Institut für Angewandte Mathematik SS 2020 Prof. Dr. Anton Bovier, Dr. Kaveh Bashiri

"Stochastic processes"

Mock Exam

In the following you find some exercises that were used in previous exams.

Exercise 1 (Measure theory and Stochastic processes)

[6 Pts]

 $\begin{bmatrix} 6 \ Pts \end{bmatrix}$

- 1. State the Radon-Nikodým theorem.
- 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let ν be a finite measure on (Ω, \mathcal{F}) such that $\nu \ll \mathbb{P}$. Let $(\mathcal{F}_n)_{n \in \mathbb{N}}$ be a filtration and for all $n \in \mathbb{N}$, let X_n be the Radon-Nikodým derivative of ν with respect to \mathbb{P} on (Ω, \mathcal{F}_n) . Show that $(X_n)_{n \in \mathbb{N}}$ is a martingale.
- 3. State the Theorem of Daniell-Kolmogorov on the construction of stochastic processes for $S = \mathbb{R}$ and $I = \mathbb{N}_0 = \{0, 1, 2, \ldots\}$.

Exercise 2 (Conditional expectation)

- 1. Let $q : \mathbb{R} \times \mathcal{B}(\mathbb{R}) \to [0, 1]$ be such that
 - (i) for each $x \in \mathbb{R}$, $q(x, \cdot)$ is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,
 - (ii) for each $B \in \mathcal{B}(\mathbb{R})$, $q(\cdot, B)$ is a Borel-measurable function.

Let λ be a probability measure on \mathbb{R} . Define a probability measure \mathbb{P} on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R})^{\otimes 2})$ by

$$\mathbb{P}(A) = \int_{\mathbb{R}} d\lambda(x) \int_{\mathbb{R}} q(x, dy) \mathbb{1}_A(x, y), \quad \text{for all } A \in \mathcal{B}(\mathbb{R})^{\otimes 2}.$$
(1)

Let $\mathcal{F} \subset \mathcal{B}(\mathbb{R})^{\otimes 2}$ be the σ -algebra on \mathbb{R}^2 defined by

$$\mathcal{F} = \{ A \times \mathbb{R} \, | \, A \in \mathcal{B}(\mathbb{R}) \}.$$

Finally, let $f : \mathbb{R}^2 \to \mathbb{R}$ be a bounded measurable function. Show that $\mathbb{E}[f | \mathcal{F}]$, the conditional expectation of f given \mathcal{F} , is given by

$$\mathbb{E}\left[f \mid \mathcal{F}\right](x, y) = \int_{\mathbb{R}} f(x, z)q(x, dz) \quad \text{for almost all } (x, y) \in \mathbb{R}^2,$$

(Hint: You need to show that the right-hand side of the equation above satisfies the defining properties of the conditional expectation given \mathcal{F}).

2. Let Y_1, Y_2, \ldots be independent and identically distributed random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ with $\operatorname{Var}[Y_1] = \sigma^2 < \infty$. Let N be a non-negative integer valued random variable independent of the Y_n 's with $\mathbb{E}[N^2] < \infty$. Compute the variance of the random variable $X := \sum_{k=1}^N Y_k$.

Exercise 3 (Martingales)

- 1. State Doob's super-martingale convergence theorem.
- 2. Let $(Y_n)_{n\in\mathbb{N}}$ be independent and identically distributed random variables with

$$\mathbb{P}(Y_1 = 0) = \mathbb{P}(Y_1 = 2) = \frac{1}{2},$$

and set $X_n = \prod_{i=1}^n Y_i$ for $n \ge 1$. Prove that $(X_n)_{n \in \mathbb{N}}$ is a martingale with mean one, which converges almost surely to zero.

3. Let $(\xi_n)_{n\in\mathbb{N}}$ be iid random variables such that $\mathbb{P}(\xi_1 = 0) = \mathbb{P}(\xi_1 = 1) = \frac{1}{2}$. Let for all $n \in \mathbb{N}$, $S_n = \sum_{k=1}^n \xi_k \xi_{k-1}$. Decide whether $(S_n)_{n\in\mathbb{N}}$ is a submartingale or a supermartingale or a martingale.

Exercise 4 (Stopping Times)

- 1. State Doob's optional stopping theorem.
- 2. Let $(X_n)_{n \in \mathbb{N}}$ be independent and identically distributed random variables with $\mathbb{P}(X_1 = -1) = \mathbb{P}(X_1 = +1) = \frac{1}{2}$. Let $S_0 = 0$ and let $S_n = \sum_{i=1}^n X_i$ for all $n \ge 1$. Define for $a, b \in \mathbb{N}$ the following hitting times

$$\tau_{-a} = \inf\{n > 0 \mid S_n = -a\}$$
 and $\tau_b = \inf\{n > 0 \mid S_n = b\}.$

Set
$$\tau = \tau_{-a} \wedge \tau_b$$
. Compute $\mathbb{E}(\tau)$.

Exercise 5 (Markov processes)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let X be a Markov process with state space S and generator L, and let $(\mathcal{F}_t)_{t \in \mathbb{N}_0}$ be the corresponding natural filtration.

- 1. State the discrete time martingale problem.
- 2. Let $D \subset S$ be non-empty and open and let g be a measurable function on D. Under which assumptions does the problem

$$-(Lf)(x) = g(x), \quad x \in D,$$

$$f(x) = 0, \quad x \in D^{c}.$$

have a unique solution? Give an explicit representation of this solution.

- 3. Let $h: S \to \mathbb{R}_+$ be a positive harmonic function.
 - (i) Give the definition of the *h*-transformed measure \mathbb{P}^h .
 - (ii) Let Y be \mathcal{F}_s -measurable and bounded. Show that for any $t \geq s$,

$$\mathbb{E}^{h}[Y|\mathcal{F}_{0}] = \frac{1}{h(X_{0})} \mathbb{E}[h(X_{t})Y|\mathcal{F}_{0}].$$

 $\begin{bmatrix} 6 \ Pts \end{bmatrix}$

[6 Pts]

Exercise 6 (Brownian motion)

- [6 Pts]
- 1. Give the definition of the one-dimensional Brownian motion starting in 0.
- 2. Let $(B_t)_{t \in \mathbb{R}_+}$ be the one-dimensional Brownian motion starting in 0. Show that $(B_t^2 t)_{t \in \mathbb{R}_+}$ is a martingale.
- 3. Let $(B_t)_{t \in \mathbb{R}_+}$ be the one-dimensional Brownian motion starting in 0. Show that $(B_t^3 3tB_t)_{t \in [0,\infty)}$ is a martingale.