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Curvature-dimension conditions under time change

Bang-Xian Han* Karl-Theodor Sturm'

Abstract

We derive precise transformation formulas for synthetic lower Ricci bounds
under time change. More precisely, for local Dirichlet forms we study how the
curvature-dimension condition in the sense of Bakry—Emery will transform
under time change. Similarly, for metric measure spaces we study how the
curvature-dimension condition in the sense of Lott-Sturm-Villani will trans-
form under time change.
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1 Introduction

A. Bakry and Emery [5] formulated a powerful criterion for obtaining equilibration
and regularity results for the Markov semigroups associated with local Dirichlet
forms. Let us briefly recall their concept. A Dirichlet form &, densely defined on
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some L?(X,m), satisfies the BE(k, N) condition with some function k € L{° (X, m)
and some number N € [1, o0] if

3 [rnsean— [T apean [ (k00 + @r)edn @)

for all suitable functions f and ¢ > 0 on X. Here A denotes the generator associated
with € and I" the carré du champ operator. Estimate (1.1) can be regarded as an
abstract formulation of Bochner’s inequality on Riemannian manifolds. Thus, in
this Eulerian approach to curvature-dimension conditions, k(x) will be considered
as a synthetic lower bound for the “Ricci curvature at x € X7 and N as an upper
bound for the “dimension” of X.

From the very beginning of this theory, the transformation formula for the Bakry-
Emery condition BE(k, N) under drift transformation played a key role. Most im-
portantly in the case N = oo, this states that the Dirichlet form

E(u) = /F(u) dm* on L*(X, m*) with m* := e V'm

satisfies BE(k*, 00) with k* := k + hy where hy(x) = inffﬁ[F(F(V, . f) -
iD(T(f),V)] denotes the lower bound for the Hessian of V at € X for any
sufficiently regular function V on X.

The goal of this paper now is to analyze the transformation property of the
Bakry-Emery condition under time change. That is, we will pass from the original
Dirichlet form € on L?*(X, m) to a new one defined as

& (u) == /F(u) dm on L*(X,m’) with m’ := e**m
for some w € L2 (X, m). Our main result provides a Bakry—Emery condition for this

transformed Dirichlet form provided the original Dirichlet form satisfies a Bakry-
Emery condition with finite N.

Theorem 1.1. Assume that € satisfies the BE(k, N) condition for some k € L{3

loc

and some N € [1,00), and that w € Dioc(A)N LY. with Aw = Agpaw+ Agcwm and

loc

Agingw < 0. Then for any N' € (N,oo] and k' € L%, the time-changed Dirichlet

loc’
form & on L*(X,w’) satisfies the BE(K', N') condition provided
N —=2)(N' —2)
N' — N
Corollary 1.2. If in addition k' is bounded from below, say k' > K’ for some

K’ € R, then the time changed Dirichlet form & and the associated heat semigroup
(P})i>0 satisfy the following gradient estimate

K< e [p - | T(w) — Aacw]. (1.2)

1 _672K’t
N'K'

Remark 1.3. Generator and carré du champ operator of the time-changed Dirichlet
form & on L*(X,m’) are given by

I(Pf) + (AP/f)? < e UPI(I'(F)). (1.3)

A =e A, T/ =e 2T,
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Moreover, the associated Brownian motion (P, B}) (c.f. Chapter 6 [10]) is given by
P! =P, and

t t
B, =B,, 7= / e~ 2w s, o = / e?wB)ds, B, =B, (1.4)
0 0

Note that heat semigroup (P/):>o and Brownian motion (P, B}) are linked to each
other by

F/f(x) = B, [f(By)).

B. A different approach, the so-called Lagrangian approach, to synthetic lower
Ricci bounds was proposed in the works of Lott, Villani [16] and Sturm [20]. Here
the objects under consideration are metric measure spaces. Such a space (X, d, m)
satisfies the curvature-dimension condition CD (K, co) — meaning that its Ricci cur-
vature is bounded from below by K — if the Boltzmann entropy Ent(., m) is weakly
K-convex on the Wasserstein space Po(X). More refined curvature-dimension con-
ditions CD(K, N) and CD*(K, N) with finite N € [1,00) were introduced in [21]
and [20]. Combined with the requirement of Hilbertian energy functional, this led
to the conditions RCD(K, N) and RCD*(K, N) [2], which fortunately turned out to
be equivalent to each other [?].

Also from the very beginning of this theory, the transformation formula for
the curvature-dimension conditions CD(K, N), CD*(K, N) RCD(K, N) under drift
transformation played a key role. Most easily formulated in the case N = oo, it
states that the condition CD(K, 0o) for a given metric measure space (X, d, m) and
the L-convexity of V' on X imply the condition CD(K + L, o) for the transformed
metric measure space (X, d,e”"m). The same holds with RCD in the place of CD.

Subject of the investigations in this paper is the time-changed metric measure

space (X,d’;m’) where m’ = e*”m for some w € L° (X, m) and

d'(z,y) == sup {d(z) — ¢(y) : ¢ € Dioe(€) N C(X), |Dg| < € m-ace. in X}

for z,y € X. Assuming that w is continuous m-a.e. on X this allows for a dual
representation as

1
d'(z,y) = inf { / 0
0

where w(x) := limsup, ,, w(y) denotes the upper semicontinuous envelope of w.
Our main result provides the transformation formula for the curvature-dimension
condition under time change.

;YS‘ ds : v e AC([O7 1]7X)7/70 =T,Nn= y}

Theorem 1.4. Let (X,d,m) be a RCD(K, N) space and let w € Dioc(A) N LY (X)
be continuous m-a.e. with Aw = Agp,w + Ajewm and Agpow < 0. Then the
time-changed metric measure space (X,d’,m’) satisfies the RCD(K', N') condition

for any N' € (N, +oo] and K" € R such that

(N —2)(NV' —2)
N — N

K <e?|K — |Dw|? — Aacw].



Theorem 1.4 is a more or less immediate consequence of Theorem 1.1 and the fact
that the Eulerian and the Lagrangian curvature-dimension conditions, BE(K, N)
and RCD(K, N), are equivalent to each other as proven in [9].

