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Abstract. We study random perturbations of a Riemannian manifold
(M, g) by means of so-called Fractional Gaussian Fields, which are defined
intrinsically by the given manifold. The fields h• : ω 7→ hω will act on the
manifold via the conformal transformation g 7→ gω := e2h

ω
g. Our focus will

be on the regular case with Hurst parameter H > 0, the critical case H = 0

being the celebrated Liouville geometry in two dimensions. We want to
understand how basic geometric and functional-analytic quantities like: di-
ameter, volume, heat kernel, Brownian motion, spectral bound, or spectral
gap change under the influence of the noise. And if so, is it possible to quan-
tify these dependencies in terms of key parameters of the noise? Another
goal is to define and analyze in detail the Fractional Gaussian Fields on a
general Riemannian manifold, a fascinating object of independent interest.
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1. Introduction.

1.1. Random Riemannian Geometry. Given a Riemannian manifold (M, g) and a Gaussian random
field h• : Ω → C(M), ω 7→ hω, we study random perturbations (M, gω) of the given manifold with
conformally changed metric tensors gω := e2hωg. For this Random Riemannian Geometry

(M, g•) with g• := e2h•g

we want to understand how basic geometric and functional analytic quantities like diameter, volume, heat
kernel, Brownian motion, or spectral gap change under the influence of the noise. If possible, we want to
quantify these dependencies in terms of key parameters of the noise.

Our main interest in the sequel will be in the case h• 6∈ C2(M) a.s., where standard Riemannian
calculus is not directly applicable and where no classical curvature concepts are at our disposal. Our
approach to geometry, spectral analysis, and stochastic calculus on the randomly perturbed Riemannian
manifolds (M, g•) will be based on Dirichlet form techniques.

For convenience, we will assume throughout that the reference manifold (M, g) has bounded geometry.

Theorem 1.1. For every ω, a regular, strongly local Dirichlet form is given by

Eω(ϕ,ψ) =
1

2

∫
M

〈∇ϕ | ∇ψ〉g e
(n−2)hω dvolg on L2

(
M, enh

ω

volg
)
.(1.1)

The associated Laplace–Beltrami operator
(
∆ω,D(∆ω)

)
on (M, gω) is uniquely characterized byD(∆ω) ⊂

D(Eω) and Eω(ϕ,ψ) = − 1
2

∫
(∆ωϕ) ψ enh

ω

dvolg for ϕ ∈ D(∆ω), ψ ∈ D(Eω).



3

Fig 1: Gaussian random field over a toroid.

The associated Riemannian metric is given by

dω(x, y) := inf

{∫ 1

0

eh
ω(γr) |γ̇r|dr : γ ∈ AC

(
[0, 1];M

)
, γ0 = x , γ1 = y

}
,

where |γ̇r| :=
√
g(γ̇r, γ̇r) denotes the speed of an absolutely continuous curve γr.

Proposition 1.2. The heat semigroup
(
et∆

ω/2
)
t>0

has an integral kernel pωt (x, y) which is jointly
locally Hölder continuous in t, x, y.

The Brownian motion on (M, gω), defined as the reversible, Markov diffusion process Bω associated
with the heat semigroup

(
et∆

ω/2
)
t>0

, allows for a more explicit construction if the conformal weight hω

is differentiable.

Proposition 1.3. If hω ∈ C1(M) then Bω is obtained from the Brownian motion B on (M, g) by the
combination of time change with weight e2hω and Girsanov transformation with weight (n− 2)hω.

We will compare the random volume, random length, and random distance in the random Riemannian
manifold (M, g•) with analogous quantities in deterministic geometries obtained by suitable conformal
weights.

Proposition 1.4. Put θ(x) :=E[h•(x)2] ≥ 0 and gn := en θg, g1 := eθg. Then for every measur-
able A ⊂ M,

E[volg•(A)] = volgn(A) ≥ volg(A) ,

and for every absolutely continuous curve γ : [0, 1]→ M,

E[Lg•(γ)] = Lg1(γ) ≥ Lg(γ) .

Of particular interest is the rate of convergence to equilibrium for the random Brownian motion.

Theorem 1.5. Assume that M is compact. Let λ1 be the spectral gap of ∆, and for each ω, denote
by λω1 the spectral gap of ∆ω. Then

E
[∣∣ log λ•1 − log λ1

∣∣] ≤ αE
[

sup |h•|
]

(1.2)

with α := 2(n− 1) if n ≥ 2 and α := 2 if n = 1.
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Let us emphasize that classical estimates for the spectral gap, based on Ricci curvature estimates,
require that the metric tensor is of class C2, whereas our Theorem 1.5 — combined with Theorem 1.9
below — will apply whenever the random metric tensor is of class C0.

1.2. Fractional Gaussian Field (FGF). In our approach to Random Riemannian Geometry, we will
restrict ourselves to the case where the random field h• is a Fractional Gaussian Field, defined intrinsically
by the given manifold. It is a fascinating object of independent interest.

Given a Riemannian manifold (M, g) of bounded geometry, for m > 0 and s ∈ R, we define the Sobolev
spaces

Hs
m(M) :=

(
m2 − 1

2∆
)−s/2 (

L2(M)
)
, ‖u‖Hsm :=

∥∥∥(m2 − 1
2∆
)s/2

u
∥∥∥
L2

.

The scalar product 〈u | v〉L2 extends to a continuous bilinear pairing between Hs
m(M) and H−sm (M) as

well as between D(M) and D ′(M). It follows, that the functional u 7→ exp
(
− 1

2‖u‖
2
H−sm

)
is continuous

on D(M), and is therefore the Fourier transform of a unique centered Gaussian field with variance ‖u‖2H−sm
by Bochner–Minlos Theorem applied to the nuclear space D ′(M).

Theorem 1.6. For every s ∈ R and m > 0, there exists a unique centered Gaussian field h• with

(1.3) E ei 〈u |h•〉 = e
− 1

2‖u‖
2

H
−s
m , u ∈ D(M) ,

called m-massive Fractional Gaussian Field on M of regularity s, briefly FGFM
s,m.

For s = 0 this is the white noise on M. Note that, if h• is distributed according to FGFM
s,m on some

compact M, then
(
m2 − 1

2∆
) r−s

2 h• is distributed according to FGFM
r,m.

Theorem 1.7. For s > 0, the Fractional Gaussian Field FGFM
s,m is uniquely characterized as the

centered Gaussian process h• with covariance

(1.4) Cov
[
〈h• |ϕ〉 , 〈h• |ψ〉

]
=

∫∫
ϕ(x)Gs,m(x, y)ψ(y) dvol⊗2

g (x, y) , ϕ, ψ ∈ D ⊂ H−sm ,

where Gs,m(x, y) := 1
Γ(s)

∫∞
0
pt(x, y) e−m

2t ts−1 dt. For s > n/2, this characterization simplifies to

E
[
h•(x)h•(y)

]
= Gs,m(x, y) , x, y ∈ M .(1.5)

Indeed, for s > n/2, the Fractional Gaussian Field FGFM
s,m is almost surely a continuous function.

More precisely,

Proposition 1.8. Assume M is compact and let h• ∼ FGFM
s,m with s > n/2 + k, k ∈ N0. Then hω ∈

Ck(M) for a.e. ω.

A crucial role in our geometric estimates and functional inequalities for the Random Riemannian
Geometry is played by estimates for the expected maximum of the random field.

Theorem 1.9. For every compact manifold M there exists a constant C = C(M) such that for h• ∼
FGFM

s,m with any m > 0,

E

[
sup
x∈M

h•(x)

]
≤

{
C · (λ1/2)−s/2, s ≥ n

2 + 1 ,

C · (s− n/2)−3/2, s ∈
(
n
2 ,

n
2 + 1

]
.
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If M is compact, then an analogous construction also works in the case m = 0 provided all func-
tion spaces H−sm are replaced by the subspaces H̊−sm obtained via the grounding map u 7→ ů :=u −

1
volg(M)

∫
udvolg. The ˚FGF

M

s,m for s = 1,m = 0 is the celebrated Gaussian Free Field (GFF) on M.
In the compact case, the Fractional Gaussian Field also admits a quite instructive series representation.

Theorem 1.10. Let (ϕj)j∈N0
be a complete orthonormal basis in L2 consisting of eigenfunctions

of −∆ with corresponding eigenvalues (λj)j∈N0 , and let a sequence
(
ξ•j
)
j∈N0

of independent, N (0, 1)-
distributed random variables be given. Then for s > n/2 and m ≥ 0, the series

hω(x) :=
∑
j∈N

ϕj(x) ξωj
(m2 + λj/2)s/2

converges and provides a pointwise representation of h• ∼ ˚FGF
M

s,m.

Remark 1.11. (a) For Euclidean spaces M = Rn, the ˚FGF
M

s,m is well studied with particular focus

on the massless case m = 0. Here some additional effort is required to deal with the kernel of
(
− 1

2∆
)s/2

which is resolved by factoring out polynomials of degree ≤ s. The real white noise, the 1d Brownian
motion, the Lévy Brownian motion, and the Gaussian Free Field on the Euclidean space are all instances
of random fields in the larger family of Fractional Gaussian Fields. The article [37] by Lodhia, Sheffield,
Sun, and Watson provides an excellent survey.

Despite the fact that it seems to be regarded as common knowledge (in particular in the physics
literature), even in the most prominent case s = 1, the Riemannian context is addressed only occasionally,
e.g. [10, 22, 28]. In particular, Gelbaum [22] studies the existence on complete Riemannian manifolds of
the fractional Brownian motions FGFM

s,0, s ∈ (n/2, n/2 + 1), and of the massive FGFM
s,1, with the same

values of s. Fractional Brownian motions are also constructed on Sierpiński gaskets and related fractals
in [6].

(b) The particular case of the FGF with s = 1 is the Gaussian Free Field, discussed and analyzed
in detail in the landmark article [50] by Sheffield. The GFF arises as scaling limit of various discrete
models of random (hyper-)surfaces over n-dimensional simplicial lattices, e.g. Discrete Gaussian Free
Fields (DGFF) or harmonic crystals [50]. The two-dimensional case is particularly relevant, for the GFF
is then invariant under conformal transformations of D ⊂ R2 ∼= C, and constitutes therefore a useful tool
in the study of conformally invariant random objects. For instance, the zero contour lines of the GFF
(despite being random distributions, not functions) are well-defined SLE curves [49].

(c) Again in the two-dimensional case, the GFF gives rise to an impressive random geometry, the
Liouville Quantum Gravity. It is a hot topic of current research with plenty of fascinating, deep results
— despite the fact that many classical geometric quantities become meaningless, see e.g. [3, 11, 16, 20,
21, 28, 39, 41].

In this paper, our focus will be on the Random Riemannian Geometry in the ‘regular’ case of Hurst
parameter H := s − n/2 > 0 in arbitrary dimension. In general, this geometry is not conformally invari-
ant, since neither the Laplace–Beltrami operator nor its powers are conformally covariant. For compact
manifolds of arbitrary even dimension n, we shall address in [14] the conformally invariant case at the
critical scale s = n/2, a high-dimensional Liouville Quantum Gravity.

1.3. Higher Order Green Kernel. The regularity of the Fractional Gaussian Field h• and the quan-
titative geometric and functional analytic estimates for the Random Riemannian Geometry (M, g•) will
be determined by the Green kernel of order s,

Gs,m(x, y) :=
1

Γ(s)

∫ ∞
0

pt(x, y) e−m
2t ts−1 dt(1.6)
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and, in the compact case, by its grounded counterpart

G̊s,m(x, y) :=
1

Γ(s)

∫ ∞
0

p̊t(x, y) e−m
2t ts−1 dt, p̊t(x, y) := pt(x, y)− 1

volg(M)
.(1.7)

The latter is also well-behaved in the massless case m = 0 whereas the application of the former is
restricted to the case of positive mass parameter m. We analyze these Green kernels in detail and derive
explicit formulas for model spaces, including Euclidean spaces, tori, hyperbolic spaces, and spheres.

Theorem 1.12. For points x, y, let r := d(x, y). Then,

(a) For the 1-dimensional torus T :=R/Z,

G̊T
1,0(r) =

(
r − 1

2

)2

− 1

12
, G̊T

2,0(r) = −1

6

(
r − 1

2

)4

+
1

12

(
r − 1

2

)2

− 7

1440
.

(b) For the sphere in 2 and 3 dimensions,

G̊S2
1,0(r) =− 1

2π

(
1 + 2 log sin r

2

)
, G̊S2

2,0(r) =
1

π

∫ sin2(r/2)

0

log t

1− t
dt+

1

π
,

G̊S3
1,0(r) = 1

2π2

(
− 1

2 + (π − r) · cot r
)
, G̊S3

2,0(r) =
(π − r)2

4π2
+

1

8π2
− 1

12
.

(c) For the hyperbolic space in three dimensions and m > 0,

GH3

1,m(r) =
1

2π sinh r
e−
√

2m2+1 r , GH3

2,m(r) =
r

2π
√

2m2 + 1 sinh r
e−
√

2m2+1 r .

Of particular interest is the asymptotics of the Green kernel close to the diagonal.

Theorem 1.13. Let M be a compact manifold, m ≥ 0, and s > n/2. Then for every α ∈ (0, 1] with
α < s− n/2 there exists a constant C = C(M) so that∣∣∣G̊s,m(x, x) + G̊s,m(y, y)− 2 G̊s,m(x, y)

∣∣∣1/2 ≤ C · d(x, y)α .

Acknowledgements. The authors would like to thank Matthias Erbar and Ronan Herry for valuable
discussions on this project. They are also grateful to Nathanaël Berestycki, and Fabrice Baudoin for
respectively pointing out the references [7], and [6, 22], and to Julien Fageot and Thomas Letendre for
pointing out a mistake in a previous version of the proof of Proposition 3.10. The authors feel very much
indebted to an anonymous reviewer for their careful reading and the many valuable suggestions that have
significantly contributed to the improvement of the paper.

2. The Riemannian Manifold. Throughout this paper, (M, g) will be a complete connected n-
dimensional smooth Riemannian manifold without boundary, ∆ will denote its Laplace–Beltrami operator
and pt(x, y) the associated heat kernel. The latter is symmetric in x, y, and as a function of t, x it solves
the heat equation 1

2∆u = ∂
∂tu. For convenience, we always assume that (M, g) is stochastically complete,

i.e., ∫
pt(x, y) dvolg(y) = 1 , x ∈ X, t > 0 ,

which is a well-known consequence of uniform lower bounds for the Ricci curvature, see e.g. [12, Thm. 5.2.6].

Notation 2.1. Throughout the paper, for functions a, b : R→ (0,∞) and r0 ∈ R apparent from the
context we write a . b if there exist ε > 0 and c > 0 so that a(r) ≤ c · b(r) for all r so that |r − r0| < ε,
and we set

a(r) � b(r) ⇐⇒ lim
r→r0

a(r)

b(r)
= 1 and a(r) ≈ b(r) ⇐⇒ a . b . a .
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2.1. Higher Order Green Operators. For m > 0, consider the positive self-adjoint operator

Am :=m2 − 1
2∆

on L2 = L2(volg), and its powers Asm defined by means of the Spectral Theorem for all s ∈ R. On
appropriate domains, Asm ◦ Arm = Ar+sm for all r, s ∈ R. For s > 0, the operator A−sm , called the Green
operator of order s with mass parameter m, admits the representation

A−sm :=
1

Γ(s)

∫ ∞
0

e−m
2 tts−1et∆/2 dt on L2(volg) .(2.1)

Lemma 2.2. (i) For s > 0, the Green operator of order s is an integral operator(
A−sm f

)
(x) =

∫
Gs,m(x, y) f(y) dvolg(y)

with density given by the Green kernel of order s with mass parameter m,

(2.2) Gs,m(x, y) :=
1

Γ(s)

∫ ∞
0

e−m
2t ts−1 pt(x, y) dt ,

where pt(x, y) is the heat kernel (i.e. the density for the operator et∆/2).
(ii) For each m > 0, the family (Gs,m)s>0 is a convolution semigroup of kernels, viz. Gr+s,m = Gr,m ∗

Gs,m for r, s > 0. In particular, Gk,m = (G1,m)∗k for integer k ≥ 1.
(iii) Moreover,

∫
Gs,m(x, · ) dvolg = m−2s for all x ∈ M, s > 0.

Proof. (i) In light of (2.1), for every f ∈ L2(volg)
+,

(A−sm f)(x) =
1

Γ(s)

∫ ∞
0

e−m
2tts−1

∫
pt(x, y) f(y) dvolg(y) dt ,

and the conclusion follows by Tonelli’s Theorem and the definition (2.2) of Gs,m. Assertions (ii) and (iii)

are straightforward. �

2.2. The case of manifolds of bounded geometry. Let C∞c be the space of all smooth compactly sup-
ported functions on M. We recall some definitions of spaces of weakly differentiable functions on M.

