Anomalous shock fluctuations in the asymmetric exclusion process

Peter Nejjar with Patrik Ferrari

Bonn University Institute for Applied Mathematics

GPDS, Ulm 2014

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Microscopic shock

Generic Last Passage Percolation (LPP)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Transversal Fluctuations in LPP

Other Geometries

Outline

Introduction

Microscopic shock

Generic Last Passage Percolation (LPP)

Transversal Fluctuations in LPP

Other Geometries

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

- Dynamics: particles on Z perform independent jumps to the right subject to the exclusion constraint
- ► We will also consider particle-dependent jump rates
- continous-time Markov process with state space $\{0,1\}^{\mathbb{Z}}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Dynamics: particles on Z perform independent jumps to the right subject to the exclusion constraint
- We will also consider particle-dependent jump rates
- continous-time Markov process with state space $\{0,1\}^{\mathbb{Z}}$

We can number particles from right to left

$$\ldots < x_3(0) < x_2(0) < x_1(0) < 0 \le x_0(0) < x_{-1}(0) < \ldots$$

$$\ldots < x_3(t) < x_2(t) < x_1(t) < x_0(t) < x_{-1}(t) < \ldots$$

Shocks

Discontinuities of the particle density are called shocks

- Initial condition: $Ber(\rho)$ on \mathbb{N} and $Ber(\lambda)$ on \mathbb{Z}_- .
- one can identify the shock with the position Z_t of a second-class particle initially at 0 :

$$\lim_{t\to\infty}\frac{Z_t-\nu t}{t^{1/2}}\to \mathcal{N}(0,1), \ \nu=1-\lambda-\rho \ \text{[see Lig'99]}$$

Question: What are the shock fluctuations for **non-random initial configuration (IC)**?

Two Speed TASEP with periodic IC

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Heuristics from macroscopic continuity equation

The last slow particle is macroscopically at position (1 − ρ)αt = ^α/₂t.

 Behind it is a jam region A of increased density

$$\rho = \mathbf{1} - \alpha/\mathbf{2}.$$

• The particle ηt , with $\eta = \frac{2-\alpha}{4}$ is at the macro shock position.

Inside the constant density regions, $\eta' \neq \eta$, the fluctuations of $x_{\eta't}$ are governed by the F_1 GOE Tracy-Widom distribution from random matrix theory and live in the $t^{1/3}$ scale.

Goal: Determine the large time fluctuations of the (rescaled) particle position $x_{n(t)}$ around the shock:

$$\lim_{t\to\infty}\mathbb{P}\left(\frac{x_{n(t)}-vt}{t^{1/3}}\leq s\right)=?$$

where $vt = \frac{-1+\alpha}{2}t$ is the macroscopic position of $x_{n(t)}$.

For arbitrary fixed IC, the law of $x_{n(t)}$ is given as a Fredholm determinant of a kernel K_t [Borodin-Ferrari'08],

$$\lim_{t\to\infty} \mathbb{P}\left(\frac{x_{n(t)} - vt}{t^{1/3}} \le s\right) = \lim_{t\to\infty} \det(1 - \chi_s K_t \chi_s), \quad (1)$$

The series expansion of det $(1 - \chi_s K_t \chi_s)$ is

$$\det(1-\chi_{s}K_{t}\chi_{s})=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n!}\int_{s}^{\infty}\mathrm{d}s_{n}\cdots\int_{s}^{\infty}\mathrm{d}s_{1}\det\left(K_{t}(s_{i},s_{j})_{1\leq i,j\leq n}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Possible ways to circumvent this problem:

Find a kernel K
t so that det(1 − χ_sK_tχ_s) = det(1 − χ_sK
t χ_s) and K
t no longer diverges

Possible ways to circumvent this problem:

Find a kernel K
_t so that det(1 − χ_sK_tχ_s) = det(1 − χ_sK_tχ_s) and K
_t no longer diverges This was done in [BFS '09], but referred to as a 'wonder' by its finder, does not seem to be systematically feasable

