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Abstract

We will study metric measure spaces (X, d,m) beyond the scope of spaces with
synthetic lower Ricci bounds. In particular, we introduce distribution-valued lower
Ricci bounds BE1(κ,∞)

• for which we prove the equivalence with sharp gradient estimates,

• the class of which will be preserved under time changes with arbitrary ψ ∈
Lipb(X), and

• which are satisfied for the Neumann Laplacian on arbitrary semi-convex sub-
sets Y ⊂ X.

In the latter case, the distribution-valued Ricci bound will be given by the signed
measure κ = kmY + ` σ∂Y where k denotes a variable synthetic lower bound for
the Ricci curvature of X and ` denotes a lower bound for the “curvature of the
boundary” of Y , defined in purely metric terms.

We also present a new localization argument which allows us to pass on the RCD
property to arbitrary open subsets of RCD spaces. And we introduce new synthetic
notions for boundary curvature, second fundamental form, and boundary measure
for subsets of RCD spaces.
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1 Introduction

Background. Synthetic lower bounds for the Ricci curvature as introduced in the foun-
dational papers [LV09, Stu06a, Stu06b] by Lott & Villani and the author, opened the door
for the development of a far reaching, vast theory of metric measure spaces (X, d,m) with
lower bounded Ricci curvature. The theory is particularly rich if one assumes in addi-
tion that the spaces are infinitesimally Hilbertian. For such spaces, Ambrosio, Gigli &
Savare in a series of seminal papers [AGS14a, AGS14b, AGS15, Gig18] developed a pow-
erful first order calculus, based on (minimal weak upper) gradients of functions and on
gradient flows for semiconvex functionals, in particular, energy on L2(X,m) and entropy
on P2(X, d). This was complemented by a huge number of contributions by many oth-
ers, leading e.g. to sharp estimates for volume growth and diameter, gradient estimates,
transport estimates, Harnack inequalities, logarithmic Sobolev inequalities, isoperimet-
ric inequalities, splitting theorems, maximal diameter theorems, and further rigidity re-
sults, see e.g. [EKS15, KS19, CM16, Gig13, Ket15a, Ket15b, ES17] and references therein.
Moreover, deep insights into the local structure of such spaces have been obtained [MN19],
[BS18] and also an impressive second order calculus could be developed [Gig18].

Objective. The purpose of the current paper is to enlarge the scope of metric measure
spaces with synthetic lower Ricci bounds far beyond uniform bounds. We will study in
detail mm-spaces (X, d,m) with variable Ricci bounds k : X → R. More precisely, we
will present the Eulerian and the Lagrangian characterizations of “Ricci curvature at x
bounded from below by k(x) and dimension bounded from above by N” and prove their
equivalence.

Most importantly, we will also study mm-spaces with distribution-valued Ricci bounds.
The crucial point will be to present a formulation of the Bakry-Émery inequality BE1(κ,∞)
for κ ∈ W−1,∞(X)

• which allows us to prove its equivalence with sharp gradient estimates,

• the class of which will be preserved under time changes with arbitrary ψ ∈ Lipb(X),

• and which is satisfied for the Neumann Laplacian on arbitrary semi-convex subsets
Y ⊂ X.
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In the latter case, the distribution-valued Ricci bound will be given by the signed measure

κ = kmY + ` σ∂Y (1)

where k denotes a variable synthetic lower bound for the Ricci curvature of X and `
denotes a variable lower bound for the “curvature of the boundary” of Y , defined in
purely metric terms. We introduce new synthetic notions for boundary curvature, second
fundamental form, and boundary measure for subsets of RCD spaces.

In our approach, the technique of time change will play a key role. In operator lan-
guage, “time change” with weight eψ means that E , the Cheeger energy for the mm-space
(X, d,m), is now considered as a quadratic form on L2(X, e2ψm). This changes the un-
derlying geometry and – with appropriate choices of ψ – it allows non-convex sets to be
made convex (“convexification”).

The distribution-valued Ricci bound BE1(κ,∞) with κ as in (1) will imply a gradient
estimate for the Neumann heat flow (∇P Y

t )t≥0 on Y of the type∣∣∇P Y
t/2f

∣∣(x) ≤ EYx
[
e−

1
2

∫ t
0 k(BYs )ds− 1

2

∫ t
0 `(B

Y
s )dL∂Ys ·

∣∣∇f(BY
t )
∣∣]. (2)

Here (PYx , BY
t )x∈Y,t≥0 denotes reflected Brownian motion on Y and (L∂Yt )t≥0, the local time

of ∂Y , is defined via Revuz correspondence as the positive continuous additive functional
associated with the surface measue σ∂Y .

Note that

• for non-convex Y , no estimate of type (2) can hold true without taking into account
the curvature of the boundary;

• even for convex Y , estimate (2) will improve upon all previous estimates which
ignore the curvature of the boundary.

For instance, for the Neumann heat flow on the unit ball of Rn, the right hand side of (2)
will decay as C0e

−C1t for large t whereas ignoring ` will lead to bounds of order C0.

We also present a new powerful localization argument which allows us to pass on the
RCD property to arbitrary open subsets of RCD spaces.

Outline. Besides this Introduction, the paper has five sections, each of them of inde-
pendent interest. Let us briefly summarize them.

In Section 2, we define and analyze metric measure spaces with Ricci curvature
bounded from below by distributions. Our BE1(κ,∞) condition for κ ∈ W−1,∞(X) is the
first formulation of a synthetic Ricci bound with distribution-valued κ which leads to a
sharp gradient estimate.

Section 3 is devoted to the study of mm-spaces with variable Ricci bounds. The
main result will be the proof of the equivalence of the Eulerian curvature-dimension con-
dition (or “Bakry-Émery condition”) BE2(k,N) and the Lagrangian curvature-dimension
condition (or “Lott-Sturm-Villani condition”) CD(k,N) – as well as four other related
conditions. This provides an extension of the seminal paper [EKS15] towards variable
k (instead of constant K) and of the recent paper [BHS19] towards finite N (instead of
N =∞).
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In Section 4 we present two extensions of our recent work [HS19] with B. Han on
transformation of the curvature-dimension condition under time-change, both of funda-
mental importance. Firstly, we prove that for φ ∈ Liploc(X) ∩Dloc(∆), time change with
weight 1

φ
leads to a mm-space (X ′, d′,m′) with X ′ = {φ > 0} which satisfies RCD(k′, N ′)

for suitable k′, N ′. This is of major general interest since it allows for localization within
the class of RCD-spaces. Secondly, we prove that for arbitrary ψ ∈ Lipb(X), time change
with weight eψ leads to a mm-space with distribution-valued Ricci bound κ given in terms
of the distribution-valued Laplacian ∆ψ. This will be a crucial ingredient in our strategy
for the proof of the gradient estimate in the final Section 6.

In Section 5 we extend the existence result and the contraction estimate for gradient
flows for semiconvex functions from [Stu18a] to the setting of locally semiconvex functions.
The contraction estimate for the flow will be in terms of the variable lower bound for the
local semiconvexity of the potential. And we will prove the fundamental Convexification
Theorem which allows us to transform the metric of a mm-space (X, d,m) in such a way
that a given semiconvex subset Y ⊂ X will become locally geodesically convex w.r.t. the
new metric d′. Moreover, in a purely metric manner, we introduce the notion of variable
lower bound for the curvature of the boundary. In the Riemannian setting, such a bound
will be equivalent to a lower bound for the second fundamental form of the boundary.

The paper reaches its climax in Section 6 with the proof of the gradient estimates
for the Neumann heat flow on not necessarily convex subsets Y ⊂ X. The proof of these
gradient estimates is quite involved. It builds on results from all other sections of the
paper.

• Given a semi-convex subset Y of an RCD(k,N)-space (X, d,m), to get started, we
perform a time-change with weight eψ in order to make Y locally geodesically convex
in (X, d′) := (X, eψ � d). The choice ψ = (ε− `)V with V = ±d(., ∂Y ), any ε > 0,
and ` being a lower bound for the curvature of ∂Y will do the job, see Section 5.

• Under the assumption that ψ ∈ Dloc(∆), the transformation formula for time
changes provides a RCD(k′, N ′)-condition for the time-changed space (X, d′,m′),
Section 4.

• Together with the local geodesical convexity of Y this implies that also the restricted
space (Y, d′Y ,m

′
Y ) satisfies the RCD(k′, N ′)-condition. Making use of the equivalence

of Eulerian and Lagrangian characterizations of curvature-dimension conditions, we
conclude the BE2(k′, N ′)-condition for (Y, d′Y m′Y ), Section 3.

• To end up with (Y, dY mY ) requires a “time re-change”, i.e. another time change,
now with weight e−ψ. In general, however, ψ will not be in the domain of the
Neumann Laplacian ∆Y . Ricci bounds under time re-change thus have to be formu-
lated as BE1(κ,∞)-condition for some κ ∈ W−1,∞(X) in terms of the distributional
Laplacian ∆Y ψ, Section 4.

• The BE1(κ,∞)-condition will imply the gradient estimate
∣∣∇P Y

t f
∣∣ ≤ P κ

t

∣∣∇f ∣∣ for
the Neumann heat flow (∇P Y

t )t≥0 on Y in terms of a suitable semigroup (P κ
t )t≥0,

Section 2.

This “taming semigroup” (P κ
t )t≥0 will be represented in terms of the Brownian motion on

Y by means of the Feynman-Kac formula involving the integral
∫ t

0
k(Bs)ds (taking into
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account the effects of the Ricci curvature in Y ), and the integral
∫ t

0
`(Bs)dLs (taking into

account the effects of the curvature of ∂Y ).

Basic concepts and notations. Throughout this paper, (X, d,m) will be an arbitrary
metric measure space, that is, d is a complete separable metric on X inducing the topology
of X and m is a Borel measure which is finite on sets of an open covering. Moreover, we
assume that (X, d,m) is infinitesimally Hilbertian and that m is finite on bounded sets.

To simplify notation, we often will write Lp(X) or Lp(m) or just Lp instead of Lp(X,m)
and, similarly, Lip(X) instead of Lip(X, d). The space of Lipschitz functions with bounded
support on X will be denoted by Lipbs(X) whereas as usual Lipb(X) denotes the space of
bounded Lipschitz functions. The number Lipf will denote the Lipschitz constant of f .

Let us briefly recall that the energy functional (“Cheeger energy”) E : L2(X)→ [0,∞]
is defined as

E(f) =

∫
X

∣∣Df ∣∣2 dm
in terms of the minimal weak upper gradient |Df | (which in the sequel often will also
be denoted by |∇f |). The set Lipbs(X) is dense in W 1,2(X) := D(E) := {f ∈ L2(X) :
E(f) < ∞}. The minimal weak upper gradient |Df | gives rise to a map W 1,2(X) →
L1(X), f 7→ Γ(f) := |Df |2 = |∇f |2 such that E(f) =

∫
Γ(f) dm. By W 1,2

loc (X) we denote
the set of all (m-equivalence classes of) measurable functions f on X such that each point
in X has a neighborhood U such that f = fU m-a.e. on U for some fU ∈ W 1,2(X). By the
Lindelöf property of complete separable metric spaces (and by using truncation by means
of standard cut–off functions on metric balls) it follows that f ∈ W 1,2

loc (X) if and only if
there exist an exhausting sequence of open sets Un ⊂ X and a sequence of fn ∈ W 1,2(X)
such that f = fn m-a.e. on Un for each n.

Our assumption that (X, d,m) is infinitesimally Hilbertian simply means that the
energy E is a quadratic form or, in other words, that its domain W 1,2(X) is a Hilbert space.
In this case, by polarization, E and Γ extend to bilinear maps Γ : W 1,2(X)×W 1,2(X)→
L1(X) and E : W 1,2(X)×W 1,2(X)→ R with (φ, ψ) 7→

∫
X

Γ(φ, ψ) dm.
Indeed, the bilinear form E is a quasi-regular Dirichlet form on L2(X,m), [Sav14].

Its generator ∆ is the “Laplacian” on the mm-space (X, d,m). The associated semi-
group (“heat semigroup”) (e∆ t)t≥0 on L2(X,m) will extend to a positivity preserving,
m-symmetric, bounded semigroup (Pt)t≥0 on each Lp(X,m) with∥∥Pt∥∥Lp(X,m)→Lp(X,m)

≤ 1 for each p ∈ [1,∞],

strongly continuous on Lp(X,m) if p < ∞. Quasi-regularity of E implies that each
f ∈ W 1,2(X) admits a quasi continuous version f̃ (and two such versions coincide q.e. on
X). Thus in particular, for each f ∈

⋃
p∈[1,∞] L

p(X,m) and t > 0, there exists a quasi-

continuous version P̃tf of Ptf (uniquely determined q.e.). The m-reversible, continuous
Markov process

(
Px, Bt

)
x∈X,t≥0

(with life time ζ) associated with E is called “Brownian

motion” on X. It is uniquely characterized by the fact that

Pt/2f(x) = Ex
[
f(Bt) 1{t<ζ}

]
, Ptf(x) = Ex

[
f(B2t) 1{2t<ζ}

]
. (3)

(The factor 2 arises from the fact that by standard convention, the generator of the
Brownian motion is 1

2
∆ whereas the generator of the heat semigroup in our setting is ∆.)
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2 W−1,∞-valued Ricci bounds

The goal of this section is to define and analyze metric measure spaces with Ricci curva-
ture bounded from below by distributions. In particular, we will give a meaning to this
extended notion of synthetic lower Ricci bounds and – most importantly – we will prove
that these Ricci bounds lead to sharp estimates for the gradient of the heat flow. These
results are of independent interest.

In the context of this paper, they are of particular importance since in Section 6 we
will prove that the Ricci curvature of a semiconvex subset Y of an RCD-space (X, d,m)
is bounded from below by the W−1,∞(X)-distribution

κ = kmY + ` σ∂Y

where k denotes a variable synthetic lower bound for the Ricci curvature of X and `
denotes a lower bound for the “curvature of the boundary” of Y while σ∂Y denotes the
“surface measure” on ∂Y . In particular, the Ricci curvature of Y will be bounded from
below by a function if and only if Y is convex.

2.1 Taming Semigroup

In the sequel, we also need certain normed spaces, denoted by W 1,1+(X),W 1,∞(X) and
W−1,∞(X). We will define these spaces tailor made for the purpose of this paper. Our
concept will be based on the 2-minimal weak upper gradient |Df |.

Definition 2.1. We put

W 1,∞(X) :=
{
f ∈ W 1,2

loc (X) :
∥∥|f |+ |Df |∥∥

L∞
<∞

}
and W 1,∞

∗ (X) :=
{
f ∈ W 1,2

loc (X) :
∥∥|Df |∥∥

L∞
<∞

}
. Moreover, we put

W 1,1+(X) :=
{
f ∈ L1(X) : f[n] ∈ W 1,2(X) for n ∈ N and sup

n

∥∥|f[n]|+ |Df[n]|
∥∥
L1 <∞

}
where f[n] := (f ∧ n) ∨ (−n) denotes the truncation of f at levels ±n, and∥∥f∥∥

W 1,1+ := sup
n

∥∥|f[n]|+ |Df[n]|
∥∥
L1 =

∥∥f∥∥
L1 + sup

n

∥∥|Df[n]|
∥∥
L1 .

Remark 2.2. i) The precise definition of these spaces will not be so relevant for us.
What we need are the following properties: W 1,1+(X) contains all squares of functions
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from W 1,2(X); W 1,∞(X) includes Lipb(X); Γ extends to a continuous bilinear map
W 1,1+(X)×W 1,∞(X)→ L1(X,m).

ii) W 1,∞(X) is a Banach space. If the mm-space (X, d,m) satisfies some RCD(K,∞)-
condition, according to the Sobolev-to-Lipschitz property, the space W 1,∞(X) will coincide
with the space Lipb(X) and the space W 1,∞

∗ (X) will coincide with the space Lip(X).
iii) W 1,1+(X) is a normed space but in general not complete. For instance, the func-

tions fj(r) =
√
r ∨ (1/j), j ∈ N, on X = [−1, 1] will constitute a Cauchy sequence in

W 1,1+(X) but their L1-limit f∞(r) =
√
r is not contained in W 1,1+(X). For Riemannian

(X, d,m), the completion of W 1,1+(X) will coincide with W 1,1(X).
For general (X, d,m), the definition of W 1,1(X) is quite sophisticated and allows for

ambiguity, see e.g. [ADM14]. For a detailed study of the spaces W 1,p(X) for p ∈ (1,∞),
see [GH16].

iv) For f ∈ W 1,1+(X), there exists a unique |Df | ∈ L1(X) with

|Df | = |Df[n]| m-a.e. on
{
|f | ≤ n

}
for each n ∈ N.

Indeed, by locality of the minimal weak upper gradient, the family |Df[n]|, n ∈ N, is con-
sistent in the sense that |Df[n]| = |Df[j]| m-a.e. on the set

{
|f | ≤ min(n, j)

}
for each

n, j ∈ N. Hence, |Df[n]|, n ∈ N, is a Cauchy sequence in L1(X) and therefore, it admits
a unique limit in L1(X), denoted by |Df |.

Lemma 2.3. f, g ∈ W 1,2(X) =⇒ f g ∈ W 1,1+(X).

Proof. It suffices to prove the claim for f = g. Given f ∈ W 1,2(X), put h = f 2. Then
obviously h ∈ L1(X). Moreover, h[n2] ∈ W 1,2(X) for each n since

∣∣h[n2]

∣∣ ≤ n
∣∣f ∣∣ and∣∣Dh[n2]

∣∣ ≤ 2n
∣∣Df ∣∣. Finally,

sup
n

∫ ∣∣Dh[n2]

∣∣ dm ≤ 2

∫
|f | |Df | dm ≤

∥∥f∥∥2

W 1,2 .

This proves the claim.

Lemma 2.4. The map Γ extends to a continuous bilinear map Γ : W 1,1+(X)×W 1,∞
∗ (X)→

L1(X) and E extends to a continuous bilinear form

E : W 1,1+(X)×W 1,∞
∗ (X)→ R, (f, g) 7→

∫
X

Γ(f, g) dm.

Here and in the sequel continuity on W 1,∞
∗ (X) is meant w.r.t. the semi-norm f 7→∥∥|Df |∥∥

L∞
.

Proof.
(
|Df[n]|

)
n

is a Cauchy sequence in L1(X) for f ∈ W 1,1+(X). Hence,
(
Γ(f[n], g)

)
n

is a Cauchy sequence in L1(X) for g ∈ W 1,∞
∗ (X). Denoting its limit by Γ(f, g), yields∣∣E(f, g)

∣∣ ≤ ∫
X

∣∣Γ(f, g)
∣∣dm = lim

n

∫
{|f |≤n}

∣∣Γ(f, g)
∣∣dm ≤ ∥∥f∥∥

W 1,1+ ·
∥∥g∥∥

W 1,∞
∗

.

Definition 2.5. W−1,∞(X) := W 1,1+(X)
′
, the topological dual of W 1,1+(X).
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More precisely, this space should be denoted by W−1,∞−(X). We prefer the notation
W−1,∞(X) for simplicity – and in view of the fact that W 1,1+(X)

′
= W 1,1(X)

′
in ‘regular’

cases.

Remark 2.6. L∞(X) continuously embeds into W−1,∞(X) via

〈φ, k〉W 1,1+,W−1,∞ :=

∫
φ k dm (∀φ ∈ W 1,1+(X))

for each k ∈ L∞(X).

Corollary 2.7. A continuous linear operator ∆ : W 1,∞
∗ (X)→ W−1,∞(X) can be defined

by

〈φ,∆ψ〉W 1,1+,W−1,∞ = −
∫
X

Γ(φ, ψ) dm (∀φ ∈ W 1,1+(X)).

On W 1,∞
∗ (X) ∩ D(∆), this operator obviously coincides with the usual Laplacian ∆.

Example 2.8. Let (X, d,m) be the standard 1-dimensional mm-space with X = R and
let xni for n ∈ N and i = 1, . . . , 2n−1 be the centers of the intervals of length 3−n in the
mid-third construction of the Cantor set S ⊂ [0, 1]. Choose ϕ(x) = (1

2
− |x|)+ or, more

sophisticated, choose a nonnegative function ϕ ∈ C2(R) with {ϕ > 0} = (−1/2, 1/2) such
that the closures of {∆ϕ > 0} and {∆ϕ < 0} are disjoint. Put

Φ(x) := lim
j→∞

Φj(x), Φj(x) :=

j∑
n=1

2n−1∑
i=1

3−nϕ
(
3n(x− xni )

)
. (4)

Then Φ ∈ W 1,∞(R), more precisely,

‖Φ‖∞ ≤
1

3
‖ϕ‖∞, ‖∇Φ‖∞ ≤ ‖∇ϕ‖∞.

