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Totally asymmetric simple exclusion process (TASEP)
v1 v1 v1 v2 v2

-4 -3 -2 -1 0 1 2 Z

I Dynamics: particles on Z perform independent jumps to
the right subject to the exclusion constraint

I We will also consider particle-dependent jump rates
I continous-time Markov process with state space {0,1}Z

We can number particles from right to left

. . . < x3(0) < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < . . .

. . . < x3(t) < x2(t) < x1(t) < x0(t) < x−1(t) < . . .
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Shocks
I Discontinuities of the particle density are called shocks

ρ
λ

ρ(x ,0) t = 0

x

ρ
λ

ρ(x , t) t � 0

(1− ρ− λ)t x

I Initial condition: Ber(ρ) on N and Ber(λ) on Z−.
I one can identify the shock with the position Zt of a

second-class particle initially at 0 :

lim
t→∞

Zt − vt
t1/2 → N (0,1), v = 1− λ− ρ [see Lig’99]



Question: What are the shock fluctuations for non-random
initial configuration (IC)?



Two Speed TASEP with periodic IC

v1 = 1 v2 = α < 1
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Heuristics from macroscopic continuity equation

1− α
2

1
2

ρ(x , t) t � 0

−1+α
2 t α

2 t xA

I The last slow particle is
macroscopically at position
(1− ρ)αt = α

2 t .
I Behind it is a jam region A

of increased density
ρ = 1− α/2.

I The particle ηt , with
η = 2−α

4 is at the macro
shock position.

Inside the constant density regions, η′ 6= η, the fluctuations of
xη′t are governed by the F1 GOE Tracy-Widom distribution from
random matrix theory and live in the t1/3 scale.



Goal: Determine the large time fluctuations of the
(rescaled) particle position xn(t) around the shock:

lim
t→∞

P
(

xn(t) − vt
t1/3 ≤ s

)
=?

where vt = −1+α
2 t is the macroscopic position of xn(t).

For arbitrary fixed IC, the law of xn(t) is given as a Fred-
holm determinant of a kernel Kt [Borodin-Ferrari’08],

lim
t→∞

P
(

xn(t) − vt
t1/3 ≤ s

)
= lim

t→∞
det(1− χsKtχs), (1)

The series expansion of det(1− χsKtχs) is

det(1−χsKtχs) =
∞∑

n=0

(−1)n

n!

∫ ∞
s

dsn · · ·
∫ ∞

s
ds1 det

(
Kt(si , sj)1≤i,j≤n

)



Problem: Kt is diverging for our example (but its Fred-
holm determinant will still converge), so one cannot ana-
lyze (1) directly.

Possible ways to circumvent this problem:
I find a kernel K̃t so that det(1− χsKtχs) = det(1− χsK̃tχs)

and K̃t no longer diverges
This was done in [BFS ’09], but referred to as a ’wonder’ by
its finder, does not seem to be systematically feasable

I consider a microscopic shock first, and then recover the
macroscopic situation
Again divergence at the micro-macro transition, but useful
for conjectures via numerics

We will actually translate TASEP into a different and more
generic model, and determine the limit there.
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Microscopic shock analysis

I We choose α = 1− a
24/3t1/3 ,a > 0. For this α, limt→ Kt

(modulo some prefactors) exists and is denoted by Ka

I Ka is explicitly given in terms of the Airy-function Ai
I As a→ +∞, Ka is again diverging.

However, we may numerically ([Bor ’10]) compute

Ga(s) = det(1− χsKaχs)

for a getting larger so as to recover the macroscopic shock
distribution
Numerical limitations:
G3(s) = NaN and G2.1(−3) = −5.25× 1025.
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For a = 2.05 the fit with F1(2s)2 is very good
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Basic statistics of Ga
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Product structure for Two-Speed TASEP

Theorem (At the F1–F1 shock, Ferrari, Nej. ’13)
Let xn(0) = −2n for n ∈ Z. For α < 1 let η = 2−α

4 and
v = −1−α

2 . Then it holds

lim
t→∞

P
(xηt+ξt1/3(t)− vt

t1/3 ≤ s
)

= F1

(
s − 2ξ
σ1

)
F1

(
s − 2ξ

2−α
σ2

)
,

where F1 is the GOE Tracy-Widom distribution,
σ1 = 1

2 and σ2 = α1/3(2−2α+α2)1/3

2(2−α)2/3 .

One recovers GOE by changing s → s + 2ξ and ξ → +∞, resp.
by s → s + 2ξ/(2− α) and ξ → −∞
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Last Passage Percolation (LPP)

Ansatz: Reformulate the problem in terms of a generic
LPP model: Let (ωi,j)(i,j)∈Z2 be independent random vari-
ables, L ⊆ Z2 and π be an up-right path from L to (m,n).
Then LL→(m,n) is the maximal percolation time

LL→(m,n) := max
π:L→(m,n)

∑
(i,j)∈π

ωi,j =
∑

(i,j)∈πmax

ωi,j

TASEP with IC (xk (0))k∈Z. Setting
I ωi,j to be the time particle j needs to jump from site

i − j − 1 to i − j ,
I L = {(k ,u)|u = k + xk (0), k ∈ Z},

it holds
P
(
LL→(m,n) ≤ t

)
= P (xn(t) ≥ m − n) .