Possible ways to circumvent this problem:

- Find a kernel K
 _t so that det(1 − χ_sK_tχ_s) = det(1 − χ_sK_tχ_s) and K
 _t no longer diverges This was done in [BFS '09], but referred to as a 'wonder' by its finder, does not seem to be systematically feasable
- consider a microscopic shock first, and then recover the macroscopic situation

Possible ways to circumvent this problem:

- Find a kernel K
 _t so that det(1 − χ_sK_tχ_s) = det(1 − χ_sK_tχ_s) and K
 _t no longer diverges This was done in [BFS '09], but referred to as a 'wonder' by its finder, does not seem to be systematically feasable
- consider a microscopic shock first, and then recover the macroscopic situation
 Again divergence at the micro-macro transition, but useful for conjectures via numerics

Possible ways to circumvent this problem:

- Find a kernel K
 _t so that det(1 − χ_sK_tχ_s) = det(1 − χ_sK_tχ_s) and K
 _t no longer diverges This was done in [BFS '09], but referred to as a 'wonder' by its finder, does not seem to be systematically feasable
- consider a microscopic shock first, and then recover the macroscopic situation
 Again divergence at the micro-macro transition, but useful for conjectures via numerics

We will actually translate TASEP into a different and more generic model, and determine the limit there.

Outline

Introduction

Microscopic shock

Generic Last Passage Percolation (LPP)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Transversal Fluctuations in LPP

Other Geometries

Microscopic shock analysis

We choose α = 1 − a/(2^{4/3}t^{1/3}), a > 0. For this α, lim_{t→} K_t (modulo some prefactors) exists and is denoted by K_a

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► K_a is explicitly given in terms of the Airy-function Ai
- As $a \to +\infty$, K_a is again diverging.

Microscopic shock analysis

- We choose α = 1 − a/(2^{4/3}t^{1/3}), a > 0. For this α, lim_{t→} K_t (modulo some prefactors) exists and is denoted by K_a
- K_a is explicitly given in terms of the Airy-function Ai
- As a → +∞, K_a is again diverging.
 However, we may numerically ([Bor '10]) compute

$$G_a(s) = \det(1 - \chi_s K_a \chi_s)$$

for *a* getting larger so as to recover the macroscopic shock distribution

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Microscopic shock analysis

- We choose α = 1 − a/(2^{4/3}t^{1/3}), a > 0. For this α, lim_{t→} K_t (modulo some prefactors) exists and is denoted by K_a
- K_a is explicitly given in terms of the Airy-function Ai
- As a → +∞, K_a is again diverging.
 However, we may numerically ([Bor '10]) compute

$$G_a(s) = \det(1 - \chi_s K_a \chi_s)$$

for *a* getting larger so as to recover the macroscopic shock distribution

Numerical limitations:

 $G_3(s) = NaN$ and $G_{2.1}(-3) = -5.25 \times 10^{25}$.

The red line is $F_1(2s)$ for s = -2, -1.9, ..., 2The blue lines are $G_a(s)$ for a = 0, 0.05, 0.1, ..., 2.05

The red line is $F_1(2s)$ for $s = -2, -1.9, \ldots, 2$ The blue lines are $G_a(s)$ for $a = 0, 0.05, 0.1, \ldots, 2.05$ For a = 2.05 the fit with $F_1(2s)^2$ is very good

Basic statistics of Ga

Expectation, Variance, Skewness, Kurtosis of G_a (dashed) and $F_1^2(2s)$. for $a = 0, 0.05, 0.1, \dots, 2.05$