2.2.1. Bessel potential spaces. Fix m > 0, let p ∈ [1,∞) and denote by p′ := p
p−1 the Hölder conjugate

of p ∈ (1,∞). Following [52], we define the Bessel potential spaces Ls,pm , s ≥ 0, as the space of all u ∈ Lp

so that u = A
−s/2
m v for some v ∈ Lp, endowed with the norm ‖u‖Ls,pm := ‖v‖p. For s < 0, we define Ls,pm

as the space of all distributions u on M of the form u = Akmv, where v ∈ L2k+s,p
m and k is any integer so

that 2k + s > 0, endowed with the norm ‖u‖Ls,pm := ‖v‖L2k+s,p
m

.
As it turns out, the above definition is well-posed, i.e. independent of k, and we have the following

result of R. S. Strichartz’.

Lemma 2.3 ([52], §4). The spaces Ls,pm , s ∈ R, are Banach spaces (Hilbert spaces for p = 2). The
natural inclusion Ls,pm ⊂ Lr,pm , s > r, is bounded and dense for every r, s ∈ R and p ∈ (1,∞). Further-
more, C∞c is dense in Ls,pm for every s ∈ R, m > 0 and p ∈ (1,∞). As a consequence, the L2-scalar
product 〈ϕ |ψ〉L2 , ϕ,ψ ∈ C∞c , extends to a bounded bilinear form between Ls,pm and L−s,p

′

m , s > 0, thus
establishing isometric isomorphisms between Ls,pm and (L−s,p

′

m )′, s ∈ R, p ∈ (1,∞). For every m, s > 0,
the space Ls,pm coincides with the Lp-domain of (−∆)s/2, and the norm ‖ · ‖Ls,pm is equivalent to the graph-
norm ‖ · ‖p +

∥∥(−∆)s/2 ·
∥∥
p
.

We note that, for m1,m2 > 0, the spaces Ls,pm1
= Ls,pm2

coincide setwise, and the corresponding norms
are bi-Lipschitz equivalent. For the sake of notational simplicity, we set Hs

m :=Ls,2m for s ∈ R, m > 0.
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2.2.2. Standard Sobolev spaces. For a given local chart on M let ∇αi be the corresponding covariant
derivatives. For smooth f : M → R and a non-negative integer k, we set

∣∣∇0f
∣∣ := |f | and let

∣∣∇kf ∣∣ be
defined by ∣∣∇kf ∣∣2 := gα1β1 · · · gαkβk∇α1

· · · ∇αkf · ∇β1
· · · ∇βkf .

For p ∈ (1,∞), we denote by Ek,p the space of all functions f ∈ C∞ so that
∣∣∇if ∣∣ is in Lp = Lp(volg) for

every 0 ≤ i ≤ k, and define the Sobolev space W k,p as the completion of Ek,p with respect to the norm

‖f‖Wk,p :=

k∑
i=0

∥∥∣∣∇if ∣∣∥∥
p
, f ∈ Ek,p .

The space W k,p
∗ is the closure in W k,p of C∞c .

2.2.3. Manifolds of bounded geometry. To simplify the presentation, at some places in the sequel we
make the following assumption, corresponding to H∞ in [4, Déf. 3].

Assumption 2.4. (M, g) has bounded geometry, i.e. the injectivity radius is bounded away from 0,
and for every k ∈ N0 there exists a constant Ck = Ck,g so that the kth-covariant derivative ∇kRg of the
Riemann tensor Rg satisfies

∣∣∇kRg
∣∣
g
≤ Ck.

Remark 2.5. It is the main result of [43] that, on an arbitrary smooth differential manifold, the con-
formal class [g̃] of any chosen Riemannian metric g̃ contains a Riemannian metric g of bouded geometry.
Thus, Assumption 2.4 poses no topological restriction on the class of manifolds we consider.

Our main interest lies in compact manifolds and in homogeneous spaces. All these spaces satisfy the
above assumption.

By Lemma 2.3 above and e.g. [56, §7.4.5], under Assumption 2.4, we have that W k,p
∗ = W k,p and

W k,p ∼= Lk,pm (bi-Lipschitz equivalence) for every integer k ≥ 0 and m > 0. Furthermore, Ls,pm for s ∈ R
may be equivalently defined via localization and pull-back onto Rd, by using geodesic normal coordinates
and corresponding fractional Sobolev spaces on Rd, see [56, §§7.2.2, 7.4.5] or [25]. In particular we have
the following:

Lemma 2.6. Under Assumption 2.4, all the standard Sobolev–Morrey and Rellich–Kondrashov em-
beddings hold for Ls,pm .

Remark 2.7. There exist complete non-compact manifolds with Ricci curvature bounded below for
which the whole scale of Sobolev embeddings fails, that is W 1,p 6↪→ Lq for all 1 ≤ q < n and 1/p =

1/q − 1/n, e.g. [30, Prop. 3.13, p. 30].

We conclude this section with an auxiliary result.

Lemma 2.8. A
(r−s)/2
m : Hr

m −→ Hs
m is an isometry of Hilbert spaces for every r, s ∈ R and m > 0.

Proof. By duality, it suffices to show the statement for r, s > 0. In this case, by the definition of Ht
m,

t > 0, and by the semigroup property of t 7→ Atm, t > 0,∥∥A(r−s)/2ϕ
∥∥
Hsm

=
∥∥As/2m A(r−s)/2ϕ

∥∥
L2 =

∥∥Ar/2m ϕ
∥∥
L2 = ‖ϕ‖Hrm , ϕ ∈ D .

The extension to Hs
m follows by the density of D in Hs

m, Lemma 2.3. �
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2.2.4. Test functions. Denote by D := C∞c the space of smooth compactly supported functions on M

endowed with its canonical LF topology. It is noted in the comments preceding [27, Ch. II, Thm. 10,
p. 55] that D is a nuclear space. We denote by D ′ the topological dual of D , and by 〈 · | · 〉 = D′〈 · | · 〉D
the canonical duality pairing, extending the L2(volg)-scalar product. The weak topology σ(D ′,D) is
the coarsest topology for which all functionals of the form 〈 · |ϕ〉, with ϕ ∈ D , are continuous. We
write D ′σ for the space D ′ endowed with the weak topology. Recall that a set B ⊂ D is bounded if
for every neighborhood U ⊂ D of the origin in D there exists λ ≥ 0 such that B ⊂ λU . The strong
topology β(D ′,D) on D ′ is the topology of uniform convergence on bounded sets in D , e.g. [55, II.19,
Example IV, p. 198]. We write D ′β for the space D ′ endowed with the strong topology.

Lemma 2.9. The space D embeds continuously into Hs
m for every s ∈ R and every m > 0.

Proof. A proof is standard in the case when s > 0 is a positive integer. The conclusion for general s
follows since the identical inclusion Hs

m ↪→ Hk
m is continuous for every integer k ≤ s by the very definition

of Bessel potential space. �

2.2.5. Heat-kernel estimates. We collect here some estimates for the heat kernel on (M, g), which we
shall make use of throughout the rest of the work. We also provide estimates on its first and second
derivatives, which we need for the Green kernel asymptotics in Section 6. These estimates are sharp.

Lemma 2.10. Let (M, g) be a Riemannian manifold of bounded geometry. Then:

(i) there exists a constant C > 0, so that for all x, y ∈ M and every t > 0

pt(x, y) ≤ C(t−n/2 ∨ 1) e−
d2(x,y)
Ct ;(2.3)

(ii) there exists a constant C > 0 , so that for all x, y ∈ M and every t > 0

|∇pt(x, y)| ≤ C
(
t−n/2−1/2 ∨ 1

)
e−

d2(x,y)
Ct ;(2.4)

(iii) there exists a constant C > 0, so that for all x, y ∈ M and every t > 0

|∆ pt(x, y)| ≤ C
(
t−n/2−1 ∨ 1

)
e−

d2(x,y)
Ct ;(2.5)

(iv) there exists a constant C > 0, so that for all x, y ∈ M and every t > 0

|∇1∇2 pt(x, y)| ≤ C
(
t−n/2−1 ∨ 1

)
e−

d2(x,y)
Ct .(2.6)

Proof. Throughout the proof C > 0 is a constant only depending on (M, g), possibly changing from
line to line. (i) In light of the bounded geometry assumption we have the Gaussian heat kernel estimate

pt(x, y) ≤ C

t volg
(
B√t∧1(x)

) (1 +
d2(x, y)

t

)ν0/2
e−

d2(x,y)
4t

for some 0 < r0 < inj(M) and ν0 > 0 [47, Thm. 4.2]. The claim follows since volgBr(x) ≥ Crn for all
r < inj(M) by virtue of [9, Prop. 14].

(ii) Let Q = B√t(x)× [t/2, t]. Let u(z, τ) = pτ (z, y) on Q. Then by [51, Thm. 1.1] we have

|∇u|
u
≤ C

(
1√
t

+
√
K

)(
1 + log

supQ u

u

)
,(2.7)

where −K, K ≥ 0, is a lower bound of the Ricci curvature. By [47, Theorem 4.2] we have

u(z, τ) ≤ C

volg
(
B√τ∧r0(z)

)e−d2(z,y)/Cτ ≤ C

volg
(
B√t∧r0(x)

) ,
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where we used the volume-doubling property and consequently by (2.7) and (2.3)

|∇u(x, t)| ≤ C

(
1√
t

+
√
K

)(
1 + log

volg
(
B√t∧r0(x)

)−1

u(x, t)

)
u(x, t)

≤ C

(
1√
t

+
√
K

)(
1 + log

volg
(
B√t∧r0(x)

)−1

u(x, t)

)
(t−n/2 ∨ 1) e−

d2(x,y)
Ct .

In order to estimate u(x, t) from below we use Corollary 1.2 in [36] and obtain for Kt ≤ 1

|∇u(x, t)| ≤ C√
t
(t−n/2 ∨ 1) e−

d2(x,y)
Ct eCt ≤ C

(
t−n/2−1/2 ∨ 1

)
e−

d2(x,y)
Ct .

For Kt > 1 we use Corollary 1.7 in [36]

|∇u(x, t)| ≤ C e−
d2(x,y)
Ct ≤ C

(
t−n/2−1/2 ∨ 1

)
e−

d2(x,y)
Ct ,

which finishes the proof.
(iii) In light of the bounded geometry assumption, [47, Thm. 4.2] yields

|∂tpt(x, y)| ≤ C

t volg
(
B√t∧r0(x)

) (1 +
d2(x, y)

t

)ν0/2+1

e−
d2(x,y)

4t

for ν0 and r0 as in (i). We estimate the volume of the ball from below as in (i) by applying [9, Prop. 14].
Noting that ∂tpt(x, y) = ∆pt(x, y) the result follows.

(iv) It follows from [34, Thm. 2.1] that there exists a constant C > 3 depending on (M, g) so that, for
all x, y ∈ M,

|∇1∇2 pt(x, y)| ≤ C ∂tpt(x, y) + C
(
t−1 ∨ 1

)
pt(x, y) , t > 0 .

Since pt( · , y) is a solution to the heat equation, and using (2.5), we have for all t ∈ (0, 2] and every x, y ∈
M,

|∇1∇2 pt(x, y)| ≤ C
(
∆pt( · , y)

)
(x) + C

(
t−1 ∨ 1

)
pt(x, y)

≤ C
(
t−n/2−1 ∨ 1

)
e−

d2(x,y)
Ct + C

(
t−1 ∨ 1

)
pt(x, y)

for some constant C > 0 only depending on (M, g) and possibly changing from line to line. Combining
this with the heat kernel estimate (2.3) yields the claim for t ≤ 2. For t ≥ 2 the claim follows from the
bound for t ≤ 1 combined with the following inequalities for t ≥ 1:∣∣∇x∇ypt+1(x, y)

∣∣ =

∣∣∣∣ ∫∫ ∇xp1/2(x, u) pt(u, v) ∇yp1/2(v, y) dvolg(u) dvolg(v)

∣∣∣∣
≤ sup
u∈M
|∇xp1/2(x, u)| · sup

v∈M
|∇yp1/2(y, v)| ·

∫∫
pt(u, v) dvolg(u) dvolg(v) ≤ C ,

(2.8)

which concludes the proof. �

2.3. The case of closed manifolds. Let us now specialize our constructions to the case when M is
additionally closed, i.e. compact and without boundary.

If M is closed, the operator (m2 − 1
2∆)−1 is compact on L2(volg), and thus has discrete spectrum. We

denote by (ϕj)j∈N0
the complete L2-orthonormal system consisting of eigenfunctions of −∆, each with

corresponding eigenvalue λj , so that (∆+λj)ϕj = 0 for every j. SinceM is connected, we have 0 = λ0 < λ1

and ϕ0 ≡ volg(M)−1/2. Weyl’s asymptotic law implies that for some c > 0,

λj ≥ c j2/n, j ∈ N .(2.9)
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2.3.1. Grounding. If M is closed, we further define the grounded Green operator of order s with mass
parameter m as the (bounded) self-adjoint operator Å−sm f :=A−sm (f̊) on L2(M) with

f̊ := f − 1

volg(M)

∫
f dvolg .

We start by refining the heat-kernel estimates in Lemma 2.10 to the closed case.

Lemma 2.11 (Heat kernel estimates: compact case). Let (M, g) be a closed Riemannian manifold.
Then,

(i) there exists a constant C > 0, so that for all x, y ∈ M and every t > 0

pt(x, y) ≤ C(t−n/2 ∨ 1) e−
d2(x,y)
Ct ,(2.10)

|p̊t(x, y)| ≤ C(t−n/2 ∨ 1) e−λ1 t/2 ;(2.11)

(ii) for every ` ∈ N0 there exists a constant C = C(`) > 0, so that for all x, y ∈ M and every t > 0∣∣∇`pt(x, y)
∣∣ ≤ C

(
t−n/2−`/2 ∨ 1

)
e−

d2(x,y)
Ct e−λ1 t/2 ;(2.12)

(iii) there exists a constant C > 0, so that for all x, y ∈ M and every t > 0

|∇1∇2 pt(x, y)| ≤ C
(
t−n/2−1 ∨ 1

)
e−

d2(x,y)
Ct e−λ1 t/2 .(2.13)

Proof. (i) The estimate (2.10) was already shown in Lemma 2.10. We provide here an alternative
proof which we subsequently adapt to the case of p̊t. For t ≥ 1, the estimate (2.10) immediately follows
from the fact that by compactness of M the heat kernel is uniformly bounded on [1,∞) ×M ×M. For
t ≤ 1 it follows from the celebrated estimate of Li and Yau [35, Cor. 3.1], combined with the fact that
volg(B√t(x)) ≥ 1

C t
n/2 for each x ∈ M, which in turn follows from Bishop–Gromov volume comparison

and compactness of M, see, e.g., [45, Lem. 9.1.36, p. 269].
Since −C ≤ p̊t(x, y) ≤ pt(x, y), the estimate (2.11) for t ≤ 2 follows immediately from the previous

estimate. In order to prove (2.11) for t ≥ 2, note that, for t ≥ 1,

|p̊t+1(x, y)| =
∣∣∣∣ ∫∫ p̊1/2(x, u) p̊t(u, v) p̊1/2(v, y) dvolg(u) dvolg(v)

∣∣∣∣
≤ sup
u∈M
|p̊1/2(x, u)| · sup

v∈M
|p̊1/2(y, v)| ·

∫∫ ∣∣p̊t(u, v)
∣∣dvolg(u) dvolg(v)

≤ C
∫∫ ∣∣p̊t(u, v)

∣∣ dvolg(u) dvolg(v)

uniformly in x, y ∈ M. Moreover, note that by the standard spectral calculus for ∆ and ultracontractivity
of the heat semigroup, see e.g. [12, Thm. 2.1.4], we may express the grounded heat kernel on M as the
uniform limit of the series

p̊t(x, y) =
∑
j∈N

e−tλj/2ϕj(x)ϕj(y) , x, y ∈ M ,

and with this we obtain∫∫ ∣∣p̊t(x, y)
∣∣ dvolg(x) dvolg(y) =

∫∫ ∣∣∣∣ ∞∑
j=1

e−λjt/2ϕj(x)ϕj(y)

∣∣∣∣dvolg(x) dvolg(y)(2.14)

≤ C
∞∑
j=1

e−λjt/2 ≤ C e−λ1t/2
∞∑
j=1

e(λ1−λj)/2



12 L. DELLO SCHIAVO, E. KOPFER, K.-T. STURM

= C e−λ1t/2 eλ1/2

∫
p̊1(x, x) dvolg(x)

= C ′ e−λ1t/2 .