But ∆Φ is not a signed Radon measure.
To prove the latter, for each j ∈ N, choose a C1-function fj ≤ 1 on R with fj = 1 on

{∆Φj > 0} and fj = 0 on {Φj 6= Φ}. Then with C :=
∫
R

(
∆ϕ(x)

)
+
dx > 0,∫ 1

0

d
(
∆Φ
)

+
≥

∫ 1

0

fjd
(
∆Φ
)

+
=

∫ 1

0

fjd
(
∆Φj

)
+

=

∫ 1

0

fj ∆Φj dx =

∫ 1

0

(∆Φj)+ dx

=

j∑
n=1

2n−1∑
i=1

3n
∫ 1

0

(
∆ϕ
(
3n(x− xni )

))
+
dx = C (2j − 1) → ∞

as j →∞. Thus
∫ 1

0
d
(
∆Φ
)

+
=∞. Furthermore, by scaling∫ 3−k

0

d
(
∆Φ
)

+
=∞

for all k ∈ N. This proves that
(
∆Φ
)

+
is not a locally finite measure and thus ∆Φ is no

Radon measure.
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Proposition 2.9. Given κ ∈ W−1,∞(X), we define a closed bilinear form Eκ on L2(X)
by

Eκ(f, g) := E(f, g) + 〈f g, κ〉W 1,1+,W−1,∞

for f, g ∈ D(Eκ) := W 1,2(X). The form is bounded from below on L2(X) by −C(C + 1)
where C := ‖κ‖W−1,∞(X).

Associated to it, there is a strongly continuous, positivity preserving semigroup (P κ
t )t≥0

on L2(X) with
‖P κ

t ‖L2→L2 ≤ eC(C+1)t.

Remark 2.10. (i) The form Eκ is not only lower bounded, it is a “form small perturbation
of E”. Indeed, for every δ > 0 and all f ∈ W 1,2(X)

Eκ(f, f) ≥ (1− δ) E(f, f)−
(
C +

C2

δ

)
‖f‖2

L2 .

(ii) If κ ∈ L∞(X) then (P κ
t )t≥0 is given by the Feynman-Kac formula associated with the

Schrödinger operator −∆ + κ with potential κ:

P κ
t f(x) = Ex

[
e−

∫ t
0 κ(B2s)dsf(B2t) 1{2t<ζ}

]
where (Px, (Bt)t≥0) denotes Brownian motion starting in x ∈ X.

Note that Px-a.s. for m-a.e. x, the random variables f(B2t) and
∫ t

0
κ(B2s)ds do not

depend on the choice of the Borel versions of f and κ, resp., since Eg
[
f(B2t) 1{2t<ζ}

]
=∫

X
g Ptf dm and Eg

[ ∫ t
0
κ(B2s) 1{2s<ζ}ds

]
=
∫ t

0

∫
X
g Psκ dm ds for g ∈ L1(X,m).

Proof of Proposition and Remark (i). The lower boundedness and more generally the form
smallness easily follow from∣∣∣〈f 2, κ〉W 1,1+,W−1,∞

∣∣∣ ≤ C · ‖f 2‖W 1,1+ ≤ C · ‖f‖2
L2 + 2C · ‖f‖L2 · E(f)1/2

≤ (C + C2/δ) · ‖f‖2
L2 + δ · E(f).

In particular, this implies that Eκ(f) ≥ −(C + C2)‖f‖2 for all f and thus by spectral
calculus

〈f, P κ
t f〉2 ≥ e−(C+C2) t‖f‖2

2.

According to the first Beurling-Deny criterion, the semigroup (P κ
t )t≥0 is positivity

preserving if and only if

f ∈ D(Eκ) ⇒ |f | ∈ D(Eκ) and Eκ(|f |) ≤ Eκ(f),

see [Dav89], Theorem 1.3.2. This criterion obviously is fulfilled. Indeed, Eκ(|f |) = Eκ(f)
for f ∈ W 1,2(X) = D(Eκ).

Of particular interest will be to analyze the semigroup (P κ
t )t≥0 in the case where

κ = −∆ψ for some ψ ∈ Lip(X). Recall that this semigroup is well understood in the
“regular” case where ψ ∈ D(∆) ∩ L∞(X). Indeed, then

P κ
t/2f(x) = Ex

[
e

1
2

∫ t
0 ∆ψ(Bs)dsf(Bt) 1{t<ζ}

]
(5)

or, in other words, P κ
t f(x) = Ex

[
e
∫ t
0 ∆ψ(B2s)dsf(B2t) 1{2t<ζ}

]
. For general ψ, however, this

Feynman-Kac formula a priori does not make sense. We will have to find an appropriate
replacement of it.
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Proposition 2.11. (i) Given ψ ∈ Lip(X), put κ = −∆ψ. Then the closed, lower
bounded bilinear form Eκ on L2(X) with domain W 1,2(X) is given by

Eκ(f, g) = E(f, g) + E(fg, ψ). (6)

(For the last expression here we used the fact that E extends to a continuous bilinear form
W 1,1+(X) × Lip(X) → R, Lemma 2.4, and that fg ∈ W 1,1+(X) for f, g ∈ W 1,2(X),
Lemma 2.3.)

The strongly continuous, positivity preserving semigroup on L2(X) associated to it
satisfies

‖P κ
t ‖L2→L2 ≤ e(Lipψ)2 t.

(ii) Put m̂ := e−2ψm. Then the unitary transformation (= Hilbert space isomorphism)

Φ : L2(X,m)→ L2(X, m̂), f 7→ f̂ = eψf

maps the quadratic form Eκ, densely defined on L2(X,m), onto the quadratic form

Êκ(g) := Eκ(e−ψg) =

∫
X

[
Γ(g)− g2 Γ(ψ)

]
dm̂,

densely defined on L2(X, m̂) and bounded from below by −(Lipψ)2 ‖g‖2
L2.

(Since ψ is bounded on bounded sets, Γ coincides with the Gamma-operator for the metric
measure space (X, d, m̂) and Φ maps W 1,2(X, d,m) bijectively onto W 1,2(X, d, m̂). More-
over, Ê is just a perturbation of the canonical energy on (X, d, m̂) by a bounded zeroth
order term.)

(iii) The semigroup (P̂ κ
t )t≥0 on L2(X, m̂) associated with the the quadratic form Êκ

is related to the semigroup (P κ
t )t≥0 on L2(X,m) via

P̂ κ
t f := eψ P κ

t

(
e−ψf

)
.

Furthermore, it can be represented in terms of the heat semigroup (P̂t)t≥0 on L2(X, m̂) by
the Feynman-Kac formula with potential −Γ(ψ). Since the latter is a bounded function,
the semigroup is bounded on each Lp(X, m̂) with∥∥P̂ κ

t

∥∥
Lp(X,m̂)→Lp(X,m̂)

≤ e(Lipψ)2t

for all p ∈ [1,∞]. This allows us to conclude that for each ψ ∈ Lipb(X), the original
semigroup satisfies ∥∥P κ

t

∥∥
Lp(X,m)→Lp(X,m)

≤ e|1−2/p| oscψ+(Lipψ)2t. (7)

Proof. The norm estimate in (i) follows from the fact that

Eκ(f, f) ≥ E(f, f)− Lipψ ·
∫

Γ(f 2)1/2dm ≥ −(Lipψ)2 · ‖f‖2
L2

and the estimate in (iii) from∥∥P κ
t f
∥∥
Lp(m)

=
(∫

e−pψ
[
P̂ κ
t (eψ f)

]p
e2ψdm̂

)1/p

≤ e− inf[(1−2/p)ψ] e(Lipψ)2t ·
∥∥eψf∥∥

Lp(m̂)

≤ e− inf[(1−2/p)ψ] e(Lipψ)2t esup[(1−2/p)ψ] ·
∥∥f∥∥

Lp(m)
.

The rest is straightforward.
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A more explicit representation for the semigroup (P κ
t )t≥0 will be possible by extending

the Fukushima decomposition which in turn is an extension of the famous Ito decompo-
sition. In the Euclidean case with smooth ψ, the latter states that

ψ(Bt) = ψ(B0) +

∫ t

0

∇ψ(Bs)dBs +
1

2

∫ t

0

∆ψ(Bs)ds.

This indicates a way how to replace the expression 1
2

∫ t
0

∆ψ(Bs)ds appearing in (5) by
expressions which only involve first (and zero) order derivatives of ψ.

Lemma 2.12 (“Fukushima decomposition”).
(i) For each ψ ∈ Lipbs(X) there exists a unique martingale additive functional Mψ

and a unique continuous additive functional which is of zero quadratic variation Nψ such
that

ψ(Bt) = ψ(B0) +Mψ
t +Nψ

t (∀t ∈ [0, ζ)) Px-a.s. for q.e. x ∈ X (8)

(ii) For each ψ ∈ Lip(X) there exists a unique local martingale additive functional
Mψ such that for each z ∈ X,

Mψ
t = lim

n→∞
Mψn

t (∀t ∈ [0, ζ)) Px-a.s. for q.e. x ∈ X

where Mψn denotes the martingale additive functional associated with the function ψn =
χn · ψ ∈ Lipbs(X) according to part (i) and where χn(.) = [1− d(Bn(z), .)]+ for n ∈ N.

(iii) The quadratic variation of Mψ is given by

〈Mψ〉t =

∫ t

0

Γ(ψ)(Bs)ds (∀t ∈ [0, ζ)) Px-a.s. for q.e. x ∈ X

for any choice of a Borel version of the function Γ(ψ) ∈ L∞(X,m).

For the defining properties of “martingale additive functionals” and of “continuous
additive functionals of zero quadratic variation” (as well as for the relevant equivalence
relations that underlie the uniqueness statement) we refer to the monograph [FOT11].

Proof. Assertion (i) is one of the key results in [FOT11]. Indeed, it is proven there as
Theorem 5.2.2 for general quasi continuous ψ ∈ D(E) and it is extended in Theorem 5.5.1
by localization to a more general class which contains Lip(X). Also assertion (iii) for
ψ ∈ Lipbs(X) is a standard result, see [FOT11], Theorem 5.2.5. Let us briefly discuss its
extension to general ψ ∈ Lip(X).

Given ψ ∈ Lip(X) and z ∈ X, we define ψn = χn ·ψ with cut-off functions χn as above
and stopping times τλ := inf{t ≥ 0 : Bt 6∈ Bλ(z)} for λ ∈ N. Then we put

Mλ
t := Mψn

t∧τλ

for any λ ≤ n. Thus Mλ is a martingale with ExMλ
t = 0 and

〈Mλ〉t =

∫ t∧τλ

0

Γ(ψ)(Bs)ds Px-a.s. for q.e. x ∈ X.

It follows that for q.e. x, the family (Mλ
t )λ∈N is an L2-bounded martingale w.r.t. Px with

Ex
[(
Mλ

t

)2
]
≤ Ex

[ ∫ t

0

Γ(ψ)(Bs)ds
]

=

∫ t

0

Ps/2Γ(ψ)(x)ds ≤ (Lipψ)2 · t.

11



Thus the limit Mt := limλ→∞M
λ
t exists and is a martingale w.r.t. Px for q.e. x ∈ X.

Moreover, 〈M〉t = limλ→∞〈Mλ〉t =
∫ t

0
Γ(ψ)(Bs)ds.

Proposition 2.13. Given ψ ∈ Lipb(X), put

Nψ
t := ψ(Bt)− ψ(B0)−Mψ

t (9)

with Mψ
t as defined in the previous Lemma, part (ii). Then with (P κ

t/2)t≥0 as defined in

Proposition 2.9, for each f ∈
⋃
p∈[1,∞] L

p(X,m),

P κ
t/2f(x) = Ex

[
eN

ψ
t f(Bt) 1{t<ζ}

]
for m-a.e. x ∈ X. (10)

Proof. In order to derive the representation formula (10) with the additive functional
N given by (9), we will replace the (non-existing) Feynman-Kac transformation with
potential 1

2
∆ψ by

(a) a Girsanov transformation with drift −Γ(ψ, .)

(b) together with a Feynman-Kac transformation with potential 1
2
Γ(ψ)

(c) followed by a Doob transformation with function eψ.

Each of these transformations provides a multiplicative factor in the representation of the
semigroup which together amount to

e−M
ψ
t + 1

2
〈M〉t · e−

1
2

∫ t
0 Γ(ψ)(Bs)ds · eψ(Bt)−ψ(B0) = eN

ψ
t .

Let us perform these transformations first under the additional assumption that ψ ∈
Lipbs(X) in which case all details can be found in the paper [CZ02] since in this case
ψ ∈ D(E) and µ〈ψ〉 = Γ(ψ)m is a Kato class measure (indeed, it is a measure with
bounded density).

(a) In the first step, we pass from the metric measure space (X, d,m) to the metric
measure space (X, d, m̂) with m̂ = e−2ψm or, equivalently, we pass from the Dirichlet
form E(f) =

∫
Γ(f)dm on L2(X,m) to the Dirichlet form Ê(f) =

∫
Γ(f)dm̂ on L2(X, m̂).

This amounts to pass from the heat semigroup (Pt)t≥0 to the semigroup (P̂t)t≥0 given by
Girsanov’s formula

P̂t/2f(x) = Êx
[
f(Bt)

]
= Ex

[
e−M

ψ
t −

1
2
〈Mψ〉t f(Bt) 1{t<ζ}

]
for m-a.e. x ∈ X

with Mψ being the martingale additive functional as introduced in the previous Lemma.
(b) In the second step, we pass from the Dirichlet form Ê(f) =

∫
Γ(f)dm̂ on L2(X, m̂)

to the Dirichlet form Êκ(f) =
∫ [

Γ(f)−Γ(ψ) · f 2
]
dm̂ on L2(X, m̂). This amounts to pass

from the semigroup (P̂t)t≥0 to the semigroup (P̂ κ
t )t≥0 given by Feynman-Kac’s formula

P̂ κ
t/2f(x) = Êx

[
e

1
2

∫ t
0 Γ(ψ)(Bs)ds f(Bt) 1{t<ζ}

]
= Ex

[
e−M

ψ
t f(Bt) 1{t<ζ}

]
for m-a.e. x ∈ X.

(c) In the final step, we pass from the Dirichlet form Êκ(f) =
∫ [

Γ(f)−Γ(ψ)·f 2
]
dm̂ on

L2(X, m̂) to the Dirichlet form Eκ(f) =
∫ [

Γ(f) + Γ(f 2, ψ)
]
dm on L2(X,m), see previous
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Proposition. This amounts to pass from the semigroup (P̂ κ
t )t≥0 to the semigroup (P κ

t )t≥0

given by Doob’s formula

P κ
t/2f(x) = e−ψ(x)P̂ κ

t/2(eψf)(x) = Ex
[
e−ψ(B0)−Mψ

t +ψ(Bt) f(Bt) 1{t<ζ}
]

= Ex
[
eN

ψ
t f(Bt) 1{t<ζ}

]
for m-a.e. x ∈ X. This proves the claim in the case ψ ∈ Lipbs(X).

For general ψ ∈ Lip(X), we choose cut-off functions χn, n ∈ N, as in the previous
Lemma and put ψn = χn · ψ and κn = −∆ψn. Then by the previous argumentation,

P κn
t/2f(x) = Ex

[
eN

ψn
t f(Bt) 1{t<ζ}

]
for m-a.e. x ∈ X

for each n ∈ N. It remain to prove

P κn
t/2f(x)→ P κ

t/2f(x) for m-a.e. x ∈ X (11)

as n→∞ as well as

Ex
[
eN

ψn
t f(Bt) 1{t<ζ}

]
→ Ex

[
eN

ψ
t f(Bt) 1{t<ζ}

]
for m-a.e. x ∈ X. (12)

To prove the latter, let us first restrict to f ∈ Lp(X,m) for some p ∈ (1,∞]. Then∣∣∣Ex[eNψn
t f(Bt) 1{t<ζ}

]
− Ex

[
eN

ψ
t f(Bt) 1{t<ζ}

]∣∣∣ ≤ Ex
[(
eN

ψn
t + eN

ψ
t
)
|f |(Bt) 1{ζ>t>τn}

]
.

For every q, s ∈ (1,∞) with 1
p

+ 1
q

+ 1
s

= 1, by Hölder’s inequality

Ex
[
eN

ψ
t |f |(Bt) 1{ζ>t>τn}

]
≤ e2‖ψ‖L∞ · Ex

[
e−M

ψ
t |f |(Bt) 1{ζ>t>τn}

]
≤ e2‖ψ‖L∞+ s

2
(Lipψ)2t · Ex

[
e−M

ψ
t −

s
2
〈Mψ〉t |f |(Bt) 1{t>τn}

]
≤ e2‖ψ‖L∞+ s

2
(Lipψ)2t · Ex

[
e−sM

ψ
t −

s2

2
〈Mψ〉t 1{t<ζ}

]1/s

·Ex
[
|f |p(Bt) 1{t<ζ}

]1/p

· Px
[
{ζ > t > τn}

]1/q
≤ e2‖ψ‖L∞+ s

2
(Lipψ)2t · (Pt/2|f |p)1/p(x) · Px

[
{ζ > t > τn}

]1/q
for m-a.e. x ∈ X. For the last estimate we used the fact that e−sM

ψ
t −

s2

2
〈Mψ〉t 1{t<ζ} is

a super-martingale. Thus obviously Ex
[
eN

ψ
t |f |(Bt) 1{ζ>t>τn}

]
→ 0 for m-a.e. x ∈ X as

n→∞. Analogously, we can estimate

Ex
[
eN

ψn
t |f |(Bt) 1{ζ>t>τn}

]
≤ e2‖ψn‖L∞+ s

2
(Lipnψ)2t · (Pt/2|f |p)1/p(x) · Px

[
{ζ > t > τn}

]1/q
≤ e2‖ψ‖L∞+ s

2
(Lipψ+‖ψ‖L∞ )2t · (Pt/2|f |p)1/p(x) · Px

[
{ζ > t > τn}

]1/q
→ 0

for m-a.e. x ∈ X as n → ∞. This proves (12) in the case f ∈ Lp(X,m) for some
p ∈ (1,∞]. The claim for f ∈ L1(X,m) follows by a simple truncation argument and
monotone convergence.

To prove (11), it suffices to consider the case f ∈ L2(X,m). The assertion for f ∈ Lp,
p 6= 2, follows by density of L2∩Lp in Lp and by boundedness of P κ

t (as well as boundedness
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of P κn
t , uniformly in n) on Lp, cf. previous Proposition. To deduce (11) in the case p = 2,

Duhamel’s formula allows us to derive∫
g
(
P κ
t f − P κn

t f) dm = −
∫ t

0

E
(
P κ
s g · P κn

t−sf, ψ − ψn
)
ds

for all f, g ∈ L2. Thus∣∣∣ ∫ g
(
P κ
t f − P κn

t f) dm
∣∣∣ ≤ Lip(ψ − ψn) ·

∫ t

0

∫
Bn+1(z)

Γ
(
P κ
s g · P κn

t−sf
)1/2

dm ds

≤
(
Lip(ψ) + ‖ψ‖L∞

)
·
∫ t

0

[ ∫
Bn+1(z)

Γ
(
P κ
s g
)

+
∣∣P κ

s g
∣∣2 dm]1/2

·
[ ∫

X

Γ
(
P κn
t−sf

)
+
∣∣P κn

t−sf
∣∣2 dm]1/2

ds.

Form boundedness of Eκ w.r.t. E implies∫
X

Γ
(
P κ
s g
)

+
∣∣P κ

s g
∣∣2 dm ≤ C

(
Eκ(P κ

s g) + ‖P κ
s g‖2

L2

)
for all s ∈ [0, t]. Hence,

∫ t
0

∫
X

Γ
(
P κ
s g
)

+
∣∣P κ

s g
∣∣2 dm ds ≤ Ct · ‖g‖2

L2 and thus∫ t

0

∫
Bn+1(z)

Γ
(
P κ
s g
)

+
∣∣P κ

s g
∣∣2 dm ds→ 0

as n→∞. Similarly,∫ t

0

∫
X

Γ
(
P κn
t−sf

)
+
∣∣P κn

t−sf
∣∣2 dm ≤ C

(
Eκn(P κn

t−sg) + ‖P κn
t−sg‖2

L2

)
≤ Ct · ‖g‖2

L2

uniformly in n. This proves
∣∣ ∫ g(P κ

t f−P κn
t f) dm

∣∣→ 0 as n→∞ which is the claim.

Corollary 2.14. (i) Given φ ∈ L∞(X) and ψ ∈ Lipb(X), the semigroup (P κ
t )t≥0 for

κ = φ−∆ψ is given by

P κ
t/2f(x) = Ex

[
e−

∫ t
0 φ(Bs)ds+N

ψ
t f(Bt) 1{t<ζ}

]
(13)

for each f ∈
⋃
p∈[1,∞] L

p(X,m) and for m-a.e. x ∈ X.

(ii) Even more, letting P̃ κ
t f denote a quasi continuous version of P κ

t f , then

P̃ κ
t/2f(x) = Ex

[
e−

∫ t
0 φ(Bs)ds+N

ψ
t f(Bt) 1{t<ζ}

]
holds true for q.e. x ∈ X.