Product structure for Two-Speed TASEP

Theorem (At the F_1 – F_1 shock, Ferrari, Nej. '13) Let $x_n(0) = -2n$ for $n \in \mathbb{Z}$. For $\alpha < 1$ let $\eta = \frac{2-\alpha}{4}$ and $v = -\frac{1-\alpha}{2}$. Then it holds

$$\lim_{t\to\infty} \mathbb{P}\left(\frac{x_{\eta t+\xi t^{1/3}}(t)-\nu t}{t^{1/3}}\leq s\right)=F_1\left(\frac{s-2\xi}{\sigma_1}\right)F_1\left(\frac{s-\frac{2\xi}{2-\alpha}}{\sigma_2}\right),$$

(日) (日) (日) (日) (日) (日) (日)

where F_1 is the GOE Tracy-Widom distribution, $\sigma_1 = \frac{1}{2}$ and $\sigma_2 = \frac{\alpha^{1/3}(2-2\alpha+\alpha^2)^{1/3}}{2(2-\alpha)^{2/3}}$.

Product structure for Two-Speed TASEP

Theorem (At the F_1 – F_1 shock, Ferrari, Nej. '13) Let $x_n(0) = -2n$ for $n \in \mathbb{Z}$. For $\alpha < 1$ let $\eta = \frac{2-\alpha}{4}$ and $v = -\frac{1-\alpha}{2}$. Then it holds

$$\lim_{t\to\infty} \mathbb{P}\left(\frac{x_{\eta t+\xi t^{1/3}}(t)-vt}{t^{1/3}}\leq s\right)=F_1\left(\frac{s-2\xi}{\sigma_1}\right)F_1\left(\frac{s-\frac{2\xi}{2-\alpha}}{\sigma_2}\right),$$

where
$$F_1$$
 is the GOE Tracy-Widom distribution,
 $\sigma_1 = \frac{1}{2}$ and $\sigma_2 = \frac{\alpha^{1/3}(2-2\alpha+\alpha^2)^{1/3}}{2(2-\alpha)^{2/3}}$.

One recovers GOE by changing $s \to s + 2\xi$ and $\xi \to +\infty$, resp. by $s \to s + 2\xi/(2 - \alpha)$ and $\xi \to -\infty$

Outline

Introduction

Microscopic shock

Generic Last Passage Percolation (LPP)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Transversal Fluctuations in LPP

Other Geometries

Last Passage Percolation (LPP)

Ansatz: Reformulate the problem in terms of a **generic LPP model:** Let $(\omega_{i,j})_{(i,j)\in\mathbb{Z}^2}$ be independent random variables, $\mathcal{L} \subseteq \mathbb{Z}^2$ and π be an up-right path from \mathcal{L} to (m, n). Then $\mathcal{L}_{\mathcal{L}\to(m,n)}$ is the maximal percolation time

$$L_{\mathcal{L}\to(m,n)} := \max_{\pi:\mathcal{L}\to(m,n)} \sum_{(i,j)\in\pi} \omega_{i,j} = \sum_{(i,j)\in\pi^{\max}} \omega_{i,j}$$

TASEP with IC $(x_k(0))_{k \in \mathbb{Z}}$. Setting

ω_{i,j} to be the time particle *j* needs to jump from site *i* − *j* − 1 to *i* − *j*, *L* = {(*k*, *u*)|*u* = *k* + *x_k*(0), *k* ∈ ℤ},

it holds

$$\mathbb{P}\left(L_{\mathcal{L}\to(m,n)}\leq t\right)=\mathbb{P}\left(x_n(t)\geq m-n\right).$$

Example: Two-Speed TASEP as LPP

- $\mathcal{L} = \{(u, -u) : u \in \mathbb{Z}\} = \mathcal{L}^+ \cup \mathcal{L}^-$
- $\omega_{i,j} \sim \exp(1)$ in white region, $\exp(\alpha)$ in green.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

▶ write $\mathcal{L} = \mathcal{L}^+ \cup \mathcal{L}^-$, with $\mathcal{L}^+ \subseteq \{(x, y) : x \le 0, y \ge 0\}$, and $\mathcal{L}^- \subseteq \{(x, y) : x \ge 0, y \le 0\}$,