Remark 1.5. The first derivation of the transformation formula for the (Eulerian)
curvature-dimension condition BE(K, N') under conformal transformation as well as
under time change was presented in [23] by the second author in the setting of regular
Dirichlet forms admitting a nice core of sufficiently smooth functions (“I'-calculus
in the sense of Bakry—Emery—Ledoux”).

Combining the techniques and results in [12] and [17], the first author [13, 14]
proved the transformation formula for the Lagrangian curvature-dimension condi-
tion RCD(K, N) under conformal transformation when the reference function w is
bounded and smooth enough. Together with the well-known transformation formula
for RCD(K, N) under drift transformations, this result also provides a transforma-
tion formula for RCD(K, N) under time change.

The focus of the current paper is on proving the transformation formula for
the (Eulerian or Lagrangian) curvature-dimension condition under time change in
a setting of great generality (Dirichlet forms or metric measure spaces) and with
minimal regularity and boundedness assumptions on w.

C. One of the important applications of time-change is the “convexification” of
non-convex subsets 2 C X of an RCD(K, N)-space (X,d,m) as introdudced by
the second author and Lierl [15]. For sublevel sets of regular semi-convex functions
V', they proved convexity after suitable conformal transformations while control
of the curvature bound under these transformations follows from the work [13] of
the first author. Unfortunately, these previous results do not apply to the most
natural potential, the signed distance function V' = d(.,Q) — d(.,, X \ Q) due to
lack of regularity. The more general results of the current paper, will apply to a
suitable truncation of the signed distance function and thus provide the following
Convexification Theorem.

Theorem 1.6. Let (X,d, m) be a RCD(K, N) space and Q2 be a bounded (-convex
domain in (X,d) with m(0Q) =0 and m™(9Q) < oco. Then for any N' € (N, +o0],
there exists a Lipschitz function w such that the time-changed metric measure space
(Q,d¥, m®) is a RCD(K’, N') space for some K' € R.

Acknowledgement. The authors gratefully acknowledge support by the Euro-
pean Union through the ERC-Advanced Grant “Metric measure spaces and Ricci
curvature — analytic, geometric, and probabilistic challenges” (“RicciBounds”).

2 Time change and the Bakry-Emery condition

This section is devoted to study synthetic lower Ricci bounds under time change
in the setting of Dirichlet forms. More precisely, we will derive the transformation
formula for the Bakry-Emery condition under time change.



2.1 Dirichlet forms and the BE(K, N) condition

In this part, we recall some basic facts about Dirichlet form theory and the Bakry-
Emery theory. Firstly we make some basic assumptions on the Dirichlet form, see
also [18] for examples satisfying these conditions.

Assumption 2.1. We assume that

a) (X,7) is a topological space, (X, B) is a measurable space and m is a o-finite
Radon measure with full support (i.e. suppm = X); B is the m-completion
of the Borel o-algebra generated by 7; and LP(X, m) will denote the space of
LP-integrable functions on (X, B, m);

b) &(-) : L*(X,m) — [0, 00] is a strongly local, quasi-regular, symmetric Dirichlet
form with domain V := D(&) = {f € L*(X,m) : &(f) < oo}; denote by
(P;)i~0 the heat semi-group generated by &;

¢) there exists an increasing sequence of (“cut-off”) functions with compact sup-
port (X¢)e>1 C Voo such that 0 < X, < 1, I'(xy) < C for all £ and X, — 1,
I'(x¢) — 0 as £ — oo, cf. [19];

d) €& satisfies the Bakry-Emery condition BE(K, 00) for some K € R.
To formulate the latter, recall that V, := D(E) N L>°(X, m) is an algebra with

respect to pointwise multiplication. We say that £ admits a carré du champ if there
exists a quadratic continuous map I' : V — L'(X,m) such that

| redm=e(r.f0) - Je(fe)  orall fEVip e Ve

By polarization, we define I'(f,g) := 1(T'(f +g) — '(f — g)) and obtain E(f,g) =
JT(f,g)dmforall f,g € V. It is known that I is local in the sense that ['(f—g) = 0
m-a.e. on the set {f = g}.

The Dirichlet form € induces a densely defined selfadjoint operator A : D(A) C
V +— L? satisfying €(f,g9) = — [ gAfdm for all g € V. Put

La(fie) =5 [ T Apdm— [ T(f. AP dm

and D(T'y) := {(f, 0): foeD(A), Af €V, g, Ape Lw}.
Definition 2.2 (Bakry—Emery condition). Given a function k& € L*> and a number

N € [1,00], we say that the Dirichlet form & satisfies the BE(k, N) condition if it
admits a carré du champ and if

5 [Tsean— [rG.apsan > [ (k05 + L@ )edn @)

for all (f,p) € D(I'z), ¢ > 0.



Remark 2.3. Since by our standing assumption the Dirichlet form € satisfies BE( K, 00)
for some K € R, the “space of test functions”

TestF(&) :== {f € D(A) : Af € V® T'(f) € L™}

is dense in V (c.f. Section 2 [3] and Remark 2.5 therein). Hence, the BE(k, N)
condition will follow if (2.1) holds true for all f € TestF (&) and all non-negative
v € D(A)N L™ with Ap € L™,

Lemma 2.4. For every f € D(A), we have T'(f)Y/? € V and
(') < [ im— K -£(r).

Proof. By self-improvement, the Bakry-Emery inequality BE(K, 00) as introduced
above implies the stronger L'-version

/ ()2 Ap dm — / il A dm > K / (F)2%p dm.

for all £, € D(A) with Af € V, see [17]. Choosing ¢ = P,(T'(f)"/?) and then
letting t — 0 yields the claim for f € D(A) with Af € V. Since the class of these
f’s is dense in D(A), the claim follows. O

Definition 2.5. i) We say that f € V¢ if there exists a Cauchy sequence (f,), CV
w.r.t. the semi-norm &(:) and such that f, — f m-a.e. Then we define E(f) :=
lim,, o E(f,). Similarly, I' can be extended to Ve.

ii) We say that f € Vi, if for any bounded open set U, there is f € V such that
f = fonU. Then a function I'(f) € L} (X, m) can be defined unambiguously by
L(f)=T(f) onU.