This proves the claim.
(ii) It is shown in [53, Eqn. (1.1)] that for every x, y ∈ M

∣∣(∇` log pt( · , y)
)
(x)
∣∣ ≤ C`

(
1

t
+

d2(x, y)

t2

)`/2
, t ∈ (0, 2] ,

for some constant C`, henceforth possibly changing from line to line. As a consequence,

∣∣(∇`pt( · , y)
)
(x)
∣∣ ≤ C`(1

t
+

d2(x, y)

t2

)`/2
pt(x, y) , t ∈ (0, 2] .(2.15)

In combination with the heat kernel estimate (2.10) from above this yields the claim for t ≤ 2. As in
part (i), the claim for t ≥ 2 follows from the bound for t ≤ 1 together with the fact that, for t ≥ 1,∣∣∇`xpt+1(x, y)

∣∣ =
∣∣∇`xp̊t+1(x, y)

∣∣
=

∣∣∣∣ ∫∫ ∇`xp̊1/2(x, u) p̊t(u, v) p̊1/2(v, y) dvolg(u) dvolg(v)

∣∣∣∣
≤ sup
u∈M
|∇`xp̊1/2(x, u)| · sup

v∈M
|p̊1/2(y, v)| ·

∫∫ ∣∣p̊t(u, v)
∣∣dvolg(u) dvolg(v)

≤ C e−λ1t/2

according to the previous estimates (2.15), (2.10), and (2.14).

(iii) Let us first note that [34, Thm. 2.1] holds with identical proof also in the case of closed M.
Similarly to the proof of Lemma 2.10, it follows from [34, Thm. 2.1] that there exists a constant C > 3

depending on (M, g) so that, for all x, y ∈ M,

|∇1∇2 pt(x, y)| ≤ C ∂tpt(x, y) + C
(
t−1 ∨ 1

)
pt(x, y) , t > 0 .

Since pt( · , y) is a solution to the heat equation, and using (2.15), we have for all t ∈ (0, 2] and every x, y ∈
M,

|∇1∇2 pt(x, y)| ≤ C
(
∆pt( · , y)

)
(x) + C

(
t−1 ∨ 1

)
pt(x, y)

≤ C
∣∣(∇2pt( · , y)

)
(x)
∣∣+ C

(
t−1 ∨ 1

)
pt(x, y)

≤ C
(
t−1 ∨ 1

)(d2(x, y)

t
+ 1

)
pt(x, y) + C

(
t−1 ∨ 1

)
pt(x, y)

≤ C
(
t−1 ∨ 1

)(d2(x, y)

t
+ 1

)
pt(x, y) ,(2.16)

for some constant C > 0 depending on (M, g) and possibly changing from line to line. Combining this
with the heat kernel estimate (2.3) yields the claim for t ≤ 2. Again, for t ≥ 2 the claim follows from the
bound for t ≤ 1 combined with the following inequalities for t ≥ 1:

∣∣∇x∇ypt+1(x, y)
∣∣ =

∣∣∣∣ ∫∫ ∇xp̊1/2(x, u) p̊t(u, v) ∇yp̊1/2(v, y) dvolg(u) dvolg(v)

∣∣∣∣
≤ sup
u∈M
|∇xp̊1/2(x, u)| · sup

v∈M
|∇yp̊1/2(y, v)| ·

∫∫ ∣∣p̊t(u, v)
∣∣ dvolg(u) dvolg(v)

≤ C e−λ1t/2 . �
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Lemma 2.12. If M is closed and s > 0, then Å−sm is an integral operator with density given by the
grounded Green kernel of order s with mass parameter m ≥ 0, defined in terms of the grounded heat
kernel,

(2.17) G̊s,m(x, y) :=
1

Γ(s)

∫ ∞
0

e−m
2t ts−1 p̊t(x, y) dt , p̊t(x, y) := pt(x, y)− 1

volg(M)
.

For each m ≥ 0, the family (G̊s,m)s>0 is a convolution semigroup of kernels, and
∫
G̊s,m(x, · ) dvolg = 0

for all x ∈ M, s > 0.

Of particular interest will be G̊s,0, the massless grounded Green kernel of order s.

Proof of Lemma 2.12. Let us first observe that G̊s,m(x, y) as defined above is finite for all x 6= y

by virtue of (2.11). We claim that the integral

(G̊s,mf)(x) :=

∫
G̊s,m(x, y) f(y) dvolg(y)(2.18)

is absolutely convergent for every f ∈ L2 and a.e. x. Indeed, it defines an L2-function according to∫ ∣∣∣∣ 1

Γ(s)

∫ ∫ 1

0

e−m
2tts−1p̊t(x, y) dt f(y)dvolg(y)

∣∣∣∣2 dvolg(x)

≤
∫ (

1

Γ(s)

∫ ∫ 1

0

ts−1

[
pt(x, y) +

1

volg(M)

]
dt |f |(y)dvolg(y)

)2

dvolg(x)

≤ 2e ‖Gs,1f‖2L2 + 2
1

(sΓ(s))2 · volg(M)
‖f‖2L2

≤ C ′ ‖f‖2L2 <∞

and since, due to (2.12),∫ ∣∣∣∣ 1

Γ(s)

∫ ∫ ∞
1

e−m
2tts−1p̊t(x, y) dt f(y)dvolg(y)

∣∣∣∣2 dvolg(x)

≤ C
∫ [

1

Γ(s)

∫ ∫ ∞
1

e−m
2tts−1e−λ1 t/2 dt |f |(y)dvolg(y)

]2

dvolg(x)

≤ C ′ ‖f‖2L2 .

Thus,

G̊s,m : L2 −→ L2 is a bounded operator(2.19)

and moreover, (due to the absolute convergence of the integrals) by Fubini’s Theorem,

G̊s,mf(x) =
1

Γ(s)

∫ ∞
0

e−m
2tts−1

∫
p̊t(x, y) f(y) dvolg(y) dt = (Å−sm f)(x) . �

Remark 2.13. (a) For m > 0

G̊s,m(x, y) = Gs,m(x, y)− 1

m2s volg(M)
.

(b) For each s > 0, m ≥ 0 and x ∈ M, the distribution G̊s,m(x, · )volg is the unique distributional
solution to (

m2 − 1
2∆
)s
u = δx −

1

volg(M)
volg and 〈u |1〉 = 0 .(2.20)
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Proof. As (a) is straightforward, we only prove (b). It is also standard that G̊s,m(x, · )volg is a
distributional solution to (2.20), thus it suffices to show that the associated homogeneous equationsAsmu =

0 and 〈u |1〉 = 0 admit a unique solution for every s ∈ R.
To this end, denote by D̊ := {ϕ̊ : ϕ ∈ D} the space of grounded test functions. Equivalently, we show

that Asm : D̊ → D̊ is a bijection for every s ∈ R. The fact that Akm(D) ⊂ D for integer k holds by the
standard Schauder estimates for elliptic operators (for closed manifolds see e.g. [38, Thm. III.5.2 (iii),
p. 193]). This is readily extended to s ∈ R noting that the integral operator Gs,m with kernel Gs,m(x, · )
is a smoothing operator for s > n/2.

For m > 0, the injectivity on D̊ (in fact on L2(volg)) holds by Lemma 2.8, and the surjectivity by
Lemma 2.2. For m = 0, the injectivity holds since kerAk0 = ker(−∆g)

k only consists of the constant
functions for every non-negative integer k, and the surjectivity holds by Lemma 2.12. We omit the
details. �

2.3.2. Eigenfunction expansion. We conclude the analysis of the closed case by discussing the expan-
sion of the Green kernels Gs,m and G̊s,m in terms of eigenfunctions of the Laplace–Beltrami operator.

Lemma 2.14. Assume that M is closed. Then for all m > 0 and s > n/2,

Gs,m(x, y) =
∑
j∈N0

ϕj(x)ϕj(y)

(m2 + λj/2)s
, x, y ∈ M ,(2.21)

where the series is absolutely convergent for every x, y ∈ M.
Furthermore, for all m ≥ 0 and s > n/2,

G̊s,m(x, y) =
∑
j∈N

ϕj(x)ϕj(y)

(m2 + λj/2)s
, x, y ∈ M .(2.22)

(Note that the summation now starts at j = 1.) In particular,

G̊s,0(x, y) = 2s
∑
j∈N

ϕj(x)ϕj(y)

λsj
, x, y ∈ M .(2.23)

Proof. By the spectral calculus (e.g. [12, Thm. 2.1.4]), we may express the heat kernel on M as the
uniform limit of the series

pt(x, y) =
∑
j∈N0

e−tλj/2ϕj(x)ϕj(y) , x, y ∈ M .(2.24)

By virtue of (2.2), (2.10), and s > n
2 we have that Gs,m(x, x) < ∞. By Dominated Convergence the

representation (2.21) follows for x = y. For x, y ∈ M we have that the series
∑
j∈N0

ϕj(x)ϕj(y)
(m2+λj/2)s is absolutely

convergent due to Cauchy–Schwarz. Hence (2.21) follows again by Dominated Convergence. With the same
arguments but using (2.17) and (2.11) instead of (2.2) and (2.10), we can show (2.22). �

Remark 2.15. The grounded Green kernel G̊s,0(x, y) coincides, up to the multiplicative factor 2s,
with the celebrated Minakshisundaram–Pleijel ζ-function ζ∆

x,y(s) of the Laplace–Beltrami operator on M,
introduced in [42]. The massive grounded Green kernel G̊s,m(x, y) is therefore the Hurwitz regularization
of ζ∆ with parameter m2.

2.3.3. Sobolev spaces on compact manifolds. Again assume that M is closed, and let (ϕj)j∈N0
and

(λj)j∈N0
be as above. Then for each m > 0 and s ∈ R,

Hs
m =

{
f ∈ D ′ : f =

∑
j∈N0

αjϕj ,

∞∑
j=0

α2
j

(
m2 + λj/2

)s
<∞

}
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with
∥∥f∥∥2

Hsm
=
∑∞
j=0 α

2
j

(
m2 + λj/2

)s and 〈f |ψ〉 =
∑∞
j=0 αj 〈ϕj |ψ〉 for ψ ∈ D . Note that for all ψ ∈ D

and k ∈ N we have
∑∞
j=0

∣∣λkj 〈ϕj |ψ〉∣∣2 <∞.

Definition 2.16. If M is closed we define the grounded Sobolev spaces for m ≥ 0 and s ∈ R by

H̊s
m =

f ∈ D ′ : f =
∑
j∈N

αjϕj ,

∞∑
j=1

α2
j

(
m2 + λj/2

)s
<∞

 ,

regarded as a subspace of Hs
m.

Lemma 2.17. Assume that M is closed.

(i) For all m ≥ 0 and r, s ∈ R,

Å−(r−s)/2
m = A−(r−s)/2

m : H̊s
m −→ H̊r

m

is an isometry of Hilbert spaces.
(ii) For all m > 0 and s ∈ R,

H̊s
m =

{
f ∈ Hs

m : 〈f |1〉 = 0
}
.

(iii) For all m > 0 and s ∈ R, the spaces H̊s
m and H̊s

0 coincide setwise, and the corresponding norms are
bi-Lipschitz equivalent.

Proof. (i) follows from Lemma 2.8. (ii) follows by spectral calculus. (iii) For s ≥ 0,

∞∑
j=1

α2
j

(
λj/2

)s ≤ ∞∑
j=1

α2
j

(
m2 + λj/2

)s ≤ (m2 + λ1/2

λ1/2

)s
·
∞∑
j=1

α2
j

(
λj/2

)s
,

thus
‖f‖H̊s0 ≤ ‖f‖H̊sm ≤

(
1 + 2m2/λ1

)s/2
· ‖f‖H̊s0 .

Similarly for s < 0,

‖f‖H̊s0 ≥ ‖f‖H̊sm ≥
(

1 + 2m2/λ1

)s/2
· ‖f‖H̊s0 . �

2.4. The noise distance. Given any positive numbers s,m, a pseudo-distance ρs,m on M, called noise
distance (for reasons which become clear in Corollary 3.12), is defined by

ρs,m(x, y) :=

(
1

Γ(s)

∫ ∞
0

∫
M

e−m
2t ts−1

[
pt/2(x, z)− pt/2(y, z)

]2
dvolg(z) dt

)1/2

.(2.25)

Indeed, symmetry and triangle inequality are immediate consequences of the fact that this is the L2-
distance between p·/2(x, ·) and p·/2(y, · ) w.r.t. a (possibly infinite) measure on R+ ×M. In the case of
closed M, the analogous definition for p̊·/2( · , · ) results in ρ̊s,m = ρs,m.

Remark 2.18. Note that by the symmetry and the Chapman–Kolmogorov property of the heat
kernel, ∫

M

[
pt/2(x, z)− pt/2(y, z)

]2
dvolg(z) = pt(x, x) + pt(y, y)− 2pt(x, y) .

Hence, for all s,m ∈ (0,∞) and all x, y ∈ M with Gs,m(x, y) <∞,

ρs,m(x, y) =
[
Gs,m(x, x) +Gs,m(y, y)− 2Gs,m(x, y)

]1/2
.
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3. The Fractional Gaussian Field. Let us now define Fractional Gaussian Fields.

Theorem 3.1. For m > 0 and s ∈ R, there exists a unique Radon Gaussian measure µm,s on D ′σ
with characteristic functional

D 3 ϕ 7−→
∫

D′
ei 〈 · |ϕ〉 dµm,s , ϕ ∈ D ,

equal to

χm,s : ϕ 7−→ exp
[
− 1

2 ‖ϕ‖
2
H−sm

]
, ϕ ∈ D .(3.1)

Proof. Note that χm,s(0) = 1 and that χm,s is positive definite, e.g., [37, Prop. 2.4]. Further-
more, χm,s is additionally continuous on D , since D embeds continuously into H−sm for every s ∈ R
and m > 0 by Lemma 2.9. Note that β(D ′,D) is finer than σ(D ′,D), hence every Radon probability
measure on D ′β restricts to a Radon probability measure on D ′σ. Since D is nuclear, by Bochner–Minlos
Theorem in the form [57, §VI.4.3, Thm. 4.3, p. 410], there exists a Radon probability measure µm,s on D ′β ,
and the conclusion follows by restricting this measure to a (non-relabeled) Radon measure on D ′σ. �

Everywhere in the following, (Ω,F ,P) denotes a probability space supporting countably many i.i.d.
Gaussian random variables.

Definition 3.2. Let m > 0 and s ∈ R. An m-massive Fractional Gaussian Field on M with regular-
ity s, in short: FGFM

s,m, is any D ′-valued random field h• on Ω distributed according to µm,s.

We omit the superscript M from the notation whenever apparent from context, and write h• ∼ FGFs,m
to denote an m-massive Fractional Gaussian Field with regularity s. Here and henceforth, for random
variables X• : ω 7→ Xω on Ω the superscript • will indicate the ω-dependence.

The case h• ∼ FGFs,m with s = 0 is singled out in the scale of all FGF’s on M as the only one
independent of m. It corresponds to the Gaussian White Noise on M induced by the nuclear rigging D ⊂
L2(volg) ⊂ D ′, where we note that L2(volg) = H0

m for all m > 0.

Remark 3.3. The White Noise W • on M is the D ′-valued, centered Gaussian random field uniquely
characterized by either one of the following properties, see e.g. the monograph [32]:

E
[
ei〈ϕ |W•〉

]
= e−

1
2‖ϕ‖

2
L2 , ϕ ∈D ;

E
[
〈ϕ |W •〉2

]
= ‖ϕ‖2L2(volg)

, ϕ ∈D ;

E
[
〈ϕ |W •〉 · 〈ψ |W •〉

]
=

∫
ϕψ dvolg , ϕ, ψ ∈D .

3.1. Some characterizations. Let us now characterize the Fractional Gaussian Field h• ∼ FGFs,m in
terms of the associated Gaussian Hilbert space. We recall that a Gaussian Hilbert space on (Ω,F ,P) is a
closed linear subspace of L2(Ω) consisting of centered Gaussian random variables, cf. e.g. [37, Dfn. 2.5]. We
say that a Gaussian Hilbert space {Xv : v ∈ V } is linearly indexed by V if V is a linear space and v 7→ Xv

is a linear map.

Proposition 3.4. Given h• ∼ FGFs,m on (Ω,F ,P), the collection

Hs,m :=
{
〈h• | f〉 : f ∈ H−sm

}
(3.2)
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(with 〈h• | f〉 suitably defined in the proof) is a Gaussian Hilbert space with covariance structure

〈h• | f〉 ∼ N
(
0, ‖f‖2H−sm

)
, f ∈ H−sm .(3.3)

Vice versa, every Gaussian Hilbert space

(3.4) H̃s,m :=
{
X•f : Ω −→ R : f ∈ H−sm

}
on (Ω,F ,P) linearly indexed by H−sm and satisfying

(3.5) X•f ∼ N
(
0, ‖f‖2H−sm

)
, f ∈ H−sm ,

is isomorphic to Hs,m as a Hilbert space via the map X•f 7→ 〈h• | f〉.