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• write $\mathcal{L} = \mathcal{L}^+ \cup \mathcal{L}^-$, with $\mathcal{L}^+ \subseteq \{(x, y) : x \le 0, y \ge 0\}$, and $\mathcal{L}^- \subseteq \{(x, y) : x \ge 0, y \le 0\}$,

(日) (日) (日) (日) (日) (日) (日)

► make assumptions that guarantee asymptotic independence of L_{L⁺→(m,n)} and L_{L⁻→(m,n)}

- write $\mathcal{L} = \mathcal{L}^+ \cup \mathcal{L}^-$, with $\mathcal{L}^+ \subseteq \{(x, y) : x \le 0, y \ge 0\}$, and $\mathcal{L}^- \subseteq \{(x, y) : x \ge 0, y \le 0\}$,
- ► make assumptions that guarantee asymptotic independence of L_{L⁺→(m,n)} and L_{L⁻→(m,n)}
- since L_{L→(m,n)} = max{L_{L⁺→(m,n)}, L_{L⁻→(m,n)}}, this will result in a product structure

- write $\mathcal{L} = \mathcal{L}^+ \cup \mathcal{L}^-$, with $\mathcal{L}^+ \subseteq \{(x, y) : x \le 0, y \ge 0\}$, and $\mathcal{L}^- \subseteq \{(x, y) : x \ge 0, y \le 0\}$,
- ► make assumptions that guarantee asymptotic independence of L_{L⁺→(m,n)} and L_{L⁻→(m,n)}
- since L_{L→(m,n)} = max{L_{L⁺→(m,n)}, L_{L⁻→(m,n)}}, this will result in a product structure

Remarks:

- asymptotic independence is equivalent to asymptotic non-intersection of the maximizing paths
- ▶ we will show that π_{-}^{\max} of $L_{\mathcal{L}_{-} \to (m,n)}$ and π_{+}^{\max} of $L_{\mathcal{L}_{+} \to (m^{+}, n^{+})}$ intersect with vanishing probability

Generic Theorem

Assume that there exists some μ such that

$$\begin{split} \lim_{t\to\infty} \mathbb{P}\left(\frac{L_{\mathcal{L}^+\to(\eta_0 t,t)}-\mu t}{t^{1/3}}\leq s\right) &= G_1(s),\\ \lim_{t\to\infty} \mathbb{P}\left(\frac{L_{\mathcal{L}^-\to(\eta_0 t,t)}-\mu t}{t^{1/3}}\leq s\right) &= G_2(s). \end{split}$$

Theorem (Ferrari, Nej. '13) Under some assumptions we have

$$\lim_{t\to\infty}\mathbb{P}\left(\frac{L_{\mathcal{L}\to(\eta_0 t,t)}-\mu t}{t^{1/3}}\leq s\right)=G_1(s)G_2(s),$$

where $\mathcal{L} = \mathcal{L}^+ \cup \mathcal{L}^-$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

...• $(\eta_0 t, t)$ I. Assume that we have a point $E^+ = (\eta_0 t - \kappa t^{\nu}, t - t^{\nu})$ such that for some μ_0 , and $\nu \in (1/3, 1)$ it holds

$$\frac{L_{\mathcal{L}^+ \to E_+} - \mu t + \mu_0 t^{\nu}}{t^{1/3}} \to G_1$$
$$\frac{L_{E^+ \to (\eta_0 t, t)} - \mu_0 t^{\nu}}{t^{\nu/3}} \to G_0,$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

I. Slow Decorrelation

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへで

I. Slow Decorrelation

II. Assume there is a point *D* on $(\overline{(0,0)}(\eta_0 t, t))$ and to the right of E_+ such that π_+^{max} and π_-^{max} cross $(\overline{(0,0)D})$ with vanishing probability.