Similarly, we define the spaces Dj,.(A) and TestF,(€).

Definition 2.6 (Local weak Bakry-Emery condition). Given a function k € L°
and a number N € [1, 00|, we say that the Dirichlet form € satisfies the BE)..(k, V)
condition if it admits a carré du champ and if

5 [ra@pan= [t aneins [(0)+ p@)pdn (22

for all f € Dige(A)NLY

loc

support and I'(p) € L™,

with Af € V), and all non-negative ¢ € V> with compact

Note that our standing assumption BE(K, co) implies that T(f)1/2 E Vloc for
each f € Djoc(A). Thus for functions f and ¢ as above, the term —3 f F( )
is well-defined.

Lemma 2.7. & satisfies BE(k, N) for k € L* if and only if it satisfies BEj,.(k, N).

Proof. Assume that BE(k, N) holds true and let f and ¢ be given as in Definition 2.6.
Choose f" € D(A)NL>® with Af’ € V such that f = f" on a neigborhood of {¢ # 0}.
Choose uniformly bounded, nonnegative ¢, € D(A) with I'(p,), Ap, € L* such
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that ¢, = ¢ a.e. on X and in V as n — oo. (For instance, put ¢, = P;/,¢.) Then
(2.1) implies

1 1
=3 [TEE e an [T A ewdm > [ (G + A7)0 dm > o0
for all n. Passing to the limit n — oo yields (2.2) with f” in the place of f. Since
by assumption f = f’ on a neighborhood of {¢ # 0}, this yields the claim (2.2).
Conversely, assume that BEj.(k, N) holds true and let f and ¢ be given as in
Definition 2.2. Put ¢, = Pipe and @r, = X¢ - Pipe with (Xg)e being the cut-
off functions from assumption 2.1. According to the BE,,.(k, V) assumption, (2.2)
holds with ¢y, in the place of . Passing to the limit ¢ — oo yields (2.2) with ¢,
in the place of ¢ (Vn). This, however, is equivalent to (2.1), again with ¢, in the
place of . Finally passing to the limit n — oo yields (2.1) for the given . O

Remark 2.8. From the proof of the preceding Lemma, it is obvious that the class
of f’s to be considered for (2.2) can equivalently be restricted to f € Djoc(A) N L2,
with Af € Viee N LS

loc*

2.2 Self-improvement of the Bakry-Emery condition

The formulation of the subsequent results on the self-impovement property will
require the theory of differential structures of Dirichlet forms as introduced by Gigli
in [12]. In order to shorten the length of the paper, we will skip the introduction of
(co)tangent modules, list the results directly and ignore subtle differences.

Proposition 2.9 (Section 2.2, [12]). Given a strongly local, symmetric Dirichlet
form & admitting a carré du champ I' defined on V¢ as above. Then there exists a
L -Hilbert module L*(T M) satisfying the following properties.

i) L*(TM) is a Hilbert space equipped with the norm || - || such that the following
correspondence (embedding) holds

Ve fs Vfe LX(TM), |Vf||*= /P(f) dm.

i) L*(TM) is a module over the commutative ring L°°(X, m).

iii) The norm || - || is induced by a pointwise inner product (-,-) satisfying

<Vf>V9> :P(f,g) m— a.e.

and
(WVf,Vg)=h(Vf,Vg) m—a.e.

for any f,g € Ve.

w) L*(TM) is generated by {Vg : g € V¢} in the following sense. For any
v e L3(TM), there exists a sequence v, = Zf‘iﬁ iV Gn,i with a,,; € L> and
Gni € V¢, such that ||v — v,|| — 0 as n — oo.

7



By Corollary 3.3.9 [12], for any f € D(A) there is a continuous symmetric
L>=(M)-bilinear map Hess;(+, ) defined on [L*(T'M)]?, with values in L°(X,m). In
particular, if f, g, h € TestF (c.f. Lemma 3.2 [17], Theorem 3.3.8 [12]), Hessy(-, -) is
given by the following formula:

2Hess;(Vg, Vh) =T(g,L(f, k) + T(h,T'(f,9)) — T(f,T'(g, h)). (2.3)

Combining Theorem 1.4.11 and Proposition 1.4.10 in [12], we obtain the following
structural results. As a consequence, we can compute Hessg(-,-) and I'(-,-) using
local coordinate.

Proposition 2.10. Denote by L*(T M) the tangent module associated with &. Then
there exists a unique decomposition (up to m-null sets) { Ey, }nenufoo) of X such that

a) For any n € N and any B C E, with positive measure, L*(TM) has an
orthonormal basis {e; ,}I, on B,

b) For every subset B of E. with finite positive measure, there exists an or-

thonormal basis {€; g }ienviooy C L*(T'M)|,, which generates L*(TM)

|B |57

where we say that a countable set {v;}; C L*(TM) is orthonormal on B if (v;,v;) =
d;; m-a.e. on B. By definition, the local dimension dim..(r) € NU {oo} is n if
rek,.

Proposition 2.11. Let € be a Dirichlet form satisfying the BE(k, N) condition
for some k € L™ and some number N € [1,00] and let {E,}nenufocy e the de-
composition given by Proposition 2.10. Then m(E,) = 0 for n > N, and for any
(f,¢) € D(I'y), we have

To(fi0) > / (kf‘(f) + [Hess |7 + (trHessy — Af)Q)cpdm (2.4)

1
N — dimloc
where N—dlimloc (trHess; — Af)? is taken 0 on Ex by definition.
The same estimate (2.4) also holds true for all all f € Dioc(A) N LY, with Af €

loc

Viee and all nonnegative ¢ € V< with compact support and I'(p) € L> provided &
satisfies the BEjo.(k, N) condition for some k € L{S. and N € [1, 00].

loc

Proof. The proof for constant k& = K was given in [14], Proposition 3.2 and Theorem
3.3. In fact, the proof there only relies on a so-called self-improvement technique in
Bakry—Emery theory, which can also be applied to BE(k, V) case without difficulty.
Also the extension via localization is straightforward. O

In order to proceed, we briefly recall the notion of measure-valued Laplacian A
as introduced in [11,17]. We say that f € D(A) C V© if there exists a signed Borel
measure (= (4 — f— charging no capacity zero sets such that

/@Mz—/ﬂ%ﬂwl

for any ¢ € V with quasi-continuous representative » € L*(X, |u|). If p is unique,
we denote it by Af. If Af < m, we also denote its density by Af if there is no
ambiguity.