Proof. (i) Define a semigroup (Qt)t≥0 by the right hand side of (13), i.e. Qt/2f(x) :=

Ex
[
e−

∫ t
0 φ(Bs)ds+N

ψ
t f(Bt)

]
. We will prove that it is associated with the quadratic form Eκ.

Put κ0 = −∆ψ. From the probabilistic representations of Qtf and P κ0f , we easily deduce

P κ0
t f −Qtf =

∫ t

0

P κ0
s

(
φQt−sf

)
ds

14



(“Duhamel’s formula”) and thus

lim
t→0

1

t

∫
(f −Qtf)f dm− Eκ0(f) = lim

t→0

1

t

∫ t

0

∫ (
P κ0
s f
)
φ
(
Qt−sf

)
dm ds =

∫
f 2φ dm.

(Note that Eκ is obtained from Eκ0 by perturbation with a bounded potential. Hence,
both Qt and P κ0 are strongly continuous semigroups on L2.) Therefore,

lim
t→0

1

t

∫
(f −Qtf)f dm = Eκ(f)

for all f ∈ D(Eκ) and thus Qtf = P κ
t f for all t and all f .

(ii) follows by standard arguments for quasi-regular Dirichlet forms.

Remark 2.15. Throughout this subsection, the assumptions ψ ∈ Lip(X) (or ψ ∈ Lipb(X))
always can be replaced by ψ ∈ W 1,∞

∗ (X) (or ψ ∈ W 1,∞(X), resp.). In the Fukushima
decomposition, then one has to choose a quasi-continuous version ψ̃ of ψ to guarantee
well-definedness of the contribution ψ̃(Bt)− ψ̃(B0).

2.2 Bochner Inequality BE1(κ,∞) and Gradient Estimate

For n ∈ N, we define the Hilbert space V n(X) :=
(
−∆ + 1

)−n/2(
L2(X)

)
equipped with

the norm ∥∥f∥∥
V n

:=
∥∥(−∆ + 1)n/2f

∥∥
L2 .

Of particular interest are the spaces V 1(X) = D(E) = W 1,2(X), V 2(X) = D(∆), and
V 3(X) = {f ∈ D(∆) : ∆f ∈ Dom(E)}.

Definition 2.16. Given κ ∈ W−1,∞(X), we say that the Bochner inequality or Barky-
Émery condition BE1(κ,∞) holds true if Γ(f)1/2 ∈ V 1(X) for all f ∈ V 2(X) and if

−
∫
X

Γ(Γ(f)1/2, φ) dm−
∫
{Γ(f)>0}

Γ(f)−1/2 Γ(f,∆f)φ dm ≥
〈
Γ(f)1/2φ, κ

〉
W 1,1+,W−1,∞ . (14)

for all f ∈ V 3(X) and all nonnegative φ ∈ V 1(X).

Note that equally well also the first integral in the above estimate can be restricted to
the set {Γ(f) > 0}.

Theorem 2.17. Given κ ∈ W−1,∞(X), the Bochner inequality BE1(κ,∞) is equivalent
to the following gradient estimate GE1(κ,∞): ∀f ∈ V 1(X), ∀t > 0:

Γ(Ptf)1/2 ≤ P κ
t

(
Γ(f)1/2

)
m-a.e. on X (15)

Proof. a) Assume that BE1(κ,∞) holds true. Put ηδ(r) = (r + δ)1/2 − δ1/2 as an ap-
proximation of r1/2. For fixed δ > 0, nonnegative φ ∈ V 1(X). f ∈ V 3(X), and t > 0
consider

s 7→ a(δ)
s =

∫
φP κ

s

(
ηδ(Γ(Pt−sf))

)
dm
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as an absolutely continuous function on (0, t). Then∫
φP κ

t

(
Γ(f)1/2

)
dm−

∫
φΓ(Ptf)1/2 dm

= lim
δ→0

∫
φP κ

t

(
ηδ(Γ(f))

)
dm−

∫
φ ηδ(Γ(Ptf)) dm

= lim
δ→0

[
a

(δ)
t − a

(δ)
0

]
= − lim

δ→0

∫ t

0

[
Eκ(φs, ηδ(Γ(fs)) + 2

∫
X

φsη
′
δ(Γ(fs)) Γ(fs,∆fs) dm

]
ds

= −
∫ t

0

[
Eκ(φs,Γ(fs)

1/2) +

∫
{Γ(fs)>0}

φsΓ(fs)
−1/2 Γ(fs,∆fs) dm

]
ds

where we have put φs = P κ
s φ and fs = Pt−sf . The crucial point now is that the semigroup

(Pt)t≥0 preserves the class V 3(X) where f is chosen from, and that the the semigroup
(P κ

t )t≥0 preserves the cone of nonnegative elements in V 1(X) where φ is chosen from.
Assuming BE1(κ,∞) and applying it to fs and φs in the place of f and φ implies that
in the last integral the expression in [...] is nonpositive. This proves the claimed gradient
estimate (15) for f ∈ V 3(X). The assertion for general f then follows by approximation.
Indeed, each f ∈ V 1(X) is approximated in V 1-norm by the sequence fn := P1/nf ∈ V 3.
Moreover, the map V 1 → L2, g 7→ Γ(g)1/2 is continuous, and so is P κ

t : L2 → L2. Hence,

Γ(Ptf)1/2 = lim
n

Γ(Ptfn)1/2 ≤ P κ
t

(
Γ(fn)1/2

)
= P κ

t

(
Γ(f)1/2

)
.

b) Now let us assume that the gradient estimate holds true. Let us first derive the
assertion on domain inclusion which in our formulation is requested for BE1(κ,∞). Using
the gradient estimate, we conclude that

1

t

∫
X

[
Γ(f)1/2 − P κ

t Γ(f)1/2
]

Γ(f)1/2 dm ≤ 1

t

∫
X

[
Γ(f)1/2 − Γ(Ptf)1/2

]
Γ(f)1/2 dm. (16)

By spectral calculus, it is well known that for t→ 0 the LHS of (16) converges monoton-
ically to Eκ(Γ(f)1/2) and

Γ(f)1/2 ∈ D(Eκ) ⇐⇒ lim
t→0

1

t

∫
X

[
Γ(f)1/2 − P κ

t Γ(f)1/2
]

Γ(f)1/2 dm <∞.

To deal with the RHS of (16), first observe that Γ(Ptf)1/2 → Γ(f)1/2 as t→ 0 since∣∣Γ(Ptf)− Γ(f)
∣∣∣ =

∣∣∣ ∫ t

0

2Γ(Psf,∆Psf)ds
∣∣∣ ≤ 2

∫ t

0

P κ
s Γ(f)1/2 · P κ

s Γ(∆f)1/2ds ≤ C t

for f ∈ V 3(X). Moreover, obviously each of the integrals
∫
X
. . . dm in (16) can be replaced

by
∫
{Γ(f)>0} . . . dm. But on the set {Γ(f) > 0}, the chain rule for the Γ operator yields

1

t

[
Γ(f)1/2 − Γ(Ptf)1/2

]
→ −1

Γ(f)1/2
Γ(f,∆f).

Thus for t→ 0, the RHS of (16) converges as follows

1

t

∫
X

[
Γ(f)1/2 − Γ(Ptf)1/2

]
Γ(f)1/2 dm→ −

∫
{Γ(f)>0}

Γ(f,∆f) dm =

∫
X

(∆f)2 dm.
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Combining the asymptotic results for both sides of (16), we obtain

Eκ(Γ(f)1/2) ≤ ‖∆f‖2
L2 <∞,

in particular Γ(f)1/2 ∈ D(Eκ) = V 1(X) for f ∈ V 3(X). Since the class of these f ’s is
dense in V 2(X) = D(∆), it follows that Γ(f)1/2 ∈ D(Eκ) = W 1,2(X) for all f ∈ D(∆).
This yields the domain assertion requested for BE1(κ,∞).

c) To derive the requested functional inequality for BE1(κ,∞), we integrate the
gradient estimate for f ∈ V 3(X) w.r.t. φδ dm and subtract

∫
φδ Γ(f)1/2 dm on both sides.

Here for arbitrary φ ∈ V 1(X) and δ > 0, we put

φδ = φ · Γ(f)1/2

Γ(f)1/2 + δ
.

This yields

1

t

∫
X

[
Γ(f)1/2 − P κ

t Γ(f)1/2
]
φδ dm ≤

1

t

∫
X

[
Γ(f)1/2 − Γ(Ptf)1/2

]
φδ dm.

In the limit t→ 0, this gives

Eκ
(
Γ(f)1/2, φδ

)
≤ −

∫
{Γ(f)>0}

1

Γ(f)1/2
Γ(f,∆f)φδ dm.

One easily verifies that for δ → 0 this converges to

Eκ
(
Γ(f)1/2, φ

)
≤ −

∫
{Γ(f)>0}

1

Γ(f)1/2
Γ(f,∆f)φ dm

which is the claim.

Corollary 2.18. The Bochner inequality BE1(κ,∞) with κ ∈ W−1,∞(X) implies

E(Γ(f)1/2) ≤ ‖∆f‖2
L2 −

〈
Γ(f), κ

〉
W 1,1+,W−1,∞

for all f ∈ D(∆) and thus

E(Γ(f)1/2) ≤ 1

1− δ

(
‖∆f‖2

L2 + (C + C2/δ) · E(f)
)

for each δ ∈ (0, 1) with C := ‖κ‖W−1,∞.

Localization. In the sequel, we will also localize various statements. Ding this will
require some care since in general X will not be locally compact. Given a space G(X)
of functions (or of m-equivalence classes of functions) on X we denote by Gsloc(X) the
set of all functions g (or m-equivalence classes of functions, resp.) on X “which semi-
locally lie in G(X)” in the sense that for each bounded open subset B ⊂ X there exists
a gB ∈ G(X) such that g = gB on B (or m-a.e. on B, resp.). This way, e.g. we define the
spaces W 1,1+

sloc (X).
We denote by W−1,∞

sloc (X) the set of all κ such that for all bounded open sets B ⊂ X
there exist κB ∈ W−1,∞(X) which are consistent in the sense that 〈φ, κB〉W 1,1+,W−1,∞ =
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〈φ, κB′〉W 1,1+,W−1,∞ for all such B,B′ and for all φ ∈ W 1,1+(X) with support in B ∩ B′.
In this case, we say that κ = κB on B and put

〈φ, κ〉W 1,1+
bs ,W−1,∞

sloc
:= 〈φ, κB〉W 1,1+,W−1,∞

provided φ is supported in B.

Lemma 2.19. The Bochner inequality BE1(κ,∞) is equivalent to the fact that Γ(f)1/2 ∈
V 1(X) for all f ∈ V 2(X) and

−
∫
X

Γ(Γ(f)1/2, φ) + Γ(f)−1/2Γ(f,∆f)φ dm ≥
〈
Γ(f)1/2φ, κ

〉
W 1,1+,W−1,∞ (17)

for all f ∈ V 3
sloc(X) and all nonnegative φ ∈ V 1

bs(X).

The domain inclusion requested for BE1(κ,∞) obviously implies the inclusion for the
localized domains: Γ(f)1/2 ∈ V 1

sloc(X) for all f ∈ V 2
sloc(X).

Proof. “⇒”: Given φ ∈ V 1
bs(X) and f ∈ V 3

sloc(X), there exists bounded open B ⊂ X such
that φ = 0 on X \ B and there exists fB ∈ V 3(X) with f = fB on B. Applying (14) to
fB and φ implies (17) for f and φ.

“⇐”: Given nonnegative φ ∈ V 1(X), by partition of unity we can find countably
many nonnegative φn ∈ V 1

bs(X) such that φ =
∑

n φn. Applying (17) to each φn and the
given f ∈ V 3(X), and adding up these estimates yields (14) for the given φ and f .

3 Equivalence of BE2(k,N) and CD(k,N)

Throughout this section, (X, d,m) will be a metric measure space, N ∈ [1,∞) a number,
and k : X → R will be a bounded, lower semicontinuous function. We present the Eulerian
and the Lagrangian characterizations of “Ricci curvature at x bounded from below by k(x)
and dimension bounded from above by N” and prove their equivalence. Put K0 = infx k(x)
and K1 = supx k(x).

Without loss of generality, we will assume that (X, d,m) satisfies the Riemannian
curvature-dimension condition RCD(K,∞) for some constant K ∈ R. Among others,
this will guarantee that the space is infinitesimally Hilbertian, that the volume of balls
does not grow faster than eCr

2
, and that functions with bounded gradients have Lip-

schitz continuous versions (“Sobolev-to-Lipschitz property”). Moreover, it implies that
Γ(u)1/2 ∈ D(E) for each u ∈ D(∆).

In the sequel, as usual P2(X) will denote the space of probability measures µ on X
with

∫
d2(., z) dµ < ∞ equipped with the L2-Kantorovich-Wasserstein distance W2. We

say that a measure π ∈ P(Geo(X)) represents the W2-geodesic (µr)r∈[0,1] if µr = (er)]π for
r ∈ [0, 1]. Here Geo(X) denotes the set of d-geodesics γ : [0, 1]→ X and er : Geo(X)→
X, t 7→ γr denotes the projection or evaluation operator.

Thanks to our a priori assumption RCD(K,∞), there exists a heat kernel
(
pt(x, y)

)
x,y∈X,t≥0

on X such that

Ptf(x) :=

∫
f(y) pt(x, y) dm(y)
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defines a strongly continuous, non expanding semigroup in Lp(X,m) for each p ∈ [1,∞).
For p = 2, this actually can be defined (or re-interpreted) as the gradient flow for the
energy E in L2(X,m). Moreover,

dP ∗t µ(y) :=
[ ∫

pt(x, y) dµ(x)
]
dm(y)

defines a semigroup on P2(X). The latter can be equivalently regarded as the gradient flow
for the Boltzmann entropy Ent in the Wasserstein space P2(X). Here and in the sequel,
Ent(µ) :=

∫
u log u dm if µ = um and Ent(µ) := ∞ if µ is not absolutely continuous

w.r.t m.

Definition 3.1. We say that a metric measure space (X, d,m) satisfies the curvature-
dimension condition with variable curvature bound k and dimension bound N , briefly
CD(k,N), if for every µ0, µ1 ∈ P2(X) ∩ D(Ent) there exists a measure π ∈ P(Geo(X))
representing some W2-geodesic (µr)r∈[0,1] connecting µ0 and µ1 such that

d

dr
Ent(µr)

∣∣∣
r=1−
− d

dr
Ent(µr)

∣∣∣
r=0+

≥
∫ 1

0

∫
Geo(X)

k(γr)|γ̇|2 dπ(γ) dr+
1

N

[
Ent(µ1)−Ent(µ0)

]2

.

The (k,N)-convexity of the entropy allows for various straightforward reformulations,
cf. [Stu18b].

Lemma 3.2. The following are equivalent:

(i) the mm-space satisfies CD(k,N);

(ii) for every µ0, µ1 ∈ P2(X) ∩ D(Ent) there exists a measure π ∈ P(Geo(X)) repre-
senting some W2-geodesic (µr)r∈[0,1] connecting µ0 and µ1 such that

d

dr
Ent(µr)

∣∣∣
r=1−
− d

dr
Ent(µr)

∣∣∣
r=0+

≥
∫ 1

0

∫
Geo(X)

k(γr)|γ̇|2 dπ(γ) dr+
1

N

∫ 1

0

[ d
dr

Ent(µr)
]2

dr;

(iii) for every µ0, µ1 ∈ P2(X) ∩ D(Ent) there exists a measure π ∈ P(Geo(X)) repre-
senting some W2-geodesic (µr)r∈[0,1] connecting µ0 and µ1 such that for all r ∈ (0, 1)

Ent(µr) ≤ (1− r) Ent(µ0) + rEnt(µ1)

−
∫ 1

0

g(r, s)
(∫

Geo(X)

k(γs)|γ̇|2 dπ(γ) +
1

N

[ d
ds

Ent(µs)
]2)

ds

where g(., .) denotes the Green function on [0, 1].

Moreover, in (ii) as well as in (iii), the phrase “for every µ0, µ1 ∈ P2(X) ∩ D(Ent) there
exists a measure π ∈ P(Geo(X)) representing some W2-geodesic (µr)r∈[0,1] connecting µ0

and µ1 such that . . . ” can equivalently be replaced by “for every measure π ∈ P(Geo(X))
representing some W2-geodesic (µr)r∈[0,1] with endpoints µ0, µ1 of finite entropy . . . ”.

Proof. Firstly note that the addendum follows from the uniqueness of the measure rep-
resenting a W2-geodesics connecting a given pair of measures of finite entropy [GRS16].

(ii) ⇒ (i): Trivial since
∫ 1

0

[
d
ds

Ent(µs)
]2
ds ≥

[
Ent(µ1)− Ent(µ0)

]2
.

19



(i)⇒ (iii): Given aW2-geodesic (µr)r∈[0,1] and its representing measure π ∈ P(Geo(X)),
apply (i) to µs, µs+δ in the place of µ0, µ1 to deduce for a.e. s ∈ (0, 1)

d2

ds2
Ent(µs) ≥

∫
Geo(X)

k(γs)|γ̇|2 dπ(γ) +
1

N

[ d
ds

Ent(µs)
]2

.

(where the LHS has to be understood as the distributional second derivative of a semi-
convex function). Integrating this w.r.t. the measure g(s, r) ds on (0, 1) yields (iii).

(iii)⇒ (ii): Given aW2-geodesic (µr)r∈[0,1] and its representing measure π ∈ P(Geo(X)),
we add up the estimate (iii) together with its counterpart with 1− r in the place of r to
obtain

Ent(µr) + Ent(µ1−r) ≤ Ent(µ0) + Ent(µ1)

−
∫ 1

0

[
g(r, s) + g(1− r, s)

] ( ∫
Geo(X)

k(γs)|γ̇|2 dπ(γ) +
1

N

[ d
ds

Ent(µs)
]2)

ds.

Dividing by r and then letting r → 0 yields (ii).

Definition 3.3. We say that (X, d,m) satisfies the 2-Bochner inequality or 2-Bakry-
Émery estimate with variable curvature bound k and dimension bound N , briefly BE2(k,N),
if ∫

X

1

2
Γ(f)∆φ− Γ(f,∆f)φ dm ≥

∫
X

[
kΓ(f) +

1

N
(∆f)2

]
φ dm

for all f ∈ D(∆) with ∆f ∈ D(E) and all nonnegative φ ∈ D(∆) ∩ L∞(X,m) with
∆φ ∈ L∞(X,m).

Our first main results states that also for variable curvature bound k and finite N ,
the Eulerian and Lagrangian approaches to synthetic lower Ricci bounds are equivalent.
For constant k, this has been proven in joint work [EKS15] of the author with Erbar and
Kuwada. For variable k and N = ∞, it has been proven in joint work [BHS19] with
Braun and Habermann. In particular, in the latter work a formulation of the transport
estimate has been given in terms of the following quantity:

W2,k(µ, ν, t) := inf
(B1,B2)

E
[
e−2

∫ t
0 k(B1

2s,B
2
2s)ds · d2(B1

2t, B
2
2t)
]1/2

where the infimum is taken over all coupled pairs of Brownian motions (B1
s )0≤s≤2t and

(B2
s )0≤s≤2λt with initial distributions µ and ν, resp.

Theorem 3.4. The following are equivalent

(i) the curvature-dimension condition CD(k,N)

(ii) the evolution-variational inequality EVI(k,N): for all µ0, µ1 ∈ P2(X) with finite
entropy and for π ∈ P(Geo(X)) representing the unique W2-geodesic connecting
them:

−1

2

d+

dt

∣∣∣
t=0
W2(P ∗t µ0, µ1)2 ≥ Ent(µ0)− Ent(µ1)

+

∫ 1

0

(1− r)
(∫

Geo(X)

k(γr)|γ̇|2 dπ(γ) +
1

N

[ d
dr

Ent(µr)
]2)

dr

20



(iii) the differential transport estimate DTE2(k,N): for all µ0, µ1 ∈ P2(X) with finite
entropy and for π ∈ P(Geo(X)) representing the unique W2-geodesic connecting
them:

−1

2

d+

dt

∣∣∣
t=0
W2(P ∗t µ0, P

∗
t µ1)2 ≥

∫ 1

0

∫
Geo(X)

k(γr)|γ̇|2 dπ(γ) dr+
1

N

[
Ent(µ0)−Ent(µ1)

]2

(iv) the transport estimate TE2(k,N): for all µ0, µ1 ∈ P2(X) and all 0 ≤ s ≤ t:

W2,k(µ0, µ1, t)
2 ≤ W2,k(µ0, µ1, s)

2 − 1

N

∫ t

s

∣∣∣Ent(P ∗r µ0)− Ent(P ∗r µ1)
∣∣∣2dr

(v) the gradient estimate GE2(k,N): for all f ∈ D(E) and all t > 0:

Γ(Ptf) +
2t

N
e−2K1t

(
∆Ptf

)2 ≤ P 2k
t Γ(f)

(vi) the Bochner inequality BE2(k,N).

