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Abstract

For large classes of even-dimensional Riemannian manifolds (M, g), we construct and
analyze conformally invariant random fields. These centered Gaussian fields h = hg,
called co-polyharmonic Gaussian fields, are characterized by their covariance kernels k
which exhibit a precise logarithmic divergence:

∣∣k(x, y) − log 1
d(x,y)

∣∣ ≤ C. They share

the fundamental quasi-invariance property under conformal transformations: if g′ = e2ϕg,
then

hg′
(d)
= enϕhg − C · volg′

with an appropriate random variable C = Cϕ.
In terms of the co-polyharmonic Gaussian field h, we define the Liouville Quantum

Gravity measure, a random measure on M , heuristically given as

dµhg (x) := eγh(x)−
γ2

2 k(x,x) dvolg(x) ,

and rigorously obtained as almost sure weak limit of the right-hand side with h replaced by
suitable regular approximations hℓ, ℓ ∈ N. These measures share a crucial quasi-invariance
property under conformal transformations: if g′ = e2ϕg, then

dµh
′

g′ (x)
(d)
= eF

h(x) dµhg (x)

for an explicitly given random variable Fh(x).
In terms on the Liouville Quantum Gravity measure, we define the Liouville Brownian

motion on M and the random GJMS operators. Finally, we present an approach to a
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conformal field theory in arbitrary even dimensions with an ansatz based on Branson’s
Q-curvature: we give a rigorous meaning to the Polyakov–Liouville measure

dν∗
g(h) =

1

Z∗
g

exp

(
−
ˆ

ΘQgh+meγhdvolg

)
exp

(
−an

2
pg(h, h)

)
dh

for suitable positive constants Θ,m, γ and an, and we derive the corresponding conformal
anomaly.

The set of admissible manifolds is conformally invariant. It includes all compact 2-
dimensional Riemannian manifolds, all compact non-negatively curved Einstein manifolds
of even dimension, and large classes of compact hyperbolic manifolds of even dimension.
However, not every compact even-dimensional Riemannian manifold is admissible.

Our results concerning the logarithmic divergence of the kernel k — defined as the
Green kernel for the GJMS operator on (M, g) — rely on new sharp estimates for heat
kernels and higher order Green kernels on arbitrary compact manifolds.
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Introduction

Conformally invariant random objects on the complex plan or on Riemannian surfaces
are a central topic of current research and play a fundamental role in many mathematical
theories. The last two decades have seen an impressive wave of fascinating constructions,
deep insights and spectacular results for various conformally (quasi-) invariant random
objects, most prominently the Gaussian Free Field, the Liouville quantum measure, the
Brownian map, and the SLE curves.

In this paper, we use ideas from conformal geometry in higher dimension to establish
the foundations for a mathematical theory of conformally invariant random fields and
Liouville Quantum Gravity on compact Riemannian manifolds of even dimension.
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Co-polyharmonic Gaussian Fields. We construct conformally quasi-invariant ran-
dom Gaussian fields h on admissible Riemannian manifolds (M, g) of arbitrary even di-
mension. The covariance kernels of these centered Gaussian fields, naively interpreted as
k(x, y) = E

[
h(x)h(y)

]
, exhibits a logarithmic divergence

∣∣∣k(x, y)− log
1

d(x, y)

∣∣∣ ≤ C .

As for the Gaussian Free Field, these random fields, called co-polyharmonic Gaussian
fields, are not classical functions on M but rather distributions in D′, the dual space
of D = C∞(M). They also can be regarded as elements in the Sobolev space Hs(M) of
any negative order s < 0. By construction, they annihilate constants, that is 〈h |1〉 = 0.

We prove (Thm. 3.13) that co-polyharmonic Gaussian fields are conformally quasi-
invariant: let hg denote the co-polyharmonic Gaussian field for (M, g) and hg′ that
for (M, g′) with g′ = e2ϕg and ϕ smooth, then

hg′
(d)
= enϕhg − C · volg′ , (1)

where C is an appropriate random variable that ensures that the right-hand side annihi-

lates constants. Here and in all the paper we use
(d)
= to indicate that two random variables

have the same law.

Co-polyharmonic operators. For a given manifold (M, g) of even dimension n, the
covariance kernel kg is — up to a multiplicative constant an = 2(4π)−n/2/Γ(n/2) — the
integral kernel of an operator Kg that is inverse to the operator Pg on the ‘grounded’

L2-space H̊ :=
{
u ∈ L2(M, volg) :

´

u dvolg = 0
}
. Here,

Pg = (−∆g)
n/2 + low order terms (2)

denotes the co-polyharmonic operator or Graham–Jenne–Mason–Sparling operator of max-
imal order. The operator Pg plays the role of a conformally invariant power of the Lapla-
cian and has been first defined in [GJMS92]. For n = 2, the non-negative operator Pg
is just −∆g, the negative of the Laplacian, and for n = 4 it is the celebrated Paneitz
operator [Pan83].

The co-polyharmonic Gaussian field h on (M, g) can easily be constructed in terms
of the eigenbasis (ψj)j∈N0 of Pg: with (νj)j∈N0 the corresponding eigenvalues and any
sequence (ξj)j∈N of independent standard normal random variables, then (Prop. 3.9)

h = lim
ℓ→∞

(hℓ volg) , hℓ(x) :=

ℓ∑

j=1

ψj(x) ξj√
an νj

. (3)

In the above expression, we see hlvolg as a random distribution and the convergence holds
in quadratic mean.

Liouville Quantum Gravity measures. We then define the Liouville Quantum Grav-
ity measure µh on (M, g) for every parameter γ ∈ R with |γ| <

√
2n as a random finite

measure. Employing Kahane’s idea of Gaussian multiplicative chaos, we define (Thm. 4.1)
the measure µh as the almost sure limit (in the usual sense of weak convergence of mea-
sures) of the sequence (µhℓ)ℓ∈N of finite measures on M given by

dµhℓ(x) := eγhℓ(x)−
γ2

2 kℓ(x,x) dvolg(x), (4)

with hℓ as in (3) and kℓ(x, x) := E[hℓ(x)
2] =

∑ℓ
j=1

ψj(x)
2

anνj
.

We establish that almost surely the measure µh is a finite measure on M with full
topological support, and for every s > γ2/4, it does not charge sets of vanishing Hs-
capacity (Thm. 4.21). In particular, it does not charge sets of vanishing Hn/2-capacity
since |γ| <

√
2n throughout. If, moreover, |γ| < 2 then, almost surely, µh does not charge

sets of vanishing H1-capacity.
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The Liouville QuantumGravity measure has a crucial quasi-invariance property (Thm. 4.16).
To formulate it, let µhg denote the Liouville Quantum Gravity measure on (M, g) and µh

′

g′

the one on (M, g′) for g′ = e2ϕg. Then,

µh
′

g′
(d)
= eF

h

µhg , (5)

with a random variable Fh that is given explicitly.
We also define Liouville Quantum Gravity measures in two other flavors: the refined

and adjusted Liouville Quantum Gravity measures, respectively denoted by µ̃ and µ̄. They
are equal, up to a (possibly random) multiplicative constant, to the plain Liouville Quan-
tum Gravity measure defined above and thus share many properties with it. The adjusted
measure exhibits a simpler quasi-invariance property (Thm. 4.31):

µ̄h
′

g′ = e−γξ e

(

n+ γ2

2

)

ϕ
µ̄hg , (6)

where ξ is a normal random variable.

Random quadratic forms. With respect to the Liouville Quantum Gravity measure,
we can define a variety of random objects which play a fundamental role in geometric
analysis, spectral theory, and probabilistic potential theory.

Restricting to the range γ ∈ (−2, 2), we construct (Thm. 5.1) a random Dirichlet form
on L2(M,µh) by:

Eh(u, u) :=
ˆ

M

|∇u|2 dvolg, D(Eh) := H1(M) ∩ L2(M,µh) .

The associated reversible and continuous Markov process is the Liouville Brownian motion
(see [GRV14, GRV16] and [Ber15] for two independent constructions on the plane). It is
obtained from the standard Brownian motion on (M, g) through time change. The new
time scale is given as the right inverse of the additive functional

Aht = lim
ℓ→∞

ˆ t

0

exp
(
γ hℓ(Xs)−

γ2

2
kℓ(Xs, Xs)

)
ds . (7)

In dimension n > 2, however, this Liouville Brownian motion has no canonical invariance
property under conformal transformations.

To obtain conformally quasi-invariant random objects in higher dimensions, our start-
ing point, in Theorem 5.6, is the random co-polyharmonic form

ph(u, v) :=

ˆ

M

u P v dvol , D(ph) := Hn/2(M) ∩ L2(M,µh) ,

(rather than the random Dirichlet form) which in the full range γ ∈ (−
√
2n,

√
2n) is,

almost surely, a well-defined non-negative closed symmetric bilinear form on L2(M,µh).
It allows us to define random co-polyharmonic operators Ph. The associated random

co-polyharmonic heat flow e−tP
h

is the gradient flow for the deterministic quadratic func-
tional 1

2p in the random landscape L2(M, µ̄h) (Prop. 5.9).
In Theorem 5.11, we show that the random co-polyharmonic operators share the fun-

damental quasi-invariance property

Ph
′

g′
(d)
= e−F

h

Phg , (8)

with Fh as in (5).

Polyakov–Liouville measure. Finally, we propose an ansatz for a conformal field
theory on compact manifolds of arbitrary even dimension. Our approach, based on Bran-
son’s Q-curvature, provides a rigorous meaning to the Polyakov–Liouville measure ν

∗
g,

informally given as

ν
∗
g(dh) =

1

Zg
exp(−Sg(h))dh
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with the (non-existing) uniform distribution dh on the set of fields and the action

Sg(h) :=

ˆ

M

(an
2
hPg h+ΘQgh+meγh

)
dvolg ,

where m,Θ, γ > 0 are parameters (subjected to some restrictions). To rigorously define
the adjusted Polyakov–Liouville measure ν̄

∗
g, we interpret it as

dν̄∗
g(h+ a) := exp

(
−Θ 〈h+ a |Qg〉 −meγaµ̄hg,γ(M)

)
da dνg(h) , (9)

where νg denotes the law of the co-polyharmonic Gaussian field, informally understood
as νg(dh) =

1
Zg

exp
(
− an

2 〈h |Pg h〉
)
dh, and where µ̄hg,γ denotes the adjusted Liouville

Quantum Gravity measure. We prove (Thm. 5.21) that for admissible manifolds of nega-
tive total Q-curvature, the measure ν̄∗

g is finite. That is, in terms of the partition function

Z̄∗
g :=

´

dν̄∗
g < ∞. Moreover, for the particular choice Θ := an

(
n
γ + γ

2

)
, the adjusted

Polyakov–Liouville measure is quasi-invariant modulo shifts (Thm. 5.22) with conformal
anomaly

Z̄∗
e2ϕg/Z̄

∗
g = exp

(
an
2

(
n

γ
+
γ

2

)2 [
2

ˆ

M

ϕQg dvolg + pg(ϕ, ϕ)

])
. (10)

Admissible manifolds. Co-polyharmonic Gaussian fields do not exist on every com-
pact Riemannian manifold. A compact even-dimensional Riemannian manifold (M, g) is
called admissible if Pg > 0 on H̊ . Admissibility is a conformal invariance. All compact,
non-negatively curved Einstein manifolds are admissible, and so are all compact hyper-

bolic manifolds with spectral gap λ1 > n(n−2)
4 . Of course, all compact 2-dimensional

Riemannian manifolds are admissible.
One of our main results (Thm. 2.18) states that for every admissible manifold, the

inverse of Pg on H̊ has an integral kernel Kg which annihilates constants and satisfies

∣∣∣∣Kg(x, y)− an log
1

d(x, y)

∣∣∣∣ ≤ C .

with an as above.

The two-dimensional case. Even in the case of surfaces, our approach provides new
insights for the study of two-dimensional random objects. It applies to closed Riemannian
surfaces of arbitrary genus and thus some of our results are new in the two-dimensional
setting. Furthermore, by focussing on the grounded random field — which by definition
annihilates constants — we gain a more precise transformation rule (cf. Thm.s 3.13, 4.16)
than the ‘usual’ one which holds for the random field obtained by factoring out the
constants (cf. Remark 3.17). Overall, our approach recovers many of the famous results
concerning the Gaussian Free Field and the associated Liouville Quantum Gravity measure
in dimension 2, and for the first time it provides an intrinsic Riemannian, conformally
quasi-invariant extension to higher dimensions.

Probabilistic context. In dimension 2, conformally invariant random objects appear
naturally in the study of continuum statistical models. The celebrated Gaussian Free
Field naturally arises as the scaling limit of various discrete models of random surfaces,
for instance discrete Gaussian Free Fields or harmonic crystals [She07]. A planar con-
formally invariant random object of fundamental importance is the Schramm–Loewner
evolution [Law05, Sch07, Law18]. It plays a central role in many problems in statistical
physics and satisfies some conformal invariance. The Schramm-Loewner evolution and
the two-dimensional Gaussian Free Field are deeply related. For instance, level curves of
the Discrete Gaussian Free Field converge to SLE4 [SS09], and zero contour lines of the
Gaussian Free Field are well-defined random curves distributed according to SLE4 [SS13].
The work [MS16], and subsequent works in its series, thoroughly study the relation be-
tween the Schramm-Loewner evolution and Gaussian free field on the plane. Motivated
by Polyakov’s informal formulation of Bosonic string theory [Pol81a, Pol81b], the papers
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[DS11, DKRV16, GRV19] construct mathematically the Liouville Quantum Gravity on
some surfaces and study its conformal invariance properties. Formally speaking, the Li-
ouville Quantum Gravity is a random random surface obtained by random conformal
transform of the Euclidean metric, where the conformal weight is the Gaussian Free
Field. Since the Gaussian Free Field is only a distribution, we do not obtain a random
Riemannian manifold but rather a random metric measure space. The aforementioned
works construct the random measure based on a renormalization procedure due to Ka-
hane [Kah85]. This renormalization depends on a roughness parameter γ and works only
for |γ| < 2. In [MS20] and subsequent work in its series, J. Miller and S. Sheffield prove
that for the value γ =

√
8/3 the Liouville Quantum Gravity coincides with the Brown-

ian map, that is a random metric measure space arising as a universal scaling limit of
random trees and random planar graphs (see [LM12, Le 19] and the references therein).
More recently, [DDDF20, GM21] establish the existence of the Liouville Quantum Gravity
metric for γ ∈ (0, 2). We also note that the case where γ is complex valued is studied in
[GHPR20, Pfe21].

Geometric context. Despite the fact that the main attention of the probability commu-
nity has focused so far on the two-dimensional case, (non-random) conformal geometry in
dimensions n > 2 is a fascinating field of research. Earlier results by [Tru68, Aub76, Sch84]
completely solve the Yamabe problem [Yam60] on compact manifolds: every compact Rie-
mannian manifold is conformally equivalent to a manifold with constant scalar curvature.
In the general case, despite ground-breaking results by [ES86] using the conformal Lapla-
cian, a complete picture is still far from reach. On surfaces, the works [OPS88, OPS89]
initiate an approach to the problem based on Polyakov’s variational formulation for the
determinant of ∆g [Pol81a, Pol81b]: they show that constant curvature metrics have max-
imum determinant. In dimension 4, [BØ91] derives an equivalent of Polyakov’s formula
for a conformal version of ∆2

g, known as the Paneitz operator and [CY95] finds extremal
metrics associated to some functionals of the conformal Laplacian and the Paneitz opera-
tor. [GJMS92] constructs higher order equivalent of Paneitz operators, that is conformally
invariant powers of ∆g, based on [FG85], see also [GZ03]. In particular in dimension 4,
remarkable spectral properties, sharp functional inequalities and rigidity results have been
derived in [CY95], [Gur99], [CGY02], and [CGY03]. See also [DHL00] for various such
results in higher dimensions.

Higher dimensional random geometry. So far, conformally (quasi-)invariant exten-
sion for any of these random objects to higher dimensions were discussed only in [LO18]
and [Cer19]. Indeed, until we finished and circulated a first version of our paper, we
were not aware of any of these contributions. The ansatz of B. Cerclé [Cer19] is similar
to ours, limited, however, to the sphere in Rn+1 and relying on an extrinsic approach,
based on stereographic projections of the Euclidean space, whereas ours is an intrinsic,
Riemannian approach. In particular, our approach also applies to huge classes of mani-
folds with negative total Q-curvature, a necessary condition for finiteness of the partition
function and for well-definedness of the (normalized) Polyakov–Liouville measure. The
approach by T. Levy & Y. Oz [LO18] is more on a heuristic level, not taking care, for
instance, of the necessary positivity of the respective GJMS operators. Our intrinsic Rie-
mannian approach also has the advantage that it canonically provides approximations by
discrete polyharmonic fields and associated Liouville measures [DHKS]. Our construction
of Liouville Brownian motion in higher dimensions and random GJMS operators is not
anticipated so far, even not for the sphere or other particular cases.
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1 Co-polyharmonic operators on even-dimensional man-

ifolds

Throughout the sequel, without explicitly mentioning it, all manifolds under consideration
are assumed to be smooth, connected and without boundary. In particular, we use the
terms closed manifold and compact manifold interchangeably.

1.1 Riemannian manifolds and conformal classes

Given a compact Riemannian manifold (M, g), we denote its dimension by n, its volume
measure by vol = volg, its scalar curvature by scal or by R, its Ricci curvature tensor
by Ric = {Ricij : i, j = 0, . . . , n}, and its Laplace-Beltrami operator by ∆ = ∆g, the
latter being a negative operator. The spectral gap (or in other words, the first non-trivial
eigenvalue) of −∆g on (M, g) is denoted by λ1 > 0.

For u ∈ L1(M, volg), we set 〈u〉g := 1
volg(M)

´

M
u dvolg, and πg(u) := u − 〈u〉g. We

define the usual Sobolev spaces H := L2(M, volg) and H
s = Hs

g (M) := (1−∆g)
− s

2H for
s ∈ R. Moreover, we define the grounded Sobolev spaces

H̊ = H̊0
g (M) := {u ∈ H : 〈u〉g = 0}

and H̊s = H̊s
g (M) := (−∆g)

− s
2 H̊ for s ∈ R. We remark that for s ≥ 0, H̊s = {u ∈ Hs :

〈u〉g = 0}.
The space of test functions D := C∞(M), endowed with its usual Fréchet topology, is

a nuclear space, see, for instance, the comments preceding [Gro66, Ch. II, Thm. 10, p. 55].
We denote by D′ the topological dual of D, endowed with the Borel σ-algebra induced by
the weak* topology, and by 〈 · | · 〉 = D′〈 · | · 〉D the standard duality pairing.

Definition 1.1. (i) Two Riemannian metrics g and g′ on a manifold M are conformally
equivalent if there exists a (‘weight’) function ϕ ∈ C∞(M) such that g′ = e2ϕ g. The class
of metrics which are conformally equivalent to a given metric g is denoted by [g].

(ii) Two Riemannian manifolds (M, g) and (M ′, g′) are conformally equivalent if there
exists a C∞-diffeomorphism Φ : M → M ′ and a function ϕ ∈ C∞(M) such that the pull
back of g′ is conformally equivalent to g with weight ϕ, that is

Φ∗g′ = e2ϕ g .

In other words, if (M ′, g′) is isometric to (M, g′′), and g′′ and g are conformally equiv-
alent. The class of Riemannian manifolds which are conformally equivalent to a given
Riemannian manifold (M, g) is denoted by [(M, g)].

(iii) A family of operators Ag on a family of conformally equivalent Riemannian mani-
folds (M, g) is called conformally quasi-invariant if for every pair (M, g) and (M ′, g′) of
conformally equivalent manifolds and associated maps Φ and ϕ as in (ii) there exists a
function fϕ on M such that

efϕ · (Ae2ϕgu) ◦ Φ = Ag(u ◦ Φ) , u ∈ C∞(M) . (11)
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In conformal geometry, such an operator is usually called conformally covariant. However,
in this paper, the notion covariance is already used for the key quantity for characterizing
probabilistic dependencies.

The study of conformal mappings as in (ii) above is of particular interest in dimen-
sion 2 as powerful uniformization results are available. For instance, Riemann’s mapping
theorem [Osg00] states that every non-empty simply connected open strict subset of C is
conformally equivalent to the open unit disk. More generally, the uniformization theorem
[Poi07] asserts that every simply connected Riemann surface is conformally equivalent
either to the sphere, the plane, or the disc (each of them equipped with its standard
metric).

In contrast, the class of conformal mappings in higher dimensions is very limited.
According to Liouville’s theorem [Lio50], conformal mappings of Euclidean domains in
dimension ≥ 3 can be expressed as a finite number of compositions of translations, homo-
theties, orthonormal transformations, and inversions.

Example 1.2. Let (M ′, g′) be the complex plane and (M, g) be the 2-sphere without north
pole n, regarded as a punctured Riemann sphere. Then they are conformally equivalent
in the sense of Definition 1.1 (ii). The conformal map Φ is given by the stereographic
projection (that is, for all x on the sphere Φ(x) is the stereographic projection of the point
x), and the weight ϕ is given by ϕ(x) = −2 log

(√
2 sin

(
dS2(n, x)/2

))
. This example,

however, does not fit the setting of this work in two respects: (1) the manifold M ′ is
non-compact, (2) the weight ϕ is non-smooth on the completion ofM (it has a singularity
at the north pole).

1.2 Co-polyharmonic operators

Henceforth, n denotes an even number and (M, g) is a compact Riemannian manifold of
dimension n.