・ ロ ト ・ 雪 ト ・ 目 ト ・

I. Slow Decorrelation

II. Assume there is a point *D* on $(\overline{(0,0)}(\eta_0 t, t))$ and to the right of E_+ such that π_+^{max} and π_-^{max} cross $(\overline{(0,0)D})$ with vanishing probability.

・ロット (雪) ・ (日) ・ (日)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Some remarks:

- (I.) is related to the universal phenomenon known as slow decorrelation [CFP '12]
- ► (II.) follows if we have that the 'characteristic lines' of the two LPP problems meet at (η₀t, t), together with the transversal fluctuations which are only O(t^{2/3}) [Johansson'00]

Slow decorrelation for Two-Speed TASEP

- ► E⁺ lies on Z⁺E, where Z⁺ is the orthogonal projection of E on L⁺.
- ► Z^+ satisfies $\mu_{Z^+ \to E} = \mu_{\mathcal{L}^+ \to E} = \frac{4}{2-\alpha}$ where $\mu_{Z^+ \to E}$ is s.t. $\frac{L_{Z^+ \to E} \mu_{Z^+ \to E}t}{t^{1/3}}$ has non-trivial limit (leading order term).

Outline

Introduction

Microscopic shock

Generic Last Passage Percolation (LPP)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Transversal Fluctuations in LPP

Other Geometries

Consider a Poisson Point Process on \mathbb{R}^2_+ with intensity one. The length $\ell(\pi)$ of a path π is the number of Poisson Points on it.

$$egin{aligned} \mathcal{L}_{(0,0)
ightarrow(t,t)} &= \max_{\pi:(0,0)
ightarrow(t,t)\ ext{north-east}} \ell(\pi) \ &= \ell(\pi^{ ext{max}}) \end{aligned}$$

Consider a Poisson Point Process on \mathbb{R}^2_+ with intensity one. The length $\ell(\pi)$ of a path π is the number of Poisson Points on it.

$$\begin{split} L_{(0,0) \to (t,t)} &= \max_{\substack{\pi: (0,0) \to (t,t) \\ \text{north-east}}} \ell(\pi) \\ &= \ell(\pi^{\max}) \end{split}$$

Theorem (Johansson '00) For $A_t^{\gamma} = \{(x, y) \in [0, t]^2 : -\sqrt{2}t^{\gamma} \le -x + y \le \sqrt{2}t^{\gamma}\}$ we have for any $\gamma > 2/3$ $\lim_{t \to \infty} \mathbb{P}(\pi^{\max} \subseteq A_t^{\gamma}) = 1.$

Transversal Fluctuations

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Transversal Fluctuations

▲□▶▲圖▶★필▶★필▶ 重 の�?

Transversal Fluctuations

Let $\mu_{\mathcal{L}^+ \to E^+}, \mu_{\mathcal{L}^+ \to D_{\gamma}}$ and $\mu_{D_{\gamma} \to E^+}$, be the leading order terms of $L_{\mathcal{L}^+ \to E^+}, L_{\mathcal{L}^+ \to D_{\gamma}}$ and $L_{D_{\gamma} \to E^+}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

- ► I. $\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \leq C \exp(-ct^{\beta-1/3})$ $(t > t_0)$ This result is based on translating the $L_{\mathcal{L}^+ \to E^+}$ LPP into TASEP, and the decay of the corresponding kernel *K*
- II. We have

$$\frac{(\mu_{\mathcal{L}^+ \to \mathcal{D}_{\gamma}} + \mu_{\mathcal{D}_{\gamma} \to \mathcal{E}^+} + \varepsilon - \mu_{\mathcal{L}^+ \to \mathcal{E}^+})t}{t^{1/3}} \leq -Ct^{\beta - 1/3}$$

(ロ) (同) (三) (三) (三) (○) (○)