Here and henceforth, d+

dt
f(t) := lim suph→0(f(t+h)−f(t))/h denotes the upper derivative.

Proof. (i) ⇒ (ii): Using the equivalent CD(k,N) formulation from the previous Lemma
3.2(iii) and passing there to the limit r → 0, one easily sees that (i) implies

d+

dr

∣∣∣
r=0

Ent(µr) ≤ Ent(µ1)− Ent(µ0)

−
∫ 1

0

∫
(1− r) k(γr)|γ̇|2r dπ(γ) dr +

1

N

∫ 1

0

(1− r)
[ d
dr

Ent(µr)
]2

dr.

Thus the claim (ii) is an immediate consequence of the fact that

d+

dr

∣∣∣
r=0

Ent(µr) ≥
1

2

d+

dt

∣∣∣
t=0
W2(P ∗t µ0, µ1)2,

[AG+15], Thm. 6.3.

(ii) ⇒ (i). We follow the standard path of argumentation. Given two probability
measures µ0, µ1 of finite entropy, let (µr)r∈[0,1], represented by π, denote the unique W2

geodesic connecting them and note that the standing CD(K,∞)-assumption implies that
the µr’s also have finite entropy. Consider the heat flow starting in µr with observation
point µ0 as well as with observation point µ1. Note that

0 ≤ 1

r

d+

dt

∣∣∣
t=0
W2(µ0, P

∗
t µr)

2 +
1

1− r
d+

dt

∣∣∣
t=0
W2(P ∗t µr, µ1)2

sinceW2(µ0, µ1)2 = 1
r
W2(µ0, µr)

2+ 1
1−rW2(µr, µ1)2 whereasW2(µ0, µ1)2 ≤ 1

r
W2(µ0, P

∗
t µr)

2+
1

1−rW2(P ∗t µr, µ1)2. Applying the EVI(k,N) with µr, µ0 as well as with µr, µ1 in the place
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of µ0, µ1 thus yields

0 ≤ 1− r
2

d+

dt

∣∣∣
t=0
W2(µ0, P

∗
t µr)

2 +
r

2

d+

dt

∣∣∣
t=0
W2(P ∗t µr, µ1)2

≤ (1− r)
[
Ent(µr)− Ent(µ0)

−
∫ r

0

s
(∫

Geo(X)

k(γs)|γ̇|2 dπ(γ) +
1

N

[ d
ds

Ent(µs)
]2)

ds
]

+ r
[
Ent(µr)− Ent(µ1)

−
∫ 1

r

(1− s)
(∫

Geo(X)

k(γs)|γ̇|2 dπ(γ) +
1

N

[ d
ds

Ent(µs)
]2)

ds
]

= Ent(µr)− (1− r) Ent(µ0)− rEnt(µ1)

−
∫ 1

0

g(r, s)
(∫

Geo(X)

k(γs)|γ̇|2 dπ(γ) +
1

N

[ d
ds

Ent(µs)
]2)

ds.

This proves the CD(k,N)-estimate.

(i) ⇒ (iii): For t > 0 let φt, ψt denote a W2-optimal pair of Kantorovich potentials
for the transport from P ∗t µ0 = utm to P ∗t µ1 = vtm. Then following [AG+15], Thm. 6.3
and Thm. 6.5, by Kantorovich duality for a.e. t > 0

d+

dt

1

2
W2(P ∗t µ0, P

∗
t µ1)2 = lim

s→t

1

t− s

∫ [
φt(ut − us) + ψt(vt − vs)

]
dm

= −E(φt, ut)− E(ψt, vt).

Moreover,

−E(φt, ut) ≤
d+

dr
Ent(µtr)

∣∣∣
r=0

, −E(φt, ut) ≤ −
d+

dr
Ent(µtr)

∣∣∣
r=1

.

Thus

d+

dt

1

2
W2(P ∗t µ0, P

∗
t µ1)2 ≤ d+

dr
Ent(µtr)

∣∣∣
r=0
− d+

dr
Ent(µtr)

∣∣∣
r=1

(18)

where (µtr)r∈[0,1], represented by πt, denotes the W2-geodesic connecting µt0 := P ∗t µ0 and
µt1 := P ∗t µ1. Together with (i) this implies

d+

dt

1

2
W2(P ∗t µ, P

∗
t ν)2 ≤ −

∫ 1

0

∫
Geo(X)

k(γr)|γ̇|2 dπt(γ) dr +
1

N

[
Ent(P ∗t µ0)− Ent(P ∗t µ1)

]2

for a.e. t and thus

1

s

[1

2
W2(P ∗s µ, P

∗
s ν)2 − 1

2
W2(µ0, µ1)2

]
≤ −1

s

∫ s

0

(∫ 1

0

∫
Geo(X)

k(γr)|γ̇|2 dπt(γ) dr

+
1

N

[
Ent(P ∗t µ0)− Ent(P ∗t µ1)

]2)
dt.

Passing to the limit s→ 0 finally yields the claim (iii) since Ent(P ∗t µ0) as well as Ent(P ∗t µ0)
are continuous in t and since πt weakly converges to π and k is lower semicontinuous.
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(iii)loc ⇒ (i). This implication can be proven with the “trapezial argument” from
[KS18]. Note that thanks to the local-to-global property of the CD(k,N)-condition, for
this implication it suffices that the differential transport inequality holds locally, that is,
for each z ∈ X there exist δ > 0 such that DTE(k,N) holds true for all µ0, µ1 which are
supported in Bδ(z).

Given µ0, µ1 of finite entropy and ε ∈ (0, 1
2
) as well as t > 0, note that

W2(µ0, µ1)2 =
1

ε
W2(µ0, µε)

2 +
1

1− 2ε
W2(µε, µ1−ε)

2 +
1

ε
W2(µ1−ε, µ1)2

whereas

W2(µ0, µ1)2 ≤ 1

ε
W2(µ0, P

∗
t µε)

2 +
1

1− 2ε
W2(P ∗t µε, P

∗
t µ1−ε)

2 +
1

ε
W2(P ∗t µ1−ε, µ1)2.

Thus

0 ≤ 1

ε

d+

dt
W2(µ0, P

∗
t µε)

2 +
1

1− 2ε

d+

dt
W2(P ∗t µε, P

∗
t µ1−ε)

2 +
1

ε

d+

dt
W2(P ∗t µ1−ε, µ1)2.

Estimating the first and third term on the RHS by means of EVI(K,∞) (which is true
as consequence of our standing a priori assumption) and the second term by means of
DTE(k,N) yields

0 ≤ 2

ε

[
Ent(µε)− Ent(µ0)−KW2(µ0, µε)

2
]

− 2

1− 2ε

[
(1− 2ε)2

∫ 1−ε

ε

∫
Geo(X)

k(γr)|γ̇|2r dπ(γ) dr +
1

N

[
Ent(µε)− Ent(µ1−ε)

]2]
+

2

ε

[
Ent(µ1−ε)− Ent(µ1)−KW2(µ1−ε, µ1)2

]
.

In the limit ε→ 0, this gives the CD(k,N)-inequality (i).

(iii) ⇔ (iv). The proof of this equivalence follows the argumentation for proving
Theorem 5.6 and Corollary 5.7 in [BHS19].

(v) ⇒ (iii)loc: This follows similar as in the proof of Theorem 5.16 in [BHS19] from
a localization argument.

(v) ⇔ (vi): The proof follows the standard line of argumentation via differentiating
the forward-backward evolution. More precisely, for bounded, nonnegative φ ∈ D(E) and
fixed t > 0, put a(s) :=

∫
φP 2k

s Γ
(
Pt−sf

)
dm. This function is absolutely continuous in s

with

a′(s) =

∫
φs
[
(∆− 2k)Γ(fs)− 2Γ(fs,∆fs)

]
dm

for a.e. s ∈ [0, t] where we have put φs := P 2k
s φ and fs := Pt−sf . Assuming (vi) implies

a′(s) ≥ 2

N

∫
φs (∆fs)

2 dm
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and thus ∫
φ
(
P 2k
t Γ(f)− Γ(Ptf)

)
dm = a(t)− a(0)

≥ 2

N

∫ t

0

∫
φP 2k

s (∆Pt−sf)2 dm

≥ 2

N
e−2K1t

∫ t

0

∫
φ (Ps∆Pt−sf)2 dm

=
2t

N
e−2K1t

∫
φ (∆Ptf)2 dm.

Varying over φ, this yields (v). Conversely, assuming (v) yields

2

N

∫
φ (∆f)2 dm = lim

t→0

1

t

[2t

N
e−2K1t

∫
φ (∆Ptf)2 dm

]
≤ lim

t→0

1

t

[ ∫
φ
(
P 2k
t Γ(f)− Γ(Ptf)

)
dm
]

=

∫
φ
[
(∆− 2k)Γ(f)− 2Γ(f,∆f)

]
dm

for all bounded nonnegative φ ∈ D(E) and all sufficiently regular f .

(i) ⇒ (vi). We will first derive an estimate of the form (4.2) in [EKS15] for
W2(P ∗t µ, P

∗
s ν). Given measures µ, ν ∈ P2(X) of finite entropy and numbers λ, t > 0

we can estimate similar as in (18)

d+

dt

1

2
W2(P ∗t µ, P

∗
λtν)2 ≤ d+

dr
Ent(µtr)

∣∣∣
r=0
− λd

+

dr
Ent(µtr)

∣∣∣
r=1

.

From Lemma 3.2 we easily deduce

d+

dr
Ent(µtr)

∣∣∣
r=0
− λd

+

dr
Ent(µtr)

∣∣∣
r=1
≤ (λ− 1) ·

(
Ent(µt0)− Ent(µt1)

)
−
∫ 1

0

[
1− r + λr

]
·
(∫

Geo(X)

k(γr)|γ̇|2 dπλt (γ) +
1

N

[ d
dr

Ent(µtr)
]2)

dr

where πλt denotes the measure on P(Geo(X)) representing the geodesic (µtr)r∈[0,1] from
P ∗t µ to P ∗λtν. Adding up these inequalities and using Young’s inequality we obtain

d+

dt

1

2
W2(P ∗t µ, P

∗
λtν)2 ≤ (λ− 1) ·

(
Ent(µt0)− Ent(µt1)

)
−
∫ 1

0

[1− r + λr]
(∫

Geo(X)

k(γr)|γ̇|2 dπλt (γ) +
1

N

[ d
dr

Ent(µtr)
]2)

dr

≤ −
∫ 1

0

[1− r + λr]

∫
Geo(X)

k(γr)|γ̇|2 dπλt (γ)dr

+
N

4
(λ− 1)2 ·

∫ 1

0

1

1− r + λr
dr

= −
∫ 1

0

[1− r + λr]

∫
Geo(X)

k(γr)|γ̇|2 dπλt (γ)dr +
N

4
(λ− 1) log λ.
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Introducing the function

kλ(x, y) := lim
R→0

inf
{∫ 1

0

[1− r + λr] k(γr)dr : γ ∈ Geo(X), γ0 ∈ BR(x), γ1 ∈ BR(y)
}

and denoting by qλt the W2-optimal coupling of P ∗t µ and P ∗λtν, the latter estimate can be
rephrased as

d+

dt

1

2
W2(P ∗t µ, P

∗
λtν)2 ≤ −

∫
X×X

kλ(x, y) d2(x, y) dqλt (x, y) +
N

4
(λ− 1) log λ. (19)

Slightly extending the scope of [BHS19], we define

W2,k,λ(µ, ν, t) := inf
(B1,B2)

E
[
e−2

∫ t
0 kλ(B1

2s,B
2
2λs)ds · d2(B1

2t, B
2
2λt)
]1/2

where the infimum is taken over all coupled pairs of Brownian motions (B1
s )0≤s≤2t and

(B2
s )0≤s≤2λt with initial distributions µ and ν, resp. Following the proof of Theorem 4.6

in [BHS19], from (19) we conclude

d+

dt

1

2
W2,k,λ(P

∗
t µ, P

∗
λtν)2 ≤ N

4
(λ− 1) log λ

and thus

W2,k,λ(P
∗
t µ, P

∗
λtν)2 ≤ W2(µ, ν)2 +

N

2
(λ− 1) log λ · t. (20)

To proceed, we now will make use of a subtle localization argument. Recall from
[AGS08] or from [BHS19], Lemma 2.1, that we may assume without restriction that k
is continuous (even Lipschitz continuous). Given z ∈ X and ε > 0, choose δ > 0 and
Kz such that Kz ≤ k ≤ Kz + ε in B2δ(z). Then following the proof of Theorem 4.2 in
[Stu18b], we conclude that for each p < 2, there exists T > 0 such that for all t, λ > 0
with t(1 + λ) ≤ T and for all µ, ν with support in Bδ(z)

Wp(P
∗
t µ, P

∗
λtν)2 ≤ e−(Kz−ε)(λ+1)t ·W2,k,λ(P

∗
t µ, P

∗
λtν)2. (21)

Combining this with the previous estimate (20) yields

Wp(P
∗
t µ, P

∗
λtν)2 ≤ e−(Kz−ε)(λ+1)t ·

[
W2(µ, ν)2 +

N

2
(λ− 1) log λ · t

]
. (22)

This is very similar to the estimates (4.1) and (4.2) in [EKS15] which are used there
as key ingredients for deriving gradient estimates – the main difference being now that
p < 2 on the LHS of (22). Given a bounded Lipschitz function f on X and putting

GRf(x) = supy∈Br(x)
|f(y)−f(x)|

d(x,y)
, following the proof of Theorem 4.3 in [EKS15], instead of

their estimate (4.7) we now obtain with µ = δx, ν = δy and q > 2 being the dual exponent
for p ∫ ∣∣f(x′)− f(y′)

∣∣ dqλt (x′, y′) ≤
∫ (

Pλt|GRf |q
)1/q ·Wp(Ptδx, Pλtδy)

+2
‖f‖∞
R2

·W 2
p (Ptδx, Pλtδy). (23)
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Choosing a sequence (yn)n∈N such that yn → x and |∇Ptf(x)| = lim supn
Ptf(x)−Ptf(yn)

d(x,yn)
as

in [EKS15], and putting λn = 1 + α d(x, yn) leads to

α
d

dt
Ptf(x) + |∇Ptf |(x) = lim

n→∞

1

d(x, yn)

(
Pλntf(x)− Ptf(y)

)
≤

(
Pt|GRf |q

)1/q
(x) · e−(Kz−ε)t ·

√
1 + α2

N

2t
.

Optimizing w.r.t. α and passing to the limit R→ 0 then yields

2t

N

(
∆Ptf

)2
(x) +

∣∣∇Ptf ∣∣2(x) ≤
(
Pt|∇f |q

)2/q
(x) · e−2(Kz−ε)t. (24)

Integrating this estimate w.r.t. φ(x) dm(x) with a bounded nonnegative φ ∈ Lip(X)
supported in Bδ(z) and then differentiating it at t = 0 yields the following perturbed,
local form of the Bochner inequality

−
∫

1

2
Γ(φ,Γ(f)) + φΓ(f,∆f) dm ≥ (Kz − ε)

∫
φΓ(f) dm +

1

N

∫
φ(∆f)2 dm

−(q − 2)

∫
φΓ(Γ(f)1/2) dm

≥
∫

(k − 2ε)φΓ(f) dm +
1

N

∫
φ(∆f)2 dm

−(q − 2)

∫
φΓ(Γ(f)1/2) dm

provided f ∈ D(∆)∩Lip(X) with ∆f ∈ D(E). Covering the whole space by balls Bδ/2(z)
of the above type, we can find a partition of unity consisting of functions φ of the above
type which allows us to deduce the perturbed Bochner inequality on all of X, cf. the
analogous argumentation formulated as Theorem 3.10 in [BHS19]. Since ε > 0 and q > 2
were arbitrary we finally obtain the Bochner inequality in the following form:

−
∫

1

2
Γ(φ,Γ(f)) + φΓ(f,∆f) dm ≥

∫
k φΓ(f) dm +

1

N

∫
φ(∆f)2 dm

for all f ∈ D(∆) ∩ Lip(X) with ∆f ∈ D(E) and all bounded nonnegative φ ∈ Lip(X).
Following the argumentation in the proof of Lemma 2.19, one verifies the equivalence to
the Bochner inequality BE2(k,N) in its standard form. This proves the claim.

4 Time-Change and Localization

This section is devoted to prove the transformation formula for the curvature-dimension
condition under time-change. In contrast to our previous work with Han [HS19], we
now also will consider weight functions eψ where ψ is no longer in Dloc(∆) but merely
in Lipb(X). This will result in W−1,∞-valued Ricci bounds involving the distributional
Laplacian ∆ψ.

Moreover, we deal with weight functions 1
φ

= eψ where the local Lipschitz function φ
may degenerate in the sense that φ = 0 is admitted. Choosing φ to be an appropriate
cut-off function, this allows us to “localize” the RCD-condition: we can restrict a given
RCD-space (X, d,m) to any subset X ′ := {φ > 0} ⊂ X.
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4.1 Curvature-Dimension Condition under Time-Change

Assume that a metric measure space (X, d,m) is given which satisfies RCD(k,N) for
some lower bounded Borel function k on X and some finite number N ∈ [1,∞). Given
ψ ∈ Liploc(X)∩Dloc(∆), we define a new metric and a new measure on X by d′ := eψ� d
and m′ := e2ψm, resp. Recall that(

eψ � d
)

(x, y) := inf
{∫ 1

0

eψ(γs) |γ̇s| ds : γ ∈ AC(X), γ0 = x, γ1 = y
}
.

Remark 4.1. Since both metric and measure are transformed in a coordinated manner,
the Cheeger energy on the new mm-space (X, d′,m′) coincides with the Cheeger energy on
the old space:

E ′(f) =

∫
|D′f |2dm′ =

∫
|Df |2dm = E(f).

The point is that this energy now is regarded as a quadratic form on L2(X,m′). The new
Laplacian thus is given by ∆′f = e−2ψ∆f .

Brownian motion (P′x, B′t)x∈X,t≥0 on the new mm-space (X, d′,m′) is obtained by “time
change” from the Brownian motion (Px, Bt)x∈X,t≥0 on (X, d,m):

P′x = Px, B′t = Bτ(t), ζ ′ = σ(ζ)

and vice versa Bt = B′σ(t), ζ = τ(ζ ′) with

σ(t) :=

∫ t

0

e2ψ(Bs)ds, τ(t) :=

∫ t

0

e−2ψ(B′s)ds

such that τ(σ(t) = σ(τ(t) = t.
Note that in the case of bounded ψ, the new Brownian motion (Px, B′t) has infinite

lifetime ζ ′ if and only if (Px, Bt) has infinite lifetime ζ.

Theorem 4.2 ([HS19]). i) For any number N ′ ∈ (N,∞], the “time-changed” metric
measure space (X, d′,m′) satisfies BE2(k′, N ′) with

k′ := e−2ψ
[
k −∆ψ − (N − 2)(N ′ − 2)

N ′ −N
Γ(ψ)

]
. (25)

ii) Assume that k is lower semicontinuous, Then (X, d′,m′) satisfies RCD(k′, N ′) for
any lower bounded, lower semicontinuous function k′ on X and any number N ′ ∈ (N,∞]
such that

k′ ≤ e−2ψ
[
k −∆ψ − (N − 2)(N ′ − 2)

N ′ −N
Γ(ψ)

]
m′-a.e. on X ′.

Remark 4.3. i) Let us re-formulate the previous Theorem in terms of φ := e−ψ. That
is, assume that φ ∈ Liploc(X) ∩ Dloc(∆) is given with φ > 0 on X and define a metric
and a measure on X by d′ := 1

φ
� d and m′ := 1

φ2
m, resp. Observe that for ψ := − log φ,

φ ∈ Liploc(X) ∩ Dloc(∆), φ > 0 ⇐⇒ ψ ∈ Liploc(X) ∩ Dloc(∆)

27



with ∆(φ2) = e−2ψ(4Γ(ψ) − 2∆ψ). Thus the metric measure space (X, d′,m′) satisfies
RCD(k′, N ′) for any lower bounded, lower semicontinuous functions k′ on X and any
number N ′ ∈ (N,∞] such that

k′ ≤ kφ2 +
1

2
∆φ2 −

[
2 +

(N − 2)(N ′ − 2)

N ′ −N

]
Γ(φ) m′-a.e. on X ′. (26)

ii) Another remarkable way of re-formulating the previous result is in terms of

ρ := φ−(N∗−2) = e(N∗−2)ψ

with N∗ := 2 + (N−2)(N ′−2)
N ′−N provided N∗ > 2. Then estimate (26) can be re-written as

k′ ≤ ρ−
2

N∗−2

[
k − 1

N∗ − 2
ρ−1 ∆ρ

]
m′-a.e. on X ′. (27)

Recall that in the case N∗ = 2, estimate (27) states

k′ ≤ e−2ψ
[
k −∆ψ

]
m′-a.e. on X ′.