Proposition 2.12 (See Lemma 3.2 [17]). Let & be a Dirichlet form satisfying the
BEc(k, N) condition. Then for any f € TestFi..(€), we have I'(f) € Dioc(A) and

%Af(f) —T(f,Af)m > (kF(f) + |Hessf\%{s + (trHess; — Af)Q) m.

1
N — dimloc

In particular, the singular part of the measure AL'(f) is non-negative.

2.3 BE(K, N) condition under time change
We define the time-change of the Dirichlet form € in the following way.

Definition 2.13 (Time change). Given a function w € L2 (X, m), define the

loc

weighted measure m* := ¢?*m and the time-changed Dirichlet form &* on L?(X, m¥)
by

£ (f) ::/F(f)dm Vf eV

with D(&v) := V¥ := V¢ N L*(X,m"). Note that indeed £“(f) does not depend on
w and (V¥)¢ = Ve,

We leave it to the reader to verify the following simple but fundamental proper-
ties.

Lemma 2.14. i) £Y is a strongly local, symmetric Dirichlet form.
i) &Y admits a carré du champ defined on (V¥)ioc = Vige by TV := e 2T,
iii) Furthermore, Dioe(A%”) = Dioe(A) and AV f = e 2 Af.
i) If in addition w € Vi, then TestFio.(EY) = TestF).(E).

Our first main result will provide the basic estimate for the Bakry-Emery con-
dition under time change.

Theorem 2.15. Let w € Do (A) N LS. be given and assume that € satisfies

BEoc(k, N) condition for some N € [2,00) and k € L{.. Then for any N' € (N, 0o,

loc*

any f € TestFioe(€) and any non-negative p € V., with compact support, we have
1
- / [irw (T(f), ) +T"(f, A“’f)so} dm”
_— 1
> [Tpdn+ 5, [@npPednt (25

where

ko= e 2w (k _W _NQ/)EN],V_ 2)r(w)) m® — Aw.



Proof. By Lemma 2.14 we know

=5 [y dme [T A7 g dme

- —a/F(e_QwF(f),go) dm—/F(f,e_QwAf)cpdm

- (_ %/F(F(f),ap)e_%’ dm+/F(f)F(w,g0)e_2w dm) - (/F(f, Af)e ™ pdm

9 / AFT(f, w)e 20 dm)

= (—%/F(F(f),e_map) dm—/F(F(f),w)e‘%pdm) +/F(f)T(w,g0)e_2wdm

—/F(f,Af)e_ngodm+Q/Afl"(f,w)e_%’cpdm
= {— %/P(F(f),em(p) dm—/F(f,Af)e2wg0dm}+</F(w,62wF(f)<p) dm

(.

~~

Ta(fie=2we)

—/T(w,ezwl"(f))godm> —/F(F(f),w)e2w<pdm+2/Af1"(f,w)62wg0dm
= Fg(f;e_chp)+/P(w,e_2wf(f)g0) dm — (/F(w,T(f))gpe_Qw dm—Q/T(w)T(f)e_chpdm)
—/F(F(f),w)e2wg0dm+2/AfF(f,w)62w<pdm

= ()4 I+ (II)+ (IV) — [/ (N —]\]%)EN]\’[— 2)F

(w0, e ™ pdm + [ FE(dAu]
where

(1) = Fg(f;62wg0)—/(|Hessf|12{S+ L

m(Af — trHessf)2> @Gizw dm,

(1) = [ (Hessyfhs + 2D(AP(w) + (dimue = DE(fw) = 20 (w, (1)

+2I'(f, w)trHessf> e " dm,

1 2
(I17) = m/ (Af — trHess; + (2 — dimyoe) (£, w)) e * dm,

and

1 1
V) = B Af o )
Y / l(N —dimy. N — dimloc)( f — trHessy)

2 — dimloc
+2(1 — m) (Af — tI’HeSSf)P(f, U})
(N=2)(N'=2) . (dimyge —2)? J
—i—( N N (dimyee —2) N~ i, >F(f, w)” | pe = dm.
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By Proposition 2.12 we obtain

(I)> /kF(f)e2w<p dm.
By Lemma 2.16 below we get

(IT) + (I11) > Ni / (AF) e dm.

As for the last term (IV), it can be checked that the function in the bracket is
positive definite, so (IV) > 0.

Combining the computations above, we complete the proof. O

Lemma 2.16. For any f € TestF),.(€), we have

A+ m/@ > %(Aff m— a.e.
where
Ay = [Hessslis + 20(F)(w) + (dimie — 2)(f, w)”
— 20(w, T(f)) + 20(f, w)trHess
and

Ay = Af —trHessy — (dimye. — 2)I'(f, w).

Proof. By Proposition 2.11, there exits an orthonormal basis {e; }; C L*(TM). Then
we denote Hessf(e;, e;) by (Hessy);; and denote (Vg,e;) by g; for any g € V°. We
define a matrix H = (HZJ) by Hij = (Hessf)l-j - wifj - wjfl- -+ F(f, U})ém Then we
have

2
Z Hi2j = Z ((Hessy)ij — w;f; — w; fi + T(f, w)dy;)
] ]
= [Hess; s + 20(f)I' (w) + (dimioe — 2)I(f, w)”
—2I(w, I'(f)) + 2I'(f,w)trHessy = A;
where trHessy = > . (Hessy);;. It can also be seen that

trH = ZH” = trHess; + (dimyo. — 2)I'(f, w) = Af — As.

Finally, we obtain

1 2
A — - A2 = |H|? 7<t H—-A )
1t N/—dimloc 2 ” HHS_'_ N,_dimloc ' f
> (trH)2+;<trH—Af>2 >i(Af)2
- dimloc N’ — dimloc - N/
which is the thesis. OJ
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Theorem 2.17 (BE(k, N) condition under time change). Let € be a Dirichlet form
satisfying the BEy,.(k, N) condition for some N € [2,00) and k € L°(X,m). As-

loc

sume that w € Dioe(A) N LYY with Aw = Agpgw + Agewm and Agpaw < 0.

loc

Moreover, assume that for some N € (N, 00| and K' € R

N — 2)(N' —2)

Kl< —2w kf—<
= ¢ N — N

D(w) — Ajew (2.6)

m-a.e. on X. Then the time-changed Dirichlet form &Y on L*(X, m"Y) satisfies the
BE(K’, N') condition.

In particular, we have the following gradient estimate
1 — 672K’t

D+ N

(APPf)? < e KTPU(0Y(f) m“-ae
for all f € D(EY).

Proof. Given the estimate (2.5) from the previous Theorem, we iteratively will ex-
tend the class of functions for which it holds true.

i) Our first claim is that (2.5) holds for all f € Dyoc(A) N LY, with Af € V), and
all compactly supported, nonnegative ¢ € V*° with I'(¢) € L. Indeed, given such
f and ¢, choose ' € D(A)N L*>® with Af € V such that f = f’ on a neighborhood
of {¢ # 0}. Choose f,, € TestF(€) with f, — f' in D(A) and Af,, - Af"in V. (For
instance, put f, = Py, f".) Applying (2.5) with f, in the place of f and passing to
the limit n — oo yields the claim. Indeed,

DT (f)s ) = e [D(D(fa), ) = 20(f2) - Dlw, )]

which according to Lemma 2.4 for n — oo converges to

674w F<F(f)7 90) - 2F(f) ' F<w7 @)} = Fw<Fw<f)7 ()0)

since f, — fin D(A).

ii) Our next claim is that (2.5) holds for all f € Dye(AY)N LY (m™) with AV f €
(V)2 and all compactly supported, nonnegative ¢ € (V*)* with I'(¢) € L>*(m").
Indeed, the conditions on f and on ¢ will not depend on w as long as w € V¥, which
is the case by assumption. This is obvious in the case of the conditions on ¢. For the
conditions on f, note that A” = e ?”A and I'"(A”) < 2e~ " [[(Af)+4(Af)*T(w)].

iii) Taking into account the assumptions on Aw and on K’, according to Lemma
2.7 together with Remark 2.8 the assertion of the second claim already proves
BE(K', N').

iv) The gradient estimate is a standard consequence of BE(K’, N), see [9]. O

Remark 2.18. Let € = p and N’ = oo in Theorem 2.17. Then condition (2.6)
becomes
1

1

Furthermore, when N = 2, the condition is K'p < K — %Aln p.
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3 Time change and the Lott-Sturm-Villani condi-
tion

In this section, we will study synthetic lower Ricci bounds under time change in
the setting of metric measure spaces. More precisely, we will derive the transfor-
mation formula for the curvature-dimension condition of Lott-Sturm-Villani under
time change.

3.1 Metric measure spaces and time change

Assumption 3.1. In this section we will assume that the metric measure space
(X, d, m) fulfils the following conditions:

i) (X,d) is a complete and separable geodesic space;
ii) m is a d-Borel measure and suppm = X;

iii) (X,d, m) satisfies the Riemannian curvature-dimension condition RCD(K, V)
for some K € R and N € [1, o0].

Given such a metric measure space (X,d, m), the energy is defined on L?(X,m)
by

e(f) = inf{liminf/ lip(f,)2dm : f, € Lipy(X), fo — f in LQ(X,m)}

n—oo

/ IDf|* dm

where lip(f)(z) := limsup,_,, |f(x) — f(y)|/d(2,y) denotes the local Lipschitz slope
and |Df]|(z) denotes the minimal weak upper gradient at z € X. We refer to [1] for
details. As a part of the definition of RCD condition, €(-) is a quadratic form. By
polarization, this defines a quasi-regular, strongly local, conservative Dirichlet form
admitting a carré du champ I'(f) := |Df|?>. We use the notations W'?(X,d, m) =
V=D(&) and S*(X,d,m) = Ve.

Definition 3.2. Given w € LlOC(X ,m), the time-changed metric measure space is
defined as (X, d", m") where m® := e¢*m and d“ is given by

d“(z,y) == sup {@(z) — ¢(y) : ¢ € Viee NC(X), |Dg| < € m-ace. in X}  (3.1)
for any x,y € X.

Remark 3.3. There are various alternative definitions for the distance function under
time change. The first of them is

dy(z,y) == sup {$(z) — ¢(y) : ¢ € Lip,oo(X),lip(¢) < e” m-ae. in X}. (3.2

Since Lipj,.(X) C Vioe N C(X) and |D¢| < lip(¢) for ¢ € Lip,,.(X), obviously
d, < d¥. It is easy to see that in both of these definitions, the class of functions
under consideration can equivalently be restricted to those with compact supports.
In other words, d*(z,y) = sup {¢(z) —¢(y) : ¢ € VNC,(X), |D¢| < e” m-a.e. in X }
and d,,(z,y) = sup {¢(x) — ¢(y) : ¢ € Lip,(X),lip(¢) < e* m-a.e. in X}.
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Moreover, we consider the metric e ® d defined in a dual way by

(e ®d)(z,y) := inf {/0 e’ (vs) |9s| ds = v € AC([0,1], X),v0 =z, 71 = y} (3.3)

Of particular interest is the metric e ®d with w replaced by its upper semicontinuous
envelope w defined by
w(z) := limsup w(y).

y—x
Lemma 3.4. Assume that w is continuous a.e. on X. Then each of the metrics
d*¥,dy, €” ©d and e © d induces the same minimal weak upper gradient |D™ f| =

e |Df| m-a.e. on X for each f € L (X). In particular,

loc

M =e 2D on Vi = Vie.
where here and henceforth T'" denotes the carré du champ operator induced by the
metric measure space (X,d", m").

Proof. Assume that w is continuous at z € X. Then for each € > 0 there exists
9 > 0 such that |w(z) —w(y)| < € for y € Bs(z). Hence, by using appropriate
truncation arguments it is easy to see that for each d* € {d“’, dw, e’ ©d, e’ ® d}
and all y € Bs(x)

"D d(x,y) < df(xy) < eBFELd(ay).

Hence, lip*(f)(z) = e~*® lip(z) for the respective local Lipschitz constants associ-
ated with d*.

To obtain the respective minimal weak upper gradient for f € L*(X,m) asso-
ciated with d*, one has to consider the relaxations of lip*(f) w.r.t. the measure
m® = e*m. This, however, amounts to study the relaxations of the original lip(f)
w.r.t. the measure m. Thus the claimed identify T*(f) = e 2 T'(f) m-a.e. on X
follows. O

In the following lemma we show the coincidence of d¥ and e” ® d, see [?] for
related results.

Lemma 3.5. Assume that w is continuous a.e. on X. Then
d¥ =¢e” o d.
In particular, d¥ is a geodesic metric.

Proof. 1) Let us first prove that d* is a geodesic metric. Since X is locally compact
w.r.t. the metric d and since the metrics d¥ and d are locally equivalent, the space
X is also locally compact w.r.t. the metric d*. Therefore, it suffices to prove that
d"¥ is a length metric. Assume this is not the case. Then there exist points = # y
with d¥(z,y) < 2r and B¥(z) N B¥(y) = 0. Put

[ = dw<'7X \ Br<x>> - dw<'7X \ Br<y))'

14



It is easy to verify that I'"(f) < 1 and obviously f is continuous. Hence, by the
very definition of d*

d“(z,y) = f(z) = fly) = 2r
which is in contradiction to our initial assumption.

ii) Now let us consider the particular case where w is continuous on all of X.
Then d¥ = e ® d. Indeed, both metrics are geodesic metrics on X and coincide
up to multiplicative pre-factors e** on suitable neighborhoods Bs(z) of each point
z e X.

iii) To deal with the general case, let us choose a decreasing sequence of contin-
uous functions w, with w, | w as n — oo. Then d¥» = e“* © d for each n by the
preceding case ii) and thus by monotonicity for all x,y

d*(z,y) < inf d*"(z,y) = inf(e™ © d)(z,y) = (" © d)(z,y).

iv) To prove the reverse estimate, for given x € X observe that f = (e* ®d)(z,.)
is continuous and obviously lip”(f)(y) < 1 in each point y of continuity of w.
Thus, in particular, I'"(f) < 1 m“-a.e. on X. This indeed implies that d*“(z,z) >
|f(x) = f(2)| = (e” ®d)(x, z) for each z € X. O

Lemma 3.6. Assume that w is continuous a.e. on X. Then the metric measure
space (X,d", m™) has the Sobolev-to-Lipschitz property.

Proof. Assume that f € V.. is given with I'*(f) < 1 m"-a.e. on X. By truncation
one can achieve on each bounded set B that f = fp a.e. on B for some fp with
bounded support and with ['*(fg) < 1 m"-a.e. on X. Since w € LS., moreover,
['(fp) < C' m-a.e. on X. By the Sobolev-to-Lipschitz property of the original metric
measure space (X, d, m) it follows that f = fp a.e. on B for some fg with Lip(fp) <

C. In particular, fz is continuous and I'’(fz) < 1 m*-a.e. on X. Hence,

d"(z,y) = |fp(x) = fo(y)]

forall z,y € X by the very definition of the metric d*. In other words, fs € Lip”(X)
with Lip”(fp) < 1. Considering these constructions for an open covering of X by
such sets B, it follows that there exists f € Lip”(X) with f = f m-a.e. on X and

Lip“(f) < 1. 0

Finally we can prove the transformation formula for the RCD(K, N) condition
under time change.

Theorem 3.7. Let (X,d,m) be a RCD(K, N) space and let w € Dioc(A) N LS. (X)
be continuous m-a.e. with Aw = Agingw + Agewm and Agpgw < 0. Then the time-
changed metric measure space (X,d", m") satisfies the RCD(K', N') condition for

any N' € (N,+o0] and K" € R such that m-a.e. on X

N —2)(N' —2)
N —N

K< e[ - L IDwl|? — Aacw]. (3.4)
A particular consequence of the Theorem is that the time-changed metric mea-
sure space (X,d", m") satisfies the squared exponential volume growth condition:
JC e R,z € X:
m¥(BY(z)) < Ce" (Vr > 0). (3.5)
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Proof. From the work of [3,9], we know that the curvature dimension condition
RCD(K, N) implies the Bakry-Emery condition BE(K, N) for the Dirichlet form &
on L*(X,m) induced by the measure space (X,d, m). According to Theorem 2.17,
this implies the Bakry-Emery condition BE(K’, N') for the Dirichlet form €“ on
L*(X,m"). Due to Lemma 3.4, the latter indeed is the Dirichlet form induced by
the metric measure space (X,d*, m*). Finally, again by [3,9], BE(K’, N') for the
Dirichlet form induced by (X, d*, m*) will imply RCD*(K’, N’) provided the volume-
growth condition (3.6) is satisfied and the Sobolev-to-Lipschitz property holds. The
latter was proven in Lemma 3.6. To deal with the former, we proceed in two steps.

i) ) Let us first consider the case w € L*>(X). Then the volume-growth condition
(3.6) for (X,d™, m") obviously from that for (X,d,m) which in turn follows from
the RCD(K, N) assumption.

ii) Now let general w € L (X) be given as well as K’ and N’ such that (3.4
) g g

loc
is satisfied. Given z € X, define w; = w - x, with suitable cut-off functions (x¢)sen

(cf. [4], Lemma 6.7) such that for all ¢ € N
e wy =w on By(z)
e w, is bounded on X

[ €—2w5 [K - _(N*]\??E]}/\;*_Q) |Dwz|2 - Aach Z K, — 1

Then according to part i) of this proof, the metric measure space (X,d"¢, m™¢)
satisfies RCD(K’ — 1, N’). This in particular implies that there exists a constant C'
(which indeed can be chosen independent of ) such that

mwe (BﬁUZ(Z)) < CeC’r2

for all 7 > 0. Since m**(B¥¢(z)) = m*(BY(z)) for all r < ¢, this finally proves the
requested volume growth condition. O

It might be of certain interest to analyze the validity of the volume growth
condition (3.6) under time change without referring to curvature bounds.