Our interest is primarily in the case n ≥ 4. The case n = 2 is widely studied with
celebrated, deep and fascinating results. It serves here as a guideline. In this case, most
of the following constructions and results are (essentially) well-known.

The fundamental object for our subsequent considerations are the co-polyharmonic
operators Pg, also called conformally invariant powers of the Laplacian or Graham–Jenne–
Mason–Sparling operators of maximal order (i.e. of order n/2) as introduced in [GJMS92].
The co-polyharmonic operators are companions of the polyharmonic operators (−∆g)

n/2,
coming with correction terms which make them conformally invariant. The construction
of the co-polyharmonic operators Pg is quite involved. We outline this construction in
Section 1.3. Before we get into that, let us first summarize the crucial properties of
the operators Pg that is relevant for the sequel. We stress that, together with the sign
convention ∆g ≤ 0, our definition (2) implies that Pg always has non-negative principal
part.

Theorem 1.3. For every compact manifold (M, g) of even dimension n,

(i) the co-polyharmonic operator Pg is a differential operator of order n,

(ii) the leading order is (−∆g)
n/2, the zeroth order vanishes,

(iii) the coefficients are C∞ functions of the curvature tensor and its derivatives,

(iv) it is symmetric and extends to a self-adjoint operator (denoted by the same symbol)
on L2(M, volg) with domain Hn

g ,

(v) it is conformally quasi-invariant: if g′ = e2ϕg for some ϕ ∈ C∞(M), then

Pg′ = e−nϕPg. (12)

More generally, assume that (M, g) and (M ′, g′) are conformally equivalent with C∞-
diffeomorphism Φ :M →M ′ and weight ϕ ∈ C∞(M) such that Φ∗g′ = e2ϕg. Then,

(vi) for all u ∈ C∞(M ′):
(Pg′ u) ◦ Φ = e−nϕ Pg (u ◦ ϕ) . (13)

8



Proof. Most properties are due to [GJMS92], and re-stated in [GZ03]; self-adjointness is
proven in [GZ03, Corollary, p. 91].

Remark 1.4. (a) Some authors work directly with a Laplacian defined as a non-negative
operator (for instance, [GZ03]). Other authors work with the usual Laplacian and consider

the operator Pg with leading term ∆
n/2
g (for instance, [Bra95, Gov06, Juh13]); this would

correspond to (−1)n/2Pg in our convention.

(b) In general, no closed expressions exist for the operators Pg. However, recursive for-
mulas for the expression of Pg are known and a priori allow to explicitly compute Pg for
any even n, [Juh13]. As the dimension increases, these formulas become more and more
involved; the complexity of lower-order terms grows exponentially with n.

Proposition 1.5. The most prominent cases are:

(i) If n = 2, then Pg = −∆g.

(ii) If n = 4, then Pg = ∆2
g + div

(
2Ricg − 2

3 scalg
)
∇ is the celebrated Paneitz operator,

see [Pan83]. Here the curvature term 2Ricg− 2
3 scalg should be viewed as an endomorphism

of the tangent bundle, acting on the gradient of a function. In coordinates:

Pgu =
∑

i,j

∇i

[
∇i∇j + 2Ricijg − 2

3
scalg · gij

]
∇ju, ∀u ∈ C∞(M).

(iii) If (M, g) is an Einstein manifold with Ricg = kg (for some k ∈ R) and even dimen-
sion n, then

Pg =

n/2∏

j=1

[
−∆g +

k

n− 1
ν
(n)
j

]
(14)

with ν
(n)
j := n

2

(
n
2 − 1

)
− j(j − 1) =

(
n−1
2

)2 −
(
2j−1
2

)2
for j = 1, . . . , n/2.

Proof. For (i) & (ii) see [GJMS92] or [CEØY08, p. 122]; for (iii) see [Gov06, Thm. 1.2].
All formulas above appear in these references up to a factor (−1)n/2, due to the sign
convention in the definition of Pg.

Example 1.6. If (M, g) is flat, then Pg = (−∆g)
n/2 is the positive poly-Laplacian.

Example 1.7. If (M, g) is the round sphere Sn, then Pg =
∏n/2
j=1

[
−∆g + ν

(n)
j

]
with ν

(n)
j

as above (this formula already appears in [Bra95]). In particular, Pg = ∆2
g − 2∆g in the

case n = 4, and Pg = −∆3
g + 10∆2

g − 24∆g in the case n = 6.

Conformally invariant operators with leading term a power of the Laplacian ∆g have
been a focus in mathematics and physics for decades. For instance, Dirac [Dir36] con-
structs a conformally invariant wave operator on a four-dimensional surface in the five-
dimensional projective plane in order to show that Maxwell equations are conformally
invariant in a curved space-time (Lorentzian manifolds). In the case of Riemannian man-
ifolds the Yamabe operator

∆g −
n− 2

4(n− 1)
scalg ,

encodes the behaviour of the Ricci curvature under conformal change and has proved of
uttermost importance in the resolution of the Yamabe problem on compact Riemannian
manifolds [Yam60, Tru68, Aub76, Sch84]. [Pan83] constructs a conformally invariant op-
erator with leading term ∆2

g, and sixth-order analogues are constructed in [Bra85, Wü86].

1.3 Construction of the co-polyharmonic operators

Now let us outline the construction of the co-polyharmonic operators, introduced by
C.R. Graham, R. Jenne, L.J. Mason, and G.A.J. Sparling [GJMS92]. They base their
original construction on the ambient metric, introduced by C. Fefferman and C.R. Gra-
ham [FG85], a Lorentzian metric on a suitable manifold of dimension n+ 2. In an alter-
native approach, proposed by C.R. Graham and M. Zworski [GZ03], the manifold (M, g)
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is regarded as the boundary at infinity of an asymptotically hyperbolic Einstein mani-
fold (N, h) of dimension n + 1. Our presentation follows [GZ03], focussing on manifolds
of even dimension n and on operators with maximal degree k = n/2.

1.3.1 The Poincaré metric associated to (M, [g])

Consider a compact Riemannian manifold (M, g) with conformal class [g] and even dimen-
sion n. Choose an n + 1-dimensional Riemannian manifold (N, h) with boundary such
that ∂N = M , for instance, N = [0,∞) ×M . A Riemannian metric h on N is called
conformally compact metric with conformal infinity [g] if

h =
h

x2
, h|T∂N ∈ [g] (15)

where h is a smooth metric on N , and x : N → R+ is a smooth function such that
{x = 0} = ∂N and dx|∂N 6= 0. We say that the metric h is asymptotically even if it is
given as

h =
1

x2


dx2 +

n∑

i,j=1

hij(x, ξ)dξ
idξj




where x is as above, (ξ1, . . . , ξn) forms a coordinate system on M , and hij for 1 ≤ i, j ≤ n
is an even function of x.

Definition 1.8. A Poincaré metric associated to [g] is a conformally compact metric h
with conformal infinity [g] which is asymptotically even and satisfies

Ricg + ng = O(xn−2), trg
(
Ricg + ng

)
= O(xn+2). (16)

Lemma 1.9 ([FG85, Theorem 2.3]). For every compact (M, [g]) of even dimension n,
there exists a Poincaré metric h. It is uniquely determined up to addition of terms van-
ishing to order n− 2 and up to a diffeomorphism fixing M .

The prime example for this construction is provided by the Poincaré model of hyper-
bolic space: the n-dimensional round sphere M = Sn is the boundary of the unit ball
N = B1(0) ⊂ Rn+1 equipped with the hyperbolic metric dh(r, ξ) = 4

(1−r2)2

[
dr2 + dg(ξ)

]
.

1.3.2 The generalized Poisson operator on (N,h)

Consider a compact (M, [g]) of even dimension n and let h be the Poincaré metric associ-
ated to it on a suitable N with ∂N =M . Extending the traditional Landau notation, for
a function v on N we say that v = O(x∞) if v = O(xn) as x→ 0 for every n ∈ N.

Lemma 1.10 ([GZ03, Props. 4.2, 4.3]). (i) For every f ∈ C∞(M) there exists a solution
to

∆hu = O(x∞) (17)

of the form

u = F +Gxn log x , F,G ∈ C∞(N) , F |M = f . (18)

Here F is uniquely determined modO(xn) and G is uniquely determined modO(x∞).

(ii) Put σn := (−1)n/2 2n(n/2)! (n/2− 1)! and

Pgf := −2σnG|M . (19)

Then, Pg is a differential operator on M with principal part (−∆g)
n/2. It only depends on

g and defines a conformally invariant operator which agrees with the operator constructed
in [GJMS92].

(No sign adjustment is required in comparison with [GZ03] since the convention there is
that the Laplace–Beltrami operator is non-negative.)
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Remark 1.11. Given (M, [g]) and (N, h) as above, the co-polyharmonic operator Pg can
alternatively be defined as residue at s = n of the meromorphic family of scattering matrix
operators S(s), s ∈ C, on (N, h),

Pg = −2σnRess=nS(s) (20)

with σn as above, [GZ03, Thm. 1].

1.4 Branson’s Q-curvature

The co-polyharmonic operators are closely related to Branson’s Q-curvature in even di-
mensions, another important notion in conformal geometry.

The notion of Q-curvature was introduced on arbitrary even dimensions by T. Branson
[Bra85, p. 11]. Its construction and properties have since been studied by many authors.
In 4 dimensions, explicit computations for the Q-curvature are due to T. Branson and
B. Ørsted [BØ91]. Its properties are very much akin to those of scalar curvature in 2
dimensions. C. Fefferman and K. Hirachi [FH03] presented an approach based on the
ambient Lorentzian metric of [FG85]. The definition of Q-curvature may differ in the lit-
erature up to a sign or to the factor 2. Following [GZ03], with the notation of Remark 1.11,
we have Qg = −2σn S(n)1.

The crucial property of Q-curvature is its behavior under conformal transformations.

Proposition 1.12 ([Bra95, Corollary 1.4]). If g′ = e2ϕg then

enϕQg′ = Qg + Pgϕ. (21)

Our sign convention for Qg comes from our sign convention for Pg together with the
validity of equation (21).

Corollary 1.13. The total Q-curvature Q(M, g) :=
´

M Qgdvolg is a conformal invariant.

Proof. By the previous Proposition,

Q(M, g′) =

ˆ

M

Qg′ e
nϕdvolg = Q(M, g) +

ˆ

M

Pgϕdvolg

= Q(M, g) +

ˆ

M

ϕPg1 dvolg = Q(M, g)

due to the self-adjointness of Pg and the fact that it annihilates constants.

Again, explicit formulas are only known in low dimensions or for Einstein manifolds.

Example 1.14. Important cases are

(i) If n = 2, then Qg = 1
2Rg = 1

2 scalg is half of the negative scalar curvature, see

e.g. [CEØY08, Eqn. 3.1, up to a factor (−1)n/2].

(ii) If n = 4 then Qg = − 1
6∆gscalg − 1

2 |Ricg|2 + 1
6 scal

2
g with |Ricg|2 =

∑
i,j Ric

ijRicij .

(iii) If (M, g) is an Einstein manifold with Ricg = k g and even dimension, then [Gov06,
Thm. 1.1, up to a factor (−1)n/2]

Qg = (n− 1)!
( k

n− 1

)n/2
. (22)

In particular, for the round sphere, Qg = (n−1)!. For instance, if n = 4, then Q = 6.

Recall that a Riemannian manifold is called conformally flat if it is conformally equiv-
alent to a flat manifold.

Proposition 1.15. Let χ(M) denote the Euler characteristic of (M, g).

(i) In the case n = 2,
Q(M, g) = 2π χ(M).
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(ii) In the case n = 4,

Q(M, g) = 8π2χ(M)− 1

4

ˆ

M

|W |2dvolg ,

where W is the Weyl tensor, and |W |2 =
∑

a,b,c,dW
abcdWabcd. In particular,

Q(M, g) = 8π2χ(M) ⇐⇒ (M, g) is conformally flat.

(iii) For any even n, if (M, g) is conformally flat, then with cn = 1
2 (2n− 1)!(4π)n/2,

Q(M, g) = cn χ(M) .

Proof. The two-dimensional claim follows from Example 1.14 and the Gauss-Bonnet The-
orem. See [BØ91, p. 673] for the case of dimension four, and [GZ03, p. 3] for the case of
conformally flat manifolds in even dimension. Alternatively, see [CEØY08, pp. 122f., up
to a factor (−1)n/2].

Remark 1.16. Recall that for 2-dimensional oriented Riemannian manifolds, χ(M) =
2 − 2g where g denotes the genus of M . Furthermore, for the sphere in even dimension,
χ(Sn) = 2.

1.4.1 Some rigidity and equilibration results in n = 4

In dimension 4, the conformal invariant integral of the Q-curvature leads to remarkable
rigidity and equilibration results, resembling famous analogous results in dimension 2. To
formulate them, let us introduce another important conformal invariance, the Yamabe
constant

Y (M, g) := inf
h∈[g]

´

M
scalhdvolh√
volh(M)

.

Proposition 1.17 ([Gur99],[CY95]). Assume n = 4.

(i) There exist compact hyperbolic manifolds with Y (M, g) < 0 and Q(M, g) > 16π2.

(ii) If Y (M, g) ≥ 0, then Q(M, g) ≤ 16π2 with equality if and only if M = S4.

(iii) If Y (M, g) ≥ 0 and Q(M, g) ≥ 0, then Pg ≥ 0 and Pgu = 0 ⇐⇒ u is constant.

(iv) If Q(M, g) ≤ 16π2 and Pg ≥ 0 with Pgu = 0 ⇐⇒ u is constant, then there exists a
conformal metric g′ with constant Q-curvature.

Proposition 1.18 ([MS06, Theorem 4.1]). For any g0 = e2ϕ0g on M = S4, the Q-
curvature flow

∂

∂t
gt = −2(Qgt − Q̄gt)gt

(with Q̄gt := 〈Qgt〉gt the mean value of Qgt on the round S
4) converges exponentially fast

to a metric g∞ = e2ϕ∞g of constant Q-curvature 6 in the sense that ‖ϕt−ϕ∞‖H4 ≤ C e−δt

for some constants C and δ > 0.

2 Admissible manifolds

Definition 2.1. We say that a Riemannian manifold (M, g) is admissible if it is compact
and of even dimension, and if the co-polyharmonic operator Pg is positive definite on

L̊2(M, volg).

As an immediate consequence of Theorem 1.3 (v) we obtain

Corollary 2.2. Admissibility of a Riemannian manifold (M, g) is a conformal invariance,
or in other words, it is a property of the conformal class (M, [g]).

More generally, admissibility of (M, g) implies admissibility of any (N, h) conformally
equivalent to (M, g) in the sense of Definition 1.1 (ii).
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Example 2.3. Every 2-dimensional compact manifold is admissible.

Having at hands the explicit representation formula for the co-polyharmonic operators
on Einstein manifolds from Lemma 1.5, we easily conclude

Proposition 2.4. Every even dimensional compact Einstein manifold with nonnegative
Ricci curvature is admissible.

More generally, we obtain:

Proposition 2.5. A compact Einstein manifold of even dimension n and of Ricci curva-

ture −(n− 1)κ is admissible if and only if λ1 >
n(n−2)

4 κ.

Proof. Since M has constant Ricci curvature −(n − 1)κ, according to Proposition 1.5,

Pg =
∏n/2
j=1

[
−∆g − κν

(n)
j

]
with νj ranging between 0 and n

2 (
n
2 − 1). Thus Pg > 0 on H̊

if and only if λ1 >
n
2 (

n
2 − 1)κ.

Remark 2.6. (a) The number n(n−2)
4 is strictly smaller than (n−1)2

4 which plays a promi-
nent role as threshold for the spectral gap of hyperbolic manifolds (and which is also the
spectral bound for the simply connected hyperbolic space). Many results in hyperbolic

geometry deal with the question whether λ1 is close to (n−1)2

4 .

(b) The Elstrodt–Patterson–Sullivan Theorem, [Sul87, Thm. (2.17)], provides a lower
bound for λ1 for a hyperbolic manifold M = Hn/Γ in terms of the critical exponent
δ(Γ) of the Kleinian group Γ acting on the simply connected hyperbolic space Hn of
dimension n and curvature -1. More precisely,

λ1 >
n(n− 2)

4
if (and only if) δ(Γ) <

n

2
, (23)

and, moreover, λ1 = (n−1)2

4 if (and only if) even δ(Γ) ≤ n−1
2 . Here δ(Γ) denotes the

infimal value for which the Poincaré series for Γ converges, that is,

δ(Γ) := inf
{
s ∈ R :

∑

γ∈Γ

exp
(
− s d(x, γy)

)
<∞

}
,

the latter being independent of the choice of x, y ∈M .

(c) Similar estimates for λ1 exist in terms of the Hausdorff dimension D of the limit
set of Γ provided Γ is geometrically finite without cusps, see [Sul87, Thm. (2.21)]. More
precisely,

λ1 >
n(n− 2)

4
if (and only if) D <

n

2
, (24)

and, moreover, λ1 = (n−1)2

4 if (and only if) even D ≤ n−1
2 .

Proposition 2.7. For every even dimension n ≥ 4, there exist compact Einstein mani-
folds that are not admissible. They can be constructed, for instance, as M = M1 ×M2

where M1 denotes any compact manifold of dimension n − 2 and of constant curva-
ture − 1

n−3 , and where M2 denotes any compact hyperbolic Riemannian surface with
λ1(M2) ≤ 2/3.

Remark 2.8. According to [Bus77, Satz 1], for every ε > 0 there exist compact hyperbolic
Riemannian surfaces with genus 2 and λ1 < ε.

Proof. By construction, M is an Einstein manifold with constant Ricci curvature −g.
Thus by the previous Proposition, M is admissible if and only if λ1(M) > n(n−2)

4(n−1) ≥ 2
3 .

On the other hand, by construction λ1(M) ≤ λ1(M2) ≤ 2
3 .

Our main result in the section, Theorem 2.18, provides a sharp asymptotic estimate
for Kg, the integral kernel for the inverse of Pg on H̊ .
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2.1 Estimates for heat kernels and resolvent kernels

Deriving the exact asymptotic behaviour for the co-polyharmonic Green kernelKg requires

precise estimates on the integral kernel of the operators (α−∆)
n/2

for α > −λ1. These
estimates depend on sharp heat kernel estimates, the upper one of which is new.

Proposition 2.9. Let (M, g) be a compact n-dimensional manifold and let pt denote its
heat kernel, the integral kernel for the heat operator Pt := et∆.

(i) Assume that Ric ≥ −(n − 1)a2 g and set λ∗ := (n−1)2

4 a2 if n 6= 2 and λ∗ = 1
6a

2 if
n = 2. Then, for all t > 0 and all x, y ∈M ,

pt(x, y) ≥
1

(4πt)n/2

(
a d(x, y)

sinh(a d(x, y))

)n−1
2

e−
d2(x,y)

4t e−λ∗t. (25)

(ii) Let a ball B = BR(x) ⊂ M be given, assume that sec ≤ b2 on B and that injx ≥ R,
and let p0t denote the heat kernel on B with Dirichlet boundary conditions. Moreover,

• in the case n 6= 2, assume that R ≤ π
b , and set λ∗ := n(n−1)

6 b2,

• in the case n = 2, assume that R ≤ π
2b , and set λ∗ := 1

2 b
2.

Then, for all t > 0 and all y ∈ B,

p0t (x, y) ≤
1

(4πt)n/2

(
b d(x, y)

sin(b d(x, y))

)n−1
2

e−
d2(x,y)

4t e+λ
∗t. (26)

Proof. (i) follows from [Stu92, Cor. 4.2 and Rmk. 4.4(a)] (we work with the geometric

heat semigroup et∆ rather than with the probabilistic semigroup et
∆
2 as in [Stu92]).

(ii) Let M̄ = Sb,n denote the round sphere of dimension n and radius 1/b (which
has constant curvature b2), fix a point x̄ ∈ M̄ , and let B̄ denote the ball around x̄ of
radius R in M̄ . Denote by p̄0t the heat kernel on B̄ with Dirichlet boundary conditions.
By rotational invariance,

p̄0t (x̄, ȳ) = p̄0t
(
d̄(x̄, ȳ)

)

for some function r 7→ p̄0t (r). According to the celebrated heat kernel comparison theorem
of Debiard–Gaveau–Mazet [DGM76],

p0t (x, y) ≤ p̄0t
(
d(x, y)

)
(27)

for all t > 0 and all y ∈ B.
We treat the case n 6= 2 first. Following the strategy for deriving the lower bound (25)

in [Stu92], define

p̂0t (r) :=
1

(4πt)n/2

(
b r

sin(b r)

)n−1
2

e−
r2

4t eλ
∗t = gt(r)

(
br

sin(br)

)n−1
2

eλ
∗t.

where λ∗ as defined above and gt(r) = (4πt)
−n/2

e−r
2/4t is the Gaussian kernel. We

show that the function (t, ȳ) 7→ H(t, ȳ) := p̂0t (d̄(x̄, ȳ)) is space-time super-harmonic on
(0,∞)× B̄. Indeed, a direct computation yields:

∂t log p̂
0 = ∂t log g + λ∗;

∂r log p̂
0 = ∂r log g +

n− 1

2

(
1

r
− b

cos br

sin br

)
;

∂2rr log p̂
0 = ∂2rr log g +

n− 1

2

(
b2

sin2 br
− 1

r2

)
.