4.2 Localization

We are now going to relax the positivity assumption on φ, admitting φ also to vanish on
subsets of X.

Theorem 4.4. (i) Given φ ∈ Liploc(X) such that the set {φ > 0} is connected. Define a
metric measure space (X ′, d′,m′) by

X ′ := {φ > 0}, d′ =
1

φ
� d, m′ :=

1

φ2
m
∣∣
X′
.

Then d′ is a complete separable metric on X ′ and m′ is a locally finite Borel measure on
(X ′, d′). The metric measure space (X ′, d′,m′) is infinitesimally Hilbertian.

The sets Liploc(X
′, d) and Liploc(X

′, d′) coincide. For f ∈ W 1,2
loc (X ′, d,m) = W 1,2

loc (X ′, d′,m′),
the minimal weak upper gradients |Df | and |D′f | w.r.t. the mm-spaces (X, d,m) and
(X ′, d′,m′), resp., coincide.

(ii) Assume in addition that φ ∈ Liploc(X)∩Dloc(∆). Then the metric measure space
(X ′, d′,m′) satisfies RCD(k′, N ′) for any number N ′ ∈ (N,∞] and any lower semicontin-
uous function k′ on X ′ with

k′ ≤ kφ2 +
1

2
∆φ2 −N∗Γ(φ) m′-a.e. on X ′

where N∗ := 2 + (N−2)(N ′−2)
N ′−N .

Proof. (i) The crucial point is the completeness of the metric d′. Since the metrics d′ and
d are obviously locally equivalent on X ′, this will follow from the fact that

lim
y→∂X′

d′(x, y) =∞ (∀x ∈ X ′).
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To see the latter, let points x ∈ X ′ and z ∈ ∂X ′ be given and let (γt)t∈[0,1] be any
absolutely continuous curve in (X, d) with γ0 = x and γ1 = z. Without restriction, we
may assume that γ has constant speed. Let L = Lipφ. Then∫ t

0

1

φ(γs)
|γ̇s| ds ≥

1

L

∫ t

0

1

1− s
ds→∞

as t→ 1.
(ii) It is easy to check that the RCD(k′, N ′) condition has the local-to-global property,

see [Stu15] for the proof in the case N ′ = ∞. Therefore, it suffices to prove that X ′ is
covered by open sets B such that the Boltzmann entropy is (k′, N ′)-convex along W ′

2-
geodesics with endpoints supported in B. We are going to verify this for B := B′r(z) :=
{y ∈ X ′ : d′(y, z) < r} with

Br
(
B′2r(z)

)
:=
{
x ∈ X : d

(
x,B′2r(z)

)
< r
}
⊂ X ′.

Given such a ball B = B′r(z), we choose φB ∈ Liploc(X) ∩ Dloc(∆) with φB = φ in
B′2r(z), φB = 1 in X \ Br

(
B′2r(z)

)
, and φB > 0 in X. See the subsequent Lemma 4.5

for the construction of such φB’s. According to the previous Theorem 4.2, the mm-space
(X, 1

φB
� d, 1

φ2B
m) satisfies RCD(k′, N ′) with N ′ and k′ as claimed. Thus the Boltzmann

entropy is (k′, N ′)-convex along 2-Kantorovich-Wasserstein geodesics (µt)t∈[0,1] w.r.t. the

metric 1
φB
�d. If the endpoint measures µ0 and µ1 are supported in B

′
r(z), however, these

are exactly the 2-Kantorovich-Wasserstein geodesics w.r.t. the metric 1
φ
� d. This proves

the claim.

For the reader’s convenience, we quote an important result concerning cut-off functions
from [AMS16], Lemma 6.7.

Lemma 4.5. Given a locally compact RCD(K,∞)-space (X, d,m) and open subsets D0,
D1 ⊂ X with D0 ⊂ D1, there exist φ ∈ Lipb(X) ∩ D(∆) with ∆φ ∈ L∞(X) and φ = 1 in
D0, φ = 0 in X \D1, and φ ≥ 0 in X.

Corollary 4.6. Assume that a metric measure space (X, d,m) is given which satisfies
RCD(K,N) for some finite numbers K,N ∈ R.

Then for any open subsets D0, D1 ⊂ X with D0 ⊂ D1, there exists a metric measure
space (X ′, d′,m′) satisfying RCD(K ′, N ′) for some finite numbers K ′, N ′ ∈ R such that

D0 ⊂ X ′ ⊂ D1, d′ = d locally on D0, m′ = m on D0.

Proof. Previous Theorem, part (ii), plus existence of cut-off functions with bounded
Laplacian according to previous Lemma.

4.3 Singular Time Change

In the previous paragraph we dealt with an extension of Theorem 4.2 where ψ = − log φ
is allowed to degenerate in the sense that it attains the value ∞ on closed subsets of
arbitrary seize. Now we will deal with the extension towards ψ which are no longer in
Dloc(∆) but merely in Lipb(X).

Assume that a metric measure space (X, d,m) is given which satisfies BE2(k,N) for
some lower bounded function k on X and some finite number N ∈ [1,∞).
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Theorem 4.7. Given ψ ∈ Lipb(X), the “time-changed” metric measure space (X, d′,m′)
with d′ := eψ � d and m′ := e2ψ m satisfies BE1(κ,∞) for

κ :=
[
k − (N − 2)Γ(ψ)

]
m−∆ψ. (28)

Proof. i) Without restriction, assume that k is bounded. Choose K ∈ R+ with k ≥ −K
on X. Given ψ ∈ Lipb(X)∩D(E), we will approximate it by ψn := P1/nψ. Thanks to the
BE2(−K,N) assumption, the heat semigroup preserves the class of Lipschitz functions
and of course it always maps L2 into D(∆). Thus ψn ∈ D(∆) with supn Lipψn <∞ and
with ψn → ψ∞ := ψ in D(E) and in L∞. To see the latter, observe that by Ito’s formula,

1 +
K

2N

(
Ex d(Bt, x)

)2

≤ Ex cosh
(√K

N
d(Bt, x)

)
≤ eKt/e

since ∆ cosh
(√

K/N d( . , x)
)
≤ K · cosh

(√
K/N d( . , x)

)
by Laplace comparison. Thus

|Ptψ(x)− ψ(x)| ≤ Lipψ · Exd(B2t, x) ≤ Lipψ ·
√

2N

K

(
eKt − 1

)
.

ii) For n ∈ N∪{∞}, consider the mm-space (X, dn,mn) with dn := eψn�d and mn :=
e2ψn m. Let (P n

t )t≥0 and (Px, Bn
t )x∈X,t≥0 denote the heat semigroup and the Brownian

motion, resp., associated with it. Note that Bn
t = Bτn(t) with τn(t) being the inverse to

σn(t) :=

∫ t

0

e2ψn(Bs)ds.

Also note that due to the BE1(−K,∞)-property, the lifetime of the original Brownian
motion is infinite and thus also the lifetime of any of the time-changed Brownian motions.
Moreover, as n → ∞, obviously τn(t) → τ(t) (even uniformly in ω), thus Bn

t → B∞t
a.s. and

P n
t f(x) = Ex

[
f
(
Bn

2t

)]
→ Ex

[
f
(
B∞2t
)]

= P∞t f(x) (29)

for every bounded continuous function f on X and every x ∈ X.

iii) According to Theorem 4.2, for finite n, the the mm-space (X, dn,mn) satisfies the
BE1(kn,∞)-condition with

kn = e2ψn
[
k − (N − 2)|∇ψn|2 −∆ψn

]
. (30)

In particular, the associated heat semigroup (P n
t )t≥0 satisfies∣∣∇nP

n
t f
∣∣ ≤ P kn

t

(∣∣∇nf
∣∣) (31)

with the Feynman-Kac semigroup P kn
t given in terms of the Brownian motion on (X, dn,mn)

by

P kn
t g(x) = Ex

[
e−

∫ t
0 kn(Bn2s)ds g

(
Bn

2t

)]
.
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As already observed before, this can be reformulated as

P kn
t/2g(x) = Ex

[
e−

1
2

∫ t
0 kn(Bτn(s))ds g

(
Bτn(t)

)]
in terms of the Brownian motion on (X, d,m). Moreover,

1

2

∫ t

0

kn(Bτn(s))ds =
1

2

∫ τn(t)

0

[
k − (N − 2)|∇ψn|2 −∆ψn

]
(Bs)ds

= An
(
τn(t)

)
−Nn

(
τn(t)

)
with An(t) := 1

2

∫ t
0

[
k − (N − 2)|∇ψn|2

]
(Bs)ds and

Nn(t) :=
1

2

∫ t

0

∆ψn(Bs)ds = ψn(Bt)− ψn(B0)−Mn(t),

the additive functional of vanishing quadratic variation in the Fukushima-Ito decomposi-
tion of ψn(Bt) whereas Mn denotes the martingale additive functional.

iv) Since ψn → ψ in D(E) as n→∞, obviously

An(t)→ A(t) :=
1

2

∫ t

0

[
k − (N − 2)|∇ψ|2

]
(Bs)ds

Px-a.s. for m-a.e. x. Moreover, An is Lipschitz continuous in t, uniformly in n, and
τn(t)→ τ∞(t) (uniformly in ω). Thus Px-a.s. for m-a.e. x

An
(
τn(t)

)
→ A∞

(
τ∞(t)

)
as n→∞.

To deal with the convergence of Nn

(
τn(t)

)
, let N∞ and M∞ denote the additive func-

tional of vanishing quadratic variation and the martingale additive functional, resp., in
the Ito decomposition

ψ(Bt) = ψ(B0) +M∞(t) +N∞(t),

see (9). As n→∞, of course, ψn(B0)→ ψ(B0) (uniformly in ω) and

ψn(Bτn(t)) = ψn(Bn
t )→ ψ(Bt)

Px-a.s. for every x.
Furthermore,

Em

∣∣∣Mn(τn(t))−M∞(τ∞(t))
∣∣∣2

≤ 2Em

∣∣∣Mn(τn(t))−M∞(τn(t))
∣∣∣2 + 2Em

∣∣∣M∞(τn(t))−M∞(τ∞(t))
∣∣∣2

= 2Em

∫ τ∞(t)

0

∣∣∇(ψn − ψ)
∣∣2(Bs) ds+ 2Em

∫ τn(t)∨τ∞(t)

τn(t)∧τ∞(t)

∣∣∇ψ∣∣2(Bs) ds

= C t · E(ψn − ψ) + C t · E(ψ) · ‖ψn − ψ‖∞
→ 0
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as n→∞ and thus Mn(τn(t))→M∞(τ∞(t)) Px-a.s. for m-a.e. x.

v) Define the taming semigroup (P κ
t )t≥0 by

P κ
t g(x) = Ex

[
e−A∞(τ∞(2t)+N∞(τ∞(2t) g(Bτ∞(2t))}

]
(32)

with A∞ and N∞ as introduced above. Then for every bounded, quasi continuous function
g on X

P kn
t g(x)→ P κ

t g(x)

as n → ∞ for m-a.e. x ∈ X. (Note that quasi continuity of g implies that t 7→ g(Bt)
is continuous Pxa.s. for m-a.e. x ∈ X.) Moreover, recall from Proposition 2.11 (iii) and
estimate (55) that ∣∣P kn

t g(x)
∣∣ ≤ eC0+C1t ‖g‖∞

uniformly in n for m-a.e. x ∈ X with constants C0, C1 depending only on ψ, on supn osc(ψn),
and on supn Lipψn. For any test plan Π on X, therefore∫ ∫ 1

0

P kn
t g(γs) |γ̇s| ds dΠ(γ)→

∫ ∫ 1

0

P κ
t g(γs) |γ̇s| ds dΠ(γ). (33)

vi) Now assume that f ∈ D(∆) ∩ Lip(X). Since the mm-space (X, d,m) satisfies
an RCD-condition, it implies |∇f | ∈ D(E) ∩ L∞(X). By quasi-regularity of the Dirichlet
form (E ,D(E)), therefore |∇f | admits a quasi continuous version. Thus applying (31),
(29), and (33) to a quasi continuous version g of |∇f | yields∫ ∣∣P∞t f(γ1)− P∞t f(γ0)

∣∣ dΠ(γ) ←
∫ ∣∣P n

t f(γ1)− P n
t f(γ0)

∣∣ dΠ(γ)

≤
∫ ∫ 1

0

P kn
t |∇nf |(γs) |γ̇s| ds dΠ(γ)

≤ e2‖ψ−ψn‖∞ ·
∫ ∫ 1

0

P kn
t |∇∞f |(γs) |γ̇s| ds dΠ(γ)

→
∫ ∫ 1

0

P κ
t |∇∞f |(γs) |γ̇s| ds dΠ(γ)

for any test plan Π on X. Therefore, P k
t |∇∞f | is a weak upper gradient for P∞t f . Hence,

in particular,
|∇∞P∞t f | ≤ P κ

t |∇∞f |.

By density of D(∆)∩Lip(X) in D(E), this L1-gradient estimate extends to all f ∈ D(E).
According to Theorem 2.17, the latter indeed is equivalent to the L1-Bochner inequality
BE1(κ,∞) with

κ := [k − (N − 2)|∇ψ|2]m−∆ψ. (34)

This proves the claim in the case ψ ∈ Lipb(X) ∩ D(E).

vii) In the general case of ψ ∈ Lipb(X), let us choose a sequence of ψj ∈ Lipb(X) ∩
D(E), j ∈ N, with ‖ψj‖∞ ≤ ‖ψ‖∞, Lipψj ≤ Lipψ and ψj ≡ ψ on Bj(z) for some

fixed z ∈ X. For j ∈ N, let (P
ψj
t )t≥0 denote the heat semigroup on the mm-space
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(X, eψj�, e2ψj m) and let (P
κj
t )t≥0 denote the associated taming semigroup defined as in

(32) with ψ now replaced by ψj. Then obviously∣∣Pψ
t f − P

ψj
t f
∣∣(x) ≤ ‖f‖∞ · Px

(
Bs 6∈ Bj(z) for some s ≤ t e2‖ψ‖∞

)
→ 0

as j →∞ as well as∣∣P κ
t g − P

κj
t g
∣∣(x) ≤ ‖g‖∞ · eC0+C1t · Px

(
Bs 6∈ Bj(z) for some s ≤ t e2‖ψ‖∞

)
→ 0.

Thus for any f ∈ D(∆ ∩ Lip(X) and any test plan Π on X, as j →∞,∫ ∣∣Pψ
t f(γ1)− Pψ

t f(γ0)
∣∣ dΠ(γ) ←

∫ ∣∣Pψj
t f(γ1)− Pψj

t f(γ0)
∣∣ dΠ(γ)

≤
∫ ∫ 1

0

P
κj
t |∇jf |(γs) |γ̇s| ds dΠ(γ)

→
∫ ∫ 1

0

P κ
t |∇∞f |(γs) |γ̇s| ds dΠ(γ).

Arguing as in the previous part vi), this proves that the mm-space (X, eψ�, e2ψ m) satisfies
BE1(κ,∞) with κ = [k − (N − 2)|∇ψ|2]m−∆ψ.

Corollary 4.8. For ψ ∈ Lipb(X), the heat flow P ′t)t≥0 on the metric measure space
(X, d′,m′) with d′ := eψ � d and m′ := e2ψ m satisfies∣∣∇′P ′t/2f ∣∣(x) ≤ Ex

[
e−A

′
t ·
∣∣∇′f ∣∣(B′t)] (35)

with

A′t :=
1

2

∫ t

0

[
k − (N − 2)Γ(ψ)

]
(B′s)ds+M ′ψ

t + ψ(B′0)− ψ(B′t)

where (M ′ψ
t )t≥0 denotes the martingale additive functional in the Fukushima decomposi-

tions of (ψ(B′t))t≥0.
Equivalently, this can be re-formulated as∣∣∇P ′t/2f ∣∣(x) ≤ Ex

[
e−At ·

∣∣∇f ∣∣(B′t)], (36)

now with ∇ in the place of ∇′ and with A′ replaced by

At :=
1

2

∫ t

0

[
k − (N − 2)Γ(ψ)

]
(B′s)ds+M ′ψ

t .

Example 4.9. Let (X, d,m) = (R2, dEuc,mLeb) be the standard 2-dimensional mm-space.
Define functions ψj, j ∈ N, and ψ : R2 → R by

ψj(x1, x2) = Φj(x1) · η(x2), ψ(x1, x2) = Φ(x1) · η(x2)

with Φ,Φj as defined in (4) for some ϕ ∈ C2(R) and with η ∈ C2(R) given by η(t) :=
(t2 − 1)3t for t ∈ [−1, 1] and η(t) := 0 else. For each j ∈ N, the time-changed mm-space
(R2, dj,mj) with dj := eψj �dEuc,mj := e2ψj mLeb corresponds to the Riemannian manifold

33



(R, gj) with metric tensor given by gj := e2ψj gEuc. Its Ricci tensor is bounded from below
by

kj = −e−2ψj∆ψj

cf. previous Theorem. cf. Propostion 4.2. (Note that the measure-valued Ricci bound
is given by kj mj = −∆ψj.) In the limit j → ∞, we will end up with a mm-space
(R2, d∞,m∞) with distributional Ricci bound given by

κ = −∆ψ.

5 Gradient Flows and Convexification

This section is devoted to extensions of the results from [Stu18a] on existence of gradient
flows and from [LS18] on convexification of semi-convex subsets towards functions with
variable lower bound for the convexity ([Stu18a]) or domains with variable lower bound
for the curvature of the boundary ([LS18]), resp. Of particular importance is the fact that
these lower bounds may change sign. Even the case of constant positive lower bounds
leads to new insights not covered by previous results.

5.1 Gradient Flows for Locally Semiconvex Functions

The goal of this subsection is to extend the existence result and the contraction estimate
for gradient flows for semiconvex functions from [Stu18a] to the setting of locally semi-
convex functions. The contraction estimate for the flow will be in terms of the variable
lower bound for the local semiconvexity of the potential.

Let (X, d,m) be a locally compact metric measure space satisfying an RCD(K,∞)-
condition (cf. Definition 3.1) for some K ∈ R. Assume moreover, that we are given
a continuous potential V : X → R which is weakly `-convex for some continuous, lower
bounded function ` : X → R in the following sense: for all x, y ∈ X there exists a geodesic
(γr)r∈[0,1] connecting them such that for all r ∈ [0, 1]

V (γr) ≤ (1− r)V (γ0) + rV (γ1)−
∫ 1

0

`(γs)g(r, s)ds · d2(γ0, γ1) (37)

where g(r, s) := min{(1− s)r, (1− r)s} denotes the Green function on [0, 1].
We say that a curve (xt)t∈[0,∞) in X is an EVI`-gradient flow for V (where EVI stands

for “evolution-variational inequality”) if the curve is locally absolutely continuous in t ∈
(0,∞) and if for every t > 0, every y ∈ X, and every geodesic (γr)r∈[0,1] connecting xt
and y,

−1

2

d+

dt
d2(xt, y) ≥ V (xt)− V (y) +

∫ 1

0

(1− r) `(γr) dr · d2(xt, y). (38)

Theorem 5.1. For every x0 ∈ X, there exists a unique EVI`-gradient flow for V starting
in x0 (and existing for all time). Flows starting in x0 and y0 satisfy

d(xt, yt) ≤ e−
∫ t
0 `(xs,ys)dsd(x0, y0) (39)

for all t ≥ 0. Here `(x, y) := supγ
∫ 1

0
`(γr)dr with supγ taken over all geodesics (γt)t∈[0,1]

in (X, d) with γ0 = x, γ1 = y.
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Proof. Existence and uniqueness of an EVIΛ-gradient flow (Φt(x))t≥0 for any x ∈ X with
Λ := inf ` follows from our previous work [Stu18a]. Following the previous proof, one
also can deduce the refined EVI`-property. Indeed, this will follow as before by a scaling
argument from the EVIK−n`-property for the heat flow on the weighted metric measure
space (X, d, e−nVm) which (obviously) satisfies the RCD(K +n`,∞)-condition. If we now
compare two flows, then we can apply (38) twice: first to the flow (xt)t≥0 and with yt in
the place of y; then to the flow (yt)t≥0 and with xt in the place of y. Adding up both
estimates yields (after some tedious arguments to deal with weakly differentiable functions
with double dependence on the varying parameter)

−1

2

d

dt
d2
(
xt, yt

)
≥ `

(
xt, yt

)
· d2
(
xt, yt

)
.

Alternatively, one can argue as follows: Given ε > 0, let X be covered by balls
Bi = Bri(zi) such that `i ≤ ` ≤ `i + ε on B2ri(zi). Thanks to the Localization Theorem
4.6, for each i there exists an RCD-spaces (Xi, di,mi) with Bri(zi) ⊂ Xi whose local data
on Bri(zi) coincide with those of the original one. Thus as long as the flow does not
leave Bri(zi), we can consider the original flow also as an EVI-gradient flow for V on the
mm-spaces (Xi, di,mi).