Lemma 3.8. Suppose there exist non-negative p,q € L2 (Ry) with

—q(d(-,m0)) < w(.) < p(d(-,z0))  on X.

Then (X,d", m™) satisfies the squared exponential volume growth condition.:
JC e R, xg € X:
m¥(BY(xy)) < C " (Vr > 0) (3.6)

provided the function f(r) := [J e~1)ds satisfies
(i) liminf, o £ f(r) > 0 and
(it) limsup,_,, 5p(f~(r)) < oc.

In particular, if q is bounded and lim, s % < 00, then (X,d™, m™) satisfies the

squared exponential volume growth condition.

16



Proof. From Lemma 3.5, we know

d(zo,y)

0" (20, y) > / exp ( — q(r) dr = f(d(z0,))

for any y € X. Since f~! is strictly increasing, this implies
Bg(l’o) C Bf—l(R)<SL’0), vV R>0.

Hence,

m" (B (o)) < exp (2p(f~(R)))m(Bf-1(r)(0)).
Recall that the RCD(K, 00) condition implies the squared exponential volume growth
condition, so there exists M, c > 0 such that

m” (Bj(z0) < Mexp (2p(f ' (R)) +c(/ 7 (R))*).

Note that (i) implies limsup,_ ., =/ '(r) < oco. Hence, together with (ii), this
implies the squared exponential volume growth condition for (X,d“, m"). U

3.2 Convexity transform

Firstly we introduce the notion of local /-convexity in non-smooth setting. Such
notion is derived from [15] by the second author and Lierl (see Definition 2.6 and
Definition 2.9 therein).

Definition 3.9 ({-convex functions, Definition 2.6 [15]). Given ¢ € R, we say that
a function V' is (-convex on a closed subset Z C X if there exists a convex open
covering U;X; O Z such that each V|, X; — (—00, +00] is f-geodesically convex,
in the sense that for each xg, 2, € X, there exists a geodesic « : [0,1] = X from
to 2y such that

V(y(t) < (1 =)V (7(0)) +tV((1)) - gt(l —t)5l*, vte[o1].

Definition 3.10 (Locally ¢-convex sets, Definition 2.9 [15]). Let Q@ C X be an
open subset and let V' := d(.,Q) — d(., X \ ) denote the signed distance from the
boundary, in the sequel also briefly denoted by 4d(., 9f2).

We say that €2 is locally ¢-convex if for each 0 > 0 there exists » > 0 such that
V' is (£ — 0)-convex on Q" with [DV| >1—¢ where Q" :={—r <V <r}.

Remark 3.11. Assume that X is a smooth Riemannian manifold, and 2 is a bounded
open subset of X with smooth boundary. It is proved in Proposition 2.10 [15], that
the real-valued second fundamental form on 02 is bounded from below by ¢ if and
only if € is locally ¢-convex.

Then we can convexify locally ¢-convex sets using time change and the following
convexification technique developed in [15] (see Theorem 2.17 therein).

Lemma 3.12 (Convexification Theorem). Let Q2 be a locally (-convex subset in X
for some £ < 0. Then  is locally geodesically convex in (X,d=*V) for any €' < ¢.
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Next we recall some important results concerning L'-optimal transport and mea-
sure decomposition. This theory has proven to be a powerful tool in studying the
fine structure of metric measure spaces. We refer the readers to the lecture note [6]
for an overview of this topic and the bibliography.

Lemma 3.13 (Localization for RCD(K, N) spaces, Theorem 3.8 and Theorem
5.1 [7])). Let (X,d, m) be an essentially non-branching metric measure space with
suppm = X, and satisfying RCD(K, N) condition for some K € R and N € (1,00).
Then for any 1-Lipschitz function u on X and the transport set T, associated with u
(up to m-measure zero set, T, coincides with {|Vu|=1}), there is a disjoint family
of unparameterized geodesics {X,}qseq such that

m(T, \UX,) =0, (3.7)

and
. :/qudq(q), G(9Q) =1 and my(X,) =1 q—ae gcQ.  (3.8)
Furthermore, for q-a.e. q € Q, m, is a Radon measure with m, < le|Xq and

(X,,d, m,) satisfies RCD(K, N). In particular, m, = h,JH"
probability density hy.

for some CD(K, N)

|x,

Lemma 3.14. Let Y be a domain in X with m(9Y) = 0, and V = d(.,Y) —
d(., X \Y) be the signed distance from the boundary. Then the transport set Ty
associated with V' has full measure in X. There is a disjoint family of unparameter-
ized geodesics {X,}qeq satisfying (3.7) and (3.8) in Theorem 3.13, and a constant
ro > 0 such that

Viag) >0, V(b)<—-r9 q—ae qeQ
where a, = a,(X,), b, = by,(X,) are the end points of X,,.

Proof. Firstly, recall that RCD(K, N) condition yields local compactness, so for any
x € X\ 9Y, there is z € JY such that d(z,z) = d(z,0Y) and thus = € Ty. So
m(X\Ty)=0.

Secondly, by Definition 3.10, V' is semi-convex on Y9 for some ro > 0. By the
main theorem of [22], for each o € Y'Y there exists a unique gradient flow for V/
starting in xy. In particular, there is a maximal transport (geodesic) line 7 C Ty
satisfying V(1) — V() = d(70,m), V(1) = V(zo) and V(7o) < —ro.

