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In the following you find some exercises that were used in previous exams.

Exercise 1 (Measure theory and Stochastic processes) [6 Pts]

1. State the Radon-Nikodým theorem.

2. Let (Ω,F ,P) be a probability space and let ν be a finite measure on (Ω,F) such that
ν � P. Let (Fn)n∈N be a filtration and for all n ∈ N, let Xn be the Radon-Nikodým
derivative of ν with respect to P on (Ω,Fn). Show that (Xn)n∈N is a martingale.

3. State the Theorem of Daniell-Kolmogorov on the construction of stochastic processes
for S = R and I = N0 = {0, 1, 2, . . .}.

Exercise 2 (Conditional expectation) [6 Pts]

1. Let q : R× B(R)→ [0, 1] be such that

(i) for each x ∈ R, q(x, ·) is a probability measure on (R,B(R)),

(ii) for each B ∈ B(R), q(·, B) is a Borel-measurable function.

Let λ be a probability measure on R. Define a probability measure P on (R2,B(R)⊗2)
by

P(A) =

∫
R
dλ(x)

∫
R
q(x, dy)1A(x, y), for all A ∈ B(R)⊗2. (1)

Let F ⊂ B(R)⊗2 be the σ-algebra on R2 defined by

F = {A× R |A ∈ B(R)}.
Finally, let f : R2 → R be a bounded measurable function. Show that E

[
f | F

]
, the

conditional expectation of f given F , is given by

E
[
f | F

]
(x, y) =

∫
R
f(x, z)q(x, dz) for almost all (x, y) ∈ R2,

(Hint: You need to show that the right-hand side of the equation above satisfies the
defining properties of the conditional expectation given F).

2. Let Y1, Y2, . . . be independent and identically distributed random variables on (Ω,F ,P)
with Var[Y1] = σ2 < ∞. Let N be a non-negative integer valued random variable
independent of the Yn’s with E[N2] < ∞. Compute the variance of the random
variable X :=

∑N
k=1 Yk.



Exercise 3 (Martingales) [6 Pts]

1. State Doob’s super-martingale convergence theorem.

2. Let (Yn)n∈N be independent and identically distributed random variables with

P(Y1 = 0) = P(Y1 = 2) =
1

2
,

and set Xn =
∏n

i=1 Yi for n ≥ 1. Prove that (Xn)n∈N is a martingale with mean one,
which converges almost surely to zero.

3. Let (ξn)n∈N be iid random variables such that P(ξ1 = 0) = P(ξ1 = 1) = 1
2
. Let

for all n ∈ N, Sn =
∑n

k=1 ξkξk−1. Decide whether (Sn)n∈N is a submartingale or a
supermartingale or a martingale.

Exercise 4 (Stopping Times) [6 Pts]

1. State Doob’s optional stopping theorem.

2. Let (Xn)n∈N be independent and identically distributed random variables with P(X1 =
−1) = P(X1 = +1) = 1

2
. Let S0 = 0 and let Sn =

∑n
i=1Xi for all n ≥ 1. Define for

a, b ∈ N the following hitting times

τ−a = inf{n > 0 | Sn = −a} and τb = inf{n > 0 | Sn = b}.

Set τ = τ−a ∧ τb. Compute E(τ).

Exercise 5 (Markov processes) [6 Pts]

Let (Ω,F ,P) be a probability space. Let X be a Markov process with state space S and
generator L, and let (Ft)t∈N0 be the corresponding natural filtration.

1. State the discrete time martingale problem.

2. Let D ⊂ S be non-empty and open and let g be a measurable function on D. Under
which assumptions does the problem

−(Lf)(x) = g(x), x ∈ D,
f(x) = 0, x ∈ Dc.

have a unique solution? Give an explicit representation of this solution.

3. Let h : S → R+ be a positive harmonic function.

(i) Give the definition of the h-transformed measure Ph.

(ii) Let Y be Fs-measurable and bounded. Show that for any t ≥ s,

E
h[Y |F0] =

1

h(X0)
E[h(Xt)Y |F0].



Exercise 6 (Brownian motion) [6 Pts]

1. Give the definition of the one-dimensional Brownian motion starting in 0.

2. Let (Bt)t∈R+ be the one-dimensional Brownian motion starting in 0. Show that
(B2

t − t)t∈R+ is a martingale.

3. Let (Bt)t∈R+ be the one-dimensional Brownian motion starting in 0. Show that
(B3

t − 3tBt)t∈[0,∞) is a martingale.