- ► I. $\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \leq C \exp(-ct^{\beta-1/3})$ $(t > t_0)$ This result is based on translating the $L_{\mathcal{L}^+ \to E^+}$ LPP into TASEP, and the decay of the corresponding kernel *K*
- II. We have

$$\frac{(\mu_{\mathcal{L}^+ \to D_{\gamma}} + \mu_{D_{\gamma} \to E^+} + \varepsilon - \mu_{\mathcal{L}^+ \to E^+})t}{t^{1/3}} \leq -Ct^{\beta - 1/3}$$

$$\mathbb{P}(I_{D_{\gamma}}) \leq \mathbb{P}\left(I_{D_{\gamma}} \cap (\bigcap E_{D_{\gamma}}^{c})\right) + \mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right)$$
$$\leq \mathbb{P}(L_{\mathcal{L}^{+} \to E^{+}} \leq \mu_{\mathcal{L}^{+} \to E^{+}} t - Ct^{\beta}) + C\exp(-ct^{\beta - 1/3})$$

- ► I. $\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \leq C \exp(-ct^{\beta-1/3})$ $(t > t_0)$ This result is based on translating the $L_{\mathcal{L}^+ \to E^+}$ LPP into TASEP, and the decay of the corresponding kernel *K*
- II. We have

$$\frac{(\mu_{\mathcal{L}^+ \to D_{\gamma}} + \mu_{D_{\gamma} \to E^+} + \varepsilon - \mu_{\mathcal{L}^+ \to E^+})t}{t^{1/3}} \leq -Ct^{\beta - 1/3}$$

$$\begin{split} \mathbb{P}(I_{D_{\gamma}}) &\leq \mathbb{P}\left(I_{D_{\gamma}} \cap (\bigcap E_{D_{\gamma}}^{c})\right) + \mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \\ &\leq \mathbb{P}(L_{\mathcal{L}^{+} \to E^{+}} \leq \mu_{\mathcal{L}^{+} \to E^{+}} t - Ct^{\beta}) + C\exp(-ct^{\beta - 1/3}) \\ &\leq \mathbb{P}(L_{Z^{+} \to E^{+}} \leq \mu_{\mathcal{L}^{+} \to E^{+}} t - Ct^{\beta}) + C\exp(-ct^{\beta - 1/3}) \end{split}$$

- ► I. $\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \leq C \exp(-ct^{\beta-1/3})$ $(t > t_0)$ This result is based on translating the $L_{\mathcal{L}^+ \to E^+}$ LPP into TASEP, and the decay of the corresponding kernel *K*
- II. We have

$$\frac{(\mu_{\mathcal{L}^+ \to D_{\gamma}} + \mu_{D_{\gamma} \to E^+} + \varepsilon - \mu_{\mathcal{L}^+ \to E^+})t}{t^{1/3}} \leq -Ct^{\beta - 1/3}$$

$$\begin{split} \mathbb{P}(I_{D_{\gamma}}) &\leq \mathbb{P}\left(I_{D_{\gamma}} \cap (\bigcap E_{D_{\gamma}}^{c})\right) + \mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \\ &\leq \mathbb{P}(L_{\mathcal{L}^{+} \to E^{+}} \leq \mu_{\mathcal{L}^{+} \to E^{+}} t - Ct^{\beta}) + C\exp(-ct^{\beta - 1/3}) \\ &\leq \mathbb{P}(L_{Z^{+} \to E^{+}} \leq \mu_{\mathcal{L}^{+} \to E^{+}} t - Ct^{\beta}) + C\exp(-ct^{\beta - 1/3}) \\ &\leq \tilde{C}\exp(-\tilde{c}t^{\beta - 1/3}) \end{split}$$