By Theorem 3.13 there is a disjoint family of unparameterized geodesics { X, }4eq
such that m(Ty \UX,) = 0. In addition, X,N{V < —r¢} # 0 and X,Nn{V >0} # 0
for any ¢ € Q. Therefore m(X \ UX,) =0, V(a,) > 0 and V (b,) < —ro. O

Proposition 3.15 (Convexification). Let 2 be a locally (-convex domain in (X, d)
for some £ < 0, and m(02) = 0. Then for any ¢' < {, there exist ro > 0 and
a Lipschitz function w such that € is locally geodesically convexr in (X,d™) and

w e D(A, X\ 09) with
2
Awy <~ cotien(ro/1) + %)m‘x\aﬂ.
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where the function cotk n : [0,400) > [0, +00) is defined by

N-1
cot n(z) =< (N —1)/x, if K=0,

V—K(N —1)coth(y/ %), if K <O0.

Proof. Let V := +£d(-,9Y") be the signed distance from the boundary and ry > 0 be
the constant in Proposition 3.14. Given ¢/ < ¢ < 0, we can find a smooth cut-off
function ¢ : R — [0, 1| satisfying

K(N —1)cot(y/E=x), if K >0,

t, if te [iﬁ’ro, —iﬁ’ro]
P(t) ;=< —3lrg, if t € [=3lry,+o0)
%Elro, if te (—OO, %Elro]

with 0 < ¢’ <1, |¢"| < —Z,QTO on R. Then we define w := ¢(—¢'V'). By Convexifica-

tion Theorem (c.f. Theorem 2.17 [15]) we know (2 is locally geodesically convex in
(X,d™).

By chain rule (c.f. Proposition 4.11 [11]) and Corollary 4.16 [8] we have w €
D(A, X \ 09), and

Aw|y o = L (OV)AV | o0+ ()" (=LV) DV (3.9)

M x\00°

In addition, by Corollary 4.16 [8] and the fact ¢" < —2-, we obtain

{rg?

Aw| g g0

2

/

) ) 2/
< —/ gb/(_g V)(COtK7N(d($’, bq))m|X\aQ + /D hq(sbq dCI(C])) — T‘_O m|X\aQ.

Furthermore, we know ¢/(—¢'V) = 0 on {V < —3r} U{V > 2ro}. So from
Proposition 3.14 we can see that

gb'(—E'V)/ hqds, = 0.
Q
Combining with the monotonicity of cotx y we obtain

2
/
Aw|X\aQ </ (cotK7N('r’0/4) + r_0>m|X\‘99
which is the thesis. ]

Combining Lemma 3.7 and Proposition 3.15 we can prove the main theorem of
this section. Recall that the Minkowski content of a set Z C X is defined by

m"(Z) := liminf m(Z) —m(Z2)

e—0 €

where Z¢ C X is the e-neighbourhood of Z defined by Z¢ := {z : d(z, Z) < €}.
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Theorem 3.16. Let (X,d,m) be a RCD(K, N) space and ) be a bounded (-convex
domain in (X,d) with m(0Q2) =0 and m*(0Q) < co. Then for any N' € (N, +o0],
there exists a Lipschitz function w such that (Q,d”, m®) is a RCD(K’, N') space for
some K' € R.

Proof. Let w be the reference function obtained in Proposition 3.15. Denote by u
the trivial extension of Aw| x\90 O1 whole X. To apply Lemma 3.7 and Proposition

3.15, it suffices to show that w € D(A) and Aw < p.

Given an arbitrary non-negative Lipschitz function ¢ € Lip(X,d) with bounded
support. For any € > 0, there exists a Lipschitz function ¢, € Lip(R) satisfying

Oe(t) =

oo O
—~
~+
I

Define ¢, := ¢.(d(-,00))p. By Leibniz rule and chain rule we know ¢, € Lip(X,d),
and supp @. C X \0f). Therefore by Lemma 3.15 and monotone convergence theorem
we get

e—0

/(pd,u = lim @EdAw|X\aQ

= —lim [(pe, w)dm

- iy / 9c(d(- I (. w) dm — limy / ST (6.(d(-, 09), ) dm

_ —/T(ap,w) dm—g%/gpr(qse(d(-,aﬂ)),w) dm.

By Lemma 3.13 we have a measure decomposition dm = dm, dq(q) associated
with the signed distance function +d(-, 92). Thus

ity / ST (6:(d(-, 00), ) dm

€— 0 ¢ 2 €—
—e€ €/2

20
= lim — / pdm — pdm
e—0 € Q:Z/Q 0

€/2

20
= lim—/(/ goqu—/
e—0 € Ie) Q:Z/2qu QE

Notice that

© qu> dq(q).
2NXq

o0)¢
m*(0Q) = lim inf m{(%)

1
gzliminf—(/ 1dm+/ 1dm).
e—0 € e—0 € Qge QB
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Therefore we obtain

frood

< |[eau] + g [ orio.tat, o), w am

2|0
< max || {m|(supp<p)+lim 7] </ 1dm+/ 1dm>}
e—0 € Q(le 0);

< max || {|ul(supp ) — 20m* (90)} .

By Riesz-Markov-Kakutani Representation theorem we know w € D(A).
Since m, = hqu1| . for some CD(K, N) probability density h,, we know h, and

(Inh,)" are bounded. So for any X, such that 0N Xy # 0 and Qf , N X, # 0 for
e small enough, we have

/ pdm, — / pdm,
—€/2 €
Q-“*nx, QF,,NXq

. 3e .
< Llp(gohq)gﬂ-Cl(SLE N X,) = 0(e).

Hence by Lemma 3.14 and Fatou’s lemma, we obtain

.1
lim — ( pdm, —
0€ Ja Nazd nx, o

1
lim = ( / ) pdm, — / wqu) dq(q)
=0 € Joenlonx,£0 ~Ja~/?nx, Qc,.NX,

€/2
> 0.

@ qu> dq(q)

5NXq

v

In conclusion, we obtain

/(pdAw:—/F(go,w)dm
20
= /cpd,qulim—/ (/ goqu—/
=0 e Jag Naz/nx, Qe

Therefore Aw < 1, by Lemma 3.15 we know Ay, w < 0 and (Aacw)Jr € L. Then
by Proposition 3.7 we know (€,d”, m®) is a RCD(K’, N') space. O

. soqu> dq(q) < /sodu-
j2N%a
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