The space Hs,m is called the Gaussian Hilbert space of h• ∼ FGFs,m.

Corollary 3.5. Let h• ∼ FGFM
s,m and H̃s,m be any Gaussian Hilbert space linearly indexed by H−sm

defined as in (3.4) and satisfying (3.5). Further suppose that there exists a D ′-valued Gaussian field X•

on (Ω,F ,P) so that 〈X• |ϕ〉 = X•ϕ for every ϕ ∈ D . Then X• ∼ FGFM
s,m.

Remark 3.6 (Constructions with Schwartz functions). Suppose M = Rn is a standard Euclidean
space, and denote by S the space of Schwartz functions onM endowed with its canonical Fréchet topology,
and by S ′σ the space of tempered distributions on M endowed with the weak topology σ(S ′,S ). Recall
that S is a nuclear space, and embeds densely and continuously into Hs

m for every s ∈ R and m > 0.
By the very same proof of Theorem 3.1, there exists a centered Gaussian field X• on Ω = S ′σ with
characteristic functional satisfying (3.1) for every ϕ ∈ S . By comparison with the massless case, see e.g.
the survey [37], the fieldX• too would deserve the name of massive Fractional Gaussian Field onM = Rn.
In fact, we have X• ∼ FGFM

s,m in our sense.

Proof. Since the identical embedding D ↪→ S is continuous, the space S ′σ of tempered distribu-
tions on M embeds identically and continuously (in particular, measurably) into D ′σ. Thus, X• is in
particular D ′-valued, and it may be regarded as defined on Ω = D ′σ. The conclusion follows in light of
Corollary 3.5. �

Proof of Proposition 3.4. For every ϕ ∈ D , the map t 7→ χm,s(tϕ) as in (3.1) is analytic in t

around t = 0. Differentiating it twice at t = 0 shows that the assignment D 3 ϕ 7→ 〈h• |ϕ〉 defines
an isometry of

(
D , ‖ · ‖H−sm

)
into L2(Ω). By density of D in H−sm , the latter extends to a linear isom-

etry H−sm → L2(Ω). Thus, by construction, Hs,m forms a closed linear subspace of L2(Ω). By the def-
inition of χm,s, the random variable 〈h• |ϕ〉 has centered Gaussian distribution with variance ‖ϕ‖2H−sm
for every ϕ ∈ D . By the H−sm -continuity in ϕ of the corresponding characteristic function, the latter
distributional characterization extends to H−sm which yields (3.3).

Vice versa, let H̃s,m be as in (3.4) and (3.5). Since the indexing assignment ι : f 7→ X•f is linear, (3.5)
shows that it is injective, and therefore an isomorphism of linear spaces. Analogously, f 7→ 〈h• | f〉 is an
isomorphism of linear spaces by (3.3). Thus, the map X•f 7→ 〈h• | f〉 too is an isomorphism of linear spaces,
being the composition of ι−1 : H̃s,m → H−sm and 〈h• | · 〉 : H−sm → Hs,m. Combining (3.3) and (3.5) shows
that X•f 7→ 〈h• | f〉 is additionally an L2(Ω)-isometry, which concludes the proof. �

In particular, we have the following:

Corollary 3.7. For s > 0, h• ∼ FGFs,m is uniquely characterized as the centered Gaussian process
with covariance

(3.6) Cov
[
〈h• |ϕ〉 , 〈h• |ψ〉

]
=

∫∫
Gs,m(x, y)ϕ(x)ψ(y) dvol⊗2

g (x, y) , ϕ, ψ ∈ D ⊂ H−sm .
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Proposition 3.8. Let s ∈ R, m > 0, and h• ∼ FGFM
s,m. Then, the following assertions hold:

(i) Akmh
• is a well-defined D ′-valued random field on (Ω,F ,P) satisfying Akmh• ∼ FGFM

s−2k,m for
every k ∈ Z;

(ii) if M is closed, then A−(r−s)/2
m h• ∼ FGFM

r,m for every r ∈ R.

Proof. (i) Fix k ∈ N. Since Am : D → D , the operator Akm : D ′ → D ′ is well-defined on D ′ by
transposition. Thus, Akmh• is P-a.s. a well-defined element of D ′. By definition of Akm : D ′ → D ′, we have

(3.7)
〈
Akmh

• ∣∣ϕ〉 =
〈
h•
∣∣Akmϕ〉 , ϕ ∈ D .

By Lemma 2.8, we have Akmf ∈ H−sm for every f ∈ H
−(s−2k)
m . Thus, similarly to the proof of the

forward implication in Proposition 3.4, the equality in (3.7) extends from D to H−(s−2k)
m , and

H̃s−2k,m :=
{〈
Akmh

• ∣∣ f〉 : f ∈ H−(s−2k)
m

}
is a Gaussian Hilbert space on (Ω,F ,P) linearly indexed by H−(s−2k)

m . Furthermore, we conclude again
from (3.7) and Lemma 2.8 that〈

Akmh
• ∣∣ϕ〉 =

〈
h•
∣∣Akmϕ〉 ∼ N (0,

∥∥Akmϕ∥∥2

H−sm

)
= N

(
0, ‖ϕ‖2

H
−(s−2k)
m

)
, ϕ ∈ D .

Again as in Proposition 3.4, the above equality extends from D toH−(s−2k)
m , and we conclude that H̃s−2k,m

has covariance structure〈
Akmh

• ∣∣ f〉 ∼ N (0, ‖f‖2
H
−(s−2k)
m

)
, f ∈ H−(s−2k)

m .

By the converse implication in Proposition 3.4, H̃s−2k,m is isomorphic as a Hilbert space to the Gaussian
Hilbert space Hs−2k,m of an FGFM

s−2k,m. Thus, Akmh• ∼ FGFM
s−2k,m by Corollary 3.5.

(ii) Since M is closed, Arm : D → D for every r ∈ R, thus Arm : D ′ → D ′ is well-defined by transposition.
The rest of the proof follows exactly as in (i) replacing k by (s− r)/2. �

Corollary 3.9. The following assertions hold:

(i) all the Fractional Gaussian Fields h•s ∼ FGFM
s,m for s ∈ R and m > 0 may be obtained from h•s−2k ∼

FGFM
s−2k,m as

h•s :=A−2k
m h•s−2k ,

where k is the only integer so that s− 2k ∈ [0, 2).
(ii) if M is closed, then all the Fractional Gaussian Fields h• ∼ FGFM

s,m for s ∈ R and m > 0 may be
obtained from the White Noise W • on M as

h• :=
(
m2 − 1

2∆
)−s/2

W • .

3.2. Continuity of the FGF. The basic property concerning differentiability and Hölder continuity
of FGF’s is as follows.

Proposition 3.10. Let h• ∼ FGFM
s,m. Then, the following assertions hold:

(i) Assume that (M, g) has bounded geometry. If s > n/2 + α with α ∈ [0, 1), then h• ∈ C0,α
loc (M) a.s.;

(ii) Assume that (M, g) is closed. If s > n/2 +k+α with k ∈ N0 and α ∈ [0, 1), then h• ∈ Ck,α(M) a.s.;
(iii) If s > n/2 + 1, then h• ∈W 1,2

loc (M) a.s.

In particular, the continuity of h• in the case s > n/2 will allow us to rewrite (3.6) in a more
comprehensive and suggestive form.
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Corollary 3.11. For each s > n/2 the centered Gaussian process h• ∼ FGFs,m is uniquely charac-
terized by

E
[
h•(x)h•(y)

]
= Gs,m(x, y) , x, y ∈ M .(3.8)

Corollary 3.12. For each s > n/2, the pseudo-distance ρs,m is indeed a distance. It is given in
terms of the process h• ∼ FGFs,m by

ρs,m(x, y) = E
[∣∣h•(x)− h•(y)

∣∣2]1/2 , x, y ∈ M .(3.9)

Proof Proposition 3.10. (i) Let h• ∼ FGFM
s,m with s > n/2. Lemma 2.6 implies that Hs

m embeds
continuously into a space of continuous functions on M by Morrey’s inequality. As a consequence, δx ∈
H−sm . Thus, Proposition 3.4 implies that hω(x) := 〈hω | δx〉 is P-a.s. well-defined for every fixed x ∈ M.
Together with Corollary 3.7, this proves the representation (3.9) in Corollary 3.12.

Combining (3.9) and Theorem 6.1 we have therefore that

E
[∣∣h•(x)− h•(y)

∣∣2]1/2 ≤ Cα · d(x, y)α , x, y ∈ M ,

for some constant Cα > 0. In particular, ω 7→
(
hω(x)− hω(y)

)
is a centered Gaussian random variable

with covariance dominated by Cα · d(x, y)α. Therefore, it has finite moments of all orders p > 1, and, for
every such p, there exists a constant Cα,p > 0 so that

E
[∣∣h•(x)− h•(y)

∣∣p] ≤ Cα,p · d(x, y)αp , x, y ∈ M .(3.10)

Since M is smooth, there exists an atlas of charts (U,Φ), with Φ: U → Φ(U) ⊂ Rn so that

C−1
U |Φ(x)− Φ(y)| ≤ d(x, y) ≤ CU |Φ(x)− Φ(y)| , x, y ∈ U ,(3.11)

for some constant CU > 0 possibly depending on U . Define a random field on Φ(U) by setting h•Φ :=h• ◦
Φ−1. Combining (3.11) with (3.10),

E
[∣∣h•Φ(a)− h•Φ(b)

∣∣p] ≤ CU · Cα,p · |a− b|αp , a, b ∈ Φ(U) ⊂ Rn .

By the standard Kolmogorov–Chentsov Theorem, e.g. [46, Thm. I.2.1], we conclude that, for every ε > 0

and every p > 1, the function h•Φ satisfies h•Φ ∈ C0,α−ε−n/p(Φ(U)) almost surely for all α ∈ (0, s−n/2). By
arbitrariness of ε and p, and since α ranges in an open interval, we may conclude that h•Φ ∈ C0,α(Φ(U))

almost surely for all α ∈ (0, s−n/2). Finally, since Φ is smooth, it follows that h• ∈ C0,α(U), and therefore
that h• ∈ C0,α

loc (M) almost surely.
(ii) Now assume that h• ∼ FGFM

s,m with s > n/2+k+α with k ∈ N and α ∈ (0, 1). Note that Ak/2m h• ∼
FGFM

s−k,m by Proposition 3.8, and A−k/2m : C0,α(M)→ Ck,α(M) for every k ∈ N. Thus the claim follows by
the previous part (i).

(iii): Let K be a bounded convex subset of M with smooth boundary, and denote pKt the heat kernel
with Neumann boundary conditions on K. Recall that a function f ∈ L2(M) belongs to W 1,2(K)—the
form domain for the Neumann heat semigroup on M—if and only if

(3.12) lim
t→0

1

t

∫
K

∫
K

|f(x)− f(y)|2 pKt (x, y) dvolg(x) dvolg(y) <∞

by the very definition of the Neumann heat semigroup onK. Furthermore, the limt→0 is in fact a monotone
limit.

In the case s > n/2 + 1, Theorem 6.1 below (applied with α = 1) implies that the continuous random
function h• ∼ FGFM

s,m satisfies

E

[
lim
t→0

1

t

∫
K

∫
K

|h•(x)− h•(y)|2 pKt (x, y) dvolg(x) dvolg(y)

]
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= lim
t→0

1

t

∫
K

∫
K

E
[
|h•(x)− h•(y)|2

]
pKt (x, y) dvolg(x) dvolg(y)

≤ lim
t→0

C

t

∫
K

∫
K

d(x, y)2 pKt (x, y) dvolg(x) dvolg(y) ≤ C ′.

where the last inequality follows from the Li–Yau estimate [35, Thm. 3.2] on the Neumann heat kernel.
Thus

lim
t→0

1

t

∫
K

∫
K

|hω(x)− hω(y)|2 pKt (x, y) dvolg(x) dvolg(y) <∞

for a.e. ω, which by the preceding comment implies hω ∈ W 1,2(K). By arbitrariness of K, the latter
implies hω ∈W 1,2

loc (M). �

Remark 3.13. The regularity of h• provided by Proposition 3.10 is sharp, in the sense that h• is not
an element of Ck,γ for any γ ∈ [s− n/2− k, 1].

3.3. Series Expansions in the Compact Case. If M is closed, Fractional Gaussian Fields may be
approximated by their expansion in terms of eigenfunctions of the Laplace–Beltrami operator ∆. As before
in §2.3.2, we denote by (ϕj)j∈N0

⊂ D the complete L2-orthonormal system consisting of eigenfunctions
of ∆, each with corresponding eigenvalue λj , so that (∆+λj)ϕj = 0 for every j. Recall the representations
of heat kernel (2.24), Green kernel (2.21), and grounded Green kernel (2.22) in terms of this eigenbasis.

Let now a sequence
(
ξ•j
)
j∈N0

of i.i.d. random variables on a common probability space (Ω,F ,P) be
given with ξ•j ∼ N (0, 1). For each ` > 0, define a random variable h•` : Ω→ D by

hω` (x) :=
∑̀
j=0

ϕj(x) ξωj
(m2 + λj/2)s/2

.(3.13)

Theorem 3.14. (i) For every s ∈ R and f ∈ H−sm , the family (〈h•` | f〉)`∈N is a centered, L2-
bounded martingale on (Ω,F ,P).

(ii) As ` → ∞, it converges, both a.e. and in L2, to the random variable 〈h | f〉• ∈ L2(Ω) given for
a.e. ω by

〈h | f〉ω :=
∑
j∈N0

〈ϕj | f〉 ξωj
(m2 + λj/2)s/2

.

(iii) 〈h | f〉• is a centered Gaussian random variable with variance ‖f‖2H−sm .

Proof. Assertion (i) and (ii) follow by standard arguments on centered Gaussian variables, e.g. [8,
Thm. 1.1.4]. For (iii), observe that by definition, 〈h | f〉• is a centered Gaussian random variable with
variance

E
[(
〈h | f〉•

)2]
=
∑
j∈N0

〈ϕj | f〉2

(m2 + λj/2)s
=
∥∥A−s/2m f

∥∥2

2
= ‖f‖2H−sm ,(3.14)

where the first equality holds by orthogonality of (ϕj)j∈N0
and since

(
ξ•j
)
j∈N0

are i.i.d. ∼ N (0, 1), the
second equality since (ϕj)j∈N0

is a complete L2-orthonormal system of eigenfunctions of Am as well, and
the third equality by the definition of the norm of H−sm . �

Corollary 3.15. The family of random variables

H̃s,m :=
{
〈h | f〉• : f ∈ H−sm

}
, s ∈ R , m > 0 ,

is a Gaussian Hilbert space, isomorphic to Hs,m in (3.2) via the map ι : 〈h | f〉• 7→ 〈h• | f〉.
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Fig 2: A realization of h•` in (3.13) on the unit sphere S2 with, m = s = 1 (critical case), and ` ∈
{1, . . . , 20}.

Proof. It is shown in Theorem 3.14(iii) that H̃s,m is a Gaussian linear space, closed in L2(Ω) by com-
pleteness of H−sm and (3.14), and thus a Gaussian Hilbert space. Since D embeds continuously into H−sm
for every s ∈ R, the map ι : 〈h |ϕ〉• 7→ 〈h• |ϕ〉 is well-defined for every ϕ ∈ D . Equation (3.3) together
with Theorem 3.14(iii) show that it is as well an isometry, and thus extends to H̃s,m by density of D
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in H−sm and (3.14), again for every s ∈ R. Since {〈h• |ϕ〉 : ϕ ∈ D} is dense in Hs,m by construction, as in
the proof of Proposition 3.4, the map ι has dense image. Since isometries of Hilbert spaces have closed
range, it is as well surjective, and thus an isomorphism of (Gaussian) Hilbert spaces. �

Theorem 3.16. For s > n/2, the series

hω(x) :=
∑
j∈N0

ϕj(x) ξωj
(m2 + λj/2)s/2

converges in L2(Ω) and almost surely on Ω for each x ∈ M. Moreover it converges on L2(Ω×M) and in
L2(volg) almost surely.