Now using that H is a radial function and the chain rule we find that

1

H
(∂t − ∆̄)H = ∂t log p̂

0 − (n− 1)b
cos br

sin br
∂r log p̂

0 − ∂2rr log p̂
0 −

(
∂r log p̂

0
)2
, (28)
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where the left-hand side is evaluated at (t, ȳ) and the right-hand side at (t, d̄(x̄, ȳ)). We
easily verify that g satisfies:

∂t log g − ∂2rr log g − (∂r log g)
2 − n− 1

r
∂r log g = 0 .

We thus see that in (28) all the appearances of log g cancel out, and we get:

1

H
(∂t − ∆̄)H = λ∗ − n− 1

2

(
b2

sin2 br
− 1

r2

)

− (n− 1)
2

2
b
cos br

sin br

(
1

r
− b

cos br

sin br

)
− (n− 1)

2

4

(
1

r
− b

cos br

sin br

)2

= λ∗ − (n− 1)(n− 3)

2

1

r2
+ b2

cos2 br

sin2 br

(n− 1)
2

4
− n− 1

2
b2

1

sin2 br

= λ∗ +
(n− 1)(n− 3)

4

[
b2

sin2 br
− 1

r2

]
− b2

(n− 1)2

4

≥ λ∗ +
(n− 1)(n− 3)

4

b2

3
− b2

(n− 1)
2

4
= 0 .

On the other hand, p̄ is harmonic and by a comparison principle for solution of parabolic
equations we thus have that p0 ≤ H . In order to properly justify the comparison principle,
instead of working with p0 and H that have singular initial condition, we work instead
with p0R′ the solution to the heat equation with initial condition 1BR′(y) and HR′ which
has the same expression as H except that we choose

gR′(t, r) =

ˆ

BRn

R′ (r)

(4πt)−
n
2 e−|y|24t dy ,

instead of g. The same computation yields that HR′ is a super-solution to the heat
equation. Then, we argue as in [Stu92].

Now, for the case n = 2, defining p̂0 and H as above we still find that

1

H
(∂t − ∆̄)H = λ∗ − 1

4

[
b2

sin2 br
− 1

r2
+ b2

]

≥ λ∗ − b2
[
1

2
− 1

π2

]
≥ 0 ,

where we used that r < π
2b . The rest of the proof is similar.

Before stating our main estimates, let us introduce some notation and provide some
auxiliary results.

Lemma 2.10. (i) For every α > 0 and s > 0, the resolvent operator Gs,α := (α−∆)−s

on H = L2(M, volg) is an integral operator with kernel given by

Gs,α(x, y) :=
1

Γ(s)

ˆ ∞

0

e−αt ts−1 pt(x, y) dt.

Since 〈Ptu〉g = 〈u〉g for all u, the heat operator Pt = et∆ also acts on the grounded

L2-space H̊ = {u ∈ L2(M, volg) : 〈u〉g = 0}, and so do the resolvent operators Gs,α.

(ii) Restricted to H̊, the resolvent operator

G̊s,α = (α−∆)−s
∣∣
H̊

is a compact, symmetric operator for every α > −λ1 and s > 0. It admits a symmetric
integral kernel

G̊s,α(x, y) :=
1

Γ(s)

ˆ ∞

0

e−αt ts−1 p̊t(x, y) dt,

defined in terms of the grounded heat kernel p̊t(x, y) := pt(x, y)− vol(M)−1.
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(iii) By compactness of M , the operator −∆ has discrete spectrum (λj)j∈N0 , counted with
multiplicity, and the corresponding eigenfunctions (χj)j∈N0 form an orthonormal basis for
L2(M, vol). In terms of these spectral data, the symmetric grounded resolvent kernel is
given as

G̊s,α(x, y) =

∞∑

j=1

χj(x)χj(y)

(α+ λj)s
. (29)

(iv) For every s > n/2 and α > 0 there exists C such that for all x, y ∈M

∣∣G̊s,α(x, y)
∣∣ ≤ C , (30)

and for every s < n/2 and α > 0 there exists C such that for all x, y ∈M

Gs,α(x, y) ≤
C

d(x, y)n−2s
. (31)

Proof. All of (i)–(iii) but (29) are proven by Strichartz [Str83, §4]. Regarding (29), by
the Spectral Theorem, for all u ∈ H and α > 0 (or u ∈ H̊ and α > −λ1),

(α−∆)
s
u =

1

Γ(s)

ˆ ∞

0

e−αt ts−1 Ptu dt =

∞∑

j=0

〈u |χj〉L2

(α+ λj)s
χj

with convergence of integral and sum in H (or in H̊ , resp.). Thus (29) readily follows.
(iv) Estimate (30) is a consequence of [DKS20, Thm. 6.2]. In order to show (31)

fix ε≪ 1, x, y ∈M with 0 < r := dg(x, y) < ε, and set

Gs,α(x, y) =

ˆ ε

0

e−α
2tts−1pt(x, y) dt

︸ ︷︷ ︸
I1

+

ˆ ∞

ε

e−α
2tts−1pt(x, y) dt

︸ ︷︷ ︸
I2

.

As a consequence of the upper heat kernel estimate [DKS20, Eqn. (6.1)], there exists
a constant C = C(g, s, α, ε) > 0 independent of x, y, and such that I2 ≤ C and

I1 ≤ C

ˆ ε

0

e−
r2

t ts−n/2−1 dt .

Combining these estimates together,

Gs,m(x, y) ≤ C

(
1 +

ˆ ε

0

e−
r2

t ts−n/2−1 dt

)
,

and the assertion now follows from the known asymptotic expansion of the Exponential
Integral function

Es−n/2+1

(
r2

ε

)
:=

ˆ ε

0

e−
r2

t ts−n/2−1 dt ≍ Γ(n/2− s) r2s−n as r → 0 .

Remark 2.11. For all s > 0, the operators Gs,α and G̊s,α are powers of Gα := G1,α and

G̊α := G̊1,α, that is,

Gs,α = (Gα)
s, G̊s,α = (G̊α)

s.

Example 2.12. Let (M, g) be the 2-dimensional round sphere S2. Then, according to
[DKS20],

G̊1,0(x, y) = − 1

4π

(
1 + 2 log sin

d(x, y)

2

)
.
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Proposition 2.13. Let (M, g) be a compact n-dimensional manifold and α > −λ1. Then,
for all x and y ∈M :

∣∣∣∣Gn/2,α(x, y)− an log
1

d(x, y)

∣∣∣∣ ≤ C0;

∣∣∣∣G̊n/2,α(x, y)− an log
1

d(x, y)

∣∣∣∣ ≤ C0;

for some C0 = C0(g, α) > 0 and

an :=
2

Γ(n/2) (4π)n/2
. (32)

Proof. For convenience we split the proof.

Lower estimate for the ungrounded kernel. Take λ∗ as in Proposition 2.9 (i) and α > λ∗.
For the non-grounded resolvent kernel, the lower heat kernel estimate (25) yields, with x
and y ∈M , and r = d(x, y),

Gn/2,α(x, y) =
1

Γ(n2 )

ˆ ∞

0

e−αtpt(x, y) t
n/2−1dt

≥ 1

Γ(n2 ) (4π)
n/2

(
ar

sinh(ar)

)n−1
2
ˆ ∞

0

e−(α+λ∗)t e−
r2

4t
dt

t
.

By [DKS20], Eqn. (6.14) and the asymptotic formulas thereafter, for every β > 0:
ˆ ∞

0

e−βt e−
r2

4t
dt

t
= 4π ·GR

2

1,β(r) ≥ 2 log
1

r
− Cβ .

Combining the two previous estimates yields

Gn/2,α(x, y)− an log
1

d(x, y)
> −Cα+λ∗ , x, y ∈M .

Upper estimate for the ungrounded kernel with Dirichlet boundary conditions. Consider
the case α > λ∗, with λ∗ as in Lemma 2.9 (ii). We estimate the contribution of p0t as
before, with x and y ∈M , and r = d(x, y):

G0
n/2,α(x, y) :=

1

Γ(n2 )

ˆ ∞

0

e−αt p0t (x, y) t
n/2−1dt

≤ 1

Γ(n2 ) (4π)
n/2

(
ar

sin(br)

)n−1
2
ˆ ∞

0

e(−α+λ
∗)t e−

r2

4t
dt

t
,

and we can use the fact that, by [DKS20], ibid.:
ˆ ∞

0

e−βt e−
r2

4t
dt

t
= 4π ·GR

2

1,β(r) ≤ 2 log
1

r
+ Cβ , β > 0 .

The two estimates yield

G0
n/2,α(x, y)− an log

1

d(x, y)
< Cα−λ∗

, x, y ∈M .

Upper estimate for the ungrounded kernel. We now estimate the remainder Gn/2,α −
G0
n/2,α. Choose 0 < β < α. For every n ≥ 2 and suitable C,C′ > 0,

0 ≤ Gn/2,α(x, y)−G0
n/2,α(x, y) :=

1

Γ(n2 )

ˆ ∞

0

e−αt
(
pt(x, y)− p0t (x, y)

)
tn/2−1dt

≤ C

ˆ ∞

0

e−βt
(
pt(x, y)− p0t (x, y)

)
dt = C

(
G1,β −G0

1,β

)
(x, y)

≤ C sup
z∈∂B

G1,β(x, z) ≤ C′ .
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Above, the second to last inequality follows from the maximum principle for local solutions
to (−∆g+β)u = 0, and the last inequality from the elliptic Harnack inequality for positive
local solutions to (−∆g + β)u = 0.

Bounds for the grounded kernel. The lower and upper bounds for the grounded resolvent
kernel G̊α for α > λ∗ then follow from the previous bounds and the fact that p̊t(x, y) =
pt(x, y)− 1

vol(M) and

1

Γ(n2 )

ˆ ∞

0

e−αttn/2−1dt = α−n/2 .

Bounds for all α > −λ1. In order to show the desired estimates for Gα in the whole
range of α > −λ1, we use a perturbation argument based on the resolvent identity

G̊α = G̊β + (β − α) G̊βG̊α, (33)

valid for all β > −λ1 and employed below for β > λ∗. By iteration, it follows that

G̊α = G̊β

(
∞∑

ℓ=0

(
(β − α)G̊β

)ℓ
)
.

The series is absolutely converging in Lin(H̊, H̊), since

∥∥(β − α)G̊β
∥∥
H̊,H̊

≤ (β − α)/(β + λ1) < 1.

Let T = (β − α)
∑∞

ℓ=0

(
(β − α)G̊β

)ℓ
. Then,

G̊n/2α = G̊
n/2
β (Id+ G̊βT)

n/2 = G̊
n/2
β/2


1 +

n/2∑

k=1

(
n/2

k

)
G̊kβT

k


 = G̊

n/2
β + G̊

n/2+1
β T̃,

where T̃ =
∑n/2−1

k=0

(
n/2
k+1

)
G̊kβT

k+1. Consequently, since all operators involved commute
with each other,

G̊n/2α − G̊
n/2
β = G̊

n/4+1/2
β︸ ︷︷ ︸
L̊2→L̊∞

T̃
︸︷︷︸
L̊2→L̊2

G̊
n/4+1/2
β︸ ︷︷ ︸
L̊1→L̊2

.

Moreover, G̊
n/4+1/2
β is a bounded linear operator both from L̊1 to L̊2 and from L̊2 to L̊∞.

Indeed, for u ∈ L̊1,

∥∥∥G̊n/4+1/2
β u

∥∥∥
2

L2
=

=

ˆ

[
ˆ

G̊(n+2)/4,β(x, y)u(y) dvol(y)

ˆ

G̊(n+2)/4,β(x, z)u(z) dvol(z)

]
dvol(x)

=

¨

G̊(n+2)/2,β(y, z)u(y)u(z) dvol(y)dvol(z)

≤ sup
y,z

G̊(n+2)/2,β(y, z) · ‖u‖2L1 ,

and for u ∈ L̊2,

∥∥G̊n/4+1/2
β u

∥∥2
L∞

= sup
x

(
ˆ

G̊(n+2)/4,β(x, y)u(y)dvol(y)

)2

≤ sup
x

ˆ

G̊2
(n+2)/4,β(x, y)dvol(y) ·

ˆ

u2(y) dvol(y)

= sup
x
G̊(n+2)/2,β(x, x) · ‖u‖2L2 .
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Finiteness of both expressions is granted for β > 0 by Lemma 2.10. Thus summarizing
we obtain ∥∥∥G̊n/2α − G̊

n/2
β

∥∥∥
L̊1,L̊∞

<∞ .

Furthermore, consider
(
G̊
n/2
α − G̊

n/2
β

)
◦ πg : L1 → L∞, where as usual πg : u 7→ u −

〈u〉g. Since πg is the identity on L̊1, by virtue of [DP40, Thm. 2.2.5], the operator(
G̊
n/2
α − G̊

n/2
β

)
: L̊1 → L∞ admits a bounded integral kernel. Therefore, G̊

n/2
α admits an

integral kernel with the same logarithmic divergence as G̊
n/2
β .

For curiosity, we provide an estimate for the co-polyharmonic heat kernel which, in
the case n = 2, reduces to the standard Gaussian estimate.

Remark 2.14 ([tR97, Theorem 1.1]). Assume that the compact manifold (M, g) of even
dimension n is a Lie group. Then, the co-polyharmonic heat semigroup e−tPg has an
integral kernel (’co-polyharmonic heat kernel’), the modulus of which can be estimated
by

|pt(x, y)| ≤
C1

t ∧ 1
exp

[
−
(
d(x, y)n

C2 t

) 1
n−1

]
.

2.2 Estimates for co-polyharmonic Green kernels

Lemma 2.15. For every admissible manifold (M, g),

(i) the co-polyharmonic operator is a compact perturbation of the poly-Laplacian: for
every α > −λ1 there exists Cα = C(α, g) > 0 such that the operator Sα := Pg −
(α−∆g)

n/2
satisfies

〈Sαu |u〉H̊ ≤ Cα ·
∥∥(α−∆)

n−1
4 u
∥∥2
H̊
, ∀u ∈ H̊n/2. (34)

In particular, 〈Sαu |u〉H̊ ≤ Cα ‖u‖2H̊(n−1)/2 .

(ii) for every s > 0, u 7→
∥∥Psg u

∥∥
L2 defines a Hilbert norm on H̊sn, bi-Lipschitz equivalent

to the H̊sn-norm.

(iii) for every r ∈ R, the bounded operator Pg : H̊
n+r → H̊r has bounded inverse Kg : H̊

r →
H̊n+r.

(iv) for every s > 0, f 7→ ‖(Kg)s f‖L2 defines a Hilbert norm on H̊−sn, bi-Lipschitz

equivalent to the H̊−sn-norm.

(v) (Pg, H
n) has discrete spectrum spec(Pg) = {νj}j∈N0

, indexed with multiplicities,
satisfying νj ≥ 0 for all j, and ν0 = 0 with multiplicity 1. The corresponding family
of eigenfunctions (ψj)j∈N0

forms an orthonormal basis of H.

(vi) The operator Kg : H̊ → H̊ is nuclear. It admits a unique non-relabeled extension

Kg : H → H̊, vanishing on constants and satisfying KgPg = πg on H. This extension
is an integral operator on H with symmetric kernel

Kg(x, y) :=

∞∑

j=1

ψj(x)ψj(y)

νj
, x, y ∈M , (35)

where the convergence of the series is understood in L2 ⊗ L2.

(vii) For ℓ ∈ N, define the operators Kg,ℓ : H → H̊ by

Kg,ℓ u :=

ℓ∑

j=1

〈ψj |u〉L2

νj
ψj .

Then, for every u ∈ H = L2, as ℓ→ ∞,

Kg,ℓ u −→ Kgu in L∞ . (36)
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(viii) The spectrum of P satisfies the Weyl asymptotic. With N(ν) the number of eigen-
values lower than ν, we get N(ν) = c ν + O(ν1−1/n) as ν → ∞. In particular, we
find

νj = cj +O(j1−1/n) , j → ∞ . (37)

Proof. (i) For every α > −λ1, the operator Sα is a linear differential operator of order
≤ n− 1 with smooth (hence bounded) coefficients on M , and (34) readily follows.

(ii) It suffices to show the statement for s = 1/2. As a consequence of Theorem 1.3 (iv)
and admissibility, the (strictly) positive operator (Pg, H̊

n) has positive self-adjoint square

root (
√
Pg, H̊

n/2), and the latter defines a Hilbert norm on H̊n/2. Thus, the linear opera-

tor ι := (−∆g)
−n/4

√
Pg : H̊

n/2 → H̊n/2 is well-defined, positive, and injective. Moreover,
ι is an isometry

ι :
(
H̊n/2,

∥∥√Pg ·
∥∥
H̊

)
−→

(
H̊n/2, ‖ · ‖H̊n/2

)
,

and in fact unitary, since ker ι = {0} by strict positivity of both
√
Pg and (−∆g)

−n/4

on the appropriate spaces of grounded functions. As a consequence, ι : H̊n/2 → H̊n/2 is
surjective, and thus bijective. It suffices to show it is also H̊n/2-bounded, in which case
it has a H̊n/2-bounded inverse ι−1 by the Bounded Inverse Theorem. The former fact
follows if we show that ιι∗ is H̊n/2-bounded. We have

ιι∗ = (−∆g)
−n/4Pg(−∆g)

−n/4 = IdH̊n/2 + (−∆g)
−n/4S0(−∆g)

−n/4 .

By squaring the operators in (34) with α = 0, the latter is a H̊n/2-bounded perturbation
of the identity on H̊n/2, and the assertion follows.

(iii) It suffices to show the stament for r = 0. We show that
√
Pg : H̊

n/2 → H̊ is

invertible with bounded inverse, say
√
Kg, in which case the assertion follows setting Kg :=

(
√
Kg)

2. As a consequence of the bijectivity of ι in (ii), and since (−∆)n/2 : H̊n/2 → H̊

is surjective, the operator
√
Pg = (−∆g)

n/2ι : H̊n/2 → H̊ is as well surjective, and thus

bijective. Its inverse
√
Kg := ι−1(−∆g)

−n/2 : H̊ → H̊n/2 is a bounded operator, since so

are ι−1 : H̊n/2 → H̊n/2, by (ii), and (−∆g)
−n/2 : H̊ → H̊n/2.

(iv) is well-posed by (iii). It follows from (ii) by a standard duality argument.
(v) Since H̊n embeds compactly into H̊ by the Rellich–Kondrashov Theorem, the

operator Kg : H̊ → H̊ is compact, being the composition of the bounded operator Kg : H̊ →
H̊n with the compact Sobolev embedding. The spectral properties follow from the (strict)
positivity of (Pg, H̊

n) on H̊ and the H̊-compactness of Kg. The assertion on eigenfunctions
holds by the Spectral Theorem for unbounded self-adjoint operators.

(vi) In order to show that the operator Kg : H̊ → H̊ is trace-class, it suffices to
show that

√
Kg is Hilbert–Schmidt. This latter fact holds since

√
Kg = ι−1(−∆g)

n/2

by (iii), ι−1 : H̊n/2 → H̊n/2 is bounded and (−∆g)
−n/2 : H̊n/2 → H̊ is Hilbert–Schmidt.

Since Kg : H̊ → H̊ is trace-class, the kernel’s representation in (35) on H̊ follows from
the spectral characterization of trace-class operators. The extension of Kg to H is then
defined as the operator on H with integral kernel Kg. The equality KgPg = πg is readily
verified, since 〈u〉g = 〈u |ψ0〉H and the series in the definition of Kg starts at j = 1.

(vii) By the norm equivalence stated in (ii),

‖Kgu− Kg,ℓ u‖2Hn ≃ ‖Pg(Kgu− Kg,ℓ u)‖2L2 =

∞∑

j=ℓ+1

〈ψj |u〉2L2 −→ 0

as ℓ→ ∞ for every u ∈ L2. Hence, by Sobolev embedding, Kg,ℓ u→ Kgu in L∞.
(viii) Hörmander’s Weyl law [Hö68] for positive pseudo-differential operators.

Definition 2.16. Given any admissible manifold (M, g), we define the quadratic form
p = pg on Hn/2 associated to Pg by

p(u, v) =

ˆ √
Pgu

√
Pgv d volg, ∀u, v ∈ Hn/2 . (38)
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Moreover, we always implicitly extend the operator Kg to H by setting Kgc = 0 for all
constant c. It is the pseudo-inverse of Pg on H in the sense that:

KgPg = PgKg = πg .

We call K the co-polyharmonic Green operator. It has the integral kernel Kg given in (35),
and we call Kg the co-polyharmonic Green kernel.

Remark 2.17. (a) Elliptic regularity theory implies that off the diagonal of M ×M , the
function (x, y) 7→ Kg(x, y) is C∞.

(b) The symmetry of the integral kernel Kg implies that

ˆ

M

Kg(x, y) dvolg(y) = 0 , x ∈M . (39)

Indeed, Kgf ∈ H̊ implies
´ [´

Kg(x, y)dvol(x)
]
f(y) dvol(y) = 0 for all f ∈ H̊ which in

turn implies that
´

Kg(x, y)dvol(x) is constant in y. By symmetry, this constant must
vanish.

Theorem 2.18. For every admissible manifold (M, g), the co-polyharmonic Green ker-
nel Kg satisfies ∣∣∣∣Kg(x, y)− an log

1

dg(x, y)

∣∣∣∣ ≤ C0 (40)

for some C0 = C0(g) and an as in (32).

Proof. By the second resolvent identity for the operators Kg, G̊n/2 : H̊ → H̊ ,

Kg − G̊n/2 = Kg S0 G̊n/2 = Kg S0 G̊n−1
4

G̊n+1
4

(41)

with S0 = P−(−∆g)
n/2 as in Lemma 2.15 (i). Similarly to the proof of Proposition 2.13,

the operators G̊n+1
4

: L̊1 → H̊ and G̊n−1
4

: H̊ → H̊
n−1
2 are bounded. By Theorem 1.3 (iii), S0

is a differential operator of order at most n− 1 with smooth (hence bounded) coefficients.

As a consequence, S0 : H̊
n−1
2 → H̊−n−1

2 is a bounded operator. Furthermore, choos-

ing r = −n−1
2 in Lemma 2.15 (ii), the operator Kg : H̊

−n−1
2 → H̊

n+1
2 is bounded.

Combining the previous assertions with (41) shows that Kg − G̊n/2 : L̊
1 → H̊

n+1
2 is

bounded, thus Kg − G̊n/2 : L̊
1 → L∞ is bounded as well, by continuity of the Sobolev–

Morrey embedding. Finally, by [DP40, Thm. 2.2.5], the latter operator admits a bounded
integral kernel, and the conclusion follows from Proposition 2.13.

The previous theorem has also been derived (with completely different arguments) in
[Ndi07, Lemma 2.1], a reference which we had not been aware of before publishing a first
draft of this paper.

Proposition 2.19. Assume that (M, g) is admissible and that g′ := e2ϕg for some ϕ ∈
C∞(M). Then, the co-polyharmonic Green operator Kg′ is given by

Kg′u =
(
πg′ ◦ Kg

)(
enϕπg′ (u)

)
, u ∈ L2 . (42)

and the co-polyharmonic Green kernel Kg′ by

Kg′(x, y) = Kg(x, y)−
1

2
φ̄(x)− 1

2
φ̄(y) (43)

with φ̄ ∈ D defined by

φ̄ :=
2

volg′(M)

ˆ

Kg( · , z) dvolg′(z)−
1

volg′(M)2

¨

Kg(z, w) dvolg′(z) dvolg′(w) .
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Proof. Let Kg′ be the integral kernel defined by the right-hand side of (43). Obviously,
Kg′ is symmetric. Furthermore, by (40)

|Kg′(x, y)−Kg(x, y)| ≤
3

volg′(M)
sup
w

ˆ ∣∣K(z, w)
∣∣dvolg′(z)

≤ 3C volg′ (M) +
3 an

volg′(M)
sup
w

ˆ

∣∣∣∣log
1

dg(z, w)

∣∣∣∣ dvolg′(z) <∞ ,

(44)

and, since einf ϕ dg ≤ dg′ ≤ esupϕ dg,

∣∣∣∣log
1

dg(x, y)
− log

1

dg′ (x, y)

∣∣∣∣ ≤ Cϕ,g . (45)

Thus the kernel Kg′ satisfies (40) with Kg′ in place of Kg and g′ in place of g for some
constant C0(g

′).
Moreover, straightforward calculation yields the identity (42) for the integral opera-

tor Kg′ associated with the kernel Kg′ . It remains to prove that the operator Kg′ is the

inverse of Pg′ . To see this, recall that we have Pg′ = e−nφPg. Thus for all u ∈ H̊n/2(volg′),

Kg′ Pg′u = KgPgu−
〈
KgPgu

〉
g′

= u− 〈u〉g −
〈
u− 〈u〉g

〉
g′

= u.

Consequently we have Kg′ Pg′u = u = Pg′ Kg′u and the claim follows by uniqueness of the
inverse.

Remark 2.20. The transformation formula (43) for the co-polyharmonic Green kernels
can be re-phrased as follows. Given ϕ ∈ C∞(M), let ϕ0 := ϕ− c with c chosen such that
´

enϕ0dvol = 1. Then,

ke2ϕg(x, y) = kg(x, y) − Kg
(
enϕ0

)
(x)− Kg

(
enϕ0

)
(y) +

〈
Kg
(
enϕ0

)
, enϕ0

〉
L2(volg)

. (46)

3 The co-polyharmonic Gaussian field

In what follows, we consider an admissible manifold (M, g) of even dimension n. We make
use of the normalized operator kg :=

1
an

Kg with an from (32); its associated integral kernel
is

kg(x, y) :=
1

an
Kg(x, y), ∀x, y ∈M.

By construction, kg is a symmetric integral kernel which annihilates constants and by (40)
has precise logarithmic divergence

∣∣∣kg(x, y) − log
1

dg(x, y)

∣∣∣ ≤ C, ∀x, y ∈M. (47)

We define the bilinear form kg on L2(M, volg):

kg(u, v) := 〈kgu | v〉L2 =

¨

u(x) kg(x, y) v(y) dvolg(x) dvolg(y) . (48)

Observe that kg(u + C, v + C′) = kg(u, v) for u and v ∈ L2(M, volg), and C and C′ ∈ R.
According to (42), we also have that, for every g′ = e2ϕg with ϕ ∈ C∞(M):

kg′
(
u, v
)
= kg

(
enϕ πg′ (u), e

nϕ πg′(v)
)

∀u, v ∈ L2 . (49)
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3.1 Existence and uniqueness, equivalent characterizations

We define the co-polyharmonic Gaussian field on (M, g) in a similar fashion as we did for
fractional Gaussian fields in [DKS20]. The key role is played by a probability measure
on D′, heuristically characterized as

dν(h) =
1

Zg
exp

(
− an

2
pg(h, h)

)
dh (50)

where dh stands for the (non-existing) uniform distribution on D′ and Zg denotes some
normalization constant.

Theorem 3.1. For every admissible manifold (M, g) there exists a unique probability mea-

sure ν on D′, called law of the co-polyharmonic Gaussian field and denoted by CGF(M,g),
that satisfies

ˆ

D′

ei〈h |u〉dν(h) = exp
[
− 1

2 kg(u, u)
]

∀u ∈ D . (51)

Equivalently, CGF(M,g) can be characterized as the unique centered Gaussian probability
measure ν on D′ that satisfies

ˆ

D′

〈h |u〉2 dν(h) = kg(u, u) ∀u ∈ D . (52)

Proof. Set χ(u) := exp
[
− 1

2 kg(u, u)
]
. It satisfies χ(0) = 1. Moreover, since M is admis-

sible, kg is a semi-definite inner product on D, thus, by, e.g., [LSSW16, Prop. 2.4], χ is

totally positive definite. By Lemma 2.15(ii), u 7→
√
kg(u, u) is continuous with respect to

the H−n/2-norm on D. Since D embeds continuously into H−s for every s ∈ R, the func-
tional χ is continuous on D. The claim follows by the Bochner–Minlos Theorem [VTC87,
§IV.4.3, Thm. 4.3, p. 410].

Definition 3.2. A measurable map h• : Ω → D′, ω 7→ hω, defined on some probability
space (Ω,F,P), is called co-polyharmonic Gaussian field on (M, g) if it is distributed

according to CGF(M,g).

Here and henceforth, we use the notation h• if we want to emphasize the dependency
on some underlying ‘random’ parameter ω. Often, however, we simply write h instead,
and then do not distinguish in notation between h distributed according to dCGF(h) and
hω distributed according to dP(ω).

Remark 3.3. (a) In view of (52), the mapping 〈h | · 〉 : D → L2(ν) can be extended to a
linear isometry H̊−n/2 → L2(ν).

(b) Occasionally, with slight abuse of notation, we assume that P is a probability measure
on Ω = D′ and we regard h 7→ 〈h |u〉 for u ∈ D as a family of centered Gaussian random
variables.

(c) Our definition implies that a co-polyharmonic Gaussian field h is grounded, in the
sense that 〈h | c〉 = 0 for all constant c.

Remark 3.4. In view of Weyl’s asymptotic for eigenvalues of Pg in Lemma 2.15 (viii), we
can argue as in [She07, Proposition 2.1] and show that we can realize the co-polyharmonic
Gaussian field via the abstract Wiener space approach of [Gro67]. In that case the
Cameron–Martin space is H̊n/2 and the abstract Wiener space can be chosen to be H̊−ε

for any ε > 0. See also Theorem 3.9.

Remark 3.5. AD′-valued centered Gaussian random field h is a co-polyharmonic Gaussian
field on (M, g) if and only if ξ :=

√
an Pg h is a grounded white noise on (M, g), i.e., a

D′-valued centered Gaussian random distribution with covariance

E
[
〈ξ |u〉 〈ξ | v〉

]
= 〈πgu |πgv〉L̊2 ∀u, v ∈ D . (53)

Vice versa, given any grounded white noise ξ on (M, g), then h :=
√
kg ξ is a co-polyharmonic

Gaussian field on (M, g).
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The heuristic characterization (50) of the measure CGF(M,g) manifests itself in various

important properties. As every Gaussian measure, CGF(M,g) satisfies a large deviation
principle whose rate function is given by the Cameron–Martin norm [Aze80, Chap. II,
Prop. 1.5 and Thm. 1.6]. In our case, this yields

Proposition 3.6. For every co-polyharmonic field h, and for every Borel set A ⊂ D′:

− inf
u∈A0

anpg(u) ≤ lim inf
β→0

2β2 P[βh ∈ A]

≤ lim sup
β→0

2β2 P[βh ∈ A] ≤ − inf
u∈Ā

anpg(u).

Here A0 and Ā respectively denote the interior and the closure of A in the topology of D′,
and p is defined in (38) and we set p(u) = ∞ if u 6∈ Hn/2.

Next we recall the celebrated change of variable formula of Girsanov type, also known
as Cameron–Martin theorem, see, for instance [Jan97, Theorem 14.1].

Proposition 3.7. If ϕ ∈ D and h ∼ CGF(M,g), then h+πg(ϕ)volg is distributed according
to

exp
(
an 〈h |Pg ϕ〉 −

an
2
pg(ϕ, ϕ)

)
dCGF(M,g)(h).

Remark 3.8. Many of our subsequent results rely on the seminal work of J.-P. Kahane [Kah85]
on Gaussian multiplicative chaos. His results apply to Gaussian random fields h̃ on a
metric space (M,d) with covariance kernel k̃ with a logarithmic divergence: |k̃(x, y) +
log d(x, y)| ≤ C. In addition to non-negative definiteness, he assumes that k̃ is non-
negative. Of course, this is not satisfied by our kernel kg. However, as we are going to
explain now, it imposes no serious obstacle to applying his results in our setting.

Given the kernel kg as defined above, observe that it is smooth outside the diagonal
and positive in the neighborhood of the diagonal. Define a new kernel by

k̄(x, y) := kg(x, y) + C ≥ 0

with C := −minx,y∈M kg(x, y) < ∞. By construction k̄ is non-negative. Furthermore, it
is also non-negative definite since it is the covariance kernel for the Gaussian field

h̄ := h+
√
C ξ · volg

where h denotes the co-polyharmonic Gaussian field associated with kg, and ξ denotes a
standard Gaussian variable independent of h.

3.2 Approximations

As anticipated, our goal is to construct the random measure dµ(x) = eh(x)dvolg(x). Due to
the non-smooth nature of h this requires approximating h by smooth fields (and properly
renormalizing). Co-polyharmonic Gaussian Fields may be approximated in various ways,
the random measure obtained being essentially independent on the choice of the approx-
imation [Sha16]. Here, we present a number of different approximations: through their
expansion in terms of eigenfunctions of the co-polyharmonic operator Pg; by convolution
with (smooth or non-smooth) functions; by a discretization procedure.

Let us first discuss the eigenfunctions approximation. As before, we denote by (ψj)j∈N0

the complete L2-orthonormal system consisting of eigenfunctions of Pg, each with corre-
sponding eigenvalue νj . In addition, we consider a sequence (ξj)j∈N1 of independent and
identically distributed standard Gaussian variables. For each ℓ ∈ N0, we define the ran-
dom test function hℓ by

hℓ(x) :=

ℓ∑

j=1

ψj(x) ξj√
an νj

, x ∈M . (54)
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The covariance of the random field hℓ is given by:

kℓ(x, y) := E
[
hℓ(x)hℓ(y)

]
=

ℓ∑

j=1

ψj(x)ψj(y)

an νj
, x, y ∈M . (55)

Our next result establishes that the random field hℓ converges to the random field h.

Proposition 3.9. Let (M, g) be admissible and (hℓ)ℓ∈N
defined as above. Then:

(i) for all ε > 0, the field hℓvolg, regarded as a random element of H̊−ε, converges
as ℓ→ ∞ to a co-polyharmonic Gaussian field h in L2(P) and P-a.s. In particular,
h ∈ H̊−ε P-a.s.;

(ii) for every u ∈ H̊−n/2, the sequence (〈hℓ |u〉)ℓ∈N
is a centered, L2-bounded martingale

on (Ω,F,P) converging to 〈h |u〉 P-a.s. and in L2(P) as ℓ → ∞. Furthermore, we
have that P-a.s., cf. Remark 3.3 (a),

〈h |u〉 =
∞∑

j=1

〈u |ψj〉√
an νj

ξj .

Proof. The proof follows from the abstract construction of [Gro67] and Remark 3.4. For
completeness, we outline a simple proof in our setting.

(i) Let ℓ and p ∈ N, and ε > 0. According to Lemma 2.15 (iv), we have that, P-almost
surely ∥∥∥∥∥∥

p∑

j=ℓ+1

ψjξj√
νj

∥∥∥∥∥∥

2

H̊−ε

≃
p∑

j=ℓ+1

ξ2j

ν
1+2ε/n
j

≃
p∑

j=ℓ+1

ξ2j
j1+2ε/n

.

The sum on the right-hand side is a generalized chi-square random variable with variance∑p
j=ℓ+1 j

−2ε/n−1. It converges as p→ ∞ if and only if ε > 0. This shows that the series

h• :=
1

an

∞∑

j=1

ψj ξ
•
j√
νj

, (56)

exists P-almost surely in H̊−ε. The proof of the convergence in L2(P) is carried out in the
same way. Since h is an L2(P)-limit of Gaussian fields, it is itself Gaussian. For u, v ∈ D

its covariance is given by

E
[
〈h |u〉 〈h | v〉

]
=

1

an

∞∑

j=1

〈ψj |u〉L2 〈ψj | v〉L2

νj
= k(u, v) . (57)

(ii) For all u ∈ H̊−n/2, the sequence (〈u |hℓ〉)ℓ∈N
is a martingale as a sum of inde-

pendent and identically distributed random variables. Moreover, by orthogonality, for all
ℓ ∈ N,

E
[
〈u |hℓ〉2

]
≤ E

[
〈h |u〉2

]
=

∞∑

j=1

〈u |ψj〉2
anνj

= k(u, u) ≤ C ‖u‖2H̊−n/2 <∞ .

We used Lemma 2.15 (iv) for the second inequality. Thus, the martingale is L2(P)-
bounded. The convergence follows from Doob’s Martingale Convergence Theorem.

The previous result allows us to construct a co-polyharmonic Gaussian field on every
probability space that supports a sequence of independent and identically distributed
standard normal variables. It is also important to know that an approximation hℓ → h as
in the previous proposition holds for every co-polyharmonic Gaussian field, independently
of the construction of the latter.

25



Remark 3.10. Given any co-polyharmonic Gaussian field h, and the sequence of eigen-
functions (ψj)j∈N0 as above, define a sequence (ξj)j∈N of independent and identically dis-
tributed standard normal variables by setting ξj := 〈h |ψj〉 for all j ∈ N, and a sequence
of Gaussian random fields (hℓ)ℓ∈N by

hℓ : Ω −→ L2(M, volg) , hωℓ (x) :=
ℓ∑

j=1

ψj(x)√
an νj

〈hω |ψj〉 . (58)

Then, for every u ∈ D, as ℓ→ ∞,

〈hℓ |u〉 7−→ 〈h |u〉 P-a.s. and in L2(P) .

Now, let us consider more general approximations. The previous eigenfunction approx-
imation will appear as a particular case.

Proposition 3.11. For each ℓ ∈ N let qℓ ∈ L2(volg ⊗ volg) be such that qℓu → u in L2

for all u ∈ L2, where
qℓu(x) := 〈qℓ(x, · ) |u〉L2 .

(i) Then, for every ℓ ∈ N, the field of functions hℓ on M defined by

hℓ(y) = (q∗ℓh)(y) := 〈h | qℓ( · , y)〉 (59)

is a centered Gaussian field with covariance function

kℓ(x, y) =
(
(qℓ ⊗ qℓ)k

)
(x, y) :=

¨

k(x′, y′) qℓ(x, x
′) qℓ(y, y

′) dvolg(y
′) dvolg(x

′) .

(60)

(ii) As ℓ→ ∞, for every u ∈ L2,

〈hℓ |u〉 7−→ 〈h |u〉 P-a.s. and in L2(P) . (61)

Proof. (i) is obvious. To see (ii), observe that 〈hℓ |u〉L2 = 〈h | qℓu〉 and thus by (52) and
Lemma 2.15 for every u ∈ L2,

E
[∣∣ 〈h |u〉 − 〈qℓ |u〉L2

∣∣2
]
= E

[∣∣ 〈h |u− qℓu〉
∣∣2
]

≃ ‖u− qℓu‖2H̊−n/2

≤ ‖u− qℓu‖2L2

ℓ→∞−−−−−→ 0 .

Example 3.12. (i) Probability kernels. Let {qℓ(x, · )volg : ℓ ∈ N, x ∈ M} be a fam-
ily of probability measures on M with qℓ ∈ L∞(volg ⊗ volg) non-negative, and such
that qℓ(x, · )volg converges weakly to δx as ℓ → ∞ for each x ∈ M . Then qℓu → u in L2

as ℓ→ ∞ for all u ∈ L2.

Particular cases of (i) are (ii) and (iii) below.

(ii) Discretization. Let (Pℓ)ℓ∈N be a family of Borel partitions ofM with sup{diamg(A) :
A ∈ Pℓ} → 0 as ℓ→ ∞. For ℓ ∈ N put

qℓ(x, y) :=
∑

A∈Pℓ

1

volg(A)
1A(x)1A(y) .

In other words, for given x ∈M we have that qℓ(x, · ) = 1
volg(A)1A with the unique A ∈ Pℓ

which contains x. Letting hℓ be defined as in Proposition 3.11 then yields

hℓ(x) =
1

volg(A)
〈h |1A〉 A ∈ Pℓ , x ∈ A .

This is a centered Gaussian random field (hℓ(x))x∈M with covariance function

kℓ(x, y) =
1

volg(Axℓ ) volg(A
y
ℓ )

ˆ

Ax
ℓ

ˆ

Ay
ℓ

k(x′, y′) dvolg(x
′) dvolg(y

′) ,

where Axℓ is the unique element of Pℓ containing x.
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(iii) Heat kernel approximation. Let qℓ(x, y) := p1/ℓ(x, y) be defined in terms of the heat
kernel on M . Then qℓu→ u in L2 and thus in particular (61) holds for all u ∈ L2. Even
more, (61) holds for all u ∈ H̊−n/2.

(iv) Eigenfunctions approximation. In terms of the eigenfunctions for the co-polyharmonic
operator Pg we define

qℓ(x, y) :=
ℓ∑

j=0

ψj(x)ψj(y) .

In other words, qℓ : L2 → L2 is the projection onto the linear span of the first 1 + ℓ
eigenfunctions. Then qℓu→ u in L2 as ℓ→ ∞ for all u ∈ L2.

Proof. (i) Since Cb(M) is dense in L2(X) and since by Jensen’s inequality ‖qℓu− qℓv‖L2 ≤
‖u− v‖L2 , it suffices to prove that qℓu → u in L2 as ℓ → ∞ for u ∈ Cb(M). To see the
latter, observe that qℓu(x) → u(x) for each x by weak convergence of qℓ(x, · )volg to δx,
and that ‖qℓu‖L∞ ≤ ‖u‖L∞ <∞.

(ii) is straightforward.

(iii) If qℓ = p1/ℓ and u ∈ H̊−n/2 we have with v := G̊n/4u ∈ L2,

‖u− qℓu‖H̊−n/2 . ‖v − qℓv‖L2

ℓ→∞−−−−−→ 0 .

(iv) Readily follows from the fact that (ψj)j∈N0 is a complete L2-orthonormal system,
Lemma 2.15 (v).

3.3 Conformal quasi-invariance

Theorem 3.13. Consider an admissible Riemannian manifold (M, g) and g′ = e2ϕg

with ϕ ∈ C∞(M). If h is distributed according to CGF(M,g) then

h′ := π∗
g′
(
enϕ h

)
= enϕ h− 〈h | enϕ〉

volg′(M)
volg′ (62)

is distributed according to CGF(M,g′). Here, π∗
g′ denotes the dual for the grounding opera-

tor πg′ , and the distribution π∗
g′

(
enϕ h

)
∈ D′ is defined through its action u 7→ 〈h | enϕ πg′u〉

on D.

Proof. Recall that E
[
〈h |u〉 · 〈h | v〉

]
= kg(u, v) for all u, v ∈ D. Thus, with h′ as defined

above and for u, v ∈ D,

E
[
〈h′ |u〉 · 〈h′ | v〉

]
= E

[
〈h | enϕ πg′u〉 · 〈h | enϕ πg′v〉

]
= kg

(
enϕ πg′u, e

nϕ πg′v
)

= kg′ (u, v)

according to (49).

The conformal quasi-invariance of the CGF indeed holds true in a more general form.
Assume that (M, g) and (M ′, g′) are conformally equivalent with diffeomorphism Φ and
conformal weight e2ϕ such that Φ∗g′ = e2ϕg. Furthermore assume that h is distributed

according to CGFM,g and h′ is distributed according to CGFM
′,g′ . Then,

h′
(d)
= Φ∗

(
π∗
g′
(
enϕ h

))
. (63)

Corollary 3.14. On each class of conformally equivalent admissible n-dimensional com-
pact Riemannian manifolds, CGFM,g defines a conformally quasi-invariant random field.