- ► I. $\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \leq C \exp(-ct^{\beta-1/3})$ $(t > t_0)$ This result is based on translating the $L_{\mathcal{L}^+ \to E^+}$ LPP into TASEP, and the decay of the corresponding kernel *K*
- II. We have

$$\frac{(\mu_{\mathcal{L}^+ \to D_{\gamma}} + \mu_{D_{\gamma} \to E^+} + \varepsilon - \mu_{\mathcal{L}^+ \to E^+})t}{t^{1/3}} \leq -Ct^{\beta - 1/3}$$

$$\begin{split} \mathbb{P}(I_{D_{\gamma}}) &\leq \mathbb{P}\left(I_{D_{\gamma}} \cap (\bigcap E_{D_{\gamma}}^{c})\right) + \mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \\ &\leq \mathbb{P}(L_{\mathcal{L}^{+} \to E^{+}} \leq \mu_{\mathcal{L}^{+} \to E^{+}}t - Ct^{\beta}) + C\exp(-ct^{\beta - 1/3}) \\ &\leq \mathbb{P}(L_{Z^{+} \to E^{+}} \leq \mu_{\mathcal{L}^{+} \to E^{+}}t - Ct^{\beta}) + C\exp(-ct^{\beta - 1/3}) \\ &\leq \tilde{C}\exp(-\tilde{c}t^{\beta - 1/3}) \end{split}$$

This implies $\mathbb{P}(\bigcup_{\gamma} I_{D_{\gamma}}) \leq t\tilde{C} \exp(-\tilde{c}t^{\beta_0-1/3}) \to 0$, since only $\mathcal{O}(t)$ many points D_{γ} .

Outline

Introduction

Microscopic shock

Generic Last Passage Percolation (LPP)

Transversal Fluctuations in LPP

Other Geometries

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$vt-1$$
 0 1 2 3 \mathbb{Z}

Particles initially occupy $2\mathbb{N}_0 \cup \{-vt - 1, -vt - 2, ...\},\$ where $v = \frac{(1-\alpha)^2}{2(2-\alpha)}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\eta_0 = \frac{\alpha(3-2\alpha)}{2-\alpha}, \ \omega_{i,j} \sim \exp(1)$ in white region, $\exp(\alpha)$ in green. Theorem (At the F_2 – F_1 shock, Ferrari, Nej' 13) For $\alpha < 1$ let $\mu = 4$ and $v = -\frac{(1-\alpha)^2}{2(2-\alpha)}$. Let $x_n(0) = vt - n$ for $n \ge 1$ and $x_n(0) = -2n$ for $n \le 0$. Then it holds

$$\lim_{t\to\infty} \mathbb{P}\left(x_{t/\mu+\xi t^{1/3}}(t) \ge vt - st^{1/3}\right) = F_2\left(\frac{s-c_1\xi}{\sigma_1}\right) \times F_1\left(\frac{s-c_2\xi}{\sigma_2}\right),$$

with $c_1, c_2, \sigma_1, \sigma_2$ some constants depending on α . F_2 is the GUE Tracy-Widom distribution from random matrix theory.

Thanks for your attention!

References

[Lig '99] Thomas Liggett, Stochastic Interacting Systems, Springer, Grundlehren der mathematischen Wissenschaften 324 (1999), 226-244. [CFP '12] Ivan Corwin, Patrik Ferrari, Sandrine Péché, Universality of slow decorrelation, Ann. Inst. H. Poincaré B 48 (2012), 134-150[Johansson'00] K. Johansson, Transversal fluctuations for increasing subsequences on the plane, Probab. Theory Related Fields 116 (2000), 445-456. [Ferrari, Nej. '13] Patrik Ferrari, Peter Nejjar, Anomalous shock fluctuations in TASEP and last passage percolation models, arXiv:1306.3336 (2013), submitted

[Bor '10]
Folkmar Bornemann,
On the Numerical Evaluation of Fredholm determinants, Math.
Comp. 79, pp. 871-915 (2010).
[BFS '09]
A. Borodin, P.L. Ferrari, and T. Sasamoto, *Two speed TASEP*, J. Stat. Phys. 137 (2009), 936–977.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの