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Curvature-dimension conditions under time change

Bang-Xian Han∗ Karl-Theodor Sturm†

Abstract

We derive precise transformation formulas for synthetic lower Ricci bounds

under time change. More precisely, for local Dirichlet forms we study how the

curvature-dimension condition in the sense of Bakry-Émery will transform

under time change. Similarly, for metric measure spaces we study how the

curvature-dimension condition in the sense of Lott-Sturm-Villani will trans-

form under time change.

Keywords: metric measure space, curvature-dimension condition, time change,
Bakry-Émery theory, Dirichlet form.
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1 Introduction

A. Bakry and Émery [5] formulated a powerful criterion for obtaining equilibration
and regularity results for the Markov semigroups associated with local Dirichlet
forms. Let us briefly recall their concept. A Dirichlet form E, densely defined on
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some L2(X,m), satisfies the BE(k,N) condition with some function k ∈ L∞
loc(X,m)

and some number N ∈ [1,∞] if

1

2

∫

Γ(f)∆ϕ dm−

∫

Γ(f,∆f)ϕ dm ≥

∫ (

k Γ(f) +
1

N
(∆f)2

)

ϕ dm. (1.1)

for all suitable functions f and ϕ ≥ 0 onX . Here ∆ denotes the generator associated
with E and Γ the carré du champ operator. Estimate (1.1) can be regarded as an
abstract formulation of Bochner’s inequality on Riemannian manifolds. Thus, in
this Eulerian approach to curvature-dimension conditions, k(x) will be considered
as a synthetic lower bound for the “Ricci curvature at x ∈ X” and N as an upper
bound for the “dimension” of X .

From the very beginning of this theory, the transformation formula for the Bakry-
Émery condition BE(k,N) under drift transformation played a key role. Most im-
portantly in the case N = ∞, this states that the Dirichlet form

E
∗(u) :=

∫

Γ(u) dm∗ on L2(X,m∗) with m∗ := e−V m

satisfies BE(k∗,∞) with k∗ := k + hV where hV (x) := inff
1

Γ(f)

[
Γ
(
Γ(V, f), f

)
−

1
2
Γ
(
Γ(f), V

)]
denotes the lower bound for the Hessian of V at x ∈ X for any

sufficiently regular function V on X .

The goal of this paper now is to analyze the transformation property of the
Bakry-Émery condition under time change. That is, we will pass from the original
Dirichlet form E on L2(X,m) to a new one defined as

E
′(u) :=

∫

Γ(u) dm on L2(X,m′) with m′ := e2w m

for some w ∈ L∞
loc(X,m). Our main result provides a Bakry-Émery condition for this

transformed Dirichlet form provided the original Dirichlet form satisfies a Bakry-
Émery condition with finite N .

Theorem 1.1. Assume that E satisfies the BE(k,N) condition for some k ∈ L∞
loc

and some N ∈ [1,∞), and that w ∈ Dloc(∆)∩L∞
loc with ∆w = ∆singw+∆acwm and

∆singw ≤ 0. Then for any N ′ ∈ (N,∞] and k′ ∈ L∞
loc, the time-changed Dirichlet

form E′ on L2(X,m′) satisfies the BE(k′, N ′) condition provided

k′ ≤ e−2w
[

k −
(N − 2)(N ′ − 2)

N ′ −N
Γ(w)−∆acw

]

. (1.2)

Corollary 1.2. If in addition k′ is bounded from below, say k′ ≥ K ′ for some
K ′ ∈ R, then the time changed Dirichlet form E′ and the associated heat semigroup
(P′

t)t≥0 satisfy the following gradient estimate

Γ′(P ′
tf) +

1− e−2K ′t

N ′K ′
(∆′P ′

tf)
2 ≤ e−2K ′tP ′

t

(
Γ′(f)

)
. (1.3)

Remark 1.3. Generator and carré du champ operator of the time-changed Dirichlet
form E′ on L2(X,m′) are given by

∆′ = e−2w∆, Γ′ = e−2wΓ.
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Moreover, the associated Brownian motion (P′
x,B

′
t) (c.f. Chapter 6 [10]) is given by

P
′
x = Px and

B′
t = Bτt , τt =

∫ t

0

e−2w(B′

s)ds, σt =

∫ t

0

e2w(Bs) ds, Bt = B′
σt
. (1.4)

Note that heat semigroup (P ′
t)t≥0 and Brownian motion (P′

x,B
′
t) are linked to each

other by
P ′
tf(x) = E

′
x[f(B

′
2t)].

B. A different approach, the so-called Lagrangian approach, to synthetic lower
Ricci bounds was proposed in the works of Lott, Villani [16] and Sturm [20]. Here
the objects under consideration are metric measure spaces. Such a space (X, d,m)
satisfies the curvature-dimension condition CD(K,∞) – meaning that its Ricci cur-
vature is bounded from below by K – if the Boltzmann entropy Ent(.,m) is weakly
K-convex on the Wasserstein space P2(X). More refined curvature-dimension con-
ditions CD(K,N) and CD∗(K,N) with finite N ∈ [1,∞) were introduced in [21]
and [20]. Combined with the requirement of Hilbertian energy functional, this led
to the conditions RCD(K,N) and RCD∗(K,N) [2], which fortunately turned out to
be equivalent to each other [?].

Also from the very beginning of this theory, the transformation formula for
the curvature-dimension conditions CD(K,N), CD∗(K,N) RCD(K,N) under drift
transformation played a key role. Most easily formulated in the case N = ∞, it
states that the condition CD(K,∞) for a given metric measure space (X, d,m) and
the L-convexity of V on X imply the condition CD(K + L,∞) for the transformed
metric measure space (X, d, e−Vm). The same holds with RCD in the place of CD.

Subject of the investigations in this paper is the time-changed metric measure
space (X, d′,m′) where m′ = e2wm for some w ∈ L∞

loc(X,m) and

d′(x, y) := sup
{
φ(x)− φ(y) : φ ∈ Dloc(E) ∩ C(X), |Dφ| ≤ ew m-a.e. in X

}

for x, y ∈ X . Assuming that w is continuous m-a.e. on X this allows for a dual
representation as

d′(x, y) = inf
{∫ 1

0

ew̄(γs) |γ̇s| ds : γ ∈ AC([0, 1], X), γ0 = x, γ1 = y
}

where w̄(x) := lim supy→x w(y) denotes the upper semicontinuous envelope of w.
Our main result provides the transformation formula for the curvature-dimension
condition under time change.

Theorem 1.4. Let (X, d,m) be a RCD(K,N) space and let w ∈ Dloc(∆)∩L∞
loc(X)

be continuous m-a.e. with ∆w = ∆singw + ∆acwm and ∆singw ≤ 0. Then the
time-changed metric measure space (X, d′,m′) satisfies the RCD(K ′, N ′) condition
for any N ′ ∈ (N,+∞] and K ′ ∈ R such that

K ′ ≤ e−2w
[

K −
(N − 2)(N ′ − 2)

N ′ −N
|Dw|2 −∆acw

]

.
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Theorem 1.4 is a more or less immediate consequence of Theorem 1.1 and the fact
that the Eulerian and the Lagrangian curvature-dimension conditions, BE(K,N)
and RCD(K,N), are equivalent to each other as proven in [9].

Remark 1.5. The first derivation of the transformation formula for the (Eulerian)
curvature-dimension condition BE(K,N) under conformal transformation as well as
under time change was presented in [23] by the second author in the setting of regular
Dirichlet forms admitting a nice core of sufficiently smooth functions (“Γ-calculus
in the sense of Bakry-Émery-Ledoux”).