Remark 3.15. (i) In the above transformation formulas, as mostly in this paper, we re-

gard a co-polyharmonic field h ∼ CGF(M,g) as a map h : Ω → D′. As already noted in
Remark 3.4, we also can regard it as a map h : Ω → H−s(M) for any s > 0. Since the
latter depends on the choice of the representative g ∈ [g], one better denotes it by hg.
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Such a formalism in particular is used in [GRV19]. This allows one to get rid of the
multiplicative correction in (62) so that

h′g′ = hg −
1

volg′(M)

〈
hg
∣∣1
〉
H−s(M,g′),Hs(M,g′)

.

(ii) To get rid of the additive correction term in (62), one can consider the ‘random vari-
able’ h+ a volg, called ungrounded co-polyharmonic Gaussian field, where h is distributed

according to CGFM,g and where a is a constant informally distributed according to the
Lebesgue measure on the line (the latter not being a probability measure).

More formally, given any admissible manifold (M, g), the distribution of the corre-
sponding co-polyharmonic Gaussian field is a probability measure νg on the space of
distributions D′ on M . To override the influence of additive constants, we consider the
(non-finite) measure ν̂g on D′ defined as the image measure of νg ⊗ L1 under the map

(h, a) 7→ h+ a volg .

Definition 3.16. The measure ν̂g is called law of the ungrounded co-polyharmonic Gaus-

sian field and denoted by ĈGF
M,g

.

We write h ∼ ĈGF
M,g

to indicate that a measurable map h : Ω → D′, defined on some

measure space (Ω,F,m), is distributed according to ĈGF
M,g

, i.e., h∗m = ĈGF
M,g

.

The conformal quasi-invariance of the probability measures CGFM,g leads to an anal-

ogous but simpler quasi-invariance of the measures ĈGF
M,g

.

Proposition 3.17. If h ∼ ĈGF
M,g

and h′ ∼ ĈGF
M,g′

with g′ = e2ϕg then

h′
(d)
= enϕ h .

Proof. Set 〈h〉g′ :=
〈h | enϕ〉
volg′ (M) . Then, for all u ∈ D, by translation invariance of 1-dimensional

Lebesgue measure,
ˆ

D′

〈h′ |u〉2 dν̂g′(h′) =
ˆ

D′

ˆ

R

〈h′ + avolg′ |u〉2 da dνg′(h′)

=

ˆ

D′

ˆ

R

〈
h− 〈h〉g′ volg + avolg

∣∣∣ enϕu
〉2

da dνg(h)

=

ˆ

D′

ˆ

R

〈h+ avolg | enϕu〉2 da dνg(h)

=

ˆ

D′

〈enϕh |u〉2 dν̂g(h) .

Also the change of variable formula of Girsanov type of Proposition 3.7 takes on a
simpler form: the projection onto the subspace of grounded functions is no longer needed.

Corollary 3.18. If ϕ ∈ D and h ∼ ĈGF
(M,g)

, then h+ ϕvolg is distributed according to

exp
(
an 〈h |Pg ϕ〉 −

an
2
pg(ϕ, ϕ)

)
dĈGF

(M,g)
(h) .

4 Liouville Quantum Gravity measure

Fix an admissible manifold (M, g) and a co-polyharmonic Gaussian field h : Ω → D′, Our
naive goal is to study the ‘random geometry’ (M, gh) obtained by the random conformal
transformation,

gh = e2hg ,

and in particular to study the associated ‘random volume measure’ given as

dvolgh(x) = enh(x)dvolg(x) . (64)
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It easily can be seen that — due to the singular nature of the noise h— all approximating
sequences of this measure diverge as long as no additional renormalization is built in.

A more tractable goal is to study (for suitable γ ∈ R) the random measure µh formally
given as

dµh(x) = eγh(x)−
γ2

2 E[h(x)2]dvolg(x). (65)

Since h is not a function but only a distribution, both (64) and (65) are ill-defined. How-
ever, replacing h by its finite-dimensional noise approximation hℓ as constructed in Propo-
sition 3.10, leads to a sequence (µhℓ)ℓ of random measures onM which, as ℓ→ ∞, almost
surely, converges to a random measure µh on M , the Liouville Quantum Gravity measure
on the n-dimensional manifold M . Let Mb(M) denote the set of finite positive Borel
measures on M . We equip it with the Borel σ-algebra associated with its usual weak
topology.

4.1 Gaussian multiplicative chaos

In the following Theorem, we construct the Gaussian multiplicative chaos µhg,γ associated
to a co-polyharmonic Gaussian field h on (M, g). For the sake of simplicity, we drop
the subscripts γ and g from the notation whenever its specification is not relevant to the
discussion. In view of Theorem 3.9, we can look at the co-polyharmonic Gaussian field h
as a random element of H−ε for some ε > 0.

Theorem 4.1. Let an admissible manifold (M, g) and a real number γ with |γ| <
√
2n

be given. Then, there exists a measurable map

µ : H̊−ε(M) → Mb(M), h 7→ µh ,

with the following properties:

(i) for P-a.e. h and every ϕ ∈ H̊n/2(M),

µh+ϕ = eγϕ µh . (66)

(ii) for all Borel measurable f : H̊−ε(M)×M → [0,∞], we have that

E

ˆ

f(h, x)dµh(x) = E

ˆ

f
(
h+ γk(x, · ), x

)
dvolg(x) . (67)

(iii) for all p ∈
(
−∞, 2nγ2

)
,

E
[
µh(M)

p]
<∞ .

Remark 4.2. (67) implies that E[µh] = volg.

Definition 4.3. The random measure µh = µhg,γ is called the plain Liouville Quantum
Gravity measure on (M, g).

Proof. The result follows from general results regarding the theory of Gaussian multiplica-
tive chaos by Kahane [Kah85] and Shamov [Sha16]. Shamov [Sha16] gives an axiomatic
definition of Gaussian multiplicative chaos and shows that the limit measure is in fact in-
dependent of the choice of approximating sequence. In the language of [Sha16], our result
follows from the existence of a sub-critical Gaussian multiplicative chaos over the Gaus-
sian field h : H̊−n/2 → L2(ν) and the operator k : H̊−n/2 → H̊n/2 ⊂ L0(volg). In this case

h is, almost surely, seen as a (non-continuous) linear form over H̊−n/2. Properties (i) and
(ii) being respectively [Sha16, Dfn. 11 (3)] and [Sha16, Thm. 4]. The moments estimates
(iii) can be found in [Kah85, Thm. 4] for p > 0 and [RV14, Thm. 2.12] for p < 0.

The existence of the Gaussian multiplicative chaos µ— or, more precisely, the existence
of the random variables

´

M u dµ as a limit of uniformly integrable martingales — follows
from an argument of [Kah85, Thm. 4 Variant 1]. This argument is stated in the slightly
more restrictive setting of positive kernels. This restriction, however, does not harm in
our case. Indeed, passing from h to ĥ := h+Cξvolg with some standard normal variable ξ
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independent of h will change k into k̂ + C2 which is eventually (for sufficiently large C)
a positive kernel. The corresponding random measures are then related to each other
according to

µ̂hg = exp
(
γCξ − γ2

2 C
2
)
µhg .

Remark 4.4. Regarding uniform integrability and the existence of Liouville Quantum
Gravity measure, the work [Ber17] provides an alternative approach based on the study
of thick points of the underlying Gaussian fields.

4.2 Approximations

Let us recall the content of [Sha16, Thm. 25] specified to our setting.

Lemma 4.5. Let qℓ ∈ L2(volg ⊗ volg) be a family of kernels as in Proposition 3.11 and
let (hℓ(y))y∈M be Gaussian fields as in (59) with covariance kernel kℓ as in (60). Further
set

dµhℓ(x) := exp
(
γhℓ(x) −

γ2

2
kℓ(x, x)

)
dvolg(x) . (68)

Assume that

(i) The family (µhℓ(M))ℓ∈N is uniformly integrable;

(ii) For all u ∈ H̊n/2, qℓu→ u in L0(volg);

(iii) kℓ → k in L0(volg ⊗ volg).

Then, µhℓ → µh weakly as Borel measures on M in P-probability as ℓ → ∞. Even more,
for every u ∈ L1(volg),

ˆ

M

u dµhℓ →
ˆ

M

u dµh in L1(P) as ℓ→ ∞ . (69)

Remark 4.6 (Transformation of Shamov’s results to our setting). The basic objects in
[Sha16] are generalized H-valued functions and generalized H-valued random fields. To
apply these results to our setting, the Hilbert space (H, 〈 · | · 〉H) there should be chosen as

the space H̊n/2 equipped with the scalar product anp( · , · ) = an 〈 · |P( · )〉L2 . Attention
has to be paid to the fact that the pairing 〈 · | · 〉 in [Sha16] is an extension of the scalar
product in H whereas in our paper it is the natural pairing of distributions and test
functions, extending the scalar product in L2. To distinguish between the two, in the
subsequent discussion a subscript H will always refer to the pairing in [Sha16].

The generalized Gaussian field (X,Y ) in Shamov’s notation is in our case the pair
(h, γk). In particular, X := h is a standard Gaussian random vector in H and Y := γk is
a generalized H-valued function. Indeed, for all u ∈ H ,

E
[
〈X |u〉2H

]
= a2nE

[
〈h |Pu〉2

]
= a2n 〈Pu | k Pu〉L2 = an 〈Pu |u〉L2 = ‖u‖2H .

Moreover,

〈Y (x) | u〉H = an 〈γ k(x, · ) |Pu〉L2 = γ u(x)

and thus ‖Y (x)‖2H = γ2 k(x, x). In particular, X : u 7→ 〈X |u〉H = an 〈h |Pu〉 and Y :
u 7→ 〈Y |u〉H = γ u can be regarded as operators X : H → L2(P) and Y : H → L2(volg).
For qℓ as in Lemma 4.5, we define the generalized H-valued function Yℓ by

〈Yℓ(x) |u〉H := γ qℓu(x) := γ 〈qℓ(x, · ) |u〉L2

= an γ 〈kqℓ(x, · ) |Pu〉L2 = γ 〈kqℓ(x, · ) |u〉H .

Thus

‖Yℓ(x)‖2H = γ2 ‖kqℓ(x, · )‖2H = γ2 〈qℓ(x, · ) | kqℓ(x, · )〉L2

= γ2
¨

qℓ(x, y) k(y, z) qℓ(x, z) dvolg(y) dvolg(z) = γ2 kℓ(x, x) .

The subcritical GMC over the Gaussian field (X,Yℓ) then is given ([Sha16, Example 12])
by (68).
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In practice, the criteria (ii) and (iii) of the previous lemma are easy to verify. The
remaining challenge is the verification of (i).

Lemma 4.7. Assume that for every ϑ > 1 there exists C ≥ 0, ℓϑ ∈ N, and a non-
decreasing sequence (cℓ)ℓ∈N such that for all ℓ ≥ ℓϑ and all x, y ∈M ,

kℓ(x, y) ≤ ϑ log

(
1

d(x, y)
∧ cℓ

)
+ C . (70)

Then for every γ ∈ (0,
√
2n), the family (µhℓ(M))ℓ∈N as in (68) is uniformly integrable.

Proof. This follows from Kahane’s comparison lemma [Kah85], cf. [Sha16, Thm.s 27, 28].

In the rest of this section, let qℓ be a family of probability kernels as in Example 3.12 (i).
The lemmas above allow us to obtain the following crucial approximation results.

Theorem 4.8. Let the kernels qℓ be given in terms of a compactly supported, non-
increasing function η : R+ → R+ as

qℓ(x, y) :=
1

Nℓ(x)
η
(
ℓ d(x, y)

)
, Nℓ(x) :=

ˆ

M

η
(
ℓ d(x, y)

)
dvolg(y) .

Then with µhℓ defined as in (68),

µhℓ → µh as ℓ→ ∞

in the sense made precise in (69).

Remark 4.9. The assertion of the previous theorem holds as well for

qℓ(x, y) :=
1

N∗
ℓ

η
(
ℓ d(x, y)

)

with the ‘Euclidean normalization’ N∗
ℓ := ℓ−n

´

Rn η(|y|) dLn(y) in the place of the ‘Rie-
mannian normalization’ Nℓ(x).

Proof. Assume that η is supported in [0, R]. The verification of the criteria (ii) and (iii)
in Lemma 4.5 is straightforward: (ii) was proven in Example 3.12 (i). (iii) follows
from the fact that k(x, · ) is bounded and continuous outside of any ε-neighborhood of x,
that qℓ(x, · ) is supported in an R/ℓ-neighborhood of y, and that qℓ(x, · )dvolg → δx as
ℓ→ ∞. Thus for every x, y with d(x, y) ≥ 2ε and every ℓ ≥ R/ε,

kℓ(x, y) =

ˆ

Bε(y)

ˆ

Bε(x)

kg(x
′, y′)ρℓ(x

′, x)ρℓ(y
′, y)dvolg(x

′) dvolg(y
′)

ℓ→∞−−−−−→ k(x, y) .

Our verification of the criterion (i) in Lemma 4.5 is based on Lemma 4.7, the verifica-
tion of which will in turn be based on the following auxiliary results.

Claim 4.10. For all x, y ∈M with d(x, y) ≥ 3R/ℓ,

¨

log
1

d(x′, y′)
qℓ(x, x

′) qℓ(y, y
′) dvolg(x

′) dvolg(y
′) ≤ log

1

d(x, y)
+ log 3 .

Proof. Combining the assumption d(x, y) ≥ 3R/ℓ and the facts that d(x, x′) ≤ R/ℓ for
all x′ in the support of qℓ(x, · ) and d(y, y′) ≤ R/ℓ for all y′ in the support of qℓ(y, · ),
yields

d(x′, y′) ≥ d(x, y) − d(x, x′)− d(y, y′) ≥ d(x, y)− 2R/ℓ ≥ 1

3
d(x, y) .

Thus, the claim readily follows.
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Claim 4.11. For every ϑ > 1 there exist ℓϑ ∈ N such that

ˆ

log
1

d(x, z)
ρℓ(y, z) dvolg(z) ≤

ϑ

N∗
ℓ

ˆ

Rn

log
1

|x′ − z| η
(
ℓ |y′ − z|

)
dLn(z) + ϑ logϑ

for all ℓ ≥ ℓϑ, all x, y ∈M with d(x, y) < 4R/ℓ, and all x′, y′ ∈ Rn with d(x, y) = |x′ − y′|.

Proof. Denote by injg(M) > 0 the injectivity radius of (M, g). For every y ∈M set y′ :=
0 ∈ Rn and use the exponential map expy : Rn → M to identify ε-neighborhoods of
y ∈ M with ε-neighborhoods of y′ ∈ Rn for all ε ∈ (0, injg(M)). Since M is compact
and smooth, for every ϑ > 1 there exists εϑ ∈ (0, injg(M)) so small that expy deforms
both distances and volume elements in ε-neighborhoods of y by a factor less than ϑ, for
every y ∈M and every ε ∈ (0, εϑ). Choose ℓϑ so that 4R/ℓϑ < εϑ. Thus,

ˆ

log
1

d(x, z)
qℓ(y, z) dvolg(z) ≤

ϑ

N∗
ℓ

ˆ

Rn

log
ϑ

|x′ − z|η
(
ℓ |y′ − z|

)
dLn(z)

=
ϑ

N∗
ℓ

ˆ

Rn

log
1

|x′ − z|η
(
ℓ |y′ − z|

)
dLn(z) + ϑ logϑ .

Claim 4.12. For all x, y ∈ Rn,

ˆ

Rn

log
1

|x− z| η
(
ℓ |y − z|

)
dLn(z) ≤

ˆ

Rn

log
1

|z| η
(
ℓ |z|

)
dLn(z) .

Proof. Without restriction y = 0 and ℓ = 1. For r ≥ 0, consider

φ(r) :=

ˆ

Rn

log
1

|rx− z| η(|z|) dL
n(z) .

Then

φ′(r) =

ˆ

Rn

〈rx − z, x〉
|rx − z|2 η

(
|z|
)
dLn(z) =

ˆ

Rn

〈z, x〉
|z|2 η

(
|z − rx|

)
dLn(z)

=

ˆ

{z:〈z,x〉≥0}

〈z, x〉
|z|2

(
η
(
|z − rx|

)
− η
(
|z + rx|

))
dLn(z) ≤ 0

since t 7→ η(t) is non-increasing.

Claim 4.13. There exists C∗ ≥ 0 such that, for all ℓ ∈ N,

1

N∗
ℓ

ˆ

Rn

log
1

|z| η
(
ℓ |z|

)
dLn(z) ≤ log ℓ+ C∗ .

Proof. Straightforward with C∗ := 1
N∗

1

´

Rn log 1
|z| η

(
|z|
)
dLn(z).

Now let us conclude the proof of Theorem 4.8. Fix ϑ > 1, and choose ℓϑ as in the
proof of Claim 4.11. It remains to verify the estimate (70). For x, y with d(x, y) ≥ 3R/ℓ,
this is derived in Claim 4.10. For x, y with d(x, y) < 3R/ℓ (hence d(x, y) < εϑ), the
Claims 4.11, 4.12, 4.13 yield

ˆ

log
1

d(x′, y′)
qℓ(y, y

′) dvolg(y
′) ≤ ϑ

(
log ℓ+ C∗

)
+ ϑ logϑ

for every x′ in the support of qℓ(x, · ), and thus

¨

log
1

d(x′, y′)
qℓ(x, x

′) qℓ(y, y
′) dvolg(x

′) dvolg(y
′) ≤ ϑ

(
log ℓ+ C∗

)
+ ϑ logϑ .

This proves the estimate (70) with cℓ := ℓ and C := C∗ϑ2 logϑ, and the proof of the
theorem is herewith complete.
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The previous results in particular applies to the kernel qℓ(x, y) :=
1

volg(B1/ℓ(x))
1B1/ℓ(x)(y).

Similar arguments apply to discretization kernels.

Theorem 4.14. Let (Pℓ)ℓ∈N be a family of partitions of M with dℓ := sup{diam(A) :
A ∈ Pℓ} → 0 as ℓ→ ∞, see Example 3.12 (ii), and inf{volg(A)/dnℓ : A ∈ Pℓ, ℓ ∈ N} > 0.
Let

qℓ :=
∑

A∈Pℓ

1

volg(A)
1A ⊗ 1A .

Then, with µhℓ defined as in (68),

µhℓ → µh as ℓ→ ∞

in the sense made precise in (69).

Proof. Again the argumentation will be based on Lemma 4.5. The verification of the
criteria (ii) and (iii) there is again straightforward. Criterion (i) will be verified as before
by means of Lemma 4.7. To verify (70), assume without restriction that (Pℓ)ℓ∈N is given
with

diam(A) ≤ dℓ, volg(A) ≥ vℓ ≥ V dnℓ

for all A ∈ Pℓ, ℓ ∈ N and for some constant V > 0 independent of ℓ. Then, for x, y ∈M
with d(x, y) > 3dℓ, we obtain as in Claim 4.10 that

¨

log
1

d(x′, y′)
qℓ(x, x

′) qℓ(y, y
′) dvolg(x

′) dvolg(y
′) ≤ log

1

d(x, y)
+ log 3 .

Furthermore, for every ϑ > 1, every sufficiently large ℓ, and for all x, y ∈M with d(x, y) ≤
3dℓ, we have that

¨

log
1

d(x′, y′)
qℓ(x, x

′) qℓ(y, y
′) dvolg(x

′) dvolg(y
′)

≤ sup
x′∈Ax

1

volg(Ay)

ˆ

Ay

log
1

d(x′, y′)
dvolg(y

′)

≤ sup
x′∈Rn

sup
A⊂Rn

Ln(A)≤vℓ

ϑ

Ln(A)

ˆ

A

log
1

|x′ − y′| dL
n(y′)

by comparison of Riemannian and Euclidean distances and volumes. Since |x′ − y′| is
translation invariant, we may dispense with the supremum over x′ and assume instead
that x′ = 0 ∈ Rn. Furthermore,

sup
A⊂Rn

Ln(A)≤vℓ

1

Ln(A)

ˆ

A

log
1

|x′ − y′| dL
n(y′) = sup

v≤vℓ

sup
A⊂R

n

Ln(A)=v

1

v

ˆ

Rn

1A(y
′) log

1

|y′|dL
n(y′)

≤ sup
v≤vℓ

1

v

ˆ

Br(0)

log
1

|y′|dL
n(y′)

by Hardy–Littlewood inequality and spherical symmetry of − log |y′|, where r = r(v) is
so that Ln(Br(0)) = v. Furthermore, since ℓ 7→ vℓ is monotone decreasing to 0, we may
choose ℓ additionally so large that vℓ ≤ 1. For all such ℓ, since r(v) ≤ r(vℓ) ≤ 1 and
− log |y′| ≥ 1 on Br(0), the function v 7→ 1

v

´

Br(v)(0)
log 1

|y′|dLn(y′) is increasing for v ∈
[0, vℓ). We have therefore that, for every ϑ > 1, every sufficiently large ℓ, every x, y ∈M
with d(x, y) ≤ 3dℓ,

¨

log
1

d(x′, y′)
qℓ(x, x

′) qℓ(y, y
′) dvolg(x

′) dvolg(y
′) ≤ 1

vℓ

ˆ

Br(0)

log
1

|y′|dL
n(y′)
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with r > 0 such that Ln(Br(0)) = vℓ. For such r we may compute

1

Ln(Br(0))

ˆ

Br(0)

log
1

|y′| dL
n(y′) =

n

rn

ˆ r

0

log
1

s
sn−1ds =

1

n rn

ˆ rn

0

log
1

t
dt

=
1

n rn
rn(1− log rn) =

1

n
+ log

1

r
.