Proof. The L2(Ω×M) as well as the L2(Ω) convergence follow by combining the identities

E

[ ∫ ( `′∑
j=`+1

ϕj(x) ξωj
(m2 + λj/2)s/2

)2

dvolg

]
=

`′∑
j=`+1

1

(m2 + λj/2)s
,

E

[( `′∑
j=`+1

ϕj(x) ξωj
(m2 + λj/2)s/2

)2]
=

`′∑
j=`+1

ϕj(x)2

(m2 + λj/2)s
,

and the fact that the terms on the right hand side of both equations converge to 0 as `, `′ →∞ according
to Weyl’s asymptotics (2.9) and (2.21) respectively. The almost sure convergence for each x as well as
the almost sure convergence for the L2(volg) sequence follow by Theorem 3.14 and Doob’s Martingale
Convergence Theorem. �

3.4. The Grounded FGF. Assume now that M is closed. Then, the same arguments used to derive
Theorem 3.1 also apply for the grounded norms, and in this case even for m ≥ 0.

In order to state the next result, let us set D̊ := {ψ ∈ D : 〈volg |ψ〉 = 0}, and denote by D̊ ′ the topo-
logical dual of D̊ . We note that D̊ is a nuclear space when endowed with the subspace topology inherited
from D , since every linear subspace of a nuclear space is itself nuclear, e.g. [55, Prop. 50.1, (50.3), p. 514].

Theorem 3.17. For m ≥ 0 and s ∈ R, there exists a unique Radon Gaussian measure µ̊m,s on D̊ ′

with characteristic functional given by

χ̊m,s : ϕ 7−→ exp
[
− 1

2 ‖ϕ‖
2
H̊−sm

]
, ϕ ∈ D̊ .(3.15)

Proof. Analogously to Theorem 3.1, it suffices to show that D̊ embeds continuously into H̊−sm . In
turn, this follows from the continuity of the embedding of D into Hs

m and Lemma 2.17(ii). �

Definition 3.18. Let m ≥ 0 and s ∈ R. A grounded m-massive Fractional Gaussian Field on M with
regularity s, in short: ˚FGF

M

s,m, is any D ′-valued random field h• on Ω distributed according to µ̊m,s. In
the case m = 0, the field is called a grounded massless Fractional Gaussian Field on M with regularity s.

All results for the random fields FGFs,m have their natural counterparts for ˚FGFs,m, now even admitting
m = 0. In particular, we have the grounded versions of Corollary 3.7 and Theorem 3.16.

Corollary 3.19. For s > 0 and m ≥ 0, the random field h• ∼ ˚FGFs,m is uniquely characterized as
the centered Gaussian process with covariance

Cov
[
〈h• |ϕ〉 , 〈h• |ψ〉

]
=

∫∫
G̊s,m(x, y)ϕ(x)ψ(y) dvol⊗2

g (x, y) , ϕ, ψ ∈ D̊ ⊂ H̊−sm .
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Corollary 3.20. For s > n/2 and m ≥ 0, the series

hω(x) :=
∑
j∈N

ϕj(x) ξωj
(m2 + λj/2)s/2

converges in L2(Ω) and almost surely on Ω for each x ∈ M. Moreover it converges on L2(Ω×M) and in
L2(volg) almost surely.

In particular, h• ∼ ˚FGFs,0 is given by hω(x) = 2s/2
∑
j∈N λ

−s/2
j ϕj(x) ξωj if s > n/2.

If m > 0, the grounding map f 7→ f̊ := f − 1
volg(M) 〈f |1〉 allows us to easily switch between the random

fields FGFM
s,m and ˚FGF

M

s,m, as in the next Lemma.

Lemma 3.21. For every s ∈ R and every m > 0,

(i) given h• ∼ FGFs,m, put h̊ω :=hω − 1
volg(M) 〈h

ω |1〉. Then h̊• ∼ ˚FGFs,m;

(ii) given h• ∼ ˚FGFs,m and independent ξ ∼ N (0, 1), put ĥω :=hω + 1√
m2s volg(M)

ξω 1. Then ĥ• ∼
FGFs,m.

Proposition 3.22. Let h̊• ∼ ˚FGFs,m on M. If s > n/2 + k + α with k ∈ N0 and α ∈ [0, 1),
then h̊• ∈ Ck,αloc (M) almost surely.

Proof. Let ξ ∼ N (0, 1) be independent of h̊•. By Lemma 3.21(ii), h̊•+ 1√
m2svolg(M)

ξ• 1 is distributed

as an FGFM
s,m, and thus it satisfies Proposition 3.10. Since 1√

m2svolg(M)
ξω 1 ∈ D for every ω, the conclusion

follows. �

Remark 3.23. It is worth comparing the grounding of operators and fields presented above with the
pinning for fractional Brownian motions in [22], where a Riesz field Rs is defined as the centered Gaussian
field with covariance

E [Rs(x)Rs(y)] =
1

Γ(s)

∫ ∞
0

ts−1
(
pt(x, y)− pt(x, o)− pt(y, o) + pt(o, o)

)
dt , s ∈ (n/2, n/2 + 1) ,

for some fixed ‘origin’ o ∈ M. In particular, while grounding on a compact manifold (M, g) is canonical,
the pinning of a Riesz field at o ∈ M, and hence the properties of the corresponding random Riemannian
manifold (see §4 below), would depend on o.

3.5. Dudley’s Estimate. A crucial role in our geometric estimates and functional inequalities for the
Random Riemannian Geometry is played by estimates for the expected maximum of the random field.
The fundamental estimate of Dudley provides an estimate in terms of the covering number w.r.t. the
pseudo-distance ρs,m, introduced in (2.25).

Notation 3.24. For any pseudo-distance ρ on M, we denote by Nρ(ε) the least number of ρ-balls of
radius ε which are needed to cover M. When ρ = ρs,m we write Ns,m(ε) in place of Nρs,m(ε).

Theorem 3.25 ([33, Thm. 11.17]). Fix s > n/2 and m ≥ 0 Then, for h ∼ FGFM
s,m (and in the

compact case also for h ∼ ˚FGF
M

s,m),

E

[
sup
x∈M

h•(x)

]
≤ 24 ·

∫ ∞
0

(
logNs,m(ε)

)1/2

dε .

In Section 6 we will study in detail the asymptotics of the Green kernel close to the diagonal and in
particular derive sharp estimates for the noise distance ρ in terms of the Riemannian distance d. This
will lead to sharp estimates for the covering numbers Ns,m(ε) and thus in turn to sharp estimates for the
expected maximum of the random field.
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4. Random Riemannian Geometry. Let a Riemannian manifold (M, g) be given together with
a Fractional Gaussian Field h• ∼ FGFM

s,m with s > n/2 and m > 0. If M is compact, we alternatively can

choose h• ∼ ˚FGF
M

s,m with s > n/2 and m ≥ 0. In the sequel, we assume that either M is closed or m > 0

and (M, g) has bounded geometry.
For almost every ω ∈ Ω, by Propositions 3.10 and 3.22, hω is a continuous function on M. For each

such ω, we consider the Riemannian manifold

(M, gω) with gω := e2hω g ,(4.1)

the new metric being the conformal change of the metric g by the conformal factor hω. In other words,
we consider the random Riemannian manifold

M• := (M, g•) with g• := e2h• g(4.2)

with the random Riemannian metric g• : ω 7→ gω.
Assuming that M is closed, for a.e. ω, the Riemannian metric gω is of class Ck on M for k := ds− n/2e−

1 ≥ 0, where we set dae := min(Z∩[a,∞)). In particular, for s > n/2 + 2, it is almost surely of class C2,
and the Riemannian manifolds Mω may be studied by smooth techniques. Our main interest in the sequel
will be in the case s ∈ (n/2, n/2 + 2] where no such techniques are directly applicable and where we have
no classical curvature concepts at our disposal.

4.1. Random Dirichlet Forms and Random Brownian Motions. Our approach to geometry, spectral
analysis, and stochastic calculus on the randomly perturbed Riemannian manifolds (M, g•) will be based
on Dirichlet-form techniques. Before going into details, let us recall some standard results on the canonical
Dirichlet form on the ‘un-perturbed’ Riemannian manifold.

Remark 4.1. The canonical Dirichlet form on the Riemannian manifold (M, g), e.g. [12, §5.1, p. 148],
is the closed bilinear form (E ,F) on L2(volg) given by F :=W 1,2

∗ and

E(ϕ,ψ) :=
1

2

∫
〈dϕ |dψ〉g∗ dvolg =

1

2

∫
〈∇ϕ | ∇ψ〉g dvolg .(4.3)

Here g∗ denotes the inverse metric tensor obtained from g by musical isomorphism, d the differential
on M, and ∇ the gradient; for functions in W 1,2

∗ , differentials and gradients have to be understood in
the weak sense. In fact, however, C∞c is dense in the form domain F and thus in (4.3) we can restrict
ourselves to ϕ,ψ ∈ C∞c .

The form (E ,F) is a regular, strongly local, conservative Dirichlet form properly associated with the
standard Brownian motion B on (M, g), the Markov diffusion process with transition kernel pt introduced
in §2.

The canonical Dirichlet form and the Laplace–Beltrami operator on (M, g) uniquely determine each
other by

E(ϕ,ψ) = −1

2

∫
∆ϕψ dvolg , ϕ, ψ ∈ C∞c .

Under conformal transformations with non-differentiable weights, however, the latter no longer admits a
closed expression whereas the former still is easily representable.

Remark 4.2. If g′ = e2fg is a conformal change of the metric g by means of a smooth weight f , then
g′∗ = e−2fg∗, vol′g = enfvolg, and ∇′ϕ = e−2f∇ϕ. Thus in particular,

E ′(ϕ,ψ) :=
1

2

∫
〈dϕ |dψ〉g∗ e

(n−2)f dvolg =
1

2

∫
〈∇ϕ | ∇ψ〉g e

(n−2)f dvolg ,

and ∆′ϕ = e−2f
(
∆ϕ+ (n− 2) 〈∇f | ∇ϕ〉g

)
.
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Now let us turn to the randomly perturbed Riemannian manifolds (M, g•).

Theorem 4.3. Let h• ∼ FGFs,m with m > 0 and s > n/2. Then,

(a) for P-a.e. ω ∈ Ω, the quadratic form (Eω, C∞c )

Eω(ϕ,ψ) =
1

2

∫
〈∇ϕ | ∇ψ〉g e

(n−2)hω dvolg , ϕ, ψ ∈ C∞c ⊂ L2(enh
ω

volg) ,(4.4)

is closable on L2(enh
ω

volg);
(b) its closure (Eω,Fω) is a regular, irreducible, strongly local Dirichlet form, properly associated with

an enh
ω

volg-symmetric Markov diffusion process Bω on M;
(c) the generator of the closed bilinear form (Eω,Fω), denoted by ∆ω, is the unique self-adjoint operator

on L2(enh
ω

volg) with D(∆ω) ⊂ Fω and

Eω(ϕ,ψ) = −1

2

∫
(∆ωϕ)ψ enh

ω

dvolg , ϕ ∈ D(∆ω) , ψ ∈ Fω ;(4.5)

(d) the associated intrinsic distance

dEω (x, y) := sup
{
|f(x)− f(y)| : f ∈ Fω ∩ C0(M) , |∇f |2 ≤ e−nh

ω

volg-a.e.
}

coincides with the Riemannian distance dω on M given by

dω(x, y) := inf

{∫ 1

0

eh
ω(γr)

√
g(γ̇r, γ̇r) dr : γ ∈ AC

(
[0, 1];M

)
, γ0 = x , γ1 = y

}
.(4.6)

Proof. (a) Let ω be given such that hω is continuous. Then both σ := enh
ω

and ρ := e(n−2)hω are
positive and in L1

loc and so is 1/ρ. In particular, the weights thus satisfy the so-called Hamza condition.
A proof of closability under this condition, in the case M = Rn, is given in [40, §II.2(a)], and, for general
manifolds in the case U = M and σ ≡ 1, in [2, Thm. 4.2]. The general case readily follows.

(b)+(c) For the Markov property, see e.g. [19, Example 1.2.1 and Thm. 3.1.1], for the strong locality and
the regularity see e.g. [19, Exercise 3.1.1]. Since the local domain Fωloc coincides with the local domain F ,
the irreducibility follows from [5, Thm. 4.5]. The assertions on the associated Markov process and on the
generator easily follow.

(d) Choosing ω such that hω is continuous, the claim follows from [29, Lem. 3.5]. �

Definition 4.4. (a) The operator ∆ω is called the Laplace–Beltrami or Laplace operator on Mω.
(b) The family of operators

(
et∆

ω/2
)
t>0

on L2(enh
ω

volg) is called the heat semigroup on Mω.
(c) The process Bω is called Brownian motion on Mω.
(d) A function ϕ on an open subset U ⊂ Mω is called weakly harmonic if ϕ ∈W 1,2

loc (U) and Eω(ϕ,ψ) = 0

for all ψ ∈ C∞c with supp(ψ) ⊂ U .

Theorem 4.5. Let s > n/2, m > 0, and h• ∼ FGFs,m. Then, for P-a.e. ω ∈ Ω, the following
assertions hold:

(i) every weakly harmonic function on U ⊂ Mω admits a version which is locally Hölder continuous
(w.r.t. d and, equivalently, w.r.t. dω);

(ii) the heat semigroup
(
et∆

ω/2
)
t>0

on Mω has an integral kernel pωt (x, y) which is jointly locally Hölder
continuous in t, x, y;

(iii) for every starting point, the distribution of the Brownian motion on Mω is uniquely defined.
(iv) For all x, y ∈ M,

lim
t→0

2t log pωt (x, y) = −dω(x, y)2 .
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Proof. Let ω be given such that hω is continuous. Then, locally on M, the Dirichlet forms Eω and E as
well as the measures volωg := enh

ω

volg and volg are comparable. In other words, the ‘Riemannian structure’
for gω is locally uniformly elliptic w.r.t. the structure for g in the sense of [48]. Thus, assertion (i), resp. (ii),
follows from either [48, Cor. 5.5] or [54, Cor. 3.3, resp. Prop. 3.1 and Thm. 3.5].

If M is compact, assertion (iii) is a consequence of (ii). For general M, we will choose an exhaustion
of M by relatively compact, open sets Bn ↗ M which are regular for Eω. For instance, according to
Wiener’s criterion, we can choose the open balls Bn := Bn(o), n ∈ N, around any fixed point o ∈ M.
Let En,ω denote the Dirichlet form obtained from Eω by imposing Dirichlet boundary conditions onM\Bn,
and let Gn,ω1,m(x, y) denote the associated resolvent kernel. Then for any fixed x ∈ Bn the latter kernel is
continuous in y ∈ Bn (as a consequence of (ii)) and it vanishes as y approaches ∂Bn (due to the regularity
of ∂Bn). Thus

(
Gn,ω1,m

)
m>0

extends to a Feller resolvent on the compact space Bn. The associated Feller
process Bn,ω is pointwise well-defined. It will be called Random Brownian Motion with absorption on
M \Bn. For any given k, ` ∈ N with k, ` ≥ n, the processes Bk,ω and B`,ω can be modelled on the same
probability space and such that their trajectories coincide until the first hitting time of M \ Bn. With
a diagonal argument we then construct the process Bω as follows: if it starts in Bn \ Bn−1,ω, it follows
the trajectories of the process Bn+1,ω until it hits ∂Bn. Then it follows the trajectories of Bn+2,ω etc.
This yields a pointwise well-defined process. By monotonicity of resolvent kernels and Dirichlet forms, it
is associated with the monotone increasing limit of Dirichlet forms Eω = limn↗∞ En,ω.

Assertion (iv) follows from the main result in [44]. �

(a) s = 3/2 (b) s = 2 (c) s = 5/2

Fig 3: A realization of the random metric g•` = e2h•` g on S2, ` = 30.

4.2. Random Brownian Motions in the C1-Case. More precise insights into the analytic and proba-
bilistic structures on the random Riemannian manifold (M, g•) can be gained if the regularity parameter s
is larger than n/2 + 1. In this case, the conformal weight h• is a.s. a C1-function.

To provide an explicit representation for the perturbed Brownian motion, we need some notations and
concepts from the abstract theory of Dirichlet forms.

Martingale additive functionals. Denote the Brownian motion on the (‘unperturbed’) Riemannian man-
ifold (M, g) by

B :=
(

Ξ, (Ft)t≥0 , (Xt)t≥0 , (Px)x∈M

)
.
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Lemma 4.6 (‘Fukushima decomposition’, see [19, §6.3]). (a) For each continuous ψ ∈ W 1,2
∗ , there

exist a unique martingale additive functional M [ψ] and a unique continuous additive functional N [ψ]

which is of zero energy such that

(4.7) ψ(Xt) = ψ(X0) +M
[ψ]
t +N

[ψ]
t t ∈ [0, ζ) Px-a.s. for q.e. x ∈ M .