Given any (X, d)-geodesic (γt)t∈[0,1] and r, s ∈ [0, 1] with γr, γs ∈ Bri(zi) we thus
conclude that

d

dt

∣∣∣
t=0

d
(
Φt(γr),Φt(γs)

)
≤ −`i · d

(
γr, γs

)
≤ −d

(
γ0, γ1

)
·
∫ s

r

(
`(γq)− ε

)
dq.

Adding up these estimates for consecutive pairs of points on the geodesic (γt)t∈[0,1] finally
gives

d

dt

∣∣∣
t=0

log d
(
Φt(γ0),Φt(γ1)

)
≤ −

∫ 1

0

`
(
γq
)
dq + ε.

Choosing γ optimal, we therefore obtain for arbitrary x0, x1 ∈ X and for all t ≥ 0

d

dt
log d

(
Φt(x0),Φt(x1)

)
≤ −`

(
Φt(x0),Φt(x1)

)
+ ε.

Thus

d
(
Φt(x0),Φt(x1)

)
≤ e−

∫ t
0 `
(

Φs(x0),Φs(x1)
)
ds+ε t · d

(
Φt(x0),Φt(x1)

)
.

Since ε > 0 was arbitrary, this yields the claim.

As pointed out in [Stu18a] in the case of constant `, the existence of EVI-flows for V
can be regarded as a strong formulation of semiconvexity of V .

Corollary 5.2. Every weakly `-convex function is indeed strongly `-convex in the sense
that the inequality (37) holds for every geodesic (γt)t∈[0,1] in X.

A closer look on the proof of the previous Theorem 5.1 shows that appropriate re-
formulations of the results also hold true for flows which are defined only locally.

35



Theorem 5.3. Assume that continuous functions V and ` : Y → R are defined on an
open subset Y ⊂ X and that V is `-convex on Y in the sense that the inequality (37)
holds for every geodesic (γt)t∈[0,1] contained in Y .

(i) Then for each x0 ∈ Y there exists a unique local EVI`-gradient flow (xt)t∈[0,τ) for
V with maximal life time τ = τ(x0) ∈ (0,∞]. If τ < ∞ then xτ = limt→τ xt exists and
xτ ∈ ∂Y .

(ii) For any pair of initial points x0, y0 ∈ Y and their EVI`-flows (xt)t≥0, (yt)t≥0, the
estimate

d(xt, yt) ≤ e−
∫ t
0 `(xs,ys)dsd(x0, y0)

holds for all t ≤ T ∗ where T ∗ = T ∗(x0, y0) denotes the first time where a geodesic con-
necting xt and yt will leave Y .

Proof. (i) Existence and uniqueness of a local EVI`-gradient flow are straightforward.
Applying the estimate to points x0 and y0 := xδ proves that the flow (xt)t has finite
speed. Assuming τ < ∞, the family (xt)t<τ will be bounded and therefore admits a
unique accumulation point for t → τ , say xτ ∈ Y . Assuming that τ is the maximal life
time for the flow implies that xτ ∈ ∂Y .

(ii) follows exactly as in the case of the globally defined gradient flow.

The Hessian along Geodesics

On a Riemannian manifold (M, g), the Hessian D2f of a smooth function f : M → R
can be regarded as a bilinear form D2f : TM × TM → R or equivalently as a quadratic
form on the tangent space TM . With the latter interpretation, for ξ = (x, v) ∈ TM with
x ∈M and v ∈ TxM ,

D2f(ξ) =
1

|γ̇0|2
· d

2

dt2
f(γt)

∣∣
t=0

(40)

for any γ ∈ Geox(M) with γ̇0 = v. Here Geox(M) denotes the set of all geodesics
γ : (a, b) → M with 0 ∈ (a, b) and γ0 = x. (As usual, ‘geodesics’ are constant speed and
minimizing.)

Definition 5.4. Given a geodesic space (X, d), an open set Y ⊂ X and functions V :
Y → R and λ : Y → R. We say that the Hessian of V along geodesics (or the geodesic
Hessian of V ) is bounded from below by λ, briefly

D2
GeoV ≥ λ on Y,

if for every unit speed geodesic γ : (a, b) → Y the function λ ◦ γ : (a, b) → R is locally
integrable and u := V ◦ γ : (a, b)→ R is locally absolutely continuous with

u′′ ≥ λ ◦ γ on (0, 1) in distributional sense.

Example 5.5. A function V : X → R is strongly K-convex if and only if

D2
GeoV ≥ K on X.
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Proposition 5.6. Given a geodesic space (X, d), an open set Y ⊂ X, a continuous
function V : Y → R, and a number κ ∈ R. Then

D2
GeoV ≥ −κV on Y

if and only if for all geodesics γ : [0, 1]→ Y of length < Rκ := π/
√
κ and for all s ∈ (0, 1),

V (γs) ≤ σ(1−s)
κ

(
|γ̇|
)
· V (γ0) + σ(s)

κ

(
|γ̇|
)
· V (γ1). (41)

Indeed, it suffices to verify the latter for s = 1/2, and at each point x ∈ X for all
sufficiently short geodesics with γ1/2 = x.

Proof. By definition D2
GeoV ≥ −κV on Y if and only if for each geodesic γ : (a, b) → Y

the function u := V ◦ γ : (a, b) → R is absolutely continuous and satisfies u′′ ≥ −κ̄ u on
(a, b) in distributional sense with κ̄ := |γ̇|2 κ. Straightforward calculations and comparison
results for Sturm-Lioville equations yield that this is equivalent to

V (γs) ≤ σ
( t−s
t−r )
κ

(
(t− r) |γ̇|

)
· V (γr) + σ

( s−r
t−r )
κ

(
(t− r) |γ̇|

)
· V (γt) (42)

for all a < r < s < t < b with (t− r) |γ̇| < Rκ := π/
√
κ. The latter obviously follows from

(41) by linear rescaling of the interval [r, t] onto [0, 1]. Conversely, (41) follows from (42)
with a = 1, b = 1 by passing to the limit r ↘ 0, t↗ 1 and using continuity of V .

5.2 Convexification

In this subsection, we will prove the fundamental Convexification Theorem which (via
time-change) allows to transform the metric of a mm-space (X, d,m) in such a way that
a given semiconvex subset Y ⊂ X will become geodesically convex w.r.t. the new metric
d′. We will prove this in two versions: first, for closed sets Y , then for open sets Z.

Throughout this section, we fix a locally compact RCD(K,∞)-space (X, d,m). Given
a function V : X → (−∞,∞], we denote its descending slope by

|∇−V |(x) := lim sup
y→x

[V (y)− V (x)]−

d(x, y)

provided x is not isolated, and by |∇−V |(x) := 0 otherwise. Moreover, we put |∇+V | :=
|∇−(−V )|.

Definition 5.7. We say that a subset Y ⊂ X is locally geodesically convex if there exists
an open covering

⋃
i∈I Ui ⊃ X such that every geodesic (γs)s∈[0,1] in X completely lies in

Y provided γ0, γ1 ∈ Y ∩ Ui for some i ∈ I.

Every geodesically convex set is locally geodesically convex but not vice versa.

Example 5.8. Let X denote the cylinder R × S1 and Y0 = {(t, ϕ) : t = 0, |ϕ| ≤ π/2}.
Then Y := B1(Y0) is locally geodesically convex but not (geodesically) convex.

Theorem 5.9. Let V, ` : X → R be continuous functions and assume that for each ε > 0
there exists a neighborhood Dε of the closed set Y := {V ≤ 0} such that
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• 1− ε ≤ |∇−V | ≤ 1 + ε in Dε \ Y

• V is (`− ε)-convex in Dε \ Y .

Then for every ε > 0, the set Y is locally geodesically convex in (X, d′) for d′ = e(ε−`)·V �d.

Remark 5.10. (i) The above Theorem provides a far reaching extension of our previous
result in [LS18] which covers the case of constant negative `. Now we also admit variable
` and `’s of arbitrary signs.

(ii) Note that in the case of positive `, the set Y will already be convex in the old
metric space (X, d) and it will be “less convex” in the new space (X, d′).

(iii) In the above Theorem, without restriction, we may put V ≡ 0 in Y . Moreover,
for both functions V and ` it suffices that they exist as continuous functions on D \ Y 0

for some neighborhood D of Y .

Proof. Let ε′ > 0 be given and put d′ = e(ε′−`)V � d.
(i) In order to prove the local convexity of Y in (X, d′), let z ∈ ∂Y be given and choose

ε > 0 sufficiently small (to be determined later). In any case, assume that (1+ε
1−ε)

2 < 2.
Choose δ > 0 such that

• 1− ε ≤ |∇−V | ≤ 1 + ε in Bδ(z) \ Y

• V is geodesically (`(z)− ε)-convex in Bδ(z) \ Y

• |`(x)− `(z)| ≤ ε for all x ∈ Bδ(z) \ Y .

Our proof of the local convexity of Y will be based on a curve shortening argument under
the gradient flow for V : Assume that (γa)a∈[0,1] was a d′-geodesic in Bδ/3(z) with endpoints
γ0, γ1 ∈ Y and γa 6∈ Y for some a ∈ (0, 1). Then we will construct a new curve (γ0

a)a∈[0,1]

with the same endpoints but which is shorter (w.r.t. d′) than the previous one – which
obviously contradicts the assumption. For each a ∈ [0, 1], we consider the gradient flow
curve

(
Φt(γa)

)
t≥0

for V starting in Φ0(γa) = γa and we stop it as soon as the flow enters

the set Y . Then we put γ0
a := ΦT0(γa) where T0 = inf{t ≥ 0 : Φt(γa) ∈ Y }.

(ii) To get started, let us first summarize some key facts for the gradient flow for V ,
that is, for the solution to ẋt = −∇V (xt) in the sense of EVI-flows. For x ∈ Bδ(z) \ Y ,
let
(
Φt(x)

)
t∈[0,τ)

denote the EVI-gradient flow for V starting in x with maximal life time

τ = τ(x) in Bδ(z) \ Y . Note that V (x) ≤ (1 + ε)δ for x ∈ Bδ(z) \ Y and for a.e. t,

d

dt
Φ(t, x) = −|∇−V |2(Φ(t, x)) ≥ −(1 + ε)2 and ≤ −(1− ε)2.

We easily conclude that τ(x) <∞ for x ∈ Bδ/3(z) and, since (1+ε
1−ε)

2 < 2,

Φτ(x)(x) ∈ ∂Y ∩ Bδ(z).

In particular, τ(x) = T0(x) = limr↓0 Tr(x) with Tr(x) := inf{t ≥ 0 : V (Φt(x)) ≤ r} for
r ≥ 0.

(iii) To proceed, it is more convenient to parametrize the flow not by time (as we
did before) but by “height”, measured by the value of V . That is, for r ≥ 0 we put
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Φ̂r(x) = ΦTr(x)(x) with Tr(x) as above. Moreover, for x ∈ Y we put Tr(x) := 0 and

Φ̂r(x) := x for all r ≥ 0.
The (`(z)− ε)-convexity of V implies

d(Φ̂r(x), Φ̂r(y)) ≤ e(ε−`(x))(Tr(x)+Tr(y))/2 · d(x, y), (43)

see [LS18], Lemma 2.13 (or, more precisely, estimate (10) in the proof of it).

(iv) Given any rectifiable curve (γa)a∈[0,1] in Bδ/3(x) let (γ0
a)a∈[0,1] be the curve in

Bδ(x) \ Y 0 defined by γ0
a = Φ̂0(γa). Then

|γ̇0
a| ≤ e(ε−`(z))T0(γa) · |γ̇a|
≤ e(2ε−`(γa))(1±ε)2V (γa) · |γ̇a|
≤ e(ε′/2−`(γa))V (γa) · |γ̇a|.

Indeed, for every ε′ > 0 one can choose ε > 0 such that (ε′/2− `(x)) ≥ (2ε− `(x))(1± ε)2

for all x ∈ Bδ(x) \Y . Here and above, the sign in the expression (1± ε)2 has to be chosen
according to the sign of (2ε− `(x)).

Measuring the speed of the curves now in the metric d′ = e(ε′−`)V � d, the previous
estimate yields

|γ̇0
a|′ ≤ |γ̇a|′

and, moreover, |γ̇0
a|′ < |γ̇a|′ whenever γa 6∈ Y and |γ̇a|′ 6= 0. This proves the claim.

In the previous Theorem, we used the gradient flow w.r.t. a function V (which shares
basic properties with the distance function d( . , ∂Y )) as a path-shortening flow on the
exterior of Y in order to prove that the closed set Y is locally geodesically convex w.r.t. the
new metric d′.

To make a given open set Z ⊂ X locally geodesically convex w.r.t. a new metric d′,
we will proceed in a complementary way: we will use the gradient flow w.r.t. a function
V which shares basic properties with the negative distance function −d( . , ∂Z) as a path-
shortening flow in the interior of Z. This is the content of the Second Convexification
Theorem.

Theorem 5.11. Let V, ` : X → R be continuous functions and assume that for each ε > 0
there exists δ > 0 such that

• 1− ε ≤ |∇−V | ≤ 1 + ε on the set {−δ < V < 0}

• V is (`− ε)-convex on the set {−δ < V < 0}.

Then for every ε > 0, the open set Z := {V < 0} is locally geodesically convex in (X, d′)
for d′ = e(ε−`)·V � d.

Proof. Given ε > 0, we choose δ > 0 as above. Then for each r ∈ (0, δ], we can apply the
First Convexification Theorem 5.9 with V as above, with the closed set Zr := {V ≤ −r}
in the place of Y , and with Dε := Z \Zr. This yields that the set Zr is locally geodesically
convex w.r.t. the metric d′ := e(ε−`)V � d. Having a closer look on the proof of Theorem
5.9, we see that we can choose an open covering

⋃
i∈I Ui ⊃ X, independently of r, such

that every d′-geodesic (γs)s∈[0,1] in X completely lies in Zr – and thus in particular in
Z – provided γ0, γ1 ∈ Zr ∩ Ui for some i ∈ I. This proves the claim: every d′-geodesic
(γs)s∈[0,1] completely lies in Z provided γ0, γ1 ∈ Z ∩ Ui for some i ∈ I.
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5.3 Bounds for the Curvature of the Boundary

The canonical choice for the function V in both of the previous Convexification Theorems
is the signed distance function V = d( . , Y ) − d( . , X \ Y ) (or suitable truncated and/or
smoothened modifications of it). In the Riemannian setting, a lower bound for the Hes-
sian of this function has a fundamental geometric meaning: it is a lower bound of the
fundamental form of the boundary. In the abstract setting, this observation will provide
a synthetic definition for the variable lower bound curvature of the boundary.

Definition 5.12. Let a closed set Y ⊂ X and a continuous function ` : X → R be given,
and put V (x) := d(x, Y ) − d(x,X \ Y ). We say that Y is locally `-convex or that ` is
a lower bound for the curvature of ∂Y if for every ε > 0 there exist an open covering⋃
i∈I Ui ⊃ ∂Y and continuous functions Vi : Ui → R for i ∈ I such that

• (1− ε)V ≤ Vi ≤ (1 + ε)V on Ui

• 1− ε ≤ |∇−Vi| ≤ 1 + ε on Ui

• Vi is (`− ε)-convex on Ui.

We say that Y is locally `-convex from outside (or that Y 0 is locally `-convex from inside)
if the three latter properties are merely requested on Ui \ Y (or on Ui ∩ Y 0, resp.) instead
of being requested on Ui.

Remark 5.13. The previous approach does not only allow us to define lower bounds for
the curvature of the boundary (interpreted as lower bounds for the “second fundamental
form of the boundary”) but also to define the second fundamental form II∂Y itself as well
as the mean curvature ρ∂Y : the former as the Hessian (restricted to vectors orthogonal
to ∇V ) and the latter as the Laplacian of the signed distance function V = d( . , Y ) −
d( . , X \ Y ). That is,

II∂Y (f, f) := HV (f, f) = Γ(f,Γ(V, f))− 1

2
Γ(v,Γ(f 2))

provided V ∈ Dloc(∆) and Γ(f, V ) = 0, and

ρ∂Y := ∆V.

This concept of curvature bounds for the boundary has been introduced in [LS18],
restricted there to the case of constant, nonpositive `. As already observed there, the two
most important classes of examples are Riemannian manifolds and Alexandrov spaces. In
these cases, if not explicitly specified otherwise, m always will denote the corresponding
n-dimensional Riemannian volume measure Ln or the n-dimensional Hausdorff measure
Hn. The proof of the next result is literally as in [LS18].

Proposition 5.14. Let X be a Riemannian manifold, Y a closed subset of X with smooth
boundary. Then ` is a lower bound (or interior lower bound or exterior lower bound,
resp.) for the curvature of ∂Y if and only if the real-valued second fundamental form of
∂Y satisfies

II∂Y ≥ `.
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Lemma 5.15. Let (X, d) be an Alexandrov space with generalized sectional curvature
≥ K. Put ρK = π

2
√
K

if K > 0 and ρK = ∞ else. Moreover, given z ∈ X put ρ(z) :=

sup{r ≥ 0 : |∇+d(., z)| = 1 in Br(z)}. Then for each r ∈ (0, ρK ∧ ρ(z)), the curvature of
the boundary of Y := X \ Br(z) is bounded from below by

` = − cotK(r) :=


−1
r
, if K = 0

−
√
K cot(

√
Kr), if K > 0

−
√
−K coth(

√
−Kr), if K < 0.

(44)

Proof. Given z ∈ X and r ∈ (0, ρK), put

V (x) := Vr,z(x) :=


1
2r

(
r2 − d2(x, z)

)
, if K = 0

1
√
K sin

(√
Kr
)( cos

(√
Kd(x, z)

)
− cos

(√
Kr
)
, if K > 0

1
√
−K sinh

(√
−Kr
)( cosh

(√
−Kr − cosh

(√
−Kd(x, z)

))
, if K < 0.

(45)
Then obviously {V ≤ 0} = Y and |∇−V | = 1 on ∂Y (and close to 1 in a neighborhood of
∂Y ). Moreover, by comparison results for Hessians of distance functions in Alexandrov
spaces

D2
Geo d

2(x, z) ≤ 2, if K = 0

D2
Geo cos

(√
Kd(x, z)

)
≥ −K cos

(√
Kd(x, z)

)
, if K > 0

D2
Geo cosh

(√
−Kd(x, z)

)
≤ (−K) cosh

(√
−Kd(x, z)

)
, if K < 0.

Thus D2
GeoV ≥ − cotK(r) on ∂Y (and ≥ − cotK(r) − ε in a neighborhood of ∂Y ). This

proves the claim.

Lemma 5.16. Let (X, d) be an CAT space with generalized sectional curvature ≤ L. Put
ρL = π

2
√
L

if L > 0 and ρL = ∞ else. Then for each r ∈ (0, ρL), the curvature of the

boundary of Y := Br(z) is bounded from below by

` = cotL(r) :=


1
r
, if L = 0√
L cot(

√
Lr), if L > 0√

−L coth(
√
−Lr), if L < 0.

(46)

Proof. Given z ∈ X and r ∈ (0, ρL), put

V (x) :=


− 1

2r

(
r2 − d2(x, z)

)
, if L = 0

− 1
√
L sin

(√
Lr
)( cos

(√
Ld(x, z)

)
− cos

(√
Lr
)
, if L > 0

− 1
√
−L sinh

(√
−Lr
)( cosh

(√
−Lr − cosh

(√
−Ld(x, z)

))
, if L < 0.

Then obviously {V ≤ 0} = Y and |∇−V | = 1 on ∂Y (and close to 1 in a neighborhood of
∂Y ). Moreover, by comparison results for Hessians of distance functions in CAT spaces

D2
Geo d

2(x, z) ≥ 2, if L = 0

D2
Geo cos

(√
Ld(x, z)

)
≤ −L cos

(√
Ld(x, z)

)
, if L > 0

D2
Geo cosh

(√
−Ld(x, z)

)
≥ (−L) cosh

(√
−Ld(x, z)

)
, if L < 0.

Thus D2
GeoV ≥ cotL(r) on ∂Y (and ≥ cotL(r)− ε in a neighborhood of ∂Y ) which proves

the claim.
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Proposition 5.17. Let (X, d) be an Alexandrov space with generalized sectional curvature
≥ K. Put ρK = π

2
√
K

if K > 0 and ρK =∞ else. Assume that a closed set Y ⊂ X satisfies
the “exterior ball condition” with radius r < ρK. That is,

X \ Y =
⋃
z∈Yr

Br(z)

with Yr := {z ∈ X : d(z, Y ) = r, ρ(z) > r}. Then Y is locally `-convex with ` = − cotK r.