That is, for d(x, y) ≤ 3dℓ with sufficiently large ℓ,

¨

log
1

d(x′, y′)
qℓ(x, x

′) qℓ(y, y
′) dvolg(x

′) dvolg(y
′) ≤ ϑ

(
1

n
+ log

1

r

)
≤ C + ϑ log

1

3dℓ

since r = (vℓ/cn)
1/n ≥ (V/cn)

1/n dℓ with cn = Ln(B1(0)). Thus, summarizing, for all
x, y ∈M and all sufficiently large ℓ,

¨

log
1

d(x′, y′)
qℓ(x, x

′) qℓ(y, y
′) dvolg(x

′) dvolg(y
′) ≤ C + ϑ log

1

d(x, y) ∨ 3dℓ
.

The previous theorems do not apply to the kernels

qℓ :=

ℓ∑

j=1

ψj ⊗ ψj

for the eigenspace projections. These kernels are not nonnegative and not supported on
small balls, even for large ℓ. Nevertheless, µh can also be obtained via eigenfunctions
approximation according to our next result.

Theorem 4.15. Consider the eigenfunctions approximation (hℓ)ℓ∈N
given in (54) with

covariance kernel (kℓ)ℓ∈N
as in (55). Let (µℓ)ℓ∈N

be as in (68). Then, for all Borel B ⊂M ,

E
[
µh(B)

∣∣ ξ1, . . . , ξℓ
]
= µhℓ(B) .

In particular,
(
µhℓ(B)

)
ℓ∈N

is a uniformly integrable martingale.

Proof. Fix a Borel B ⊂M . Since hℓ is almost surely smooth, in view of (66) we find that

µh(B) = F (hℓ, h− hℓ) ,

where for Φ ∈ D and u ∈ H̊−ε for some ε > 0 we write

F (Φ, u) =

ˆ

B

eγΦ(x)dµu(x) .

Again by (66), we see that

G(Φ) := EF (Φ, h− hℓ) = E

ˆ

B

eγΦ(x)e−γhℓ(x)dµh(x) .

Applying (67) and using that hℓ(x) is Gaussian, we thus have that

G(Φ) = E

ˆ

B

eγΦ(x)e−γhℓ(x)−γ
2kℓ(x,x)dvolg(x) =

ˆ

B

eγΦ(x)e−
γ2

2 kℓ(x,x)dvolg(x) .

Since hℓ and h− hℓ are independent and hℓ is measurable with respect to u1, . . . , uℓ, we
have that

E
[
µh(B)

∣∣ u1, . . . , uℓ
]
= E

[
F (hℓ, h− hℓ)

∣∣ u1, . . . , uℓ
]
= G(hℓ) = µhℓ(B) .

34



4.3 Conformal quasi-invariance

Theorem 4.16. Assume that the Riemannian manifold (M, g) is admissible and that
g′ = e2ϕg with ϕ ∈ C∞(M). Set v′ := volg′(M), and define a centered Gaussian random
variable ξ and a function ϕ̄ ∈ C∞(M) by

ξ := 〈h〉g′ :=
1

v′
〈h | enϕ〉 , ϕ̄ :=

2

v′
kg(e

nϕ)− 1

v′2
kg(e

nϕ, enϕ) . (71)

For γ ∈ (−
√
2n,

√
2n), let µhg and µh

′

g′ denote the Liouville Quantum Gravity measures

on (M, g) and (M, g′), resp., with h ∼ CGFM,g and h′ ∼ CGFM,g′ . Then,

µh
′

g′
(d)
= e−γξ+

γ2

2 ϕ̄+nϕ µhg . (72)

Remark 4.17. Our formulation of the Liouville quantum measure is slightly different from
the one usually considered in dimension 2 (see, for instance [DS11, Proposition 1.1]). See
Section 4.5 for more details.

Proof. Let h ∼ CGFM,g. For ℓ ∈ N, let hℓ be the Gaussian random field defined by (54),
and define the random fields

h′ℓ := hℓ − 〈hℓ〉g′ ∈ D , h′ := enϕ h− 〈h〉g′ volg′ ∈ D′ . (73)

Here, we regard the h′ℓ and hℓ as random functions. If we regarded them as random
distributions, then they would transform in the same way as h′ and h do.

Random fields. The convergence hℓ → h for ℓ → ∞ as stated in Prop. 3.9 implies an
analogous convergence h′ℓ → h′ in D′. More precisely, for every u ∈ D,

lim
ℓ→∞

〈hℓvolg′ |u〉 = lim
ℓ→∞

〈hℓvolg | enϕu〉 = 〈h | enϕu〉 = 〈enϕh |u〉 ,

as well as limℓ→∞〈hℓ〉g′ = 〈h〉g′ , the convergences being P-a.s. and in L2(P), and thus

lim
ℓ→∞

〈h′ℓ volg′ |u〉 = 〈h′ |u〉 , P-a.s. and in L2(P) . (74)

Let us set k′ℓ(x, y) := E
[
h′ℓ(x)h

′
ℓ(y)

]
and let us denote by k′ℓ the corresponding integral

operator on L2(volg′), namely

(k′ℓu)(x) :=

ˆ

k′ℓ(x, y)u(y)dvolg′(y) , u ∈ L2(volg′) .

Then,

lim
ℓ

¨

u(x) k′ℓ(x, y) v(y) dvol
⊗2
g′ (x, y) = lim

ℓ
E [〈h′ℓ volg′ |u〉 〈h′ℓ volg′ | v〉]

= E [〈h′ |u〉 〈h′ | v〉]

=

¨

u(x) k′(x, y) v(y) dvol⊗2
g′ (x, y) ,

where the first equality holds by definition of k′ℓ, the second equality holds by (74), and

the third equality holds since h′ ∼ CGFM,g′ by Theorem 3.13. In particular, we have the
following convergences

lim
ℓ

√
k′ℓ u =

√
k′u , ∀u ∈ L2(volg′) , (75)

lim
ℓ
k′ℓ = k′, a.e. on M ×M. (76)

Random measures. Now, let us set, for all ℓ ∈ N:

µhℓ
g := eγhℓ−

γ2

2 E[h2
ℓ ] volg , resp. µ

h′

ℓ

g′ := eγh
′

ℓ−
γ2

2 E[(h′

ℓ)
2] volg′ .
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On the one hand, by Theorem 4.1 we have that

lim
ℓ

ˆ

u dµhℓ
g =

ˆ

u dµhg , u ∈ C(M) , (77)

in L1(P). On the other hand, similarly to the proof of Theorem 4.1, the martingale {µh
′

ℓ

g′ (M) :
ℓ ∈ N} is uniformly integrable. Together with (75) and (76), this verifies the assumptions
in [Sha16, Thm. 25], hence

lim
ℓ

ˆ

u dµ
h′

ℓ

g′ =

ˆ

u dµh
′

g′ , u ∈ Cb(M) , (78)

in L1(P).

Radon–Nikodym derivative. Similarly to Theorem 2.19, we can compute k′ℓ explicitly.
For short write mg′ = volg′/v

′. Then, we have

k′ℓ(x, y) := E
[
h′ℓ(x)h

′
ℓ(y)

]
= E

[(
hℓ(x) − 〈hℓ〉g′

) (
hℓ(y)− 〈hℓ〉g′

)]

= kℓ(x, y) +

¨

kℓ(w, z) dm
⊗2
g′ (w, z)

−
ˆ

kℓ(x, z) dmg′(z)−
ˆ

kℓ(y, w) dmg′ (w)

= kℓ(x, y)−
1

2
ϕ̄ℓ(x) −

1

2
ϕ̄ℓ(y),

where we have set

ϕ̄ℓ( · ) := 2

ˆ

kℓ( · , z) dmg′(z)−
¨

kℓ(w, z) dm
⊗2
g′ (w, z)

=
2

v′
kℓ(e

nϕ)− 1

v′2
kℓ(e

nϕ, enϕ).

Thus in particular,

k′ℓ(x, x) − kℓ(x, x) = ϕ̄ℓ(x).

Furthermore, set ξℓ := 〈hℓ〉g′ = 〈hℓ | enϕ̄〉. Then, almost surely:

log
dµhℓ

g

dµ
h′

ℓ

g′

(x) = γ hℓ(x)−
γ2

2
E
[
hℓ(x)

2
]
− γ h′ℓ(x) +

γ2

2
E
[
h′ℓ(x)

2
]
− nϕ(x)

= γ 〈hℓ〉g′ +
γ2

2
E
[
h′ℓ(x)

2 − hℓ(x)
2
]
− nϕ(x)

= γ ξℓ +
γ2

2

(
k′ℓ(x, x) − kℓ(x, x)

)
− nϕ(x)

= γ ξℓ −
γ2

2
ϕ̄ℓ(x)− nϕ(x),

and thus for every u ∈ Cb(M),

ˆ

M

u(x) dµ
h′

ℓ

g′ (x) =

ˆ

M

e−γ ξℓ+
γ2

2 ϕ̄ℓ(x)+nϕ(x) u(x) dµhℓ
g (x) . (79)

Convergence. As ℓ → ∞, by (74) applied with u = enϕ̄, we have that ξℓ → ξ, P-a.s.
Moreover, ϕ̄ℓ → ϕ̄ in L∞(M, volg) according to Lemma 2.15 (vii). Together with the
representation formula (79) and the convergence obtained in (77) and (78), this implies
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that, in L1(P),

ˆ

M

u(x) dµhg′ (x) = lim
ℓ→∞

ˆ

M

u(x) dµhℓ

g′ (x)

= lim
ℓ→∞

ˆ

M

e−γ ξℓ+
γ2

2 ϕ̄ℓ(x)+nϕ(x) u(x) dµhℓ
g (x)

= lim
ℓ→∞

ˆ

M

e−γ ξ+
γ2

2 ϕ̄(x)+nϕ(x) u(x) dµhℓ
g (x)

=

ˆ

M

e−γ ξ+
γ2

2 ϕ̄(x)+nϕ(x) u(x) dµhg (x) .

This proves the claim.

Corollary 4.18. Assume that (M, g) and (M ′, g′) are admissible and conformally equiv-
alent with diffeomorphism Φ and conformal weight e2ϕ. Let h and h′ denote the co-
polyharmonic random fields, and µhg and µh

′

g′ the corresponding Liouville Quantum Gravity
measures on (M, g) and (M ′, g′), resp. Then,

µh
′

g′
(d)
= Φ∗

(
e−γξ+

γ2

2 ϕ̄+nϕ µhg

)
(80)

with ξ and ϕ̄ as above.

As for the co-polyharmonic Gaussian field, the conformal quasi-invariance simplifies
whenever we consider Liouville quantum measures constructed from ungrounded fields.

Corollary 4.19. Assume that h ∼ ĈGF
M,g

and h′ ∼ ĈGF
M,g′

, then

µh
′

g′
(d)
= enϕ+

γ2

2 ϕ̄µhg .

Even more, for all measurable F : D′ ×Mb(M) → R+:

ˆ

F
(
h, µhg′

)
dĈGFg′ (h) =

ˆ

F
(
enϕh, enϕ+

γ2

2 ϕ̄µhg

)
dĈGFg(h) .

Proof. Expanding the definition of ĈGF and using Theorems 3.13 and 4.16, we find

ˆ

F
(
h, µhg′

)
dĈGFg′(h) =

ˆ

F
(
h+ avolg′ , e

γaµhg′
)
da dCGFg′(h)

=

ˆ

F
(
enϕ(h− ξvolg + avolg), e

γ(a−ξ)e
γ2

2 ϕ̄+nϕµhg

)
da dCGFg(h) .

We conclude by the translation invariance of the Lebesgue measure.

4.4 Support properties

Since a typical realization of the Liouville Quantum Gravity measure µhg is singular with
respect to the volume measure of M , it gives positive mass to certain sets E ⊂ M
of vanishing volume measure. However, it does not give mass to sets of vanishing Hs-
capacity (for sufficiently large s), a classical scale of ‘smallness of sets’ involving Green
kernels and thus well-suited for our purpose.

Definition 4.20. For s > 0, the Hs-capacity (aka Bessel capacity) of a set E ⊂M is

caps(E) := inf
{
‖f‖2L2 : Gs/2,1f ≥ 1 volg-a.e. on E, f ≥ 0

}
. (81)

A set with vanishing Hs-capacity, also has vanishing Hr-capacity for every r ∈ (0, s),
We call a set E such that caps(E) = 0, a caps-zero or a caps-polar set.
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Theorem 4.21. Consider the co-polyharmonic Gaussian field h ∼ CGFM,g and the asso-
ciated Liouville Quantum Gravity measure µhg on (M, g) with |γ|2 < 2n. Then, for a.e. h

and every s > γ2/4, the measure µhg does not charge sets of vanishing Hs-capacity. That
is,

caps(E) = 0 =⇒ µhg (E) = 0 ∀ Borel E ⊂M .

For applications of this result in the remainder of this paper, two choices of s are
relevant, s = n/2 and s = 1.

Corollary 4.22. Consider h and µhg as above.

• If |γ| <
√
2n, then P-almost surely µhg does not charge sets of vanishing Hn/2-

capacity.

• If |γ| < 2, then P-almost surely µhg does not charge sets of vanishing H1-capacity.

In the particular case n = 2, both assertions coincide. In general, none of the two asser-
tions is an immediate consequence of the other one.

Our proof of the theorem relies on results on Bessel capacities and on a celebrated
estimate for the volume of balls by J.-P. Kahane for random measures defined in terms of
covariance kernels with logarithmic divergence.

Concerning capacities, we adapt to manifolds results in [Zie89] that do not follow
from [DK07]. Denote by Mb(M) the space of non-negative finite Borel measures on M .
For µ ∈ Mb(M) we set

Gs,αµ(x) =

ˆ

Gs,α(x, y)dµ(y), s, α > 0 ,

and, for a measurable set E ⊂M :

bs(E) := sup
{
µ(E) : µ ∈ Mb(M),

∥∥Gs/2,1(1Eµ)
∥∥
L2 ≤ 1

}
. (82)

Remark 4.23. The Bessel capacities as defined above are ‘order 1 capacities’ in the sense
of Dirichlet forms. The corresponding ‘order 0 capacities’ would be defined by replacing
the operator Gs,1 with its grounded version G̊s. As a consequence of the compactness
of M , these capacities define the same class of cap-zero subsets of M .

Lemma 4.24. Let s > 0. The following assertions hold true:

(i) caps is a regular Choquet capacity;

(ii) for every Suslin set E ⊂M ,

bs(E)2 = caps(E) ;

(iii) if µ ∈ Mb(M) satisfies ‖Gs/2,1µ‖L2 <∞, then µ does not charge caps-zero sets;

(iv) any function in Hs is pointwise determined (and finite) up to a caps-zero set;

(v) if (uk)k ⊂ Hs and u ∈ Hs satisfy limk |uk − u|Hs = 0, then there exists a subse-
quence (ukj )j ⊂ Hs so that u = limj ukj pointwise up to a caps-zero set.

Proof. Since assertions (i) and (ii) above are set-theoretical in nature, their proof is
adapted verbatim from [Zie89]. In particular, (i) is concluded as in [Zie89, Cor. 2.6.9],
and (ii) as in [Zie89, Thm. 2.6.12]. These adaptations hold provided we substitute the
operator gα∗ in [Zie89], α = s/2, with Gs/2,1, and noting that Gs/2,1(x, · ) is continuous
away from x.

In order to show (iii), let E ⊂ M be caps-polar. By standard facts on Choquet
capacities, E can be covered by countably many Suslin caps-polar sets. Thus, we may
assume with no loss of generality that E be additionally Suslin. By (ii) and definition (82)
of bs, we then have

∥∥Gs/2,1µ
∥∥
L2 · caps(E)1/2 ≥

∥∥Gs/2,1(1Eµ)
∥∥
L2 · bs(E) ≥ µE ,
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which concludes the proof by assumption on E.
(iv) By definition, u is in Hs if and only if there exists v ∈ L2 such that u = Gs/2,1v,

and ‖u‖Hs = ‖v‖L2 . By density of D in both L2 and Hs, it suffices to show that,
whenever un to u volg-a.e. and in L2, then Gs/2,1un → Gs/2,1u caps-q.e.. This latter fact
holds as in [Zie89, Lem. 2.6.4], with identical proof.

(v) Firstly, let us show that

caps
(
{|f | > a}

)
≤ ‖f‖2Hs /a

2 , f ∈ Hs , a > 0 . (83)

Indeed,
Gs/2,1(1−∆g)

s/2 |f | /a = |f | /a ≥ 1 on {|f | > a} ,

hence, by definition of caps we have that

caps
(
{|f | > a}

)
≤
∥∥∥(1 −∆g)

s/2 |f | /a
∥∥∥
2

L2
= ‖|f | /a‖2Hs = ‖f‖2Hs /a

2 .

Now, let
(
ukj
)
j
⊂
(
uk
)
k
be so that

∥∥u− ukj
∥∥2
Hs ≤ 2−3j, and set Aj := {|u− ukj | > 2−j}.

By (83),

caps(Aj) ≤ 22j
∥∥u− ukj

∥∥2
Hs ≤ 2−j .

Set A :=
⋂∞
ℓ=1

⋃∞
j=ℓAj . If x /∈ A, it is readily seen that limj |u(x) − ukj (x)| = 0 by

definition of the sets Aj . Thus, it suffices to show that caps(A) = 0. Since caps is a
Choquet capacity, it is increasing and (countably) subadditive, and we have that

caps(A) ≤ caps




∞⋃

j=ℓ

Aj


 ≤

∞∑

j=ℓ

caps(Aj) ≤
∞∑

j=ℓ

2−j = 2−ℓ+1 , ℓ ∈ N .

Since ℓ was arbitrary, the conclusion follows letting ℓ→ ∞.

For the above-mentioned, celebrated estimate for the volume of balls by J.-P. Kahane
— concerning the so-called R+

α classes —, we refer to the survey [RV14] by R. Rhodes
and V. Vargas. Note that |kg(x, y) + log d(x, y)| ≤ C and recall Remark 3.8 concerning
positivity of kg.

Lemma 4.25 ([RV14, Thm. 2.6]). Take α ∈ (0, n) and γ2/2 ≤ α. Consider a co-
polyharmonic Gaussian field h ∼ CGFM,g and the associated Liouville quantum gravity
measure µhg on (M, g). Then, almost surely, for all ε > 0 there exists δ > 0, C <∞, and

a compact set Mε ⊂M such that µhg (M \Mε) < ε and

µhg
(
Br(x) ∩Mε

)
≤ Crα−γ

2/2+δ, ∀r > 0, ∀x ∈M. (84)

Proof of Theorem 4.21. For a.e. h the following holds true. Let numbers γ, s ∈ R with γ2 <
4s ≤ 2n be given as well as a Borel set E ⊂M with µhg (E) > 0. Applying Lemma 4.25 with

α := n+ γ2/2− 2s ∈ [γ2/2, n) and ε := 1
2µ

h
g (E) > 0 yields the existence of δ > 0, C <∞,

and a compact set Mε ⊂M such that µhg (M \Mε) < ε and (84) holds. Set µε := 1Mε µ
h
g .

Then, µε(E) ≥ ε > 0. Furthermore, with f(r) := r2s−n and R := diam(M), uniformly in
y,

ˆ

M

f
(
d(x, y)

)
dµε(x) = −

ˆ

M

ˆ R

0

1{r>d(x,y)}f
′(r)dr dµε(x)

= −
ˆ R

0

µε(Br(y)) f
′(r) dr

≤ (n− 2s)

ˆ R

0

rα−γ
2/2+δ r2s−n

dr

r

= (n− 2s)

ˆ R

0

rδ
dr

r
≤ C′ <∞ .
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Hence, according to Lemma 2.10,

0 ≤ Gs,1µε(y) ≤ C′ . (85)

Thanks to the convolution property of the kernelsGr,1 for r > 0 [DKS20, Lem. 2.3(ii)], the
uniform estimate (85), and the fact that µhg is a finite measure, we find, with µ′ := 1Eµε:

∥∥Gs/2,1(µ′)
∥∥2
L2 =

˚

Gs/2,1(x, y) dµ
′(y)Gs/2,1(x, z) dµ

′(z) dvolg(x)

=

¨

Gs,1(y, z) dµ
′(y) dµ′(z)

≤ C′ · µ′(M) =: C′′ <∞.

Hence, by the very definition of bs,

bs(E) ≥ µ′(E)

‖Gs/2,1(µ′)‖L2

≥ ε√
C′′

> 0 ,

and thus in turn caps(E) > 0 according to Lemma 4.24.

4.5 Refined and adjusted Liouville Quantum Gravity measures

Recall that kg is equal up to multiplicative normalization to the kernel Kg of the inverse
of the co-polyharmonic operator Pg. Now we propose a further additive normalization in
terms of the function

rg(x) = lim sup
y→x

[
kg(x, y)− log

1

dg(x, y)

]
, ∀x ∈M.

This function has an important quasi-invariance property under conformal changes.

Lemma 4.26. Let ϕ smooth and g′ = e2ϕg. Then, with the notation of Theorem 4.16.

rg′ − rg = −ϕ̄+ ϕ .

Proof. By Proposition 2.19, for x 6= y ∈M :

[
kg′ (x, y) + log dg′(x, y)

]
−
[
kg(x, y) + log dg(x, y)

]

= −1

2
ϕ̄(x) − 1

2
ϕ̄(y) + log dg′ (x, y)− log dg(x, y) .