Combining the techniques and results in [12] and [17], the first author [13, 14]
proved the transformation formula for the Lagrangian curvature-dimension condi-
tion RCD(K,N) under conformal transformation when the reference function w is
bounded and smooth enough. Together with the well-known transformation formula
for RCD(K,N) under drift transformations, this result also provides a transforma-
tion formula for RCD(K,N) under time change.

The focus of the current paper is on proving the transformation formula for
the (Eulerian or Lagrangian) curvature-dimension condition under time change in
a setting of great generality (Dirichlet forms or metric measure spaces) and with
minimal regularity and boundedness assumptions on w.

C. One of the important applications of time-change is the “convexification” of
non-convex subsets Ω ⊂ X of an RCD(K,N)-space (X, d,m) as introdudced by
the second author and Lierl [15]. For sublevel sets of regular semi-convex functions
V , they proved convexity after suitable conformal transformations while control
of the curvature bound under these transformations follows from the work [13] of
the first author. Unfortunately, these previous results do not apply to the most
natural potential, the signed distance function V = d(.,Ω) − d(., X \ Ω) due to
lack of regularity. The more general results of the current paper, will apply to a
suitable truncation of the signed distance function and thus provide the following
Convexification Theorem.

Theorem 1.6. Let (X, d,m) be a RCD(K,N) space and Ω be a bounded ℓ-convex
domain in (X, d) with m(∂Ω) = 0 and m+(∂Ω) < ∞. Then for any N ′ ∈ (N,+∞],
there exists a Lipschitz function w such that the time-changed metric measure space
(Ω, dw,mw) is a RCD(K ′, N ′) space for some K ′ ∈ R.

Acknowledgement. The authors gratefully acknowledge support by the Euro-
pean Union through the ERC-Advanced Grant “Metric measure spaces and Ricci
curvature – analytic, geometric, and probabilistic challenges” (“RicciBounds”).

2 Time change and the Bakry-Émery condition

This section is devoted to study synthetic lower Ricci bounds under time change
in the setting of Dirichlet forms. More precisely, we will derive the transformation
formula for the Bakry-Émery condition under time change.
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2.1 Dirichlet forms and the BE(K,N) condition

In this part, we recall some basic facts about Dirichlet form theory and the Bakry-
Émery theory. Firstly we make some basic assumptions on the Dirichlet form, see
also [18] for examples satisfying these conditions.

Assumption 2.1. We assume that

a) (X, τ) is a topological space, (X,B) is a measurable space and m is a σ-finite
Radon measure with full support (i.e. suppm = X); B is the m-completion
of the Borel σ-algebra generated by τ ; and Lp(X,m) will denote the space of
Lp-integrable functions on (X,B,m);

b) E(·) : L2(X,m) 7→ [0,∞] is a strongly local, quasi-regular, symmetric Dirichlet
form with domain V := D(E) =

{
f ∈ L2(X,m) : E(f) < ∞

}
; denote by

(Pt)t>0 the heat semi-group generated by E;

c) there exists an increasing sequence of (“cut-off”) functions with compact sup-
port (χℓ)ℓ≥1 ⊂ V∞ such that 0 ≤ χℓ ≤ 1, Γ(χℓ) ≤ C for all ℓ and χℓ → 1,
Γ(χℓ) → 0 as ℓ → ∞, cf. [19];

d) E satisfies the Bakry-Émery condition BE(K,∞) for some K ∈ R.

To formulate the latter, recall that V∞ := D(E) ∩ L∞(X,m) is an algebra with
respect to pointwise multiplication. We say that E admits a carré du champ if there
exists a quadratic continuous map Γ : V → L1(X,m) such that

∫

X

Γ(f)ϕ dm = E(f, fϕ)−
1

2
E(f 2, ϕ) for all f ∈ V, ϕ ∈ V∞.

By polarization, we define Γ(f, g) := 1
4

(
Γ(f + g) − Γ(f − g)

)
and obtain E(f, g) =

∫
Γ(f, g) dm for all f, g ∈ V. It is known that Γ is local in the sense that Γ(f−g) = 0

m-a.e. on the set {f = g}.

The Dirichlet form E induces a densely defined selfadjoint operator ∆ : D(∆) ⊂
V 7→ L2 satisfying E(f, g) = −

∫
g∆f dm for all g ∈ V. Put

Γ2(f ;ϕ) :=
1

2

∫

Γ(f)∆ϕ dm−

∫

Γ(f,∆f)ϕ dm

and D(Γ2) :=
{

(f, ϕ) : f, ϕ ∈ D(∆), ∆f ∈ V, ϕ,∆ϕ ∈ L∞
}

.

Definition 2.2 (Bakry-Émery condition). Given a function k ∈ L∞ and a number
N ∈ [1,∞], we say that the Dirichlet form E satisfies the BE(k,N) condition if it
admits a carré du champ and if

1

2

∫

Γ(f)∆ϕ dm−

∫

Γ(f,∆f)ϕ dm ≥

∫ (

kΓ(f) +
1

N
(∆f)2

)

ϕ dm. (2.1)

for all (f, ϕ) ∈ D(Γ2), ϕ ≥ 0.
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Remark 2.3. Since by our standing assumption the Dirichlet form E satisfies BE(K,∞)
for some K ∈ R, the “space of test functions”

TestF(E) :=
{
f ∈ D(∆) : ∆f ∈ V

∞, Γ(f) ∈ L∞
}

is dense in V (c.f. Section 2 [3] and Remark 2.5 therein). Hence, the BE(k,N)
condition will follow if (2.1) holds true for all f ∈ TestF(E) and all non-negative
ϕ ∈ D(∆) ∩ L∞ with ∆ϕ ∈ L∞.

Lemma 2.4. For every f ∈ D(∆), we have Γ(f)1/2 ∈ V and

E

(

Γ(f)1/2
)

≤

∫

(∆f)2 dm−K · E(f).

Proof. By self-improvement, the Bakry-Émery inequality BE(K,∞) as introduced
above implies the stronger L1-version

∫

Γ(f)1/2∆ϕ dm−

∫
1

Γ(f)1/2
Γ(f,∆f)ϕ dm ≥ K

∫

Γ(f)1/2ϕ dm.

for all f, ϕ ∈ D(∆) with ∆f ∈ V, see [17]. Choosing ϕ = Pt(Γ(f)
1/2) and then

letting t → 0 yields the claim for f ∈ D(∆) with ∆f ∈ V. Since the class of these
f ’s is dense in D(∆), the claim follows.

Definition 2.5. i) We say that f ∈ V
e if there exists a Cauchy sequence (fn)n ⊂ V

w.r.t. the semi-norm E(·) and such that fn → f m-a.e. Then we define E(f) :=
limn→∞ E(fn). Similarly, Γ can be extended to V

e.

ii) We say that f ∈ Vloc if for any bounded open set U , there is f̄ ∈ V such that
f = f̄ on U . Then a function Γ(f) ∈ L1

loc(X,m) can be defined unambiguously by
Γ(f) := Γ(f̄) on U .

Similarly, we define the spaces Dloc(∆) and TestFloc(E).

Definition 2.6 (Local weak Bakry-Émery condition). Given a function k ∈ L∞
loc

and a number N ∈ [1,∞], we say that the Dirichlet form E satisfies the BEloc(k,N)
condition if it admits a carré du champ and if

−
1

2

∫

Γ
(
Γ(f), ϕ

)
dm−

∫

Γ(f,∆f)ϕ dm ≥

∫ (

kΓ(f) +
1

N
(∆f)2

)

ϕ dm. (2.2)

for all f ∈ Dloc(∆)∩L∞
loc with ∆f ∈ Vloc and all non-negative ϕ ∈ V

∞ with compact
support and Γ(ϕ) ∈ L∞.