The quadratic variation of M [ψ] is given by

(4.8) 〈M [ψ]〉t =

∫ t

0

∣∣∇ψ(Xs)
∣∣2
g

ds t ∈ [0, ζ) Px-a.s. for q.e. x ∈ M

for any choice of a Borel version of the function |∇ψ|g ∈ L2(M).
(b) For each continuous ψ ∈ W 1,2

loc , there exists a unique local martingale additive functional M [ψ] =(
M

[ψ]
t

)
t∈[0,ζ)

such that

M
[ψ]
t = M

[ψn]
t t ∈ [0, τn) Px-a.s. for q.e. x ∈ M

where, for every n ∈ N, we letM [ψn] be the martingale additive functional associated with a function
ψn ∈ W 1,2

∗ such that ψ = ψn a.e. on Mn, for some exhausting sequence of relatively compact open
sets Mn ↗ M, and where τn := inf {t ≥ 0 : Xt /∈ Mn}. As before, the energy 〈M [ψ]〉t for t ∈ [0, ζ) is
given by (4.8), now with |∇ψ|g ∈ L2

loc(M).
(c) For each continuous ψ ∈W 1,2

loc , a super-martingale, multiplicative functional is defined by

L
[ψ]
t := exp

(
M

[ψ]
t − 1

2

〈
M [ψ]

〉
t

)
1{t<ζ} .(4.9)

For the defining properties of ‘martingale additive functionals’ and of ‘continuous additive functionals
of zero energy’ (as well as for the relevant equivalence relations that underlie the uniqueness statements)
we refer to the monograph [19].

Example 4.7. If M = Rn and ψ ∈ C2 then
(
M

[ψ]
t

)
t
is the martingale part in the Itô decomposition

ψ(Xt) = ψ(X0) +

∫ t

0

∇ψ(Xs) dXs −
1

2

∫ t

0

∆ψ(Xs) ds Px-a.s. for all x ∈ M .

We are now able to provide an explicit construction of the Brownian motion

Bω :=
(

Ξ, (Fω
t )t≥0 , (X

ω
t )t≥0 , (P

ω
x )x∈M∂ , ζ

ω
)

(4.10)

on the randomly perturbed manifold (M, g•) which previously was introduced by abstract Dirichlet form
techniques.

Theorem 4.8. Let h• ∼ FGFs,m with m > 0 and s > n/2+1. Then for P-a.e. ω ∈ Ω, the process Bω

is a time-changed Girsanov transform of the standard Brownian motion B on (M, g). More precisely:

(a) For q.e. x ∈ M, the law Pωx is locally absolutely continuous up to life-time ζω w.r.t. the law Px of B
on the natural filtration (Ft)t≥0 of B, viz.

dPωx
dPx

∣∣∣∣∣
Ft∩{t<ζω}

= exp

(
n− 2

2
M

[
hω
]

t − (n− 2)2

8

〈
M

[
hω
]〉

t

)
, t ∈ [0, ζω) .(4.11)

(b) For q.e. x ∈ M, a trajectory (Xω
t )t∈[0,ζω) started at x satisfies

Xω
t = Xλωt

, λωt := inf {s > 0 : Cωs > t} , Cωt :=

∫ t

0

e2hω(Xs) ds .(4.12)
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(c) The process Bω has life-time ζω = Cω∞.

Remark 4.9 (On conservativeness). It is not clear to the authors whether the Dirichlet form (Eω,Fω)

is P-a.s. conservative. In particular, the random Brownian motion (4.10) may in principle have finite life-
time ζω.

Proof of Theorem 4.8. By Proposition 3.10, the random field h• lies a.s. in W 1,2
loc ∩ C(M). Thus,

also e(n−2)hω/2 ∈ W 1,2
loc ∩ C(M), and we may consider the Girsanov transform (Eφ,Fφ), e.g. [19, §6.3], of

the canonical form (E ,F) by the function φ = φω := e(n−2)hω/2, satisfying

Eφ(ϕ,ψ) =
1

2

∫
g∗(dϕ,dψ)φ2dvolg , ϕ, ψ ∈ C∞c ⊂ L2(φ2 volg) .(4.13)

By standard results in the theory of Dirichlet forms, (Eφ,Fφ) is a regular Dirichlet form on L2(φ2 volg),
properly associated with the Girsanov transformBφ of the standard Brownian motionB. Indeed, choosing
Gn :=Bn(o), n ∈ N, for some fixed o ∈ M yields a nondecreasing sequence of (quasi-)open sets with⋃
nGn = M such that φ, 1/φ and φ|∇φ| ∈ L2(Gn, volg). Then, according to [18, Thm. 4.9], the Girsanov-

transformed process is properly associated with the quasi-regular Dirichlet form obtained as the closure
of Eφ with pre-domain ⋃

n∈N
FGn

where as usual FGn :={ψ ∈ F : ψ̃ = 0 q.e. on M \ Gn}. Since obviously C∞c ⊂
⋃
n∈N FGn ⊂ F , this

Dirichlet form is even regular.
Now, let us denote by

(
Eφ,µ,Fφ,µ

)
the time-changed form, e.g. [19, §6.2], of (Eφ,Fφ) with respect

to the measure µ = µω := e2hωvolg. It is again standard that
(
Eφ,µ,Fφ,µ

)
is a regular Dirichlet form

on L2(φ2µ), properly associated with the time change Bφ,µ of Bφ induced by µ. Since φ2µ = enh
ω

volg,
the form Eφ,µ coincides on C∞c with the form Eω defined in (4.4). By regularity of both forms we conclude
that

(
Eφ,µ,Fφ,µ

)
= (Eω,Fω) is the canonical form on the Riemannian manifold Mω = (M, gω), properly

associated with the corresponding Brownian motion Bω = Bφ,µ.
In order to characterize the law of Bω as in assertion (a), (b), it suffices to note the following. Since B

is conservative, it is noted in e.g. [17, §5 a)] that the process

Bφ :=
(

Ξφ,
(
Fφ
t

)
t≥0

,
(
Xφ
t

)
t≥0

,
(
Pφx
)
x∈M∂

, ζφ
)

satisfies Xφ
t = Xt for t > 0 and

dPφx
dPx

∣∣∣∣∣
Ft∩{t<τn−1}

= exp
(
M

[log φn]
t − 1

2

〈
M [log φn]

〉
t

)
, n ∈ N ,

where the functions log φn are given as in Lemma 4.6(b) for log φ in place of ψ, and the stopping times τn
are defined as τn := inf {t > 0 : Xt /∈ Mn} with Mn again as in Lemma 4.6(b). The conclusion follows by
letting n to infinity, since Bω is a time change of Bφ, and therefore: Pωx = Pφx for each x ∈ M. Again
since Bω is a time change of Bφ, one has that Xω

t = Xφ
λωt

= Xλωt
with λωt as in Equation (4.12) for

each t > 0, cf. [19, Eqn. (6.2.5)]; assertion (c) is [19, Exercise 6.2.1]. �

5. Geometric and Functional Inequalities for RRG’s. Given a Riemannian manifold (M, g)

and the intrinsically defined FGF noise h•, we ask ourselves: how do basic geometric and spectral theoretic
quantities of (M, g) change if we switch on the noise? For instance, will E volg•(M) be smaller or larger
than volg(M)? How about λ•0, the random spectral bound, or λ•1, the random spectral gap? Can we
estimate them in terms of the unperturbed spectral quantities? Can we estimate in average the rate of
convergence to equilibrium on the random manifold?

In the following, let a Riemannian manifold (M, g) of bounded geometry be given and a random field
h• ∼ FGFs,m with m > 0 and s > n/2. As before, put g• = e2h•g.
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5.1. Volume, Length, and Distance. We will compare the random volume, random length, and random
distance in the random Riemannian manifold (M, g•) with analogous deterministic quantities in geome-
tries obtained by suitable averages of the conformal weight. Recall that θ(x) :=Gs,m(x, x) = E[h•(x)2] ≥ 0

and put
gn := en θg, g1 := eθg .

Further, recall that for given ω with continuous hω, the volume of a measurable subset A ⊂ M w.r.t. the
Riemannian tensor gω is given by

volgω (A) :=

∫
A

enh
ω

dvolg .

Similarly, the length of an absolutely continuous curve γ : [0, 1]→ M w.r.t. the Riemannian tensor gω is
given by

Lgω (γ) :=

∫ 1

0

eh
ω(γr) |γ̇r|g dr .

Proposition 5.1. For any measurable A ⊂ M

E
[
volg•(A)

]
= volgn(A) ≥ volg(A) .

In particular,
en

2θ∗/2 · volg(A) ≥ E
[
volg•(A)] ≥ en

2θ∗/2 · volg(A)

with θ∗ := infxGs,m(x, x), θ∗ := supxGs,m(x, x).

Proof. It suffices to note that

E
[
volg•(A)] =

∫
A

E[enh
•
]dvolg =

∫
A

en
2Gs,m(x,x)/2dvolg(x) = volgn(A) . �

Proposition 5.2. For any absolutely continuous curve γ : [0, 1]→ M

E
[
Lg•(γ)

]
= Lg1(γ) ≥ Lg(γ) .

Proof. It suffices to note that

ELg•(γ) =

∫ 1

0

E
[
eh
•(γr)

]
|γ̇r|g dr =

∫ 1

0

e
1
2E[h•(γr)2] |γ̇r|g dr = Lg1(γ) . �

Proposition 5.3. For each x, y ∈ M

dg1(x, y) ≥ E
[
dg•(x, y)

]
≥ dg(x, y) · e−E

[
supz∈M h

•(z)
]
.

Proof. Given x and y, let γ be any absolutely continuous curve connecting them. Then

Lg1(γ) = E
[
Lg•(γ)

]
≥ E

[
inf
γ
Lg•(γ)

]
= E

[
dg•(x, y)

]
.

This proves the upper bound.
For the lower bound, let us assume that infz∈M h

•(z) is finite for almost every ω. Otherwise, the lower
bound is trivially satisfied. Then (M, g•) is complete and locally compact so that there exists a constant
speed geodesic γω : [0, 1]→ M connecting x and y. Then

dgω (x, y) =

∫ 1

0

eh
ω(γωs ) · |γ̇ωs |g ds ≥ dg(x, y) ·

∫ 1

0

eh
ω(γωs ) ds ≥ dg(x, y) · inf

z∈M
eh

ω(x) .

Then, by Jensen’s inequality and symmetry of the random field,

E
[
dg•(x, y)

]
≥ dg(x, y) ·E

[
inf
z∈M

eh
•(z)
]
≥ dg(x, y) · e−E

[
supz∈M h

•(z)
]
. �
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5.2. Spectral Bound. The L2-spectral bound for (M, gω) is defined by

λω0 := inf spec(−∆gω ) .

By the standard variational characterization of the spectrum via Rayleigh–Riesz quotients we have that

λω0 = inf


∫
M

|∇u|2g e(n−2)hω dvolg∫
M

u2 enh
ω

dvolg

: u ∈ C∞c

 .(5.1)

Note that λ0 is not necessarily 0, e.g. λ0 = (n−1)2

4 for the hyperbolic space of curvature −1.

Lemma 5.4 (Measurability of the spectral bound). The function ω 7→ λω0 is measurable.

Proof. Let C∞c be endowed with the C1-topology τ1, and note that (C∞c , τ1) is separable. Further
note that, P-almost surely, (C∞c , τ1) embeds continuously into (Fω, (Eω)

1/2
1 ), and that this embedding

has dense image since (Eω,Fω) is a regular Dirichlet form. Therefore, there exists a countable Q-vector
space D ⊂ C∞c simultaneously (Eω)

1/2
1 -dense in Fω for P-a.e. ω. As a consequence, the variational

characterization (5.1) holds as well when replacing C∞c by D. Since the integrals’ quotient in this char-
acterization is measurable as a function of ω, the corresponding infimum over D is as well a measurable
function of ω, since D is countable and the infimum of any countable family of measurable functions is
again measurable. �

Proposition 5.5. For n ≥ 2 (
E
[
λ•0
−n/2])−2/n ≤ λn0

with λn0 the spectral bound for the metric gn := en θg. In particular, whenever θ∗ <∞, then(
E
[
λ•0
−n/2])−2/n ≤ e((n−2)θ∗−nθ∗)n/2 · λ0 ,

and, for homogeneous spaces, (
E
[
λ•0
−n/2])−2/n ≤ e−nθ · λ0 .

Proof. For each u and a.e. ω∫
M

u2enh
ω

dvolg ≤
1

λω0

∫
M

|∇u|2e(n−2)hω dvolg .

Integrating w.r.t. dP(ω) and applying Hölder’s inequality yield∫
M

u2 ·E[enh
•
] dvolg ≤

∫
M

|∇u|2g ·E
[(

1
λ•0

)n/2]2/n

·E
[
e(n−2)h•· n

n−2

](n−2)/n

dvolg

and thus with h := n
2 θ,∫

M

u2 · enh dvolg ≤ E
[(
λ•0
)−n/2]2/n · ∫

M

|∇u|2g · e(n−2)h dvolg .

Since this holds for all u we conclude that λn0 ≥
(
E[(λ•0)−n/2]

)−2/n. �

Remark 5.6. Following the argumentation from the proof of Theorem 5.10 below, we can also derive
a two-sided, pointwise estimate for the spectral bound, valid for almost every ω:

(5.2) e−α sup |hω| ≤ λω0
λ0
≤ eα sup |hω|

with α := 2(n− 1) if n ≥ 2 and α := 2 if n = 1.
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5.3. Spectral Gap. In the following we assume that M is closed, and we let volωg = volgω := enh
ω

volg.
Then, the Laplacian ∆gω has compact resolvent and, in particular, it has discrete spectrum. The spectral
gap is defined by

λω1 := inf
(
spec(−∆gω ) \ {0}

)
.

Denoting by

πωf :=
1

volωg (M)

∫
M

fdvolωg ,

the mean value of f w.r.t. the measure volωg , the spectral gap has the variational representation

λω1 = inf


∫
M

|∇u|2g e(n−2)hωdvolg∫
M

(u− πωu)2dvolωg

: u ∈ C∞c

 .(5.3)

Hence the spectral gap is the smallest non-zero eigenvalue of the Laplacian and the inverse of the smallest
constant for which the Poincaré inequality holds. By the very same proof of the measurability of the
random spectral bound (Lemma 5.4) we have as well the following:

Lemma 5.7 (Measurability of the spectral gap). The function ω 7→ λω1 is measurable.

The function h• is P-a.s. continuous by Proposition 3.10, thus P-a.s. bounded by compactness of M.
As a consequence, the L2(volωg )-norm is bi-Lipschitz equivalent to the L2(volg)-norm. Thus, the spaces
L2(volg) and L2(volωg ) coincide as sets. Again by boundedness of hω, the form Eω too is bi-Lipschitz
equivalent to E on C∞c . Set E1(u) := E(u, u) + ‖u‖2L2(volg)

, and analogously for ω. By the equivalence of

the L2-norms and forms established above, the norm E1/2
1 is bi-Lipschitz equivalent to the norm (Eω1 )1/2

on C∞c . Since M is compact, both forms are regular, thus Fω too coincides with F as a set and the
bi-Lipschitz equivalence of E1/2

1 and (Eω1 )1/2 extends to F .
Given ω with continuous hω, let Pωt := et∆

ω/2, t > 0, denote the heat semigroup on L2(volωg ). For each
f ∈ L2(volg), the functions Pωt f will converge as t → ∞ to πωf . The rate of convergence is determined
by λω1 , viz. ∥∥∥Pωt f − πωf∥∥∥

L2(volωg )
≤ e−λ

ω
1 t ·

∥∥f∥∥
L2(volωg )

or, equivalently,

log
∥∥∥Pωt f − πωf∥∥∥

L2(volωg )
≤ −λω1 t+ log

∥∥f∥∥
L2(volωg )

.

Lemma 5.8. The map ω 7→ ‖Pωt f − πωf‖L2(volωg ) is measurable for every f ∈ L2(volg) and t > 0.

Proof. Firstly, let us discuss some heuristics. For α > 0, set Eωα ( · ) := Eω( · )+‖ · ‖2L2(volωg ), and denote
by (Gωα)α≥0 the L2(volωg )-resolvent semigroup of (Eω,Fω), satisfying (e.g. [40, Thm. I.2.8, p. 18])

Eωα (Gωαu, v) = 〈u | v〉L2(volωg ) , u ∈ L2(volωg ) , v ∈ Fω .

We conclude the measurability in ω of the left-hand side from that of the right-hand side which is clear
from the identifications of sets L2(volωg ) = L2(volg) and Fω = F . For fixed t, α > 0, writing the series
expansion of etα(αGα−1) we conclude that

〈Pωt u | v〉L2(volωg ) , u ∈ L2(volωg ) , v ∈ Fω ,

is measurable as a function of ω, since Pωt = limα→∞ etα(αGα−1). The measurability of ω 7→ 〈πωu | v〉 may
be concluded in a similar way, which would then show the assertion.
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In order to make this argument rigorous, we resort to theory of direct integrals of quadratic forms
in [13]. In light of Corollary 3.15, we may assume with no loss of generality that (Ω,F ,P) be the
completion of a standard Borel space. Let D ⊂ C∞c be the countable Q-vector space simultaneously dense
in (Fω, (Eω)

1/2
1 ) for P-a.e. ω ∈ Ω constructed in the proof of Lemma 5.4.