Thus the claim is obtained immediately by letting y → x, and noting that

dg′(x, y)

dg(x, y)
−→ eϕ(x) as y −→ x .

To proceed, let us assume for the sake of discussion that the function rg is smooth. This
is known to be true in the case n = 2; in arbitrary even dimension, according to [Ndi07,
Lem. 2.1], the function rg is at least C2. With respect to the smooth function rg, we define
the refined co-polyharmonic kernel by

k̃g(x, y) := kg(x, y)−
1

2
rg(x)−

1

2
rg(y) + cg ,

where cg := 〈rg〉g + an
4 pg(rg , rg). With kg it shares the estimate (47), and in addition it

satisfies

lim sup
y→x

[
k̃g(x, y)− log

1

dg(x, y)

]
= cg , x ∈M . (86)
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Proposition 4.27. The kernel k̃g is the covariance kernel associated with the refined
co-polyharmonic field given by

h̃ := h− an
2

〈h |Pg rg〉 volg ,

where h denotes the co-polyharmonic field as considered before.

Proof. Straightforward calculations yield for u, v ∈ D,
¨

k̃g(x, y) u(x) v(y) dvolg(x) dvolg(y)

= E
[
〈h̃
∣∣u〉 · 〈h̃

∣∣ v〉
]

=

¨

kg(x, y)u(x)v(y)dvolg(x) dvolg(y)

− an
2

ˆ

u dvolg · kg(Pg rg, v)−
an
2

ˆ

v dvolg · kg(Pg rg, u)

+
a2n
4

ˆ

u dvolg ·
ˆ

v dvolg · kg(Pg rg,Pg rg) .

As for their plain equivalent, the kernel k̃g and the field h̃ enjoy quasi-invariance
properties under conformal changes.

Proposition 4.28. Let k̃g′ and h̃′ denote the refined kernel and refined field associated
with the metric g′ = e2ϕg for some ϕ ∈ D. Then,

k̃g′(x, y) = k̃g +
1

2
ϕ(x) − 1

2
ϕ(y) + cg′ − cg , (87)

and

h̃′
(d)
= enϕh̃− an

2
〈h̃
∣∣ Pg ϕ〉volg . (88)

Proof. Immediate consequences of Lemma 4.26, Proposition 2.19, and Theorem 4.16.

The Gaussian multiplicative chaos on (M, g) associated with the refined field h̃ is given
in terms of the plain Liouville measure:

µ̃hg,γ = exp
(γ2
2
(rg − cg)−

γ an
2

〈h |Pg rg〉
)
µhg,γ . (89)

Passing to the law of the grounded field obtained by convolution with the one-dimensional
Lebesgue measure, as in Remark 3.15 (ii), we can easily control the correction terms that
do not depend on x. Thus, following the established procedure in the two-dimensional
case, we now leave them aside and take into account only the x-dependent correction term
γ2

2 rg . This allows to cover the general situation, where we no longer assume that rg is
smooth.

Definition 4.29. We define the adjusted Liouville Quantum Gravity measure by

µ̄hg = exp
(γ2
2
rg

)
µhg .

Remark 4.30. In dimension 2, this approach corresponds with the one used for instance in
[DS11, DKRV16, GRV19], as well as with the one of [Cer19] on higher dimensional spheres.
In these works, they obtain directly the adjusted Liouville measure by regularizing h via
convolution and by normalizing eγhε(x)vol(dx) by some explicit power of ε.

Theorem 4.31. Let ϕ smooth, g′ = e2ϕg, and h and h′ co-polyharmonic Gaussian fields
with respect to g and g′. Then,

µ̄h
′

g′ = exp
[
−γξ +

(
n+ γ2

2

)
ϕ
]
µ̄hg ,

where ξ = 〈h〉g′ = 1
volg′ (M) 〈h | enϕ〉.

Remark 4.32. The adjusted LQG measure µ̄hg shares the same support properties as for-

mulated for the plain LQG measure µhg in Theorem 4.21.
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5 Applications and outlook

5.1 Random Dirichlet form and Liouville Brownian motion

For sufficiently small |γ|, the Liouville Quantum Gravity measure µhg does not charge
sets of H1-capacity zero. Hence, a random Brownian motion can easily be constructed
through time change of the standard Brownian motion ((Bt)t≥0, (Px)x∈M ).

Theorem 5.1. Let (M, g) be admissible, let h ∼ CGFM,g denote the co-polyharmonic
Gaussian field and µhg the associated Liouville Quantum Gravity measure with |γ| < 2.
Then, for P-a.e. h,

(i) A regular strongly local Dirichlet form on L2
(
M,µhg

)
is given by

Ehγ (f, f) :=
ˆ

M

|∇f |2 dvolg , D(Ehγ ) :=
{
f ∈ H1(M) : f̃ ∈ L2(M,µhg )

}
(90)

where f̃ denotes the quasi-continuous modification of f ∈ H1(M).

(ii) The associated reversible continuous Markov process
(
(Xh

t )t≥0, (P
h
x)x∈M

)
, called Li-

ouville Brownian motion on (M, g), is obtained by time change of the standard Brow-
nian motion on (M, g). Namely, let (Aht )t≥0 be the additive functional whose Revuz

measure is given by µhg , then

P
h
x := Px, Xh

t := Bτh
t
, τht := inf{s ≥ 0 : Ahs > t} .

(iii) Moreover, for every bounded probability density ρ on M , the additive functional
(Aht )t≥0 is Pρ-a.s. given by

Aht = lim
ℓ→∞

ˆ t

0

exp

(
γ hℓ(Bs)−

γ2

2
kℓ(Bs, Bs)

)
ds , (91)

with hℓ and kℓ as in (54) and (55).

Remark 5.2. Recall that the additive functional Ah associated with the measure µhg is the
process characterized by

Ex

[
ˆ t

0

u(Bs)dA
h
s

]
=

ˆ t

0

ˆ

u(y) ps(x, y) dµ
h
g (y)ds , u ∈ Bb , t ≥ 0 , (92)

where Bb denotes the space of real-valued bounded Borel functions on M . For further
information on additive functionals, see [FOT11].

Proof. (i) and (ii) hold using standard argument in the theory of Dirichlet forms. Indeed,
Corollary 4.22 and the compactness of M imply that for P-a.e. h, the measure µhg is a
Revuz measure of finite energy integral. For details see [GRV14, Thm. 1.7], where this
argument is carried out in the case when M is the unit disk.

(iii) Fix t > 0 and ρ a probability measure with bounded density on M . We consider
the occupation measure

dLt(x) =

ˆ t

0

dδBs(x)ds .

Observe that for α > 0,

Eρ

[
¨

dLt(y) dLt(z)

d(y, z)α

]
=

ˆ t

0

ˆ t

0

Eρd(Br, Bs)
−α
dr ds

= 2

ˆ t

0

ˆ t

s

˚

d(y, z)
−α
ps(x, y) pr−s(y, z)dvolg(y)dvolg(z)dρ(x)drds

≤ C t sup
ℓ

ˆ t

0

¨

d(y, z)
−α
ps(y, z) dvolg(y) dvolg(z) ds

≤ C tet
¨

d(y, z)
−α
G1,1(y, z) dvolg(y) dvolg(z) .

42



According to the estimate for the 1-Green kernel G1,1, the latter integral is finite for all
α < 2. This means that, Pρ-almost surely, Lt satisfies [Kah85, Eqn. (39)] for all α < 2.
Thus Lt is, Pρ-almost surely, in the class M+

α+ for all α < 2. Arguing as in the proof of
Theorem 4.1, we find that, for all γ2 < 4, having fixed the randomness with respect to Pρ,
there exists a random measure νht that is the Gaussian multiplicative chaos over (h, γk)
with respect to Lt.

Now, for all Borel sets A ⊂M we set

νhℓ
t (A) :=

ˆ

A

exp
(
γhℓ(x)− γ2

2 kℓ(x, x)
)
dLt(x)

=

ˆ t

0

1A(Bs) exp
(
γhℓ(Bs)− γ2

2 kℓ(Bs, Bs)
)
ds .

Since we choose (hℓ)ℓ as in (54), the family
(
νhℓ
t

)
ℓ
is a P-martingale for every fixed t ≥ 0,

similarly to Theorem 4.15. The fact that νhℓ
t → νht follows from the same uniform

integrability argument for martingales as in Theorem 4.15.
For all t > 0, set Aht := νht (M) and Ahℓ

t := νhℓ
t (M) for each ℓ ∈ N. It is clear that

t 7→ Ahℓ
t is the positive continuous additive functional associated to µhℓ by the Revuz

correspondence, that is (cf. (92)),

Eρ

[
ˆ t

0

u(Bs)dA
hℓ
s

]
=

ˆ t

0

ˆ

[
ˆ

ps(x, y)u(y)dµ
hℓ
g (y)

]
dρ(x)ds , u ∈ Bb , t ≥ 0 . (93)

Now let Ãht denote the positive continuous additive functional associated with µh. Then
applying (69) twice — to µhℓ

g → µhg and to νhℓ
t → νht — we obtain that in P-probability:

Eρ

[
ˆ t

0

u(Bs)dA
h
s

]
= Eρ

[
ˆ

M

u dνht

]

= lim
ℓ→∞

Eρ

[
ˆ

M

u dνhℓ
t

]
= lim

ℓ→∞
Eρ

[
ˆ t

0

u(Bs)dA
hℓ
s

]

= lim
ℓ→∞

ˆ t

0

ˆ

[
ˆ

ps(x, y)u(y)dµ
hℓ
g (y)

]
dρ(x)ds

=

ˆ t

0

ˆ

[
ˆ

ps(x, y)u(y)dµ
h
g (y)

]
dρ(x)ds = Eρ

[
ˆ t

0

u(Bs)dÃ
h
s

]
.

This shows that Ah = Ãh a.s. w.r.t. P⊗ Pρ and concludes the proof.

Remark 5.3. The intrinsic distance associated to the Dirichlet form (90) vanishes identi-
cally. This can be easily verified, exactly as in [GRV14, Prop. 3.1].

Remark 5.4. The previous constructions work equally well with the adjusted Liouville
measure µ̄hg (or with the refined Liouville measure µ̃hg ) in the place of the plain Liouville

measure µhg . For a.e. h, the resulting process, the adjusted (or refined, resp.) Brownian
motion, can be regarded as the plain Brownian motion with drift.

Remark 5.5. In the case n = 2, Liouville Brownian motion shares an important quasi-
invariance property under conformal transformations. In higher dimensions, no such —
or similar — conformal quasi-invariance property holds true. Indeed, the generator of
the Brownian motion, the Laplace–Beltrami operator, is quasi-invariant under conformal
transformations if and only if n = 2.

For the 2-dimensional counterparts of the previous theorem, see [Ber15] and [GRV14,
GRV16].

5.2 Random Paneitz and random GJMS operators

In higher dimensions, from the perspective of conformal quasi-invariance, the natural
random operators to study are random perturbations of the co-polyharmonic operators Pg.
To simplify notation, we henceforth write P and vol rather than Pg and volg.
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Theorem 5.6. Let (M, g) be admissible, let h ∼ CGFM,g denote the co-polyharmonic
Gaussian field and µhg the associated plain Liouville Quantum Gravity measure with |γ| <√
2n. Then, for P-a.e. h,

ph(u, v) :=

ˆ

M

√
Pu

√
Pv dvolg , u, v ∈ D(ph) := Hn/2 ∩ L2(M,µhg ) ,

is a well-defined non-negative closed symmetric bilinear form on L2(M,µhg ).

Proof. Since µhg does not charge capn/2-polar sets by Theorem 4.21, and since every f ∈
Hn/2 is capn/2-q.e. finite by Proposition 4.24(iv), every f ∈ Hn/2 admits a µhg -a.e. finite

representative (possibly depending on h). Thus, ph is well-defined on Hn/2 ∩ L0(µhg ). In

order to show that ph is finite on D(ph), let u = Gn/4,1u
′, resp. v = Gn/4,1v

′ ∈ Hn/2,
with u′, v′ ∈ L2, and note that

ph(u, v) =
〈
Gn/4,1u

′
∣∣PGn/4,1v

′
〉
L2 =

〈
u′
∣∣Gn/4,1 PGn/4,1v

′
〉
L2

≤ ‖u′‖L2 ‖v′‖L2

∥∥Gn/4,1 PGn/4,1
∥∥
L2→L2 <∞

by admissibility of M .
In order to show closedness it suffices to show that D(ph) is complete in the graph-norm

‖u‖D(ph) :=
(
ph(u) + ‖u‖2L2(µh

g )

)1/2
, u ∈ D(ph) .

Since ph vanishes on constant functions by Theorem 1.3(ii), it suffices to show that
D(̊ph) := H̊n/2 ∩ L2(µhg ) is complete in the same norm. To this end, let (uk)k be D(̊ph)-

Cauchy and note that it is in particular both L2(µhg )- and ph-Cauchy. In particular,

there exists the L2(µhg )-limit u of (uk)k, and, up to passing to a suitable non-relabeled

subsequence, we may further assume with no loss of generality that limk uk = u µhg -a.e..

Furthermore, by Lemma 2.15(ii), ph defines a norm on H̊n/2, bi-Lipschitz equivalent to the
standard norm of H̊n/2. As consequence, (uk)k is as well H̊n/2-Cauchy, and, by complete-

ness of the latter, it admits an H̊n/2-limit u′. Up to passing to a suitable non-relabeled
subsequence, by Proposition 4.24(v) we may further assume with no loss of generality
that limk uk = u′ capn/2-q.e.. In particular, again since µhg does not charge capn/2-polar

sets, we have that limk uk = u µhg -a.e., i.e. u
′ = u µhg -a.e., hence as elements of L2(µhg ). It

follows that L2(µhg )-limk uk = u, which concludes the proof of completeness.
Non-negativity is a consequence of the admissibility of M . Symmetry follows from

that of P, Theorem 1.3(iv).

Corollary 5.7. Let (M, g), h, γ, and µhg be as above. Then, for P-a.e. h there exists a

unique nonnegative self-adjoint operator Ph on L2(M,µh), called random co-polyharmonic
operator or random GJMS operators, defined by D(Ph) ⊂ D(ph) and

ph(u, v) =

ˆ

uPhv dµhg , u ∈ D(Ph) , v ∈ D(ph) .

In the case n = 4, the operators Ph are also called random Paneitz operators.

Corollary 5.8. With (M, g), h, γ, and µhg as above, for a.e. h there exists a semigroup(
e−tP

h)
t>0

of bounded symmetric operators on L2(M,µh), called random co-polyharmonic
heat semigroup.

Proposition 5.9. The random co-polyharmonic heat flow (t, u) 7→ e−tP
h

u is the EDE-
gradient flow for 1

2p
h on L2(M,µhg ).

Here ‘EDE’ stands for gradient flow in the sense of ‘energy-dissipation-equality’, see
[AG13, Dfn. 3.4].
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Proof. The energy decays along the flow according to

d

dt
p(ut) =

〈√
Ph

d

dt
ut

∣∣∣∣
√
Phut

〉

L2(µh
g )

= −
〈
Phut

∣∣Phut
〉
L2(µh

g )
= −‖Phut‖2L2(µh

g )

for ut := e−tP
h

u0. Moreover for each differentiable curve vt we have

d

dt
p(vt) =

d

dt

ˆ √
Phvt

√
Phvt dµ

h
g =

ˆ

d

dt
vt P

h vt dµ
h
g =

〈
d

dt
vt

∣∣∣∣P
h vt

〉

L2

. (94)

Consequently ∇p(v) = Ph v which leads to

d

dt
ut = −∇p(ut) (95)

and thus the assertion.

Remark 5.10. For a.e. h and every u ∈ L2(M,µhg ), the solutions ut := e−tP
h

u are absolutely

continuous with respect to µhg for all t > 0. It is plausible to conjecture that there exists

a random co-polyharmonic heat kernel pht such that

e−tP
h

u(x) =

ˆ

M

pht (x, y)u(y) dµ
h
g (y) for a.e. x ∈M , u ∈ L2 .

In the case n = 2, such a kernel exists, and it admits sub-Gaussian upper bounds
(see [MRVZ16, AK15]),

pht (x, y) ≤ C1t
−1 log(t−1) exp

(
−C2

(
d(x, y)β ∧ 1

t

) 1
β−1

)
, t ∈

(
1
2 , 1
]
,

for any β > 1
2 (γ + 2)2 and constants Ci = Ci(β, γ, h, d(y, 0)).

Now let us address the conformal quasi-invariance of the random co-polyharmonic
operators. For this purpose, of course, we have to emphasize all g-dependencies in the
notation and thus write Pg and Phg rather than P and Ph. Furthermore, we fix γ throughout

the sequel and write µhg instead of µhg,γ .

Assume that the Riemannian manifold (M, g) is admissible and that |γ| <
√
2n. Let

h ∼ CGFM,g denote the co-polyharmonic random field and µhg the corresponding plain
Liouville Quantum Gravity measure on (M, g).

Given any g′ = e2ϕg with ϕ ∈ C∞(M), define (a version of) the Liouville Quantum
Gravity measure on (M, g′) according to Theorem 4.16 by

µh
′

g′ := eF
h

µhg . (96)

with v′ = volg′(M) and

Fh := −γ 〈h〉g′ +
γ2

2v′
kg(e

nϕ, enϕ)−
( γ
v′

)2
kg(e

nϕ) + nϕ . (97)

Theorem 5.11. The random co-polyharmonic operator Phg is conformally quasi-invariant:
if g′ = e2ϕg then

Ph
′

g′
(d)
= e−F

h

Phg (98)

with F̄h as above.

Proof. Recall from Theorem 4.16 that µhg′
(d)
= eF

h

µhg . Thus by the conformal invariance
of the bilinear form pg,

ˆ

M

Phg u v dµ
h
g = pg(u, v) = pg′(u, v) =

ˆ

M

Phg′ u v dµ
h
g′ =

ˆ

M

eZ
h

P̄
h
g′u v dµ

h
g

for all u and v in appropriate domains. Hence, Phg u = eZ
h

Phg′ u. This proves the claim.
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Remark 5.12. The above construction can also be carried out with µ̄hg instead of µhg
yielding the adjusted random co-polyharmonic operator P̄hg . In that case, we get for the
conformal quasi-invariance the following formula

P̄hg′
(d)
= e−F̄

h

P̄hg ,

where F̄h = γ 〈h | enϕ̄〉+ (n+ γ2/2)ϕ.

5.3 The Polyakov–Liouville measure in higher dimensions

Our last objective in this paper is to propose a version of conformal field theory on compact
manifolds of arbitrary even dimension, an approach based on Branson’s Q-curvature. We
provide a rigorous meaning to the Polyakov–Liouville measure ν

∗
g, informally given as

1

Zg
exp

(
−Sg(h)

)
dh

with the (non-existing) uniform distribution dh on the set of fields (thought as sections of
some bundles over M) and the action

Sg(h) :=

ˆ

M

(an
2

∣∣√Pg h
∣∣2 +ΘQgh+

Θ∗

volg(M)
h+meγh

)
dvolg , (99)

where Pg is the co-polyharmonic operator, Qg denotes Branson’s curvature, an is the
constant from (32), and m,Θ,Θ∗, γ are parameters — subjected to some restrictions
specified below, in particular, 0 < |γ| <

√
2n.

5.3.1 Heuristics and motivations

Before going into the details of our approach, let us briefly recall the longstanding challenge
of conformal field theory and some recent breakthroughs in the two-dimensional case.
Here (99) becomes the celebrated Polyakov–Liouville action

Sg(h) =

ˆ

M

(
1

4π
|∇h|2 + Θ

2
Rg h+

Θ∗

volg(M)
h+meγh

)
dvolg , (100)

where Rg is the scalar curvature and m,Θ,Θ∗, γ are parameters. (Instead of m and Θ
mostly in the literature µ̄ and Q are used. However, in this paper the latter symbols are
already reserved for the Liouville Quantum Gravity measure and Branson’s curvature.)
With the Polyakov–Liouville action, this ansatz for the measure ν

∗
g(dh) = 1

Z∗
g
e−Sg(h)dh

reflects the coupling of the gravitational field with a matter field. It can be regarded as
quantization of the the classical Einstein–Hilbert action SEHg (h) = 1

2κ

´

M

(
Rg − 2Λ

)
dx

or, more precisely, of its coupling with a matter field

SEHg (h) =

ˆ

M

[
1

2κ

(
Rg − 2Λ

)
+ LM

]
dx .

In the case n = 2 and Q∗ = 0, based on the concepts of Gaussian Free Fields and Liou-
ville Quantum Gravity measures, the rigorous construction of such a Polyakov-Liouville
measure ν

∗
g has been carried out recently in [DKRV16] for surfaces of genus 0, [DRV16]

for surfaces of genus 1 (see also [HRV18] for the disk), and in [GRV19] for surfaces of
higher genus. For related constructions, see [DMS21]. The approach of [GRV19] gives a
rigorous meaning to

ν
∗
g(dh) =

1

Zg
exp

[
−
ˆ

(
Θ

2
Rg h+meγh

)
dvolg

]
exp

(
− 1

4π
‖h‖2H1

)
dh ,

by interpreting

ν̂g(dh) =
1

Zg
exp

(
− 1

4π |∇h|2
)
dh ,
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as an informal definition of the ungrounded Gaussian Free Field ν̂g := ĜFF
M,g

, and by
setting

ν
∗
g(dh) := exp

(
−Θ

2
〈h |Rg〉 −mµ̄hg,γ(M)

)
ν̂g(dh) ,

where µ̄hg,γ denotes the adjusted Liouville Quantum Gravity measure on M with parame-

ter γ ∈ (0, 2), where Θ = 1
2π

(
γ
2 + 2

γ

)
.