Note that our standing assumption BE(K,∞) implies that Γ(f)1/2 ∈ Vloc for
each f ∈ Dloc(∆). Thus for functions f and ϕ as above, the term−1

2

∫
Γ
(
Γ(f), ϕ

)
dm

is well-defined.

Lemma 2.7. E satisfies BE(k,N) for k ∈ L∞ if and only if it satisfies BEloc(k,N).

Proof. Assume that BE(k,N) holds true and let f and ϕ be given as in Definition 2.6.
Choose f ′ ∈ D(∆)∩L∞ with ∆f ′ ∈ V such that f = f ′ on a neigborhood of {ϕ 6= 0}.
Choose uniformly bounded, nonnegative ϕn ∈ D(∆) with Γ(ϕn),∆ϕn ∈ L∞ such
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that ϕn → ϕ a.e. on X and in V as n → ∞. (For instance, put ϕn = P1/nϕ.) Then
(2.1) implies

−
1

2

∫

Γ
(
Γ(f ′), ϕn

)
dm−

∫

Γ(f ′,∆f ′)ϕn dm ≥

∫ (

kΓ(f ′)+
1

N
(∆f ′)2

)

ϕn dm > −∞

for all n. Passing to the limit n → ∞ yields (2.2) with f ′ in the place of f . Since
by assumption f = f ′ on a neigborhood of {ϕ 6= 0}, this yields the claim (2.2).

Conversely, assume that BEloc(k,N) holds true and let f and ϕ be given as in
Definition 2.2. Put ϕn = P1/nϕ and ϕℓ,n = χℓ · P1/nϕ with (χℓ)ℓ being the cut-
off functions from assumption 2.1. According to the BEloc(k,N) assumption, (2.2)
holds with ϕℓ,n in the place of ϕ. Passing to the limit ℓ → ∞ yields (2.2) with ϕn

in the place of ϕ (∀n). This, however, is equivalent to (2.1), again with ϕn in the
place of ϕ. Finally passing to the limit n → ∞ yields (2.1) for the given ϕ.

Remark 2.8. From the proof of the preceding Lemma, it is obvious that the class
of f ’s to be considered for (2.2) can equivalently be restricted to f ∈ Dloc(∆) ∩ L∞

loc

with ∆f ∈ Vloc ∩ L∞
loc.

2.2 Self-improvement of the Bakry-Émery condition

The formulation of the subsequent results on the self-impovement property will
require the theory of differential structures of Dirichlet forms as introduced by Gigli
in [12]. In order to shorten the length of the paper, we will skip the introduction of
(co)tangent modules, list the results directly and ignore subtle differences.

Proposition 2.9 (Section 2.2, [12]). Given a strongly local, symmetric Dirichlet
form E admitting a carré du champ Γ defined on V

e as above. Then there exists a
L∞-Hilbert module L2(TM) satisfying the following properties.

i) L2(TM) is a Hilbert space equipped with the norm ‖ · ‖ such that the following
correspondence (embedding) holds

V
e ∋ f 7→ ∇f ∈ L2(TM), ‖∇f‖2 =

∫

Γ(f) dm.

ii) L2(TM) is a module over the commutative ring L∞(X,m).

iii) The norm ‖ · ‖ is induced by a pointwise inner product 〈·, ·〉 satisfying

〈∇f,∇g〉 = Γ(f, g) m− a.e.

and
〈h∇f,∇g〉 = h〈∇f,∇g〉 m− a.e.

for any f, g ∈ V
e.

iv) L2(TM) is generated by {∇g : g ∈ V
e} in the following sense. For any

v ∈ L2(TM), there exists a sequence vn =
∑Mn

i=1 an,i∇gn,i with an,i ∈ L∞ and
gn,i ∈ V

e, such that ‖v − vn‖ → 0 as n → ∞.

7



By Corollary 3.3.9 [12], for any f ∈ D(∆) there is a continuous symmetric
L∞(M)-bilinear map Hessf(·, ·) defined on [L2(TM)]2, with values in L0(X,m). In
particular, if f, g, h ∈ TestF (c.f. Lemma 3.2 [17], Theorem 3.3.8 [12]), Hessf(·, ·) is
given by the following formula:

2Hessf(∇g,∇h) = Γ(g,Γ(f, h)) + Γ(h,Γ(f, g))− Γ(f,Γ(g, h)). (2.3)

Combining Theorem 1.4.11 and Proposition 1.4.10 in [12], we obtain the following
structural results. As a consequence, we can compute Hessf(·, ·) and Γ(·, ·) using
local coordinate.

Proposition 2.10. Denote by L2(TM) the tangent module associated with E. Then
there exists a unique decomposition (up to m-null sets) {En}n∈N∪{∞} of X such that

a) For any n ∈ N and any B ⊂ En with positive measure, L2(TM) has an
orthonormal basis {ei,n}

n
i=1 on B,

b) For every subset B of E∞ with finite positive measure, there exists an or-
thonormal basis {ei,B}i∈N∪{∞} ⊂ L2(TM)|B which generates L2(TM)|B,

where we say that a countable set {vi}i ⊂ L2(TM) is orthonormal on B if 〈vi, vj〉 =
δij m-a.e. on B. By definition, the local dimension dimloc(x) ∈ N ∪ {∞} is n if
x ∈ En.

Proposition 2.11. Let E be a Dirichlet form satisfying the BE(k,N) condition
for some k ∈ L∞ and some number N ∈ [1,∞] and let {En}n∈N∪{∞} be the de-
composition given by Proposition 2.10. Then m(En) = 0 for n > N , and for any
(f, ϕ) ∈ D(Γ2), we have

Γ2(f ;ϕ) ≥

∫ (

kΓ(f) + |Hessf |
2
HS +

1

N − dimloc
(trHessf −∆f)2

)

ϕ dm (2.4)

where 1
N−dimloc

(trHessf −∆f)2 is taken 0 on EN by definition.

The same estimate (2.4) also holds true for all all f ∈ Dloc(∆)∩L∞
loc with ∆f ∈

Vloc and all nonnegative ϕ ∈ V
∞ with compact support and Γ(ϕ) ∈ L∞ provided E

satisfies the BEloc(k,N) condition for some k ∈ L∞
loc and N ∈ [1,∞].

Proof. The proof for constant k = K was given in [14], Proposition 3.2 and Theorem
3.3. In fact, the proof there only relies on a so-called self-improvement technique in
Bakry-Émery theory, which can also be applied to BE(k,N) case without difficulty.
Also the extension via localization is straightforward.

In order to proceed, we briefly recall the notion of measure-valued Laplacian ∆

as introduced in [11, 17]. We say that f ∈ D(∆) ⊂ V
e if there exists a signed Borel

measure µ = µ+ − µ− charging no capacity zero sets such that
∫

ϕ dµ = −

∫

Γ(ϕ.f) dm

for any ϕ ∈ V with quasi-continuous representative ϕ ∈ L1(X, |µ|). If µ is unique,
we denote it by ∆f . If ∆f ≪ m, we also denote its density by ∆f if there is no
ambiguity.
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Proposition 2.12 (See Lemma 3.2 [17]). Let E be a Dirichlet form satisfying the
BEloc(k,N) condition. Then for any f ∈ TestFloc(E), we have Γ(f) ∈ Dloc(∆) and

1

2
∆Γ(f)− Γ(f,∆f)m ≥

(

kΓ(f) + |Hessf |
2
HS +

1

N − dimloc
(trHessf −∆f)2

)

m.