Proof. For x ∈ X, put
V (x) := sup

z∈Yr
Vr,z(x)

with Vr,z as introduced in Lemma 5.15. Then obviously Y = {V ≤ 0} and

|∇−V |(x) =
sinK d(x, Yr)

sinK r
·
∣∣∇+d(., Yr)

∣∣(x)

for all x ∈ X. Hence, 1−ε ≤ |∇−V |(x) ≤ 1 for all x ∈ U \Y for a suitable neighborhood U
of ∂Y . Moreover, for each z ∈ Yr, by comparison results for Hessians of distance functions
in Alexandrov spaces,

D2
GeoVr,z(x) ≥ −cosK d(x, z)

sinK r
,

and therefore,

D2
GeoV (x) ≥ −cosK r

sinK r
− ε

for all x in a suitable neighborhood U of ∂Y . This proves the claim.

Analogously, we conclude

Proposition 5.18. Let (X, d) be a CAT space with generalized sectional curvature ≤ L.
Put ρL = π

2
√
L

if L > 0 and ρL = ∞ else. Assume that a closed set Y ⊂ X satisfies the
“reverse exterior ball condition” with radius r < ρL. That is,

Y =
⋂
z∈Z

Br(z)

for some compact set Z ⊂ X. Then Y is locally `-convex with ` := cotL r.

Proof. Similar as in the proof of the previous Proposition, put

V (x) := sup
z∈Z

(
− Vr,z

)
(x)

with Vr,z defined as before, but now with L in the place of K. Then it is easily seen that
V ≤ 0 on Y and V > 0 on X \ Y . Moreover, by comparison results for the Hessian of
distance functions under upper curvature bounds,

D2
Geo V (x) ≥

cosL
(

supz∈Z d(x, z)
)

sinL r
≥ cotL(r + ε)

for all x ∈ Bε(Y ). Furthermore,

sinL(r − ε)
sinL r

≤ |∇−V |(x) ≤ sinL(r + ε)

sinL r

for all x ∈ Bε(∂Y ).
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The Convexification Theorems 5.9 and 5.11 from the previous subsection immediately
yield

Theorem 5.19. i) Assume that ` ∈ C(X) is an exterior lower bound for the curvature
of ∂Y . Then for every ε > 0, the set Y is locally geodesically convex in (X, d′) for
d′ = e(ε−`)·V � d where V = d( . , Y ).

ii) Assume that ` ∈ C(X) is an interior lower bound for the curvature of ∂Y . Then
for every ε > 0, the set Y 0 is locally geodesically convex in (X, d′) for d′ = e(ε−`)·V � d
where V = −d( . , X \ Y ).

Remark 5.20. The Convexification Theorems 5.9 and 5.11 provide a method to make a
given set convex by local changes of the geometry. By construction of this transformed
geometry, the given set will be “as little convex as possible”. Indeed, in regions where the
set already was convex, the set will be transformed into a less convex set.

Figure 1: Euclidean plane: convex disc, nonconvex complement

Figure 2: Conformally changed plane: totally geodesic circle

Figure 3: Conformally changed plane: decomposition into two convex subsets

Example 5.21. Let X = Rn for n ≥ 2, equipped with the Euclidean distance and the
Lebesgue measure. If we apply the previous results to the complement of a ball, say Y =
Rn \ Br(z), then we see that Y (as well as Y 0) will be locally geodesically convex in
(Rn, e(1+ε)ψ � d) for any ε > 0 where

ψ = −` · V =
1

2

(
1− |x− z|

2

r2

)
.
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On the other hand, applying the previous results to a ball, say Z = Br(z), then we see that
Z (as well as Z) will be locally geodesically convex in (Rn, e(1−ε)ψ � d) for any ε > 0 with
the same ψ as before. The same “convexification effect” will be achieved by choosing

ψ(x) = − log
|x− z|
r

in a neighourhood of ∂Br(z). In the case n = 2, with this choice of ψ, in a neighorhood
of ∂Br(z) the space (Rn, eψ � d) will be a flat torus. In particular, ∂Br(z) will be a totally
geodesic subset. This provides a simple explanation why both, Br(z) and its complement,
are convex.

6 Ricci Bounds for Neumann Laplacians

6.1 Neumann Laplacian and Time Change

Let a metric measure space (X, d,m) be given; assume that it is geodesic, locally compact,
and infinitesimally Hilbertian. Observe that due to the local compactness, W 1,2(X) ={
u ∈ W 1,2

loc (X) :
∫
X

[Γ(u) + u2] dm <∞
}

.
By restriction to a closed set Y ⊂ X, we define the mm-space (Y, dY ,mY ). Here dY

denotes the length metric on Y induced by d and mY denotes the measure m restricted
to Y . The Cheeger energy associated with the restricted mm-space (Y, dY ,mY ) will be
denoted by EY and its domain by FY = D(EY ) = W 1,2(Y ). To avoid pathologies,
throughout the sequel, we assume that Y = Y 0, m(Y ) > 0, m(∂Y ) = 0, and that dY <∞
on Y × Y .

The minimal weak upper gradients (and thus also the Γ-operators) w.r.t. (X, d,m)
and w.r.t. (Y, dY ,mY ) will coincide a.e. on Y 0, i.e. FYloc(Y

0) = Floc(Y
0) and ΓY (u) = Γ(u)

a.e. on Y 0 for all u ∈ FYloc(Y
0). Moreover,

W 1,2(X)
∣∣
Y
⊂ W 1,2(Y ) ⊂ W 1,2(Y 0) (47)

where W 1,2(Y 0) :=
{
u ∈ Floc(Y

0) :
∫
Y 0 [Γ(u) + u2] dm <∞

}
and

EY (u) =

∫
Y 0

Γ(u) dm (48)

for all u ∈ W 1,2(Y ). In particular, the restricted mm-space (Y, dY ,mY ) is also infinitesi-
mally Hilbertian.

The heat semigroup associated with the restricted mm-space (Y, dY ,mY ) will be called
Neumann heat semigroup and denoted by (P Y

t )t≥0. The associated Brownian motion will
be called reflected Brownian motion and denoted by (PYx , BY

t ).

Remark 6.1. i) In literature on Dirichlet forms and Markov processes (in particular, in
[CF12]), Chapter 7, “reflected Brownian motion” on the closure of an open set Y 0 ⊂ X
is by definition (and by construction) the reversible Markov process associated with the
Dirichlet form EY given by (48) with domain W 1,2(Y 0) ⊂ L2(Y,mY ).

ii) In general, the sets W 1,2(Y ) and W 1,2(Y 0) do not coincide, see subsequent Example.
In [LS18], Section 4.2, equality of W 1,2(Y ) and W 1,2(Y 0) was erroneously stated as a
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general fact. Instead, it should be added there as an extra assumption. Equality holds if
Y 0 is regularly locally semiconvex, see Proposition 6.4 below, and of course also if Y 0 has
the extension property W 1,2(Y 0) = W 1,2(X)

∣∣
Y0

.

Example 6.2 (Based on private communication with T. Rajala). Given X = [−1, 1]2

with Euclidean distance d and 2-dimensional Lebesgue measure m, put

Y = X \
⋃
n∈N

B3−n(xn, 0)

where {xn}n∈N denotes a countable dense subset of [−1, 1]. Then W 1,2(Y ) 6= W 1,2(Y 0).
For instance, the function u(x, y) = sign(y) belongs to W 1,2(Y 0) but not to W 1,2(Y ).

Indeed, functions in W 1,2(Y 0) can have arbitrary jumps at the x-axis since Y 0 has two
disconnected components, one being a subset of the open upper half plane, the other one
being a subset of the open lower half plane. On the other hand, functions in W 1,2(Y ) will
be continuous along almost every vertical line which does not hit one of the small balls
B2−n(xn, 0), n ∈ N, (which is the case for more than half of the vertical lines).

Definition 6.3. An open subset Z ⊂ X is called regularly locally semiconvex if there
exists an open neighborhood D of ∂Z and functions V, ` ∈ Dcont

loc (∆) such that V is `-convex
and V = −d( . , ∂Z) in D ∩ Z.

Here and in the sequel, we put Dcont
loc (∆) := {f ∈ Dloc(∆) with f,Γ(f),∆f ∈ C(X)}

and Dcont
∞ (∆) := {f ∈ Dloc(∆) with f,Γ(f),∆f ∈ C(X) ∩ L∞(X)}.

Note that Dcont
∞ (∆) ⊂ Lipb(X) provided the Sobolev-to-Lipschitz property holds.

Proposition 6.4. Assume that (X, d,m) satisfies RCD(K,N) for some K,N ∈ R and
that Y 0 is regularly locally semiconvex. Then

W 1,2(Y ) = W 1,2(Y 0)

and |DY u| = |Du| m-a.e. on Y for every u ∈ W 1,2(Y 0).

Proof. i) To simplify the subsequent presentation, we assume that the defining functions
`, V for the regular semiconvexity of Y 0 can be chosen to be in Dcont

∞ (∆) and not just in
Dcont

loc (∆). Under this simplifying assumption, for any ε > 0 also ψ := (ε−`)V ∈ Dcont
∞ (∆)

and thus the time-changed mm-space (X, d′,m′) with d′ = eψ � d and m′ = e2ψ m will
satisfy RCD(K ′,∞) with some K ′ ∈ R. The general case can be treated by a localization
and covering argument.

ii) Recall that a function u ∈ L2(Y,mY ) is in W 1,2(Y ) with weak upper gradient
g ∈ L2(Y,mY ) if and only if for each test plan Π in (Y, dY ,mY )∫

C

∣∣u(γ1)− u(γ0)
∣∣ dΠ(γ) ≤

∫
C

∫ 1

0

g(γt) |γ̇t| dt dΠ(γ).

where C := C([0, 1], Y ). Now observe that any test plan Π in (Y, dY ,mY ) can also be
regarded as a test plan in (X, d,m). (Indeed, for each curve γ ∈ C([0, 1], Y ) ⊂ C([0, 1], X),
the speed w.r.t. (X, d) will be bounded by the speed w.r.t. (Y, dY ).) And Π is a test plan
in (X, d,m) if and only if it is a test plan in (X, d′,m′). Moreover, g is a weak upper
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gradient w.r.t. (X, d,m) implies that g′ = e−ψg is a weak upper gradient w.r.t. (X, d′,m′)
and vice versa since

|γ̇t|′ = eψ(γt)|γ̇t|.

iii) Now let us fix a test plan Π in (Y, dY ,mY ). For n ∈ N, define Π′n to be the
“piecewise geodesic test plan” in (X, d′,m′) such that

(
(et)∗Πn

)
t∈[0,1]

is the W ′
2-geodesic

which interpolates between the measures (ei/n)∗Π for i = 0, 1, . . . , n. Thanks to the
RCD-property of (X, d′,m′), such a piecewise geodesic interpolation indeed is a test plan.

For each t ∈ [0, 1], we know that γt ∈ Y 0 for Π-a.e. γ since (et)∗Π ≤ C m and
m(∂Y ) = 0. Geodesic convexity of Y 0 w.r.t. d′ thus implies

γt ∈ Y 0 (∀t ∈ [0, 1])

for Πn-a.e. γ. In particular, thus for each n ∈ N and each ε > 0, there exists a compact
set Yε ⊂ Y 0 such that Πn(Cε) ≥ 1− ε. where Cε := C([0, 1], Yε). Put

Πε
n( . ) :=

1

Πn(Cε)
Πn( . ∩ Cε).

iv) Given the compact set Yε ⊂ Y 0, there exists uε ∈ W 1,2(X, d′,m′) such that

u = uε, |D′u| = |D′uε| m-a.e. on a neighborhood of Yε.

Since Πε
n is a test plan in (X, d′,m′), we obtain for each n ∈ N and each ε > 0∫

C

∫ 1

0

|Du|(γt) |γ̇t| dt dΠn(γ) =

∫
C

∫ 1

0

|D′u|(γt) |γ̇t|′ dt dΠn(γ)

≥ Zε

∫
Cε

∫ 1

0

|D′uε|(γt) |γ̇t|′ dt dΠε
n(γ)

≥ Zε

∫
Cε

∣∣uε(γ1)− uε(γ0)
∣∣ dΠε

n(γ)

=

∫
Cε

∣∣u(γ1)− u(γ0)
∣∣ dΠn(γ).

In the limit ε→ 0 this yields∫
C

∫ 1

0

|Du|(γt) |γ̇t| dt dΠn(γ) ≥
∫
C

∣∣u(γ1)− u(γ0)
∣∣ dΠn(γ) =

∫
C

∣∣u(γ1)− u(γ0)
∣∣ dΠ(γ).

Since by assumption |Du| ∈ L2(Y,mY ), according to the subsequent Lemma we may pass
to the limit n→∞ and finally obtain∫

C

∫ 1

0

|Du|(γt) |γ̇t| dt dΠ(γ) ≥
∫
C

∣∣u(γ1)− u(γ0)
∣∣ dΠ(γ).

This proves the claim: u ∈ W 1,2(Y ) with minimal weak upper gradient m-a.e. dominated
by |Du|.
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Lemma 6.5 (Private communication by N. Gigli). Assume that (X, d,m) satisfies RCD(K,N)
for some K,N ∈ R. Then for every test plan Π in X and every g ∈ L2(X,m)

lim
n→∞

∫∫ 1

0

g(γt) |γ̇t| dt dΠn(γ) =

∫∫ 1

0

g(γt) |γ̇t| dt dΠ(γ) (49)

where Πn denotes the “piecewise geodesic test plan” such that
(
(et)∗Πn

)
t∈[0,1]

is the W2-

geodesic which interpolates between the measures (ei/n)∗Π for i = 0, 1, . . . , n.

Proof. First of all, observe that it obviously suffices to prove the claim for test plans
supported on bounded subsets of X. Secondly observe, that it suffices to consider bounded
continuous functions g. Indeed, given any g ∈ L2(X,m) and ε > 0, there exists gε ∈ Cb(X)
with ‖g − gε‖L2 ≤ ε. Since Πn is a test plan, this implies∣∣∣ ∫∫ 1

0

[g(γt)− gε(γt)] |γ̇t|dtdΠn(γ)
∣∣∣2 ≤ ∫∫ 1

0

|g(γt)− gε(γt)| dtdΠn(γ) ·
∫∫ 1

0

|γ̇t|2dtdΠn(γ)

≤ ε · sup
n
Cn · sup

n
An

for each n ∈ N∪{∞} with Π∞ := Π where Cn is the compression of the test plan Πn and

An :=

∫∫ 1

0

|γ̇t|2dtdΠn(γ) ≤
∫∫ 1

0

|γ̇t|2dtdΠ(γ) <∞.

Due to the RCD(K,∞)-assumption, the compression of Πn is bounded by the compression
of Π times a constant depending on K and the diameter of the supporting set of Π. Thus∫∫ 1

0

[g(γt)− gε(γt)] |γ̇t|dtdΠn(γ)→ 0

uniformly in n ∈ N ∪ {∞} as ε→ 0.
It remains to prove (49) for bounded continuous g. This will be an immediate conse-

quence of the weak convergence

dπn(γ) := |γ̇t|dtdΠn(γ) → |γ̇t|dtdΠ(γ) =: dπ(γ) (50)

as measures on the space X := [0, 1]×C([0, 1]→ X). To prove the latter, we first observe
that the total mass of the measures πn is uniformly bounded on X since(∫

dπn

)2

≤
∫∫
|γ̇t|2dtdΠn(γ) ≤

∫∫
|γ̇t|2dtdΠ(γ) <∞. (51)

Properness of X (due to the RCD(K,N)-assumption) and uniform boundedness of the
supporting sets of Πn then guarantees the existence of a subsequential limit π∞. Lower
semicontinuity of the map γ 7→ |γ̇t| implies that π∞ ≤ π. Now assume that π∞ 6= π.
Then in particular π∞ 6= π on the set {(t, γ) : |γ̇t| 6= 0}. Once again using the lower
semicontinuity of γ 7→ |γ̇t| this will imply

lim inf
k→∞

∫∫
|γ̇t|2dtdΠnk(γ) =

∫
|γ̇·| dπ∞ >

∫
|γ̇·| dπ =

∫∫
|γ̇t|2dtdΠ(γ)

which is a contraction to (51) from above. Thus π∞ = π and hence (50) follows and so
does in turn (49).
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Given a bounded continuous ψ ∈ W 1,2(X), let us consider the mm-space (Y, d′Y ,m
′
Y )

with m′Y = e2ψ (m|Y ) = (e2ψm)|Y and d′Y = (dY )′ = (d′)Y . On the level of the mm-
spaces, it is clear that restriction and time-change commute. Hence, the time change of
the reflected Brownian motion is equivalent to the reflected motion of the time changed
process; and the time change of the Neumann heat flow is the Neumann version of the
time changed heat flow.

Now let us have a closer look on the transformation of the curvature-dimension con-
dition under time change and restriction.

Proposition 6.6. Assume that (X, d,m) satisfies the RCD(k,N)-condition for some finite
number N ≥ 2 and some lower bounded, continuous function k. Moreover, assume that
Y is locally geodesically convex in (X, d′) where d′ = eψ � d for some ψ ∈ Lipb(X) ∩
Dcont
loc (∆). Then for any (extended) number N ′ > N , the mm-space (Y, d′Y ,m

′
Y ) satisfies

the RCD(k′, N ′)-condition and the BE2(k′, N ′)-condition with

k′ := e−2ψ[k −∆ψ − (N − 2)(N ′ − 2)

N ′ −N
|∇ψ|2].

Proof. i) To get started, we first employ the equivalence of the Lagrangian and Eulerian
formulation of curvature-dimension conditions as formulated in Theorem 3.4 to conclude
that (X, d,m) satisfies the BE2(k,N)-condition.

ii) Next we apply our result on time change, Proposition 4.2 or [HS19], Theorem 1.1,
to conclude that (X, d′,m′) satisfies the BE2(k′, N ′)-condition with the given N ′ and k′.

iii) Once again referring to Theorem 3.4 for the equivalence of the Lagrangian and
Eulerian formulation, we conlucde that (X, d′,m′) satisfies the RCD(k′, N ′)-condition.

iv) In the Lagrangian formulation, it is obvious that a curvature-dimension condition
is preserved under restriction to locally geodesically convex subsets. Since by assump-
tion Y is locally geodesically convex in (X, d′), it follows that (Y, d′Y ,m

′
Y ) satisfies the

RCD(k′, N ′)-condition.
v) In a final step, we once again employ Theorem 3.4 to conclude BE2(k′, N ′), the

Eulerian version of the curvature-dimension condition.

6.2 Time Re-Change

We are now going to make a “time re-change”: we transform the mm-space (Y, d′Y ,m
′
Y )

into the mm-space (X, dY ,mY ) by time change, now with −ψ in the place of ψ and with
(k′, N ′) in the place of (k,N).

The main challenge will arise from the two conflicting requirements:

• |∇ψ| 6= 0 on ∂Y in order to make use of the Convexification Theorem

• ψ ∈ D(∆Y ) (which essentially requires |∇ψ| = 0 on ∂Y ) in order to control the
Ricci curvature under the “time re-change”.

To overcome this conflict, we have developed the concept of W−1,∞-valued Ricci
bounds which will allow us to work with the distribution ∆Y ψ. More precisely, the crucial
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ingredient in our estimate will be the distribution ∆Y ψ
∣∣
∂Y

:= ∆Y ψ −∆ψm|Y ∈ W−1,∞

defined as

〈∆Y ψ
∣∣
∂Y
, f〉 := −

∫
Y

[Γ(ψ, f) + ∆ψ f ] dm (∀f ∈ W 1,1+(Y )). (52)

Note that this distribution indeed is supported on the boundary of Y in the sense that
ψ = ψ′ on a neighborhood of ∂Y implies

∆Y ψ
∣∣
∂Y

= ∆Y ψ′
∣∣
∂Y
. (53)

Theorem 6.7. Assume that (X, d,m) satisfies the RCD(k,N)-condition for some finite
number N ≥ 2 and some lower bounded, continuous function k. Moreover, assume that
Y is locally geodesically convex in (X, d′) where d′ = eψ � d for some ψ ∈ Dcont

∞ (∆) with
ψ = 0 on ∂Y . Then the mm-space (Y, dY ,mY ) satisfies the BE1(κ,∞)-condition with

κ = kmY + ∆Y ψ
∣∣
∂Y
. (54)

Proof. i) Let ψ ∈ Dcont
∞ (∆), put d′ = eψ � d and N ′ = 2(N − 1). Then according to

Theorem 4.2, the mm-space (X, d′,m′) satisfies the BE2(k′, N ′)-condition with

k′ = e−2ψ[k −∆ψ − 2(N − 2)|∇ψ|2].

Since by assumption Y is locally geodesically convex, according to the previous Propo-
sition, the mm-space (Y, d′Y ,m

′
Y ) also satisfies the BE2(k′, N ′)-condition with the same

k′.
On the space Y , let us now perform a time change with the weight function −ψ (“time

re-change”) to get back

dY = e−ψ � d′Y , mY = e−2ψ �m′Y .