This provides a complete solution to the above mentioned challenge in dimension 2.
However, in dimension greater than 2 not much is known so far.

The relevance of the Polyakov-Liouville action is that it quantifies the conformal quasi-
invariance of the functional determinant in dimension 2. Namely, we have that [OPS88,
Eq. (1.17)]:

log det(−∆g′ )− log det(−∆g) = − 1

12π

ˆ

2ϕ scalg + |∇ϕ|2g dvolg.

Thus we can see the Polyakov–Liouville action as a potential accounting for the varia-
tion of the the functional determinant of the Laplacian coupled with the volume. In
higher dimension, no such formula exists. However, it is established in low dimension and
conjectured in higher dimension (see [BG08] and the references therein) that a physically
relevant Polyakov formula for n > 2 should involve the co-polyharmonic operators. Under
our admissibility, it should take the form:

log detPg − log detPg′ = Θ

ˆ

[
1

2
ϕPgϕ+ ϕQg

]
d volg +

ˆ

Fg′ dvolg′ −
ˆ

Fg dvolg ,

where Θ is a constant and F is a local scalar invariant. In view of this formula, let us
define a higher dimensional equivalent of the 2d Polyakov–Liouville action:

Sg(h) = Θ

ˆ

hQg dvolg +
Θ∗

volg(M)

ˆ

h dvolg +m

ˆ

eγhdvolg +
an
2
pg(h, h) .

The remainder of this section is devoted to give a rigorous meaning to the measure

ν
∗
g(dh) = exp(−Sg(h))dh.

As an ansatz, we regard the quantity exp(−an
2 pg(h, h))dh as an informal definition of

the law of the ungrounded co-polyharmonic field. With this interpretation, we regard
´

eγhdvolg as the volume of M with respect to the Liouville Quantum Gravity measure.
Since the latter comes in two versions –the plain and the adjusted Liouville measure– we
obtain two conformally quasi-invariant rigorous definitions of the above measure, denoted
henceforth by ν

∗
g and ν̄

∗
g.

Before going into further details, let us have a naive look on the transformation prop-
erty of our action functional under conformal changes. Choose Θ∗ = 0. Then, by a direct
computation, we have that for all ϕ smooth and all h ∈ Hn/2:

Se2ϕg

(
h− n

γ
ϕ

)
= Sg(h) +

(
Θ− an

n

γ

)
pg(h, ϕ)

+

(
an
2

n2

γ2
−Θ

n

γ

)
pg(ϕ, ϕ) −Θ

n

γ

ˆ

ϕQg dvolg ,

where we used that Qe2ϕg = e−nϕ(Qg + Pg ϕ). In particular, when selecting the special
value Θ = an

n
γ the above expression simplifies to

Se2ϕg

(
h− n

γ
ϕ

)
= Sg(h)−

an
2

n2

γ2

[
pg(ϕ, ϕ) + 2

ˆ

ϕQg dvolg

]
.

Therefore, writing T for the shift by h 7→ h+ n
γϕ, we expect the following quasi-conformal

invariance:

log
dT∗ν

∗
e2ϕg

dν∗
g

(h) =
an
2

n2

γ2

(
pg(ϕ, ϕ) + 2

ˆ

ϕQg dvolg

)
.
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However, due to the rough nature of the object involved in the exact definition of ν∗,
the quasi-conformal invariance arises at a different value of Θ (and/or Θ∗). Indeed, the
renormalization of the adjusted (or plain) Liouville Quantum Gravity measure µ̄hg (or µhg ,
resp.) produces in an additional term which corresponds to quasi-invariance under the
shift

h 7→ h+
(n
γ
+
γ

2

)
ϕ

(or h 7→ h+ n
γϕ+ γ

2 ϕ̄ for some function ϕ̄ given in terms of ϕ). We derive rigorous state-
ments below. For convenience, we treat the two procedures –in spite of their similarity–
for the ‘plain’ and ‘adjusted’ cases separately.

Remark 5.13. The approach involving the adjusted measure ν̄∗ is similar to (and inspired
by) that of [GRV19] in the case n = 2. Results concerning the plain measure ν

∗ seem to
be new even in the two-dimensional case.

5.3.2 The plain Polyakov-Liouville measure

Let us address the challenge of giving a rigorous meaning to

dν∗
g(h) =

1

Zg
exp

(
−
ˆ (

ΘQgh+Θ∗〈h〉g +meγh
)
dvolg

)
exp

(
−an

2
pg(h, h)

)
dh

on manifolds of arbitrary even dimension. Assume for the sequel that |γ| <
√
2n, and let

νg := CGFM,g

denote the law of the the co-polyharmonic field, a (rigorously defined) probability measure
on D′.

Furthermore, let

ν̂g := ĈGF
M,g

(101)

denote the (infinite) measure on D′ introduced in Proposition 3.17 as the distribution
of the ungrounded co-polyharmonic field on (M, g). As outlined in Section 3 the latter
admits a heuristic characterization as

dν̂g(h) =
1

Zg
exp

(
− an

2
pg(h, h)

)
dh

with a suitable constant Zg.
Proceeding as in the two-dimensional case, in terms of this measure, we define the

measure
dν∗

g(h) := exp
(
−Θ 〈h |Qg〉 −Θ∗〈h〉g −mµhg,γ(M)

)
dν̂g(h) (102)

on D′ with associated partition function

Z∗
g :=

ˆ

D′

dν∗
g(h) ,

where Θ,Θ∗,m, γ ∈ R are parameters with m > 0, 0 < |γ| <
√
2n, and where µhg,γ

denotes the plain Liouville Quantum Gravity measure on the n-dimensional manifold M .
Moreover, 〈h |Qg〉 denotes the pairing between the random field h and the (scalar valued)
Q-curvature, and 〈h〉g = 1

volg(M) 〈h |1〉 denotes the pairing between h and the constant

function 1, normalized by the volume of M . Set Q(M) := Q(M, g).

Theorem 5.14. Assume that 0 < γ <
√
2n and ΘQ(M) + Θ∗ < 0. Then, ν∗

g is a finite
measure.
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Proof.

Z∗
g =

ˆ

D′

exp
(
−Θ 〈h |Qg〉 −Θ∗〈h〉g −mµhg,γ(M)

)
dν̂g(h)

=

ˆ

D′

ˆ

R

exp
(
−Θ 〈h |Qg〉 − a

(
ΘQ(M) + Θ∗

)
−meγaµhg,γ(M)

)
da dνg(h)

(a)
=

ˆ

D′

e−Θ〈h |Qg〉

ˆ ∞

0

(
t

mµhg,γ(M)

)−ΘQ(M)+Θ∗

γ

e−t
dt

γt
dνg(h)

(b)
=

1

γ
Γ
(
− ΘQ(M) + Θ∗

γ

)
·
ˆ

D′

e−Θ〈h |Qg〉
(
mµhg,γ(M)

)ΘQ(M)+Θ∗

γ dνg(h) .

Here (a) follows by change of variables a 7→ t := meγaµhg,γ(M), and (b) by the very
definition of Euler’s Γ function. The final integral then can be estimated according to

ˆ

D′

e−Θ〈h |Qg〉
(
mµhg,γ(M)

)ΘQ(M)+Θ∗

γ dνg(h)

≤
(
ˆ

D′

e−2Θ〈h |Qg〉 dνg(h)

)1/2

·
(
ˆ

D′

(
mµhg,γ(M)

) 2(Θ Q(M)+Θ∗)
γ dνg(h)

)1/2

.

The finiteness of the first term on the right-hand side is obvious by the defining property
of νg:

ˆ

D′

e−2Θ〈h |Qg〉 dνg(h) = e2Θ
2 kg(Qg ,Qg) .

The finiteness of
´

D′ µ
h
g,γ(M)

2(Θ Q(M)+Θ∗)
γ dνg(h) for ΘQ(M)+Θ∗

γ < 0 follows from Theo-

rem 4.1 (iii).

Remark 5.15. Assuming that Θ is positive, the finiteness assumption ΘQ(M) + Θ∗ < 0
in the above theorem is equivalent to saying that the constant −Θ∗/Θ is larger than the
total Q-curvature.

Definition 5.16. For every admissible manifold and every choice of parameters m, Θ,
Θ∗, γ as above, the plain Polyakov–Liouville measure

ν
♯
g :=

1

Z∗
g

ν
∗
g

is a well-defined probability measure on D′.

Theorem 5.17. Assume that 0 < γ <
√
2n, Θ = an

n
γ , and Θ∗ = γ. Then, ν

∗
g is

conformally quasi-invariant modulo shift in the following sense:

ν
∗
e2ϕg = Z(g, ϕ) · T∗ν∗

g , ϕ ∈ D , (103)

where T∗ denotes the push forward under the shift T : h 7→ enϕ(h− (nγϕ+ γ
2 ϕ̄)volg) on D′

with ϕ̄ defined as in (71).
The conformal anomaly Z(g, ϕ) is given as

Z(g, ϕ) := exp

[
Θ

ˆ

(
n

γ
ϕ+

γ

2
ϕ̄

)
Qgdvolg + n 〈ϕ〉g′ +

an
2

n2

γ2
pg(ϕ, ϕ)

]
. (104)

Proof. For the sake of brevity let us write

Sg(h) = Θ 〈h |Qg〉+Θ∗ 〈h〉g +mµhg,γ(M) .

We also set Φ := (nγϕ + γ
2 ϕ̄) ∈ D. Let F : D′ → R+ measurable. Then, by Girsanov

Theorem (Corollary 3.18) for ν̂, we find that
ˆ

D′

Fdν∗
g′ =

ˆ

F (h− Φvolg′) exp (−Sg′ (h− Φvolg′))

· exp
(
an 〈h |Pg′ Φ〉 −

an
2
pg′(Φ,Φ)

)
dν̂g′(h) .
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By Corollary 4.19 and Theorem 4.1(i), we have that

ˆ

D′

Fdν∗
g′ =

ˆ

F
(
enϕ(h− Φvolg)

)
exp

(
−Θ 〈enϕ(h− Φvolg) |Qg′〉 −mµhg,γ(M)

)

· exp
(
− Θ∗

volg′(M)
〈enϕ(h− Φvolg) |1〉

)

· exp
(
an 〈enϕh |Pg′ Φ〉 −

an
2
pg′(Φ,Φ)

)
ν̂g(dh) .

Now recall that Pg′ u = e−nϕ Pg u, that pg is conformally invariant, and that, by Proposi-
tion 21, Qg′ = e−nϕ(Qg + Pg ϕ). Thus, we obtain

ˆ

D′

Fdν∗
g′ =

ˆ

F
(
enϕ(h− Φvolg)

)
exp

(
−Θ 〈h− Φvolg |Qg〉 −mµhg,γ(M)

)

· exp
(
− Θ∗

volg′(M)
〈enϕ(h− Φvolg) |1〉

)

· exp
(

−Θ 〈h− Φvolg |Pg ϕ〉+ an 〈h |Pg Φ〉 −
an
2
pg(Φ,Φ)

)
dν̂g(h) .

Since we have chosen Θ = an
n
γ some of the terms in the last line cancel out and we get:

ˆ

D′

Fdν∗
g′ =

ˆ

F
(
enϕ(h− Φvolg)

)
exp

(
−Θ 〈h− Φvolg |Qg〉 −mµhg,γ(M)

)

exp

(
− Θ∗

volg′(M)
〈enϕ(h− Φvolg) |1〉

)

exp

(
an
γ

2
〈h |Pg ϕ̄〉+

an
2

n2

γ2
pg(ϕ, ϕ) −

an
2

γ2

4
pg (ϕ̄, ϕ̄)

)
dν̂g(h) .

Now by definition of ϕ̄, we get

an Pg ϕ̄ =
2

volg′(M)
πg(e

nϕ) =
2

volg′(M)
enϕ − 2

volg(M)
.

In particular, for every h ∈ D′,

an 〈h |Pg ϕ̄〉 = 2 〈h〉g′ − 2 〈h〉g . (105)

As a consequence,

ˆ

D′

Fdν∗
g′ =

ˆ

F
(
enϕ(h− Φvolg)

)
exp

(
−Θ 〈h |Qg〉+Θ

ˆ

ΦQgdvolg −mµhg,γ(M)

)

exp
(
−Θ∗ 〈h〉g′ +Θ∗ 〈Φ〉g′

)

exp

(
γ
(
〈h〉g′ − 〈h〉g

)
+
an
2

n2

γ2
pg(ϕ, ϕ) −

an
2

γ2

4
pg (ϕ̄, ϕ̄)

)
dν̂g(h) .

Thus the choice of Θ∗ = γ, after cancellations and rearrangement, yields
ˆ

D′

Fdν∗
g′ =

ˆ

F
(
enϕ(h− Φvolg)

)
exp

(
−Θ 〈h |Qg〉 −Θ∗ 〈h〉g −mµhg,γ(M)

)
dν̂g(h)

· exp
(
ˆ

Φ

(
ΘQg +Θ∗ enϕ

volg′(M)

)
dvolg +

an
2

n2

γ2
pg(ϕ, ϕ)−

an
2

γ2

4
pg(ϕ̄, ϕ̄)

)
.

(106)

Again in light of (105) we further have that

an
2
pg(ϕ̄, ϕ̄) = 〈ϕ̄〉g′ − 〈ϕ̄〉g .
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Substituting the definitions of Θ∗ := γ and Φ := (nγϕ+ γ
2 ϕ̄) then yields

ˆ

Φ

(
ΘQg +Θ∗ enϕ

volg′(M)

)
dvolg +

an
2

n2

γ2
pg(ϕ, ϕ) −

an
2

γ2

4
pg(ϕ̄, ϕ̄) =

= Θ

ˆ

ΦQgdvolg + n 〈ϕ〉g′ +
γ2

4

(
〈ϕ̄〉g′ + 〈ϕ̄〉g

)
+
an
2

n2

γ2
pg(ϕ, ϕ) .

Finally, by definition (71) of ϕ̄, and since kg(e
nϕ) ∈ L̊2(volg),

〈ϕ̄〉g′ + 〈ϕ̄〉g =
2

volg′(M)2

ˆ

M

enϕkg(e
nϕ)dvolg −

1

volg′(M)2
kg(e

nϕ, enϕ)

+
2

volg′ (M)volg(M)

ˆ

M

kg(e
nϕ)dvolg −

1

volg′(M)2
kg(e

nϕ, enϕ)

=
2

volg′(M)2
kg(e

nϕ, enϕ)− 1

volg′(M)2
kg(e

nϕ, enϕ)

+ 0− 1

volg′ (M)2
kg(e

nϕ, enϕ)

= 0 ,

and therefore
ˆ

Φ

(
ΘQg +Θ∗ enϕ

volg′(M)

)
dvolg +

an
2

n2

γ2
pg(ϕ, ϕ) −

an
2

γ2

4
pg(ϕ̄, ϕ̄) =

= Θ

ˆ

ΦQgdvolg + n 〈ϕ〉g′ +
an
2

n2

γ2
pg(ϕ, ϕ) . (107)

Substituting (107) into (106), we finally have that

ˆ

D′

Fdν∗
g′ =

ˆ

F
(
enϕ(h− Φvolg)

)
exp

(
−Θ 〈h |Qg〉 −Θ∗ 〈h〉g −mµhg,γ(M)

)
dν̂g(h)

· exp
(
Θ

ˆ

ΦQgdvolg + n 〈ϕ〉g′ +
an
2

n2

γ2
pg(ϕ, ϕ)

)
.

This concludes the proof of the conformal quasi-invariance. To conclude for the expression
of Z(g, ϕ) we take F = 1.

Corollary 5.18. Assume that Θ = an
n
γ , Θ∗ = γ, and γ2 < −n anQ(M). Then,

Z(g, ϕ) =
Z∗

g′

Z∗
g
, and ν

♯
g is conformally invariant modulo shift:

ν
♯
e2ϕg = T∗ν

♯
g (108)

with T : h 7→ enϕ(h− (nϕ/γ + γϕ̄/2)volg).

Proof. We have

ν
♯
g′ =

ν
∗
g′

Z∗
g′

=
Z(g, ϕ)

Z∗
g′

· T∗ν∗
g =

Z∗
g

Z∗
g′
Z(g, ϕ) · T∗ν♯ = T∗ν

♯ .

Remark 5.19. With the choices Θ := nan
γ and Θ∗ := γ from above, the condition ΘQ(M)+

Θ∗ < 0 reads as ann
γ2 Q(M) + 1 < 0 or, in other words,

γ2 < −n anQ(M) . (109)

Remark 5.20. In view of Corollaries 3.14 and 4.18, the (quasi-)invariance assertion in
the previous Theorem 5.17 and Corollary 5.18 also holds under the more general class
of conformal transformations in the sense of Definition 1.1 (ii). In particular, the plain
Polyakov–Liouville measure is invariant under isometric transformations Φ :M →M ′.
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5.3.3 The adjusted Polyakov–Liouville measures

As anticipated, our results for the plain Polyakov–Liouville measure can also be recasted
in the setting of the adjusted Polyakov–Liouville measure. Let us set

dν̄∗
g(h) = exp

(
−Θ 〈h |Qg〉 −mµ̄hg,γ(M)

)
dν̂g(h) ,

which corresponds to the adjusted Polyakov–Liouville measure. The associated partition
function is

Z̄∗
g :=

ˆ

D′

d ν̄∗
g(h) .

As for the plain measure, we have the following result.

Theorem 5.21. Assume that 0 < γ <
√
2n and ΘQ(M) < 0. Then, ν̄

∗
g is a finite

measure.

Proof. The proof is the same as in Theorem 5.14, simply remarking that Theorem 4.1 (iii)
also applies for µ̄h instead of µh.

Theorem 5.22. Assume that 0 < γ <
√
2n and that Θ = an(

n
γ + γ

2 ). Let ϕ be smooth

and g′ = e2ϕg. Then, ν̄∗ is conformally quasi-invariant under the shift T : h 7→ enϕ(h −
Θϕvolg), viz.

ν̄
∗
g′ = Z̄(g, ϕ) · T∗ν̄∗

g ,

where

Z̄(g, ϕ) = exp

(
Θ2

2an

[
pg(ϕ, ϕ) + 2

ˆ

ϕQg dvolg

])
.

Proof. Let F : D′ → R+ measurable. Write Φg = (nγ + γ
2 )ϕvolg ∈ D′. By Girsanov’s

theorem for ν̂ (Corollary 3.18), we have:
ˆ

D′

Fdν̄∗
g′ =

ˆ

F (h− Φg′) exp
(
−Θ 〈h− Φg′ |Qg′〉 −mµ̄

h−Φg′

g,γ (M)
)

exp

(
an

〈
h

∣∣∣∣Pg′
Θ

an
ϕ

〉
− an

2
pg′

(
Θ

an
ϕ,

Θ

an
ϕ

))
dν̂g′(h) .

In view of Theorems 3.17 and 4.31, we thus get
ˆ

D′

Fdν̄∗
g′ =

ˆ

F (enϕ(h− Φg)) exp
(
−Θ

〈
enϕ(h− Φg)

∣∣ e−nϕ(Qg + Pg ϕ)
〉
−mµ̄hg,γ(M)

)

exp

(
Θ
〈
enϕh

∣∣ e−nϕ Pg ϕ
〉
− Θ2

2an
pg(ϕ, ϕ)

)
dν̂g(h) .

Expanding 〈h− Φg |Qg + Pg ϕ〉 cancels out with some term on the second line and we
obtain the announced result.

Corollary 5.23. Assume Q(M) < 0 and set ν̄♯g :=
1
Z̄∗

ν̄
∗
g. Then, with Θ and T as above,

ν̄
♯
g′ = T∗ν̄

♯
g .

5.3.4 Some examples

The above assertions impose two conditions on a given manifold (M, g): positivity of the
co-polyharmonic operator Pg and negativity of the total Q-curvature Q(M).

Let us present some examples of such manifolds.

Example 5.24 (n = 2). Every compact Riemannian surface of genus ≥ 2 satisfies both of
these conditions.

Example 5.25 (n = 2, 6, 10, . . .). Every compact hyperbolic Riemannian manifold of di-

mension n = 4ℓ+2 for some ℓ ∈ N and with λ1 >
n(n−2)

4 satisfies both of these conditions.
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Proof. Combine Proposition 2.5 and Example 1.14.

Example 5.26 (n = 4). Let M = M1 ×M2 where M1 and M2 are compact Riemannian
surfaces of constant curvature k1 and k2, resp.

(i) Then, Qg < 0 if and only if

|k1 + k2| <
√
3 · |k1 − k2| .

(ii) Furthermore, Pg > 0 on H̊ if k1 + k2 ≥ 0.

Proof. (i) According to Example 1.14 (ii),

Qg = −k21 − k22 +
2

3
(k1 + k2)

2 = −1

2
(k1 − k2)

2 +
1

6
(k1 + k2)

2 .

(ii) For i = 1, 2, denote by Pi = −∆i the negative of the Laplacian on the manifoldMi.
Then, by Proposition 1.5 (ii),

Pg = (P1 +P2)
2 − 2k1 P1 −2k2 P2 +

4

3
(k1 + k2)(P1 +P2)

= P1(P1 −2k1) + P2(P2 −2k2) + 2P1 P2 +
4

3
(k1 + k2)(P1 +P2) ≥ 0

according to the Lichnerowicz estimate Pi ≥ 2ki for i = 1, 2 (which is valid independent
of the sign of ki). Indeed, Pg is positive since the term 2P1 P2 is positive on the grounded
L2-space.
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