In particular, the singular part of the measure ∆Γ(f) is non-negative.

2.3 BE(K,N) condition under time change

We define the time-change of the Dirichlet form E in the following way.

Definition 2.13 (Time change). Given a function w ∈ L∞
loc(X,m), define the

weighted measure mw := e2wm and the time-changed Dirichlet form Ew on L2(X,mw)
by

E
w(f) :=

∫

Γ(f) dm ∀f ∈ V
w

with D(Ew) := V
w := V

e ∩ L2(X,mw). Note that indeed Ew(f) does not depend on
w and (Vw)e = V

e.

We leave it to the reader to verify the following simple but fundamental proper-
ties.

Lemma 2.14. i) Ew is a strongly local, symmetric Dirichlet form.

ii) Ew admits a carré du champ defined on (Vw)loc = Vloc by Γw := e−2wΓ.

iii) Furthermore, Dloc(∆
w) = Dloc(∆) and ∆wf = e−2w∆f .

iv) If in addition w ∈ Vloc then TestFloc(E
w) = TestFloc(E).

Our first main result will provide the basic estimate for the Bakry-Émery con-
dition under time change.

Theorem 2.15. Let w ∈ Dloc(∆) ∩ L∞
loc be given and assume that E satisfies

BEloc(k,N) condition for some N ∈ [2,∞) and k ∈ L∞
loc. Then for any N ′ ∈ (N,∞],

any f ∈ TestFloc(E) and any non-negative ϕ ∈ V∞ with compact support, we have

−

∫ [1

2
Γw
(
Γw(f), ϕ

)
+ Γw

(
f,∆wf

)
ϕ
]

dmw

≥

∫

Γw(f)ϕdκ +
1

N ′

∫

(∆wf)2ϕ dmw (2.5)

where

κ := e−2w

(

k −
(N − 2)(N ′ − 2)

N ′ −N
Γ(w)

)

mw −∆w.

9



Proof. By Lemma 2.14 we know

−
1

2

∫

Γw
(
Γw(f), ϕ

)
dmw −

∫

Γw(f,∆wf)ϕ dmw

= −
1

2

∫

Γ
(
e−2wΓ(f), ϕ

)
dm−

∫

Γ(f, e−2w∆f)ϕ dm

=
(

−
1

2

∫

Γ
(
Γ(f), ϕ

)
e−2w dm+

∫

Γ(f)Γ(w, ϕ)e−2w dm
)

−
( ∫

Γ(f,∆f)e−2wϕ dm

−2

∫

∆fΓ(f, w)e−2wϕ dm
)

=
(

−
1

2

∫

Γ
(
Γ(f), e−2wϕ

)
dm−

∫

Γ
(
Γ(f), w

)
e−2wϕ dm

)

+

∫

Γ(f)Γ(w, ϕ)e−2w dm

−

∫

Γ(f,∆f)e−2wϕ dm+ 2

∫

∆fΓ(f, w)e−2wϕ dm

=
{

−
1

2

∫

Γ
(
Γ(f), e−2wϕ

)
dm−

∫

Γ(f,∆f)e−2wϕ dm
}

︸ ︷︷ ︸

Γ2(f ;e−2wϕ)

+
(∫

Γ
(
w, e−2wΓ(f)ϕ

)
dm

−

∫

Γ
(
w, e−2wΓ(f)

)
ϕ dm

)

−

∫

Γ
(
Γ(f), w

)
e−2wϕ dm+ 2

∫

∆fΓ(f, w)e−2wϕ dm

= Γ2(f ; e
−2wϕ) +

∫

Γ
(
w, e−2wΓ(f)ϕ

)
dm−

(∫

Γ
(
w,Γ(f)

)
ϕe−2w dm− 2

∫

Γ(w)Γ(f)e−2wϕ dm
)

−

∫

Γ
(
Γ(f), w

)
e−2wϕ dm+ 2

∫

∆fΓ(f, w)e−2wϕ dm

= (I) + (II) + (III) + (IV )−
[ ∫ (N − 2)(N ′ − 2)

N ′ −N
Γ(w, f)2e−2wϕ dm+

∫

ϕΓw(f) d∆w
]

where

(I) = Γ2(f ; e
−2wϕ)−

∫ (

|Hessf |
2
HS +

1

N − dimloc
(∆f − trHessf )

2
)

ϕe−2w dm,

(II) =

∫ (

|Hessf |
2
HS + 2Γ(f)Γ(w) + (dimloc − 2)Γ(f, w)2 − 2Γ

(
w,Γ(f)

)

+2Γ(f, w)trHessf

)

ϕe−2w dm,

(III) =
1

N ′ − dimloc

∫ (

∆f − trHessf + (2− dimloc)Γ(f, w)
)2

ϕe−2w dm,

and

(IV ) =

∫ [( 1

N − dimloc

−
1

N ′ − dimloc

)

(∆f − trHessf )
2

+2
(

1−
2− dimloc

N ′ − dimloc

)

(∆f − trHessf)Γ(f, w)

+
((N − 2)(N ′ − 2)

N ′ −N
− (dimloc−2)−

(dimloc−2)2

N ′ − dimloc

)

Γ(f, w)2
]

ϕe−2w dm.
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By Proposition 2.12 we obtain

(I) ≥

∫

kΓ(f)e−2wϕ dm.

By Lemma 2.16 below we get

(II) + (III) ≥
1

N ′

∫
(
∆f
)2
ϕe−2w dm.

As for the last term (IV ), it can be checked that the function in the bracket is
positive definite, so (IV ) ≥ 0.

Combining the computations above, we complete the proof.

Lemma 2.16. For any f ∈ TestFloc(E), we have

A1 +
1

N ′ − dimloc

A2
2 ≥

1

N ′

(
∆f
)2

m− a.e.

where

A1 := |Hessf |
2
HS + 2Γ(f)Γ(w) + (dimloc − 2)Γ(f, w)2

− 2Γ(w,Γ(f)) + 2Γ(f, w)trHessf

and
A2 := ∆f − trHessf − (dimloc − 2)Γ(f, w).

Proof. By Proposition 2.11, there exits an orthonormal basis {ei}i ⊂ L2(TM). Then
we denote Hessf(ei, ej) by (Hessf)ij and denote 〈∇g, ei〉 by gi for any g ∈ V

e. We
define a matrix H := (Hij) by Hij = (Hessf)ij − wifj − wjfi + Γ(f, w)δij. Then we
have

∑

i,j

H2
ij =

∑

i,j

(
(Hessf )ij − wifj − wjfi + Γ(f, w)δij

)2

= |Hessf |
2
HS + 2Γ(f)Γ(w) + (dimloc − 2)Γ(f, w)2

− 2Γ(w,Γ(f)) + 2Γ(f, w)trHessf = A1

where trHessf =
∑

i(Hessf )ii. It can also be seen that

trH =
∑

i

Hii = trHessf + (dimloc − 2)Γ(f, w) = ∆f − A2.

Finally, we obtain

A1 +
1

N ′ − dimloc

A2
2 = ‖H‖2HS +

1

N ′ − dimloc

(

trH −∆f
)2

≥
1

dimloc

(
trH

)2
+

1

N ′ − dimloc

(

trH −∆f
)2

≥
1

N ′

(

∆f
)2

which is the thesis.
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Theorem 2.17 (BE(k,N) condition under time change). Let E be a Dirichlet form
satisfying the BEloc(k,N) condition for some N ∈ [2,∞) and k ∈ L∞

loc(X,m). As-
sume that w ∈ Dloc(∆) ∩ L∞

loc with ∆w = ∆singw + ∆acwm and ∆singw ≤ 0.
Moreover, assume that for some N ′ ∈ (N,∞] and K ′ ∈ R

K ′ ≤ e−2w
[

k −
(N − 2)(N ′ − 2)

N ′ −N
Γ(w)−∆acw

]

(2.6)

m-a.e. on X. Then the time-changed Dirichlet form Ew on L2(X,mw) satisfies the
BE(K ′, N ′) condition.