Now, let ω 7→ Fω be the measurable field of Hilbert spaces with underlying linear space S :=
∏
ω∈Ω Fω =

FΩ in the sense of [15, §II.1.3, Dfn. 1, p. 164] with D as a fundamental sequence in the sense of [15,
§II.1.3, Dfn. 1(iii), p. 164]. Further let ω 7→ L2(volωg ) be the measurable field of Hilbert spaces with
underlying space generated by S as above in the sense of [15, §II.1.3, Prop. 4, p. 167]. In particular, for
every f ∈ L2(volg), the constant field ω 7→ f ∈ L2(volωg ) is a measurable vector field. Furthermore, since∫

Ω

‖f‖2L2(volωg ) dP(ω) = E

[∫
M

f2dvolωg

]
= ‖f‖2L2(volg)

<∞ ,

all constant fields are elements of the direct integral of Hilbert spaces
∫ ⊕

Ω
L2(volωg ) dP(ω).

It is readily verified that ω 7→ (Eω,Fω) is, by construction, a direct integral of quadratic forms in
the sense of [13, Dfn. 2.11]. As a consequence, ω 7→ Pωt is a measurable field of bounded operators
in the sense of [15, §II.2.1, Dfn. 1, p. 179] by [13, Prop. 2.13]. Furthermore, since ω 7→ volωg (M) is
measurable, ω 7→ 〈πωu | v〉L2(volωg ) is measurable for every u, v ∈ D. Thus, ω 7→ πω is a measurable field
of bounded operators by [15, §II.2.1, Prop. 1, p. 179].

It follows that ω 7→ (Pωt −πω) is a measurable field of bounded operators. Now fix f ∈ L2(volg). Since
the constant field ω 7→ f is measurable as discussed above, ω 7→ (Pωt − πω)f too is a measurable vector
field, by definition of measurable field of bounded operators. Thus, its norm ω 7→ ‖(Pωt − πω)f‖L2(volωg )

too is measurable, which concludes the assertion. �

Lemma 5.9. For every compact manifold (M, g) (with continuous, not necessarily smooth metric g),

(5.4) λ1(M) = inf
{

max{λ0(M1), λ0(M2)} : M1,M2 non-polar, quasi-open, disjoint ⊂ M
}

where

(5.5) λ0(Mi) := inf


∫
|∇v|2g dvolg∫
|v|2 dvolg

: v ∈W 1,2
∗ \ {0} , ṽ = 0 q.e. on M \Mi

 .

Here, as usual in Dirichlet form theory, ṽ denotes a quasi continuous version of v, and q.e. stands for
quasi everywhere, see, e.g., [19, §2.1].

The infimum in (5.4) is attained for M1 :={u > 0},M2 :={u < 0} if u is chosen as an eigenfunction
for λ1(M). In this case, indeed,

λ1(M) = λ0(M1) = λ0(M2) .

Proof. Let u be an eigenfunction for λ1(M) and put M1 :={u > 0},M2 :={u < 0}. Choosing v = u+

or v = u− in (5.5) one can verify that λ0(Mi) = λ1(M) for i = 1, 2. This proves the ≥-assertion in (5.4).
For the converse estimate, let vi 6= 0 for i = 1, 2 be minimizers for λ0(Mi). Put λ :=λ0(M1) ∨ λ0(M2)

and u := v1 + tv2 with t 6= 0 chosen such that
∫
udvolg = 0. Then∫

|∇u|2g =

∫
|∇v1|2g + t2

∫
|∇v2|2g ≤ λ

∫
|v1|2 + t2λ

∫
|v2|2 = λ

∫
|u|2

and thus λ1(M) ≤ λ. �

Theorem 5.10. For P-a.e. ω,

(5.6) e−α sup |hω| ≤ λω1
λ1
≤ eα sup |hω|
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with α := 2(n− 1) if n ≥ 2 and α := 2 if n = 1. In particular,

E
[∣∣ log λ•1 − log λ1

∣∣] ≤ αE
[

sup |h•|
]
.

Proof. Choose a minimizer u for λ1(M) and put M1 :={u > 0},M2 :={u < 0}. Then for each ω and
each i = 1, 2,

λω0 (Mi) = inf


∫
|∇v|2g e(n−2)hωdvolg∫
|v|2enh

ω

dvolg

: ṽ = 0 q.e. on M \Mi


≤ supx e

(n−2)hω(x)

infy enh
ω(y)

· inf


∫
|∇v|2gdvolg∫
|v|2 dvolg

: ṽ = 0 q.e. on M \Mi


≤ eα sup |hω| · λ0(Mi)

= eα sup |hω| · λ1(M)

with α :=n+ |n− 2|. Hence according to the previous Lemma,

λω1 (M) ≤ eα sup |hω| · λ1(M) .

Interchanging the roles of λω1 and λ1 and replacing hω by −hω yield the reverse inequality. �

Corollary 5.11. For all f ∈ L2(volg) and all t > 0,

E

[
log
∥∥∥P •t f − π•f∥∥∥

L2(vol•g )

]
≤ −λ1t · e−αE

[
sup |h•|

]
+ log ‖f‖L2(volg)

+
n2 θ∗

4
(5.7)

with θ∗ := supxE
[
h•(x)2

]
and α :=n+ |n− 2|.

Proof. With Theorem 5.10 we estimate

λω1 t ≥ λ1t e
−α sup |hω| .

By the convexity we may apply Jensen’s inequality and get the estimate

E
[
λ•1t
]
≥ λ1t e

−αE
[
sup |h•|

]
.

Moreover, again by Jensen’s inequality

E
[

log
∥∥f∥∥

L2(vol•g )

]
≤ 1

2
logE

[∥∥f∥∥2

L2(vol•)

]
≤ 1

2
log ‖f‖2L2(volg)

+
n2 θ∗

4
,

which yields the claim. �

6. Higher-Order Green Kernels — Asymptotics and Examples.

6.1. Green Kernel Asymptotics. The next Theorem illustrates the asymptotic behavior of the higher-
order Green kernel Gs,m(x, y) close to the diagonal in terms of the Riemannian distance d(x, y). The
statement of the Theorem is sharp, as readily deduced by comparison with the analogous statement for
Euclidean spaces, see Equation (6.7) below.
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Theorem 6.1. Let (M, g) be a Riemannian manifold with bounded geometry, and s > n/2. Then, for
every α ∈ (0, 1] with α < s− n/2 there exists a constant Cα,m > 0 so that

ρs,m(x, y) = |Gs,m(x, x) +Gs,m(y, y)− 2Gs,m(x, y)|1/2 ≤ Cα,m · d(x, y)α ,

for all m > 0 and all x, y ∈ M.
If M is additionally closed, then additionally

ρs,m(x, y) =
∣∣∣G̊s,m(x, x) + G̊s,m(y, y)− 2 G̊s,m(x, y)

∣∣∣1/2 ≤ Cα · d(x, y)α ,

for all m ≥ 0. In this case, the constant Cα can be chosen such that

(6.1) C2
α = C

(
λ1

4

)n/2+α−s Γ
(
s− n/2− α

)
α∗ · Γ(s)

with α∗ :=α whenever α ∈ (0, 1/2] and α∗ :=α− 1/2 whenever α ∈ (1/2, 1] and C > 0 is a constant only
depending on M.

Proof. Note that

G̊s,m(x, x) + G̊s,m(y, y)− 2 G̊s,m(x, y) = Gs,m(x, x) +Gs,m(y, y)− 2Gs,m(x, y) , m > 0 .

Thus it suffices to prove the claim for G̊s,m.
Assume first that M is closed. Throughout the proof, C > 0 denotes a finite constant, only depending

on M but possibly changing from line to line. For x, y ∈ M denote by ([x, y]r)r∈[0,1] any constant speed
distance-minimizing geodesic joining x to y.

Assume first that σ := 2α ∈ (0, 1]. Then,

sup
x,y∈M
x 6=y

[
Γ(s)

d(x, y)σ

∣∣∣G̊s,m(x, x) + G̊s,m(y, y)− 2 G̊s,m(x, y)
∣∣∣ ] ≤

≤ 2 sup
x,y∈M
x 6=y

[ ∫ ∞
0

|pt(x, x)− pt(x, y)|
d(x, y)

· d(x, y)1−σ · e−m
2t ts−1 dt

]

≤ 2 sup
x,y∈M
x 6=y

[ ∫ ∞
0

e−m
2t ts−1 · d(x, y)1−σ

∫ 1

0

|∇pt(x, [x, y]r)|dr dt

]
.

By (2.12)

sup
x,y∈M
x 6=y

[
Γ(s) d(x, y)−σ

∣∣∣G̊s,m(x, x) + G̊s,m(y, y)− 2 G̊s,m(x, y)
∣∣∣ ]

≤ C sup
x,y∈M
x 6=y

[
d(x, y)1−σ

∫ ∞
0

e−(m2+λ1/2)t ts−1 (t−n/2−1/2 ∨ 1) ·

·
∫ 1

0

exp

(
−r

2 d(x, y)2

Ct

)
dr dt

]
(6.2)

≤ C sup
x,y∈M
x 6=y

[ ∫ ∞
0

e−λ1t/2 ts−1+(1−σ)/2 (t−n/2−1/2 ∨ 1) ·

·
∫ 1

0

(
r2 d(x, y)2

t

)(1−σ)/2

exp

(
−r

2 d(x, y)2

Ct

)
rσ−1 dr dt

]
≤ C

σ

∫ ∞
0

e−λ1t/4 ts−(n+σ)/2−1 dt =
C

σ

( 4

λ1

)s−(n+σ)/2

Γ
(
s− (n+ σ)/2

)
.
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For the last inequality, we used the fact that the function R 7→ R(1−σ)/2 exp(−R/C) is uniformly bounded
on (0,∞), independently of σ ∈ (0, 1].

Assume now that σ := 2α ∈ (1, 2]. Then, similarly to the previous case,

sup
x,y∈M
x6=y

[
Γ(s)

d(x, y)σ

∣∣∣G̊s,m(x, x) + G̊s,m(y, y)− 2 G̊s,m(x, y)
∣∣∣ ]

≤ sup
x,y∈M
x 6=y

∫ ∞
0

|pt(x, x) + pt(y, y)− 2pt(x, y)|
d(x, y)σ

e−m
2tts−1 dt

≤ sup
x,y∈M
x 6=y

∫ ∞
0

e−m
2t ts−1 d(x, y)1−σ

∫ 1

0

|∇2 pt(x, [x, y]ρ)−∇2 pt(y, [x, y]ρ)|dρ dt

≤ sup
x,y∈M
x 6=y

∫ ∞
0

e−m
2t ts−1 d(x, y)2−σ

∫ 1

0

∫ 1

0

|∇1∇2 pt([x, y]%, [x, y]ρ)|dρ d% dt .

By (2.13), similarly

sup
x,y∈M
x 6=y

[
Γ(s)

d(x, y)σ

∣∣∣G̊s,m(x, x) + G̊s,m(y, y)− 2 G̊s,m(x, y)
∣∣∣ ]

≤ C sup
x,y∈M
x 6=y

∫ ∞
0

∫ 1

0

∫ 1

0

exp

(
− (ρ− %)2 d2(x, y)

Ct

)
dρd% ·

· d(x, y)2−σ e−(m2+λ1/2)t ts−1 (t−n/2−1 ∨ 1) dt

≤ C sup
x,y∈M
x 6=y

∫ ∞
0

∫ 1

0

∫ 1

0

(
(ρ− %)2 d2(x, y)

t

)1−σ/2

·

· exp

(
− (ρ− %)2 d2(x, y)

Ct

)
|ρ− %|σ−2 dρd% ·

· t1−σ/2 e−λ1t/2 ts−1(t−n/2−1 ∨ 1) dt

≤ C

σ(σ − 1)

∫ ∞
0

e−λ1t/4 ts−(n+σ)/2−1 dt =
C

σ(σ − 1)

(
4

λ1

)s−(n+σ)/2

Γ
(
s− (n+ σ)/2

)
.

Assume now that M has bounded geometry. The proof holds in a similar way to the case of closed M,
having care to replace the application of (2.12) with (2.4) and (2.13) with (2.6). �

Corollary 6.2. Let M be a compact manifold. Then, there exists a constant C > 0 such that for all
m ≥ 0 and all x, y ∈ M,

ρs,m(x, y) ≤


C ·
(
λ1

2

)−s/2 · d(x, y), s ≥ n
2 + 2 ,

C√
s−n/2−1

· d(x, y), s ∈ (n2 + 1, n2 + 2] ,

C
s−n/2 · d

s/2−n/4(x, y), s ∈ (n2 ,
n
2 + 1] .

The estimate in the third case is not sharp. The previous Theorem provides estimates ρs,m ≤ Cα d
α

for every α < s− n/2. (As α→ s− n/2, however, the constant Cα will diverge.)

Proof. The eigenfunction representation (2.22) of G̊s,m yields that

ρ2
s,m(x, y) =

∞∑
j=1

(m2 + λj/2)−s
[
ϕ2
j (x) + ϕ2

j (y)− 2ϕj(x)ϕj(y)
]
.
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Hence, ρ2
s,m(x, y) ≤ ρ2

s,0(x, y) for all x, y, s,m under consideration. Moreover, for all x, y ∈ M the function

s 7→ (λ1/2)s · ρ2
s,0(x, y) is decreasing.(6.3)

Therefore, the first case s ≥ n
2 + 2 follows from the choice s = n

2 + 2 which is included in the second case.
In the second case s ∈ (n2 +1, n2 +2], with the choice α = 1 the previous Theorem provides the estimate

ρ2
s,m(x, y)

d2(x, y)
≤ C2

1 ≤ C λ1
n/2+1−s Γ

(
s− n/2− 1

)
Γ(s)

≤ C ′

s− n/2− 1
.

In the third case s ∈ (n2 ,
n
2 +1], with the choice α = 1

2 (s− n
2 ) ∈ (0, 1/2] the previous Theorem provides

the estimate

ρ2
s,m(x, y)

ds−n/2(x, y)
≤ C2

α ≤ C λ1
n/4−s/2 Γ

(
s/2− n/4

)
(s− n/2) Γ(s)

≤ C ′

(s− n/2)2
. �

6.2. Supremum estimates. Now let us combine Dudley’s estimate, Theorem 3.25, for the supremum
of the Gaussian field with our Hölder estimate, Corollary 6.2, for the noise distance.

Theorem 6.3. For every compact manifold M there exists a constant C = C(M) such that for every
h• ∼ ˚FGF

M

s,m with any m ≥ 0,

E

[
sup
x∈M

h•(x)

]
≤

{
C · (λ1/2)−s/2, s ≥ n

2 + 1 ,

C · (s− n/2)−3/2, s ∈
(
n
2 ,

n
2 + 1

]
.

Proof. Recall the Notation 3.24 for the covering number of a pseudo-metric, and let ρ = ρs,m be as
in (2.25). For the Riemannian distance d on the compact manifold M,

Nd(ε) ≤
(
C · ε−n

)
∨ 1

for some constant C > 0.
In the case s ∈ (n2 ,

n
2 + 1], Corollary 6.2 yields ρ ≤ Cs d

α with α := 1
2 (s − n

2 ) and Cs :=C/(s − n/2),
and thus

B(ρ)
ε (x) ⊃ B(d)

(ε/Cs)1/α
(x) , ε > 0, x ∈ M .

This implies
Ns,m(ε) ≤ Nd

(
(ε/Cs)

1/α
)
≤
(
C · (ε/Cs)−n/α

)
∨ 1 .

Hence,∫ ∞
0

(
logNs,m(ε)

)1/2
dε ≤

∫ Cα/n·Cs

0

(
c− n

α
log

ε

Cs

)1/2

dε = Cs ·
∫ Cα/n

0

(
c− n

α
log ε

)1/2

dε

≤ Cs
α1/2

·
∫ C1/n

0

(
c′ − n log ε

)1/2
dε =

Cs
α1/2

· C ′ =
C ′′

(s− n/2)3/2
.

In the case s > n/2 + 1, the monotonicity property (6.3) and the estimate from Corollary 6.2 (for
s = n/2 + 1) imply

ρs,m(x, y) ≤ (λ1/2)(n/2+1−s)/2 · ρn/2+1,0(x, y) ≤ C (λ1/2)(n/2+1−s)/2 · d1/2(x, y) .

