $\mathbb{E}(\tau) < \infty$,
- 2. $(S_n^2 n)_n$ is a martingale,
- 3. $\mathbb{E}(S_{\tau}) = 0$,
- 4. $\mathbb{P}(\tau_{-a} < \tau_b) = \frac{b}{a+b}$, (*Hint*: Use the Optional Stopping Theorem!)

5.
$$\mathbb{E}(\tau) = \mathbb{E}(S_{\tau}^2).$$

Finally, compute $\mathbb{E}(\tau)$.

Exercise 2

 $\begin{bmatrix} 5 \ Pkt \end{bmatrix}$

Suppose that P(x, dy) is a transition kernel on a state space (S, \mathcal{B}) . We say that a probability measure μ on (S, \mathcal{B}) satisfies the *detailed balance condition w.r.t.* P if and only if for all measurable $f: S \times S \to \mathbb{R}_+$,

$$\int \int \mu(dx) P(x, dy) f(x, y) = \int \int \mu(dy) P(y, dx) f(x, y).$$

- a) Show that a measure that satisfies the detailed balance condition is invariant.
- b) Suppose that (X_n) is a stationary Markov chain with one step transition kernel P and with initial distribution μ . Show that $X_n \sim \mu$ for all $n \geq 0$.
- c) Now let $p \in (0, 1)$, and consider a Markov chain with state space \mathbb{Z}_+ and transition probabilities P(x, x + 1) = p for $x \ge 0$, P(x, x 1) = q := 1 p for $x \ge 1$, and P(0, 0) = q.

- (i) Find a nontrivial invariant measure.
- (ii) Show that if p < q then there is a unique invariant probability measure.
- (iii) Show that if $p \ge q$ then an invariant probability measure does not exist.

Exercise 3

[3 Pkt]

Show that a Markov chain with stationary probability kernels and initial distribution $P_0 = \pi$ is a stationary stochastic process if and only if π is an invariant probability distribution.

Exercise 4

 $\begin{bmatrix} 5 \ Pkt \end{bmatrix}$

Let $(X_n)_{n \in \mathbb{N}}$ be a Markov chain taking values in $E = \{0, 1, \dots, N\}$ and with transition matrix P given by

$$P(x,y) = \begin{cases} p & \text{if } y = x+1\\ 1-p & \text{if } y = 0\\ 0 & \text{otherwise} \end{cases}$$

for $0 \le x \le N - 1$ and for $0 , with the state N being an absorption state. Define <math>\tau = \inf\{n \ge 0 : X_n = N\}$, i.e. the first time that X reaches N.

1. Use the Markov property to prove that $u(x) = \mathbb{E}_x[\tau], x \in \{0, 1, \dots, N\}$ satisfies the following equation

$$u(x) = \begin{cases} 0 & \text{if } x = N\\ 1 + \sum_{y \in E} P(x, y)u(y) & \text{otherwise} \end{cases}$$

- 2. Compute $\mathbb{E}_x[\tau]$.
- 3. How many tosses of a fair coin are necessary on average to get six heads in a row?