In particular, we have the following gradient estimate

Γw(Pw
t f) +

1− e−2K ′t

N ′K ′
(∆wPw

t f)2 ≤ e−2K ′tPw
t

(
Γw(f)

)
mw-a.e.

for all f ∈ D(Ew).

Proof. Given the estimate (2.5) from the previous Theorem, we iteratively will ex-
tend the class of functions for which it holds true.

i) Our first claim is that (2.5) holds for all f ∈ Dloc(∆)∩L∞
loc with ∆f ∈ Vloc and

all compactly supported, nonnegative ϕ ∈ V
∞ with Γ(ϕ) ∈ L∞. Indeed, given such

f and ϕ, choose f ′ ∈ D(∆) ∩ L∞ with ∆f ∈ V such that f = f ′ on a neighborhood
of {ϕ 6= 0}. Choose fn ∈ TestF(E) with fn → f ′ in D(∆) and ∆fn → ∆f ′ in V. (For
instance, put fn = P1/nf

′.) Applying (2.5) with fn in the place of f and passing to
the limit n → ∞ yields the claim. Indeed,

Γw(Γw(fn), ϕ) = e−4w
[

Γ(Γ(fn), ϕ)− 2Γ(fn) · Γ(w, ϕ)
]

which according to Lemma 2.4 for n → ∞ converges to

e−4w
[

Γ(Γ(f), ϕ)− 2Γ(f) · Γ(w, ϕ)
]

= Γw(Γw(f), ϕ)

since fn → f in D(∆).

ii) Our next claim is that (2.5) holds for all f ∈ Dloc(∆
w)∩L∞

loc(m
w) with ∆wf ∈

(Vw)∞loc and all compactly supported, nonnegative ϕ ∈ (Vw)∞ with Γw(ϕ) ∈ L∞(mw).
Indeed, the conditions on f and on ϕ will not depend on w as long as w ∈ V

∞
loc which

is the case by assumption. This is obvious in the case of the conditions on ϕ. For the
conditions on f , note that ∆w = e−2w∆ and Γw(∆w) ≤ 2e−4w

[
Γ(∆f)+4(∆f)2 Γ(w)

]
.

iii) Taking into account the assumptions on ∆w and on K ′, according to Lemma
2.7 together with Remark 2.8 the assertion of the second claim already proves
BE(K ′, N ′).

iv) The gradient estimate is a standard consequence of BE(K ′, N ′), see [9].

Remark 2.18. Let e2w = ρ and N ′ = ∞ in Theorem 2.17. Then condition (2.6)
becomes

K ′ ≤ Kρ−1 +
1

2
∆ρ−1 −NΓ(ρ−

1

2 ) = ρ−
N
2

(

K −
1

N − 2
∆
)

ρ
N
2
−1.

Furthermore, when N = 2, the condition is K ′ρ ≤ K − 1
2
∆ ln ρ.
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3 Time change and the Lott-Sturm-Villani condi-

tion

In this section, we will study synthetic lower Ricci bounds under time change in
the setting of metric measure spaces. More precisely, we will derive the transfor-
mation formula for the curvature-dimension condition of Lott-Sturm-Villani under
time change.

3.1 Metric measure spaces and time change

Assumption 3.1. In this section we will assume that the metric measure space
(X, d,m) fulfils the following conditions:

i) (X, d) is a complete and separable geodesic space;

ii) m is a d-Borel measure and suppm = X ;

iii) (X, d,m) satisfies the Riemannian curvature-dimension condition RCD(K,N)
for some K ∈ R and N ∈ [1,∞].

Given such a metric measure space (X, d,m), the energy is defined on L2(X,m)
by

E(f) := inf
{

lim inf
n→∞

∫

X

lip(fn)
2dm : fn ∈ Lipb(X), fn → f in L2(X,m)

}

=

∫

X

∣
∣Df |2 dm

where lip(f)(x) := lim supy→x |f(x)− f(y)|/d(x, y) denotes the local Lipschitz slope
and |Df |(x) denotes the minimal weak upper gradient at x ∈ X . We refer to [1] for
details. As a part of the definition of RCD condition, E(·) is a quadratic form. By
polarization, this defines a quasi-regular, strongly local, conservative Dirichlet form
admitting a carré du champ Γ(f) := |Df |2. We use the notations W 1,2(X, d,m) =
V = D(E) and S2(X, d,m) = V

e.

Definition 3.2. Given w ∈ L2
loc(X,m), the time-changed metric measure space is

defined as (X, dw,mw) where mw := e2wm and dw is given by

dw(x, y) := sup
{
φ(x)− φ(y) : φ ∈ Vloc ∩ C(X), |Dφ| ≤ ew m-a.e. in X

}
(3.1)

for any x, y ∈ X .

Remark 3.3. There are various alternative definitions for the distance function under
time change. The first of them is

dw(x, y) := sup
{
φ(x)− φ(y) : φ ∈ Liploc(X), lip(φ) ≤ ew m-a.e. in X

}
. (3.2)

Since Liploc(X) ⊂ Vloc ∩ C(X) and |Dφ| ≤ lip(φ) for φ ∈ Liploc(X), obviously
dw ≤ dw. It is easy to see that in both of these definitions, the class of functions
under consideration can equivalently be restricted to those with compact supports.
In other words, dw(x, y) = sup

{
φ(x)−φ(y) : φ ∈ V∩Cc(X), |Dφ| ≤ ew m-a.e. in X

}

and dw(x, y) = sup
{
φ(x)− φ(y) : φ ∈ Lipc(X), lip(φ) ≤ ew m-a.e. in X

}
.
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Moreover, we consider the metric ew ⊙ d defined in a dual way by

(
ew ⊙ d

)
(x, y) := inf

{∫ 1

0

ew(γs) |γ̇s| ds : γ ∈ AC([0, 1], X), γ0 = x, γ1 = y
}

. (3.3)

Of particular interest is the metric ew̄⊙d with w replaced by its upper semicontinuous
envelope w̄ defined by

w̄(x) := lim sup
y→x

w(y).

Lemma 3.4. Assume that w is continuous a.e. on X. Then each of the metrics
dw, dw, e

w ⊙ d and ew̄ ⊙ d induces the same minimal weak upper gradient |Dwf | =
e−w|Df | m-a.e. on X for each f ∈ L2

loc(X). In particular,

Γw = e−2w Γ on Vloc = V
w
loc

where here and henceforth Γw denotes the carré du champ operator induced by the
metric measure space (X, dw,mw).

Proof. Assume that w is continuous at x ∈ X . Then for each ε > 0 there exists
δ > 0 such that |w(x) − w(y)| < ε for y ∈ Bδ(x). Hence, by using appropriate
truncation arguments it is easy to see that for each d∗ ∈

{
dw, dw, e

w ⊙ d, ew̄ ⊙ d
}

and all y ∈ Bδ(x)

ew(z)−ε · d(x, y) ≤ d∗(x, y) ≤ ew(z)+ε · d(x, y).

Hence, lip∗(f)(x) = e−w(x) lip(x) for the respective local Lipschitz constants associ-
ated with d∗.