According to Theorem 4.7, the mm-space (X, dY ,mY ) will satisfy BE1(κ,∞) with

κ =
[
k′ − (N ′ − 2)|∇′ψ|2

]
m′Y + ∆′Y ψ

=
[
k −∆ψ − 4(N − 2)|∇ψ|2

]
mY + ∆Y ψ

=
[
k − 4(N − 2)|∇ψ|2

]
mY + ∆Y ψ

∣∣
∂Y
. (55)

ii) In a final approximation step, we now want to get rid of the term −4(N −
2)|∇ψ|2 mY in the previous distributional Ricci bound κ.

Given ψ as above, we define a sequence of functions ψn with the same properties as
ψ, with ψn = ψ on B1/n(∂Y ), with |∇ψn| being bounded, uniformly in n, and with

|∇ψn| → 0 m-a.e. on Y

as n→∞. This can easily be achieved by means of the truncation functions from Lemma
4.4.

Then according to (34) in the previous part of this proof, for each n ∈ N the mm-space
(Y, dY ,mY ) satisfies the BE1(κn,∞)-condition with

κn = [k − 4(N − 2)|∇ψn|2]mY + ∆Y ψn
∣∣
∂Y

= [k − 4(N − 2)|∇ψn|2]mY + ∆Y ψ
∣∣
∂Y

where the last equality is due to (53). Since the mm-space under consideration does not
depend on n, this obviously implies the BE1(κ,∞)-condition with κ = kmY +∆Y ψ

∣∣
∂Y

.
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Summary. Let us illustrate the strategy of the argumentation for the proof of the
previous Theorem 6.7 in a diagram.

(X, d,m) CD(k,N) ⇒ BE2(k,N)
↓

time change, convexification ⇓
↓

(X, d′,m′) CD(k′, N ′) ⇐ BE2(k′, N ′)
↓

restriction to convex subset ⇓
↓

(Y, d′Y ,m
′
Y ) CD(k′, N ′) ⇒ BE2(k′, N ′)

↓
time re-change ⇓

↓
(Y, dY ,mY ) BE1(κ,∞)

where m′ = e2ψm, d′(x, y) = (eψ � d)(x, y) := infγ0=x,γ1=y

∫ 1

0
eψ(γs)|γ̇s|ds.

Corollary 6.8. Under the assumptions of the previous Theorem, the (“Neumann”) heat
semigroup on (Y, dY ,mY ) satisfies a gradient estimate of the type:∣∣∇P Y

t f
∣∣(x) ≤ Ex

[
e−

1
2

∫ 2t
0 k(BYs )ds+N∂Y,ψ

2t ·
∣∣∇f(BY

2t)
∣∣ ] (56)

with

N∂Y,ψ
t := NY,ψ

t − 1

2

∫ t

0

∆ψ(BY
s )ds

= ψ(BY
t )− ψ(BY

0 )−MY,ψ
t − 1

2

∫ t

0

∆ψ(BY
s )ds (57)

where MY,ψ and NY,ψ denote the local martingale and local additive functional of vanishing
quadratic variation w.r.t. (PYx , BY

t ) in the Fukushima decomposition of ψ(BY
t ).

Example 6.9. Consider a time-change of the standard 2-dimensional metric measure
space (R2, dEuc,mLeb) induced by a function ψ : R2 → R where ψ(x1, x2) = ϕ(x1) · η(x2)
for some ϕ, η ∈ C2(R) with η(0) = 0 and η′(0) = 1. Recall that the time-changed mm-space
(R2, d′,m′) with d′ := eψ � dEuc,m

′ := e2ψ mLeb satisfies BE1(k,∞) with

k = −e−2ψ∆ψ = −e−2ϕη
(
ϕ′′ η + ϕη′′

)
.

Now consider the restriction to the upper halfplane Y = R×R+ which is convex w.r.t. dEuc
but higly non-convex w.r.t. d′. According to Theorem 6.7 (applied to d′ and dEuc in the
place of of d and d′, resp., and with ψ replaced by −ψ), the boundary effect amounts in
an additional contribution in the Ricci bound given by

−∆Y
∞ψ
∣∣
∂Y

= −∆Y ψ
∣∣
∂Y

= −(ϕL1)⊗ δ0.
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Indeed, the distribution in turn can be identified with the signed measure since for suffi-
ciently smooth f : R2 → R,

〈−∆Y ψ
∣∣
∂Y
, f〉 =

∫
Y

[
∇ψ + f ∆ψ

]
dm

=

∫
R

[
ϕ

∫
R+

[
η′ f ′ + f η′′

]
dx1

]
dx2 = −

∫
R

[
ϕ(x1)η′(0)f(x1, 0)

]
dx2.

6.3 Boundary Measure and Boundary Local Time

Let V : X → R denote the signed distance function from ∂Y (being positive outside Y
and negative in the interior of Y ), i.e.,

V := d(., Y )− d(., X \ Y ).

Then V + := d(., Y ) and V − := d(., X \ Y ).
We say that Y has the W 1,1+-extension property if W 1,1+(Y ) = W 1,1+(X)

∣∣
Y

, that is,
if every function u ∈ W 1,1+(Y ) can be extended to a function u′ ∈ W 1,1+(X) such that
u′|Y = u. We say that Y has regular boundary if it has the W 1,1+-extension property and
if V ∈ Dcont

∞ (∆).

Lemma 6.10. Assume that Y has regular boundary.
i) Then the distribution −∆Y V

∣∣
∂Y

is given by a nonnegative measure σ supported on
∂Y , denoted henceforth by σ∂Y and called surface measure of ∂Y .

More precisely, there exists a nonnegative Borel measure σ on X which is supported
on ∂Y and which does not charge sets of vanishing capacity such that for all bounded,
quasi-continuous f ∈ D(E)∫

∂Y

f dσ = −
〈
∆Y V

∣∣
∂Y
, f
〉

:=

∫
Y

[
Γ(V, f) + ∆V f

]
dm

= −
∫
X\Y

[
Γ(V, f) + ∆V f

]
dm.

ii) The local additive functional of vanishing quadratic variation N∂Y,−V as defined
in (57) (with −V in the place of ψ) coincides with the PCAF (= “positive continuous
additive functional”) associated to σ∂Y via Revuz correspondence (w.r.t. the Brownian
motion (PYx , BY

t ) on Y ) which henceforth will be denoted by L∂Y = (L∂Yt )t≥0 and called
local time of ∂Y . In other words,

L∂Yt = V (BY
0 )− V (BY

t ) +
1

2

∫ t

0

∆V (BY
s )ds+ local martingale.

Proof. i) The equality
∫
Y

[
Γ(V, f) + ∆V f

]
dm = −

∫
X\Y

[
Γ(V, f) + ∆V f

]
dm obviously
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holds for all V ∈ D(∆) and f ∈ D(E). On the open set X \ Y , locality of ∆ implies

−
∫
X\Y

Γ(V, f) dm = −
∫
{V >0}

Γ(V +, f) dm

= lim
t→0

1

t

∫
{V >0}

(
PtV

+ − V +
)
f dm

≥ lim
t→0

1

t

∫
{V >0}

(
PtV − V

)
f dm

=

∫
{V >0}

∆V f dm

for nonnegative f ∈ D(E). In other words,
∫
Y

[
Γ(V, f) + ∆V f

]
dm ≥ 0. This extends

to all nonnegative f ∈ W 1,1+(X) if Γ(V ),∆V ∈ L∞(X). Moreover, due to the extension
property which we assumed, it extends to all nonnegative f ∈ W 1,1+(Y ). Thus

−
〈
∆Y V

∣∣
∂Y
, f
〉
≥ 0

for all nonnegative f ∈ W 1,1+(Y ). According to the Riesz-Markov-Kakutani Representa-
tion theorem, the distribution −∆Y V

∣∣
∂Y

therefore is given by a Borel measure on X, say
σ. Obviously, this measure is supported by ∂Y .

Moreover, on each set X ′ ⊂ X of finite volume, this measure σ has finite energy:∣∣∣ ∫ f dσ
∣∣∣ =

∣∣∣〈∆Y V
∣∣
∂Y
, f
〉∣∣∣ ≤ C · ‖f‖W 1,1+ ≤ C ·m(X ′)1/2 · E(f)1/2

for all f ∈ D(E) which are supported in X ′. Thus σ does not charge sets of vanishing
capacity, [FOT11] , Lemma 2.2.3.

ii) The fact that −∆Y V
∣∣
∂Y

is a nonnegative measure (of finite energy) implies that

∆Y V is a signed measure (of finite energy). Hence, ∆Y V and NY,V are related to each
other via Revuz correspondence. And of course the signed measure ∆V mY corresponds
to the additive functional (

∫ t
0

∆V (BY
s )ds)t≥0.

Lemma 6.11. Assume that the “integration-by-parts formula” holds true for Y with some
measure σ on ∂Y (charging no sets of vanishing capacity): ∀f ∈ D(∆), g ∈ D(E)∫

Y

Γ(f, g) dm +

∫
Y

∆f g dm =

∫
∂Y

Γ̃(f, V )g̃ dσ (58)

with g̃ and Γ̃(f, V ) denoting the quasi continuous versions of g and Γ(f, V ), resp. Then
σ = σ∂Y .

Note that for f ∈ D(∆Y ), the above formula – with vanishing RHS – is trivial.

Proof. Applying the Integration-by-Parts formula to f = V yields∫
Y

Γ(V, g) dm +

∫
Y

∆V g dm =

∫
∂Y

g̃ dσ

which proves that the distribution −∆Y V
∣∣
∂Y

is represented by the measure σ and thus
σ = σ∂Y
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Example 6.12. Let X be a n-dimensional Riemannian manifold, d be the Riemannian
distance, m be the n-dimensional Riemannian volume measure, and Y be a bounded subset
with C1-smooth boundary. Then σ∂Y is the (n− 1)-dimensional surface measure of ∂Y .

Lemma 6.13. Assume that ψ = ` V with V as in Lemma 6.10 above and ` ∈ Dcont
∞ (∆).

i) Then
−∆Y ψ

∣∣
∂Y

= ` σ∂Y .

ii) Moreover, with (N∂Y,ψ
t )t≥0 and (N∂V,ψ

t )t≥0 defined as in (57),

N∂Y,ψ
t =

∫ t

0

`(BY
s ) dN∂Y,V

s = −
∫ t

0

`(BY
s ) dL∂Ys .

Proof. i) For each quasi continuous f ∈ W 1,1+(X) ∩W 1,2(X)

−
〈
∆Y ψ

∣∣
∂Y
, f
〉

=

∫
Y

[
Γ(`V, f) + ∆(`V ) f

]
dm

=

∫
Y

[
Γ(V, `f) + ∆V `f

]
dm +

∫
Y

[
Γ(`, V f) + ∆` V f

]
dm

= −
〈
∆Y V

∣∣
∂Y
, `f
〉
−
∫
X

[
Γ(`, V −f) + ∆` V −f

]
dm

=

∫
∂Y

`f dσ∂Y + 0

where for the last step we also have chosen ` to be quasi continuous.
ii) Fukushima decomposition w.r.t. Brownian motion on Y and Leibniz rule for stochas-

tic integrals applied to ψ = ` V yield

dψ(BY
t ) = dN∂Y,ψ

t +
1

2
∆ψ(BY

t )dt+ loc. mart.

= dN∂Y,ψ
t +

1

2
(`∆V )(BY

t )dt+
1

2
(V∆`)(BY

t )dt+ Γ(`, V )(BY
t )dt+ loc. mart.

as well as

dψ(BY
t ) = `(BY

t )dV (BY
t ) + V (BY

t )d`(BY
t ) + Γ(`, V )(BY

t )dt+ loc. mart.

Taking into account that

1

2
(V∆`)(BY

t )dt = V d`(BY
t ) + loc. mart.

since V = 0 on ∂Y , we end up with

dN∂Y,ψ
t = `(BY

t )dV (BY
t )− 1

2
(`∆V )(BY

t )dt = −`(BY
t )dL∂Yt .

This is the claim.

Recall from Definition 5.12 that a function ` : X → R is a lower bound for the
curvature of ∂Y if for each ε > 0 there exists an exterior neighborhood D of ∂Y such that
V is (`− ε)-convex in D.
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Theorem 6.14. Assume that (X, d,m) satisfies the RCD(k,N)-condition for some finite
number N ≥ 2 and some lower bounded, continuous function k. Moreover, assume that
Y has a regular boundary and that ` ∈ Dcont

∞ (∆) is a lower bound for the curvature of ∂Y .
Then the mm-space (Y, dY ,mY ) satisfies the BE1(κ,∞)-condition with

κ = kmY + ` σ∂Y .

Proof. According to Theorem 5.19, for each ε > 0, we can apply the previous Theorem
6.7 with ψ := (ε − `)V . In this case, obviously ψ ∈ Dcont

∞ (∆). Thus (Y, dY ,mY ) satisfies
the BE1(κ,∞)-condition with

κ = kmY + ∆Y
(
(ε− `)V

)∣∣
∂Y
.

Since this holds for every ε > 0, it follows that (Y, dY ,mY ) satisfies the BE1(κ,∞)-
condition with

κ = kmY −∆Y (` V )
∣∣
∂Y
.

According to the previous Lemma, the distribution −∆Y (` V )
∣∣
∂Y

is given by the weighted
measure ` σ∂Y . This proves the claim.

Corollary 6.15. Under the assumptions of the previous Theorem, the heat semigroup on
(Y, dY ,mY ) satisfies the following gradient estimate:∣∣∇P Y

t/2f
∣∣(x) ≤ EYx

[
e−

1
2

∫ t
0 k(BYs )ds− 1

2

∫ t
0 `(B

Y
s )dL∂Ys ·

∣∣∇f(BY
t )
∣∣]. (59)

Recall that (L∂Yt )t≥0, the local time of ∂Y , is defined via Revuz correspondence w.r.t. the
(“reflected”) Brownian motion (PYx , BY

t )t,x on Y as the PCAF associated with the surface
measue σ∂Y .

Remark 6.16. i) The first estimate of the above type (59) has been derived in the setting
of smooth Riemannian manifolds by E. P. Hsu [Hsu02] in terms of Brownian motions
and their local times. For more recent results of this type in the setting of (weighted)
Riemannian manifolds, see [Wan14], e.g. Thm. 3.3.1.

ii) In the setting of smooth Riemannian manifolds, inspired by the integration by parts
formula, B. Han [Han2018] was the first to propose the definition of a measure-valued
Ricci tensor which involves the second fundamental form integrated with respect to the
boundary measure.

iii) For the sake of clarity of presentation we have restricted ourselves in this subsection
to the choice V = ±( . , ∂Y ). However, instead of that, one may choose any sufficiently
regular function V which coincides with the signed distance function in a neighborhood
of the boundary. More generally, the Convexification Theorem allows us to choose any
function V with |∇V |(x)→ 1 for x→ ∂Y .

iv) Note that the previous Theorem and Corollary require that the underlying space
(X, d,m) satisfies the RCD(k,N)-condition for some finite N and that our proof strongly
depends on finiteness of N . However, the value of N does not enter the final estimates.

Let us finally illustrate our results in the two prime examples, the ball and the com-
plement of the ball. To simplify the presentation, we will formulate the results in the
setting of RCD(0, N) spaces for N ∈ N with the CAT(1)-property (or RCD(−1, N) spaces
with the CAT(0)-property). The extension to RCD(K,N) spaces with sectional curvature
bounded from above by K ′ is straightforward.
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Example 6.17. i) Consider Y = Br(z) for some z ∈ X and r ∈ (0, π/4) where (X, d,m)
is an N-dimensional Alexandrov space with nonnegative Ricci curvature and sectional
curvature bounded from above by 1 (in particular, m = HN). Then∣∣∇P Y

t/2f
∣∣(x) ≤ EYx

[
e−

cot r
2

L∂Yt ·
∣∣∇f(BY

t )
∣∣].

In particular, Lip(P Y
t/2f) /Lip(f) ≤ supx EYx

[
e−

cot r
2

L∂Yt
]

and∣∣∇P Y
t/2f

∣∣2(x)

P Y
t/2

∣∣∇f ∣∣2(x)
≤ EYx

[
e− cot r·L∂Yt

]
≤ e−t

N−1
2

cot2 r+1. (60)

ii) Consider Y = X \ Br(z) for some z ∈ X and r ∈ (0,∞) where (X, d,m) is a
N-dimensional Alexandrov space with N ≥ 3, with Ricci curvature bounded from below by
−1, and with nonpositive sectional curvature (in particular, m = HN). Then∣∣∇P Y

t/2f
∣∣(x) ≤ EYx

[
et/2+ 1

2r
L∂Yt ·

∣∣∇f(BY
t )
∣∣].

In particular, Lip(P Y
t/2f) /Lip(f) ≤ supx EYx

[
et/2+ 1

2r
L∂Yt
]

and∣∣∇P Y
t/2f

∣∣2(x)

P Y
t/2

∣∣∇f ∣∣2(x)
≤ EYx

[
et+

1
r
L∂Yt
]
≤ eCt+C

′√t. (61)

Let us emphasize that in the latter setting, no estimate of the form∣∣∇P Y
t/2f

∣∣2(x)

P Y
t/2

∣∣∇f ∣∣2(x)
≤ eCt.

can exist.

Proof. i) It remains to prove the second inequality in (60). Put

V (x) =
1

sin r

(
cos r − cos d(x, z)

)
.

Then V = 0 and |∇V | = 1 on ∂Y . Thus

V (BY
t ) = V (BY

0 ) +MY,V
t +

1

2

∫ t

0

∆V (BY
s )ds− L∂Yt

where MY,V is a martingale with quadratic variation 〈MY,V 〉t =
∫ t

0
Γ(V )(BY

s )ds ≤ t. Note

that |V (BY
t )−V (BY

0 )| ≤ 1
sin r

(1−cos r) ≤ r and, by Laplace comparison, 1
2

∫ t
0

∆V (BY
s )ds ≥

Nt
2

cot r. Therefore

e− cot r L∂Yt ≤ ecot rMY,V
t −Nt

2r
cot2 r+1

and hence

Exe− cot r L∂Yt ≤ e
t
2

cot2 r−Nt
2

cot2 r+1 · Exe− cot rMY,V
t − cot2 r

2
〈MY,V 〉t ≤ e−

(N−1)t
2

cot2 r+1.
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ii) Put

V (x) =
rN−1

N − 2

(
d2−N(x, z)− r2−N).

Then V = 0 and |∇V | = 1 on ∂Y . Moreover, |V (BY
t ) − V (BY

0 )| ≤ r
N−2

and ∆V ≤ 0 by
Laplace comparison. Thus

L∂Yt ≤ V (BY
0 )− V (BY

t ) +MY,V
t

with 〈MY,V 〉t ≤ t and, therefore,

Exe
1
r
L∂Yt ≤ e

1
r2
t ·
[
Exe

2
r
MY,V
t − 2

r2
〈MY,V 〉t

]1/2

·
[
Exe

2
r

(V (BY0 )−V (BYt ))
]1/2

≤ e
1
r2
t · e

e
r
Ex
[
V (BY0 )−V (BYt )

]
.

where the last inequality follows from the fact that |2
r
(V (BY

0 )−V (BY
t ))| ≤ 1. To estimate

Ex
[
V (BY

0 )− V (BY
t )
]
, we apply the Laplace comparison to the function

V 2(y) =
r2N−2

(N − 2)2
·
(
d2−N(y, z)− r2−N

)2

which yields

∆V 2(y) ≤ 2 +
N

N − 2
d(y, z) coth d(y, z) ≤ 5.

Therefore, taking into account that V (x) ≤ 0,

Ex
[
V (BY

0 )− V (BY
t )
]
≤ V (x) + Ex

[
V 2(BY

t )
]1/2

= V (x) + Ex
[
V 2(x) +

1

2

∫ t

0

∆V 2(BY
s )ds

]1/2

≤ Ex
[1

2

∫ t

0

(
∆V 2

)
+

(BY
s )ds

]1/2

≤
√

5

2
t.

Thus Exe
1
r
L∂Yt ≤ eCt+C

′√t.

Corollary 6.18. In the setting of the previous Example 6.17 i), the effect of the boundary
curvature results in a lower bound for the spectral gap:

λ1 ≥
N − 1

2
cot2 r.

Let us emphasize that without taking into account the curvature of the boundary, no
positive lower bound for λ1 will be available.

Proof. In the gradient estimate for the heat flow on the ball Y = Br(z), the boundary
curvature causes an exponential decay:∣∣∇P Y

t f
∣∣2(x) ≤ e−t(N−1) cot2 r+1 P Y

t

∣∣∇f ∣∣2(x)

for each f and x ∈ Y , and P Y
t

∣∣∇f ∣∣2(x)→ 1
m(Y )

∫
Y

∣∣∇f ∣∣2 m as t→∞. On the other hand,
by spectral calculus ∣∣∇P Y

t f1

∣∣2(x) = e−2λ1
∣∣∇f1

∣∣2(x).

for the eigenfunction f1 corresponding to the first non-zero eigenvalue λ1.
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