Hence, following the previous argumentation we obtain∫ ∞
0

(
logNs,m(ε)

)1/2
dε ≤ C (λ1/2)(n/2+1−s)/2 ·

∫ C1/n

0

(
c− 2n log ε

)1/2
dε

≤ C ′ (λ1/2)(n/2+1−s)/2 = C ′′ (λ1/2)−s/2 . �
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6.3. Examples.

6.3.1. Euclidean space. On the n-dimensional Euclidean space, the Green kernels are given by

GRn
s,m(x, y) :=Gns,m(|x− y|)

with

Gns,m(r) :=
1

(2π)n/2 Γ(s)

∫ ∞
0

e−r
2/2t e−m

2t ts−n/2−1 dt .(6.4)

Note that Gns,m(r) ≤ Gns,m(0) < ∞ if s > n/2 whereas Gns,m(r) ≈ log 1
r as r → 0 if s = n/2 and

Gns,m(r) ≈ 1
rn−2s if s < n/2. Closed expressions for Gn1,m(r) are available for odd n, e.g.

G1
1,m(r) =

1√
2m

e−
√

2mr, G3
1,m(r) =

1

2π r
e−
√

2mr, G5
1,m(r) =

(1 +
√

2mr)

4π2r3
e−
√

2mr .(6.5)

From this, with the relations formulated below, various other explicit expressions can be derived, for
instance, G3

2,m(r) = 1
2π
√

2m
e−
√

2mr and, more generally,

Gnn+1
2 ,m

(r) =
1

(2π)
n−1
2 Γ(n+1

2 )
√

2m
e−
√

2mr .

Lemma 6.4. For m, s, r > 0 and n ∈ N, the Green kernels Gns,m(r) satisfy the relations

Gns,am(r) = an−2sGns,m(ar) , a > 0 ,(6.6a)

Gns+a,m(r) =
1

(2π)a
Γ(s)

Γ(s+ a)
Gn−2a
s,m (r) , −s < a < n/2 ,(6.6b)

sm2Gns+1,m(r) = (s− n/2)Gns,m(r) +
r2

2(s− 1)
Gns−1,m(r) , s > 1 .(6.6c)

Proof. The first two formulas follow by change of variable in the integral representation (6.4). The
third one follows by integration by parts via∫ ∞

0

e−r
2/2te−m

2tts−n/2 dt =
1

m2

∫ ∞
0

d

dt
(e−r

2/2tts−n/2)e−m
2t dt . �

Theorem 6.5. For m > 0, the asymptotics of the higher order Green kernel as r → 0 is as follows

Gns,m(0)−Gns,m(r) �


− Γ(n/2− s)

2s πn/2 Γ(s)
· r2s−n if s ∈ (n/2, n/2 + 1) ,

1

2n/2 πn/2 Γ(s)
· r2 log

1

r
if s = n/2 + 1 ,

Γ(s− n/2− 1)

2n/2+1m2s−n−2 πn/2 Γ(s)
· r2 if s > n/2 + 1 ,

(6.7)

where � is as in Notation 2.1.

Proof. For convenience, we provide two proofs. The first one is based on direct calculations.
For proving the claim in the case s > n/2 + 1, consider

lim
r→0

r−2 · (2π)n/2Γ(s)
[
Gns,m(0)−Gns,m(r)

]
= lim

r→0

∫ ∞
0

1− e−r2/2t

r2
e−m

2t ts−n/2−1 dt

=
1

2
·
∫ ∞

0

e−m
2t ts−n/2−2 dt =

1

2
Γ
(
s− n

2
− 1
)
m−2s+n+2 ,
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since by assumption s > 1 + n
2 . In the case n/2 < s < n/2 + 1, consider

lim
r→0

r−2s+n(2π)n/2Γ(s) ·
[
Gns,m(0)−Gns,m(r)

]
= lim

r→0
r−2s+n ·

∫ ∞
0

(
1− e−r

2/2t
)
e−m

2t ts−n/2−1 dt

= lim
r→0

∫ ∞
0

(
1− e−1/2t

)
e−(mr)2t ts−n/2−1 dt

=

∫ ∞
0

(
1− e−1/2t

)
ts−n/2−1 dt

= 2n/2−s
∫ ∞

0

(
1− e−u

)
un/2−s−1 du

= − 2n/2−s

n/2− s

∫ ∞
0

e−u un/2−s du

= − 2n/2−sΓ(n/2− s) .

(For the third equality above, we used the monotonicity of the integrand in r, and for the fifth, we used
integration by parts.) In the case s = n

2 + 1, applying De l’Hôpital twice yields

lim
r→0

(2π)n/2Γ(s)

r2 log 1/r
·
[
Gns,m(0)−Gns,m(r)

]
= lim
r→0

1

r2 log 1/r
·
∫ ∞

0

(
1− e−r

2/2t
)
e−m

2t dt

=− lim
r→0

1

r(1 + 2 log r)

∫ ∞
0

re−r
2/2te−m

2tt−1 dt

= lim
r→0

r

2

∫ ∞
0

re−r
2/2te−m

2tt−2 dt

[
r2

2t
= u , − r2

2t2
dt = du

]
= lim
r→0

∫ ∞
0

e−
m2r2

2u e−u du = 1 .

An alternative proof of the claims may be obtained from the representation [58, Eqn. (15), p. 183] of the
Green kernel Gns,m(r) in terms of the modified Bessel functions Kα for α ∈ R:

Gns,m(r) =
2

(2π)n/2 Γ(s)

( r√
2m

)s−n/2
Ks−n/2(

√
2mr) ,(6.8)

and the known asymptotics for Kα and its derivatives. �

Remark 6.6. For all integer values of s and n, explicit expressions for Gns,m may be obtained
from (6.8) in terms of the reverse Bessel polynomials, e.g. [26, §II.1, Eqn.s (7)–(9)], in view of the
characterization in terms of such polynomials of the Bessel function Kα for semi-integer α, e.g. [26,
§III.1].

6.3.2. Torus. Let T = R/N be the circle of length 1.

Proposition 6.7. For all s,m > 0,

GT
s,m(x, y) =

∑
j∈Z

GR
s,m(x, y + j) .(6.9)

In particular, GT
s,m(x, y) = GT

s,m

(
dT(x, y)

)
with dT(x, y) = min{|x− y|, 1− |x− y|} for x, y ∈ [0, 1] and

GT
1,m(r) =

cosh
(√

2m
(
r − 1/2

))
√

2m · sinh(m/
√

2)
.(6.10)
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0 1 5

0.5

Fig 4: The Green kernels G1
s,1 for 2s = 1, . . . , 5 (in reverse order w.r.t. the value at 0). Note

that limr→0G
1
1/2,1(r) = +∞.

Proof. The first claim is an immediate consequence of the analogous formula for the heat kernel:

pTt (x, y) =
∑
j∈Z

pRt (x, y + j) .

The second claim follows from the first one combined with (6.5) according to

GT
1,m(r) =

1√
2m

∑
k∈N0

e−
√

2m(r+k) +
1√
2m

∑
k∈N0

e−
√

2m[(1−r)+k]

=
1√

2m
(
1− e−

√
2m
)(e−√2mr + e−

√
2m(1−r)

)
=

cosh
(√

2m
(
r − 1/2

))
√

2m · sinh(m/
√

2)

for r ∈ [0, 1/2]. �

0 0.5 1

1

1.1

Fig 5: The Green kernel GT
1,1( 1

2 , y) with y ∈ [0, 1).

Theorem 6.8. For m = 0 and integer s ≥ 1,

G̊T
s,0(r) = (−1)s−1 2s

(2s)!
B2s(r) , s ∈ N , r ∈ [0, 1/2] ,

where Bn denotes the nth Bernoulli polynomial.
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In particular,

G̊T
1,0(r) =

(
r − 1

2

)2

− 1

12
,(6.11)

G̊T
2,0(x, y) = −1

6

(
r − 1

2

)4

+
1

12

(
r − 1

2

)2

− 7

1440
,(6.12)

G̊T
3,0(x, y) =

1

90

(
r − 1

2

)6

− 1

72

(
r − 1

2

)4

+
7

1440

(
r − 1

2

)2

− 31

120960
.(6.13)

Further observe that

lim
r→0

1

r

(
G̊T

1,0(0)− G̊T
1,0(r)

)
= lim

r→0

1

r

(
GT

1,m(0)−GT
1,m(r)

)
= lim

r→0

1

r

(
GR

1,m(0)−GR
1,m(r)

)
= 1

for all m > 0, and

lim
r→0

1

r2

(
G̊T

2,0(0)− G̊T
2,0(r)

)
=

1

6
whereas lim

r→0

1

r2

(
GR

2,m(0)−GR
2,m(r)

)
=

1

2
√

2m
.

Proof. For convenience, we provide two proofs. Recall the eigenfunction representation (2.22) for the
grounded Green kernel,

G̊s,m(x, y) =
∑
j∈N

ϕj(x)ϕj(y)

(m2 + λj/2)s
, x, y ∈ M .

For the torus, we have λ2k−1 = λ2k = (2πk)2 for k ∈ N with ϕ2k−1(x) =
√

2 sin
(
2kπx

)
, and ϕ2k(x) =√

2 cos
(
2kπx

)
. Choosing m = 0, y = 0, and x = r thus yields

G̊T
s,0(r) =

1

2s−1

∑
k∈N

1

(πk)2s
cos
(
2kπr

)
, r ∈ [0, 1/2] ,(6.14)

and the conclusion follows by e.g. [23, 1.443.1].
An alternative proof of the claim can be obtained in the following way. For s = 1, the right-hand side

of (6.14) is indeed the Fourier series for the function given in (6.11). The values of fs :=GT
s,0 for all other

s ∈ N can then be derived from there and from the facts that

f ′′s+1 = −2 fs, f ′s(1/2) = 0,

∫ 1/2

0

fs(r) dr = 0 .

The first claim follows from (2.20). Moreover, (6.11) can be derived from (6.10) by passing to the limit
as m→ 0:

G̊T
1,0(x, y) = lim

m→0

[
GT

1,m(x, y)− 1

m2

]
. �

0.5 1

0.04

(a) s = 1

0.5 1

0.0003

(b) s = 2

0.5 1

4.×10-6

(c) s = 3

Fig 6: The grounded Green kernel G̊T
s,0( 1

2 , y) with y ∈ [0, 1) for s = 1, 2, 3.
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6.3.3. Hyperbolic Space. For the hyperbolic space Hn of curvature −1, a closed expression for the
Green kernels is available in dimension 3.

Proposition 6.9. For all s,m, r > 0,

(6.15) GH3

s,m(r) =
r

sinh r

1

(2π)3/2 Γ(s)

∫ ∞
0

e−(m2+1/2)t e−r
2/(2t) ts−5/2 dt =

r

sinh r
·GR3

s,
√
m2+1/2

(r)

with GR3

s,m(r) denoting the Green kernel for R3 as discussed above.

Thus, for instance, GH3

2,m(r) = 1
2π
√

2m2+1
r

sinh r e
−
√

2m2+1 r.

1

0.05

Fig 7: The Green kernel GH3

2,1.

Proof. The claim is an immediate consequence of the closed expression for the heat kernel on H3

given e.g. in [12, Eqn. (5.7.3)]. �

Remark 6.10. Integro-differential representations for GHn
s,m, n ≥ 4, may be obtained in light of the

analogous representations for the heat kernel pH
n

t in [24].

Corollary 6.11. The Green kernel GH3

s,m on H3 has asymptotic behavior close to the diagonal similar
to GR3

s,m. More precisely, if C(s,m) denote the constants in the asymptotic formula (6.7) for the Euclidean
Green kernel, then

GH3

s,m(0)−GH3

s,m(r) �


C
(
s,
√
m2 + 1/2

)
· r2s−3 if s ∈ (3/2, 3/2 + 1) ,

C
(
s,
√
m2 + 1/2

)
· r2 log 1

r if s = 3/2 + 1 ,(
C
(
s,
√
m2 + 1/2

)
+ 1

6

)
· r2 if s > 3/2 + 1 .

(6.16)

Proof. It suffices to compute the Taylor expansion of GH3

s,m(r) in the form (6.15) around r = 0.
For s ∈ (3/2, 3/2 + 1] the Taylor expansion of r/ sinh(r) only provides terms of order O(r2), which are
smaller than the leading order of GR3

s,
√
m2+1/2

(r) as r → 0 computed in (6.7). When s > 3/2 + 1, the

same Taylor expansion provides a further additive factor r2/6. �

6.3.4. Sphere. For the unit sphere we can derive explicit formulas for the grounded Green kernel of
any order s ∈ N in any dimension, based on the observation (2.20), the well-known representation of
the radial Laplacian on spheres, and symmetry arguments. We present the results in some of the most
important cases.

Theorem 6.12. For the sphere in 2 and 3 dimensions,

G̊S2
1,0(r) =− 1

2π

(
1 + 2 log sin r

2

)
, G̊S3

1,0(r) = 1
2π2

(
− 1

2 + (π − r) · cot r
)
,(6.17)
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G̊S2
2,0(r) =

1

π

∫ sin2(r/2)

0

log t

1− t
dt+

1

π
, G̊S3

2,0(r) =
(π − r)2

4π2
+

1

8π2
− 1

12
.(6.18)

1 π

- 1

2 π

1

(a) G̊S2
1,0

1 π

1

(b) G̊S3
1,0

Fig 8: The grounded Green kernels on Sn for s = 1 and n = 2, 3.

π

2
π

-0.2

0.3

(a) G̊S2
2,0

π

-0.1

0.18

(b) G̊S3
2,0

Fig 9: The grounded Green kernels on Sn for s = 2 and n = 2, 3.

Observe that for all m > 0 as r → 0,

G̊S2
1,0(r) � GR2

1,m(r) � − 1

π
log r , G̊S3

1,0(r) � GH3

1,m(r) � GR3

1,m(r) � 1

2π r
,

and

G̊S3
2,0(r)− G̊S3

2,0(0) � GH3

2,m(r)−GH3

2,m(0) � GR3

2,m(r)−GR3

2,m(0) � − 1

2π
r .

Proof. Recall that for a radially symmetric function f( · ) = u
(
d(x, · )

)
on the n-sphere, the Laplacian

and the volume integral are given by

∆f(y) = u′′(r) + (n− 1) cot(r)u′(r) =
1

sinn−1(r)

(
sinn−1(r)u′(r)

)′
with r = d(x, y)

and
∫
Sn f dvol = cn

∫ π
0
u(r) sinn−1(r) dr. The representations in (6.17) thus follow from the fact that the

functions u2 and u3 given by the respective right-hand sides of (6.17) are the unique solutions on the
interval (0, π) to the second-order differential equation

u′′n(r) + (n− 1) cot(r)u′n(r) =
2

vol(Sn)
, lim

r→0
rn−1u′n(π − r) = 0 ,

∫ π

0

un(r) sinn−1(r) dr = 0 ,
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which may be easily verified. Indeed, the function u = u2 given above satisfies u′(r) = − 1
2π cot r2 and thus

(u′(r) · sin r)′ = − 1
2π (1 + cos r)

′
= 1

2π sin r ,

hence ∆u = 1
2π = 2

vol(S2) . Moreover,
∫ π

0
u(r) sin(r) dr = 0.

Similarly, u = u3 satisfies u′(r) = − 1
2π2

(
cot r + (π − r) 1

sin2 r

)
and thus

(u′(r) · sin2 r)′ = − 1
2π2 (cos r sin r + π − r)′ = 1

π2 sin2 r ,

hence ∆u = 1
π2 = 2

vol(S3) . Moreover,
∫ π

0
u(r) sin2(r) dr = 0.

The representations in (6.18) follow from the fact that the functions v2 and v3 given by the respective
right-hand sides of (6.18) are the unique solutions to

v′′n(r) + (n− 1) cot(r) v′n(r) = −2un(r), lim
r→0

rn−1v′n(π − r) = 0,

∫ π

0

vn(r) sinn−1(r) dr = 0

with un = G̊Sn
1,0 for n = 2, 3 as specified above. To verify this, observe that v2 satisfies v′2(r) sin r =

2
π sin2 r

2 log sin2 r
2 and thus (v′2(r) sin r)′ 1

sin r = −2u2. Moreover,∫ π

0

(
v2(r)− 1

π

)
sin(r) dr =

2

π

∫ 1

0

∫ t

0

log r

1− r
dr dt = − 2

π
= − 1

π

∫ π

0

sin(r) dr .

Similarly, v3 as defined above satisfies

− 1

sin2 r

(
v′3(r) sin2 r

)′
=

1

2π2 sin2 r

(
(π − r) sin2 r

)′
=

1

2π2

(
− 1 + 2(π − r) cot r

)
= 2u3 . �

Remark 6.13. The expression for G̊S2
1,0 is in fact well known (see e.g. [31, Eqn. (9)]) and may equiv-

alently be derived by means of complex geometry.
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