To obtain the respective minimal weak upper gradient for f ∈ L2(X,m) asso-
ciated with d∗, one has to consider the relaxations of lip∗(f) w.r.t. the measure
mw = e2wm. This, however, amounts to study the relaxations of the original lip(f)
w.r.t. the measure m. Thus the claimed identify Γw(f) = e−2w Γ(f) m-a.e. on X
follows.

In the following lemma we show the coincidence of dw and ew̄ ⊙ d, see [?] for
related results.

Lemma 3.5. Assume that w is continuous a.e. on X. Then

dw = ew̄ ⊙ d.

In particular, dw is a geodesic metric.

Proof. i) Let us first prove that dw is a geodesic metric. Since X is locally compact
w.r.t. the metric d and since the metrics dw and d are locally equivalent, the space
X is also locally compact w.r.t. the metric dw. Therefore, it suffices to prove that
dw is a length metric. Assume this is not the case. Then there exist points x 6= y
with dw(x, y) < 2r and Bw

r (x) ∩ Bw
r (y) = ∅. Put

f = dw(., X \Br(x))− dw(., X \Br(y)).
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It is easy to verify that Γw(f) ≤ 1 and obviously f is continuous. Hence, by the
very definition of dw

dw(x, y) ≥ f(x)− f(y) = 2r

which is in contradiction to our initial assumption.

ii) Now let us consider the particular case where w is continuous on all of X .
Then dw = ew ⊙ d. Indeed, both metrics are geodesic metrics on X and coincide
up to multiplicative pre-factors e±ε on suitable neighborhoods Bδ(x) of each point
z ∈ X .

iii) To deal with the general case, let us choose a decreasing sequence of contin-
uous functions wn with wn ↓ w̄ as n → ∞. Then dwn = ewn ⊙ d for each n by the
preceding case ii) and thus by monotonicity for all x, y

dw(x, y) ≤ inf
n
dwn(x, y) = inf

n
(ewn ⊙ d)(x, y) = (ew̄ ⊙ d)(x, y).

iv) To prove the reverse estimate, for given x ∈ X observe that f = (ew̄⊙d)(x, .)
is continuous and obviously lipw(f)(y) ≤ 1 in each point y of continuity of w.
Thus, in particular, Γw(f) ≤ 1 mw-a.e. on X . This indeed implies that dw(x, z) ≥
|f(x)− f(z)| = (ew̄ ⊙ d)(x, z) for each z ∈ X .

Lemma 3.6. Assume that w is continuous a.e. on X. Then the metric measure
space (X, dw,mw) has the Sobolev-to-Lipschitz property.

Proof. Assume that f ∈ Vloc is given with Γw(f) ≤ 1 mw-a.e. on X . By truncation
one can achieve on each bounded set B that f = fB a.e. on B for some fB with
bounded support and with Γw(fB) ≤ 1 mw-a.e. on X . Since w ∈ L∞

loc, moreover,
Γ(fB) ≤ C m-a.e. on X . By the Sobolev-to-Lipschitz property of the original metric
measure space (X, d,m) it follows that f = f̄B a.e. on B for some f̄B with Lip(f̄B) ≤
C. In particular, f̄B is continuous and Γw(f̄B) ≤ 1 mw-a.e. on X . Hence,

dw(x, y) ≥ |f̄B(x)− f̄B(y)|

for all x, y ∈ X by the very definition of the metric dw. In other words, f̄B ∈ Lipw(X)
with Lipw(f̄B) ≤ 1. Considering these constructions for an open covering of X by
such sets B, it follows that there exists f̄ ∈ Lipw(X) with f = f̄ m-a.e. on X and
Lipw(f̄) ≤ 1.

Finally we can prove the transformation formula for the RCD(K,N) condition
under time change.

Theorem 3.7. Let (X, d,m) be a RCD(K,N) space and let w ∈ Dloc(∆)∩L∞
loc(X)

be continuous m-a.e. with ∆w = ∆singw+∆acwm and ∆singw ≤ 0. Then the time-
changed metric measure space (X, dw,mw) satisfies the RCD(K ′, N ′) condition for
any N ′ ∈ (N,+∞] and K ′ ∈ R such that m-a.e. on X

K ′ ≤ e−2w
[

K −
(N − 2)(N ′ − 2)

N ′ −N
|Dw|2 −∆acw

]

. (3.4)

A particular consequence of the Theorem is that the time-changed metric mea-
sure space (X, dw,mw) satisfies the squared exponential volume growth condition:
∃C ∈ R, z ∈ X :

mw(Bw
r (z)) ≤ C eCr2 (∀r > 0). (3.5)
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Proof. From the work of [3, 9], we know that the curvature dimension condition
RCD(K,N) implies the Bakry-Émery condition BE(K,N) for the Dirichlet form E

on L2(X,m) induced by the measure space (X, d,m). According to Theorem 2.17,
this implies the Bakry-Émery condition BE(K ′, N ′) for the Dirichlet form Ew on
L2(X,mw). Due to Lemma 3.4, the latter indeed is the Dirichlet form induced by
the metric measure space (X, dw,mw). Finally, again by [3, 9], BE(K ′, N ′) for the
Dirichlet form induced by (X, dw,mw) will imply RCD∗(K ′, N ′) provided the volume-
growth condition (3.6) is satisfied and the Sobolev-to-Lipschitz property holds. The
latter was proven in Lemma 3.6. To deal with the former, we proceed in two steps.

i) ) Let us first consider the case w ∈ L∞(X). Then the volume-growth condition
(3.6) for (X, dw,mw) obviously from that for (X, d,m) which in turn follows from
the RCD(K,N) assumption.

ii) Now let general w ∈ L∞
loc(X) be given as well as K ′ and N ′ such that (3.4)

is satisfied. Given z ∈ X , define wl = w · χℓ with suitable cut-off functions (χℓ)ℓ∈N
(cf. [4], Lemma 6.7) such that for all ℓ ∈ N

• wℓ = w on Bℓ(z)

• wℓ is bounded on X

• e−2wℓ

[

K − (N−2)(N ′−2)
N ′−N

|Dwℓ|
2 −∆acwℓ

]

≥ K ′ − 1.

Then according to part i) of this proof, the metric measure space (X, dwℓ ,mwℓ)
satisfies RCD(K ′ − 1, N ′). This in particular implies that there exists a constant C
(which indeed can be chosen independent of ℓ) such that

mwℓ
(
Bwℓ

r (z)
)
≤ C eC r2

for all r > 0. Since mwℓ
(
Bwℓ

r (z)
)
= mw

(
Bw

r (z)
)
for all r ≤ ℓ, this finally proves the

requested volume growth condition.

It might be of certain interest to analyze the validity of the volume growth
condition (3.6) under time change without referring to curvature bounds.

Lemma 3.8. Suppose there exist non-negative p, q ∈ L∞
loc(R+) with

−q(d(·, x0)) ≤ w(.) ≤ p(d(·, x0)) on X.

Then (X, dw,mw) satisfies the squared exponential volume growth condition:
∃C ∈ R, x0 ∈ X:

mw(Bw
r (x0)) ≤ C eCr2 (∀r > 0) (3.6)

provided the function f(r) :=
∫ r

0
e−q(s)ds satisfies

(i) lim infr→∞
1
r
f(r) > 0 and

(ii) lim supr→∞
1
r2
p
(
f−1(r)

)
< ∞.

In particular, if q is bounded and limr→∞
p(r)
r2

< ∞, then (X, dw,mw) satisfies the
squared exponential volume growth condition.
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Proof. From Lemma 3.5, we know

dw(x0, y) ≥

∫ d(x0,y)

0

exp
(
− q(r)

)
dr = f(d(x0, y))

for any y ∈ X . Since f−1 is strictly increasing, this implies

Bw
R(x0) ⊂ Bf−1(R)(x0), ∀ R > 0.

Hence,
mw
(
Bw

R(x0)
)
≤ exp

(
2p(f−1(R))

)
m
(
Bf−1(R)(x0)

)
.

Recall that the RCD(K,∞) condition implies the squared exponential volume growth
condition, so there exists M, c > 0 such that

mw
(
Bw

R(x0)
)
≤ M exp

(

2p(f−1(R)) + c
(
f−1(R)

)2
)

.

Note that (i) implies lim supr→∞
1
r
f−1(r) < ∞. Hence, together with (ii), this

implies the squared exponential volume growth condition for (X, dw,mw).

3.2 Convexity transform

Firstly we introduce the notion of local ℓ-convexity in non-smooth setting. Such
notion is derived from [15] by the second author and Lierl (see Definition 2.6 and
Definition 2.9 therein).

Definition 3.9 (ℓ-convex functions, Definition 2.6 [15]). Given ℓ ∈ R, we say that
a function V is ℓ-convex on a closed subset Z ⊂ X if there exists a convex open
covering ∪iXi ⊃ Z such that each V |Xi

: Xi 7→ (−∞,+∞] is ℓ-geodesically convex,

in the sense that for each x0, x1 ∈ Xi, there exists a geodesic γ : [0, 1] 7→ X from x0

to x1 such that

V (γ(t)) ≤ (1− t)V (γ(0)) + tV (γ(1))−
ℓ

2
t(1− t)|γ̇t|

2, ∀t ∈ [0, 1].

Definition 3.10 (Locally ℓ-convex sets, Definition 2.9 [15]). Let Ω ⊂ X be an
open subset and let V := d(.,Ω) − d(., X \ Ω) denote the signed distance from the
boundary, in the sequel also briefly denoted by ±d(., ∂Ω).

We say that Ω is locally ℓ-convex if for each δ > 0 there exists r > 0 such that
V is (ℓ− δ)-convex on Ωr

−r with |DV | ≥ 1− δ where Ωr
−r := {−r < V < r}.

Remark 3.11. Assume thatX is a smooth Riemannian manifold, and Ω is a bounded
open subset of X with smooth boundary. It is proved in Proposition 2.10 [15], that
the real-valued second fundamental form on ∂Ω is bounded from below by ℓ if and
only if Ω is locally ℓ-convex.

Then we can convexify locally ℓ-convex sets using time change and the following
convexification technique developed in [15] (see Theorem 2.17 therein).

Lemma 3.12 (Convexification Theorem). Let Ω be a locally ℓ-convex subset in X
for some ℓ ≤ 0. Then Ω is locally geodesically convex in (X, d−ℓ′V ) for any ℓ′ < ℓ.
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Next we recall some important results concerning L1-optimal transport and mea-
sure decomposition. This theory has proven to be a powerful tool in studying the
fine structure of metric measure spaces. We refer the readers to the lecture note [6]
for an overview of this topic and the bibliography.

Lemma 3.13 (Localization for RCD(K,N) spaces, Theorem 3.8 and Theorem
5.1 [7])). Let (X, d,m) be an essentially non-branching metric measure space with
suppm = X, and satisfying RCD(K,N) condition for some K ∈ R and N ∈ (1,∞).
Then for any 1-Lipschitz function u on X and the transport set Tu associated with u
(up to m-measure zero set, Tu coincides with {|∇u| = 1}), there is a disjoint family
of unparameterized geodesics {Xq}q∈Q such that

m(Tu \ ∪Xq) = 0, (3.7)

and

m|Tu
=

∫

Q

mq dq(q), q(Q) = 1 and mq(Xq) = 1 q− a.e. q ∈ Q. (3.8)

Furthermore, for q-a.e. q ∈ Q, mq is a Radon measure with mq ≪ H1
|Xq

and

(Xq, d,mq) satisfies RCD(K,N). In particular, mq = hqH
1
|Xq

for some CD(K,N)

probability density hq.

Lemma 3.14. Let Y be a domain in X with m(∂Y ) = 0, and V := d(., Y ) −
d(., X \ Y ) be the signed distance from the boundary. Then the transport set TV

associated with V has full measure in X. There is a disjoint family of unparameter-
ized geodesics {Xq}q∈Q satisfying (3.7) and (3.8) in Theorem 3.13, and a constant
r0 > 0 such that

V (aq) ≥ 0, V (bq) ≤ −r0 q− a.e. q ∈ Q

where aq = aq(Xq), bq = bq(Xq) are the end points of Xq.

Proof. Firstly, recall that RCD(K,N) condition yields local compactness, so for any
x ∈ X \ ∂Y , there is z ∈ ∂Y such that d(x, z) = d(x, ∂Y ) and thus x ∈ TV . So
m(X \ TV ) = 0.

Secondly, by Definition 3.10, V is semi-convex on Y r0
−r0 for some r0 > 0. By the

main theorem of [22], for each x0 ∈ Y r0
−r0 there exists a unique gradient flow for V

starting in x0. In particular, there is a maximal transport (geodesic) line γ ⊂ TV

satisfying V (γ1)− V (γ0) = d(γ0, γ1), V (γ1) ≥ V (x0) and V (γ0) ≤ −r0.

By Theorem 3.13 there is a disjoint family of unparameterized geodesics {Xq}q∈Q
such that m(TV \∪Xq) = 0. In addition, Xq∩{V ≤ −r0} 6= ∅ and Xq∩{V ≥ 0} 6= ∅
for any q ∈ Q. Therefore m(X \ ∪Xq) = 0, V (aq) ≥ 0 and V (bq) ≤ −r0.

Proposition 3.15 (Convexification). Let Ω be a locally ℓ-convex domain in (X, d)
for some ℓ ≤ 0, and m(∂Ω) = 0. Then for any ℓ′ < ℓ, there exist r0 > 0 and
a Lipschitz function w such that Ω is locally geodesically convex in (X, dw) and
w ∈ D(∆, X \ ∂Ω) with

∆w|X\∂Ω
≤ −ℓ′

(

cotK,N(r0/4) +
2

r0

)

m|X\∂Ω
.
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where the function cotK,N : [0,+∞) 7→ [0,+∞) is defined by

cotK,N(x) :=







√

K(N − 1) cot(
√

K
N−1

x), if K > 0,

(N − 1)/x, if K = 0,
√

−K(N − 1) coth(
√

−K
N−1

x), if K < 0.

Proof. Let V := ±d(·, ∂Y ) be the signed distance from the boundary and r0 > 0 be
the constant in Proposition 3.14. Given ℓ′ < ℓ ≤ 0, we can find a smooth cut-off
function φ : R 7→ [0, r0] satisfying

φ(t) :=







t, if t ∈ [1
4
ℓ′r0,−

1
4
ℓ′r0]

−1
2
ℓ′r0, if t ∈ [−3

4
ℓ′r0,+∞)

1
2
ℓ′r0, if t ∈ (−∞, 3

4
ℓ′r0]

with 0 ≤ φ′ ≤ 1, |φ′′| ≤ − 2
ℓ′r0

on R. Then we define w := φ(−ℓ′V ). By Convexifica-
tion Theorem (c.f. Theorem 2.17 [15]) we know Ω is locally geodesically convex in
(X, dw).

By chain rule (c.f. Proposition 4.11 [11]) and Corollary 4.16 [8] we have w ∈
D(∆, X \ ∂Ω), and

∆w|X\∂Ω
= −ℓ′φ′(−ℓ′V )∆V |X\∂Ω

+ (ℓ′)2φ′′(−ℓ′V )|DV |2m|X\∂Ω
. (3.9)

In addition, by Corollary 4.16 [8] and the fact φ′′ ≤ − 2
ℓ′r0

, we obtain

∆w|X\∂Ω

≤ −ℓ′φ′(−ℓ′V )∆V |X\∂Ω
−

2ℓ′

r0
|DV |2m|X\∂Ω

≤ −ℓ′φ′(−ℓ′V )
(

cotK,N(d(x, bq))m|X\∂Ω
+

∫

Q

hqδbq dq(q)
)

−
2ℓ′

r0
m|X\∂Ω

.

Furthermore, we know φ′(−ℓ′V ) = 0 on {V ≤ −3
4
r0} ∪ {V ≥ 3

4
r0}. So from

Proposition 3.14 we can see that

φ′(−ℓ′V )

∫

Q

hqδbq = 0.

Combining with the monotonicity of cotK,N we obtain

∆w|X\∂Ω
≤ −ℓ′

(

cotK,N(r0/4) +
2

r0

)

m|X\∂Ω

which is the thesis.

Combining Lemma 3.7 and Proposition 3.15 we can prove the main theorem of
this section. Recall that the Minkowski content of a set Z ⊂ X is defined by

m+(Z) := lim inf
ǫ→0

m(Zǫ)−m(Z)

ǫ

where Zǫ ⊂ X is the ǫ-neighbourhood of Z defined by Zǫ := {x : d(x, Z) < ǫ}.
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Theorem 3.16. Let (X, d,m) be a RCD(K,N) space and Ω be a bounded ℓ-convex
domain in (X, d) with m(∂Ω) = 0 and m+(∂Ω) < ∞. Then for any N ′ ∈ (N,+∞],
there exists a Lipschitz function w such that (Ω, dw,mw) is a RCD(K ′, N ′) space for
some K ′ ∈ R.

Proof. Let w be the reference function obtained in Proposition 3.15. Denote by µ
the trivial extension of ∆w|X\∂Ω

on whole X . To apply Lemma 3.7 and Proposition

3.15, it suffices to show that w ∈ D(∆) and ∆w ≤ µ.

Given an arbitrary non-negative Lipschitz function ϕ ∈ Lip(X, d) with bounded
support. For any ǫ > 0, there exists a Lipschitz function φǫ ∈ Lip(R) satisfying

φǫ(t) :=







0, if t ∈ [0, ǫ
2
]

2
ǫ
(t− ǫ

2
), if t ∈ [ ǫ

2
, ǫ]

1, if t ∈ [ǫ,+∞)

Define ϕ̄ǫ := φǫ(d(·, ∂Ω))ϕ. By Leibniz rule and chain rule we know ϕ̄ǫ ∈ Lip(X, d),
and supp ϕ̄ǫ ⊂ X\∂Ω. Therefore by Lemma 3.15 and monotone convergence theorem
we get

∫

ϕ dµ = lim
ǫ→0

∫

ϕ̄ǫ d∆w|X\∂Ω

= − lim
ǫ→0

∫

X\∂Ω

Γ(ϕ̄ǫ, w) dm

= − lim
ǫ→0

∫

φǫ(d(·, ∂Ω))Γ(ϕ,w) dm− lim
ǫ→0

∫

ϕΓ(φǫ(d(·, ∂Ω)), w) dm

= −

∫

Γ(ϕ,w) dm− lim
ǫ→0

∫

ϕΓ(φǫ(d(·, ∂Ω)), w) dm.

By Lemma 3.13 we have a measure decomposition dm = dmq dq(q) associated
with the signed distance function ±d(·, ∂Ω). Thus

lim
ǫ→0

∫

ϕΓ(φǫ(d(·, ∂Ω)), w) dm

= lim
ǫ→0

∫

Ω
−ǫ/2
−ǫ

ϕΓ(φǫ(d(·, ∂Ω)), w) dm+ lim
ǫ→0

∫

Ωǫ
ǫ/2

ϕΓ(φǫ(d(·, ∂Ω)), w) dm

= lim
ǫ→0

2ℓ′

ǫ

(
∫

Ω
−ǫ/2
−ǫ

ϕ dm−

∫

Ωǫ
ǫ/2

ϕ dm

)

= lim
ǫ→0

2ℓ′

ǫ

∫

Q

( ∫

Ω
−ǫ/2
−ǫ ∩Xq

ϕ dmq −

∫

Ωǫ
ǫ/2

∩Xq

ϕ dmq

)

dq(q).

Notice that

m+(∂Ω) = lim inf
ǫ→0

m
(
(∂Ω)ǫ

)

ǫ
= lim inf

ǫ→0

1

ǫ

(
∫

Ω0

−ǫ

1 dm+

∫

Ωǫ
0

1 dm

)

.
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Therefore we obtain
∣
∣
∣
∣

∫

Γ(ϕ,w) dm

∣
∣
∣
∣

≤

∣
∣
∣
∣

∫

ϕ dµ

∣
∣
∣
∣
+

∣
∣
∣
∣
lim
ǫ→0

∫

ϕΓ(φǫ(d(·, ∂Ω)), w) dm

∣
∣
∣
∣

≤ max |ϕ|

{

|µ|(suppϕ) + lim
ǫ→0

2|ℓ′|

ǫ

(
∫

Ω0

−ǫ

1 dm+

∫

Ωǫ
0

1 dm

)}

≤ max |ϕ|
{
|µ|(suppϕ)− 2ℓ′m+(∂Ω)

}
.

By Riesz-Markov-Kakutani Representation theorem we know w ∈ D(∆).

Since mq = hqH
1
|Xq

for some CD(K,N) probability density hq, we know hq and

(ln hq)
′ are bounded. So for any Xq such that Ω

−ǫ/2
−ǫ ∩Xq 6= ∅ and Ωǫ

ǫ/2 ∩Xq 6= ∅ for
ǫ small enough, we have

∣
∣
∣
∣
∣

∫

Ω
−ǫ/2
−ǫ ∩Xq

ϕ dmq −

∫

Ωǫ
ǫ/2

∩Xq

ϕ dmq

∣
∣
∣
∣
∣

≤ Lip(ϕhq)
3ǫ

2
H

1(Ωǫ
−ǫ ∩Xq) = O(ǫ2).

Hence by Lemma 3.14 and Fatou’s lemma, we obtain

lim
ǫ→0

1

ǫ

∫

Q

(∫

Ω
−ǫ/2
−ǫ ∩Xq

ϕ dmq −

∫

Ωǫ
ǫ/2

∩Xq

ϕ dmq

)

dq(q)

≥ lim
ǫ→0

1

ǫ

∫

q∈Q,Ω
r0
0

∩Xq 6=∅

(∫

Ω
−ǫ/2
−ǫ ∩Xq

ϕ dmq −

∫

Ωǫ
ǫ/2

∩Xq

ϕ dmq

)

dq(q)

≥ 0.

In conclusion, we obtain

∫

ϕ d∆w = −

∫

Γ(ϕ,w) dm

=

∫

ϕ dµ+ lim
ǫ→0

2ℓ′

ǫ

∫

Q

(∫

Ω
−ǫ/2
−ǫ ∩Xq

ϕ dmq −

∫

Ωǫ
ǫ/2

∩Xq

ϕ dmq

)

dq(q) ≤

∫

ϕ dµ.

Therefore ∆w ≤ µ, by Lemma 3.15 we know ∆singw ≤ 0 and
(
∆acw)

+ ∈ L∞. Then

by Proposition 3.7 we know (Ω, dw,mw) is a RCD(K ′, N ′) space.
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