Example: Two-Speed TASEP as LPP

L−

L+

Z
(η0t , t)

α

Z

I L = {(u,−u) : u ∈ Z} = L+ ∪ L−

I ωi,j ∼ exp(1) in white region, exp(α) in green.



Strategy

I write L = L+ ∪ L−, with L+ ⊆ {(x , y) : x ≤ 0, y ≥ 0}, and
L− ⊆ {(x , y) : x ≥ 0, y ≤ 0},

I make assumptions that guarantee asymptotic
independence of LL+→(m,n) and LL−→(m,n)

I since LL→(m,n) = max{LL+→(m,n),LL−→(m,n)}, this will
result in a product structure

Remarks:
I asymptotic independence is equivalent to asymptotic

non-intersection of the maximizing paths
I we will show that πmax

− of LL−→(m,n) and πmax
+ of

LL+→(m+,n+) intersect with vanishing probability
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Generic Theorem

L+

L−

Z (η0t , t)

Z

Assume that there exists some
µ such that

lim
t→∞

P
(

LL+→(η0t,t) − µt
t1/3 ≤ s

)
= G1(s),

lim
t→∞

P
(

LL−→(η0t,t) − µt
t1/3 ≤ s

)
= G2(s).

Theorem (Ferrari, Nej. ’13)
Under some assumptions we have

lim
t→∞

P
(

LL→(η0t ,t) − µt
t1/3 ≤ s

)
= G1(s)G2(s),

where L = L+ ∪ L−.



On the assumptions

L+

L−

Z

(η0t , t)

Z



On the assumptions

L+

L−

Z

(η0t , t)

Z

E+

I. Assume that we have a point
E+ = (η0t − κtν , t − tν) such that
for some µ0, and ν ∈ (1/3,1) it
holds

LL+→E+
− µt + µ0tν

t1/3 → G1

LE+→(η0t,t) − µ0tν

tν/3 → G0,



On the assumptions
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I. Slow Decorrelation
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D
II. Assume there is a point D on
(0,0)(η0t , t) and to the right of
E+ such that πmax

+ and πmax
− cross

(0,0)D with vanishing probability.

E+
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πmax
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−
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On the assumptions

L+

L−

Z

(η0t , t)

Z

E+

I. Slow Decorrelation

D
πmax
+ πmax

−

E+ II. No crossing



Some remarks:
I (I.) is related to the universal phenomenon known as slow

decorrelation [CFP ’12]
I (II.) follows if we have that the ’characteristic lines’ of the

two LPP problems meet at (η0t , t) , together with the
transversal fluctuations which are only O(t2/3)
[Johansson’00]



Slow decorrelation for Two-Speed TASEP

I E+ lies on Z+E , where Z+ is the orthogonal projection of
E on L+.

I Z+ satisfies µZ+→E = µL+→E = 4
2−α where µZ+→E is s.t.

LZ+→E −µZ+→E t
t1/3 has non-trivial limit (leading order term).

L+

Z
E = (η0t , t)

Z+

E+

Z
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tγ

R+

(t , t)
Consider a Poisson
Point Process on R2

+

with intensity one. The
length `(π) of a path π
is the number of Pois-
son Points on it.

L(0,0)→(t ,t) = max
π:(0,0)→(t,t)

north-east

`(π)

= `(πmax)

R+

Theorem (Johansson ’00)
For Aγt = {(x , y) ∈ [0, t ]2 : −

√
2tγ ≤ −x + y ≤

√
2tγ} we have

for any γ > 2/3
lim

t→∞
P(πmax ⊆ Aγt ) = 1.
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Transversal Fluctuations

Let µL+→E+ , µL+→Dγ and µDγ→E+ , be the leading order terms of
LL+→E+ ,LL+→Dγ and LDγ→E+ .

L+

Z
E = (η0t , t)

Z+

E+

Z

Dγ = (γη0t , γt)

γ ∈ [0,1− tβ−1], β ∈ (1/3,1]

ε = C1tβ−1

EDγ
= {LL+→Dγ

> (µL+→Dγ
+ ε/2)t}

∪ {LDγ→E+ > (µDγ→E+ + ε/2)t}
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I I. P
(⋃

γ EDγ

)
≤ C exp(−ctβ−1/3) (t > t0)

This result is based on translating the LL+→E+ LPP into
TASEP, and the decay of the corresponding kernel K

I II. We have

(µL+→Dγ + µDγ→E+ + ε− µL+→E+)t
t1/3 ≤ −Ctβ−1/3

Let IDγ = {Dγ ∈ πmax}. We can conclude

P(IDγ ) ≤ P
(

IDγ ∩ (
⋂

Ec
Dγ )
)
+ P

(⋃
γ

EDγ

)
≤ P(LL+→E+ ≤ µL+→E+ t − Ctβ) + C exp(−ctβ−1/3)

≤ P(LZ+→E+ ≤ µL+→E+ t − Ctβ) + C exp(−ctβ−1/3)

≤ C̃ exp(−c̃tβ−1/3)

This implies P(
⋃
γ IDγ ) ≤ tC̃ exp(−c̃tβ0−1/3)→ 0, since only

O(t) many points Dγ .
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This result is based on translating the LL+→E+ LPP into
TASEP, and the decay of the corresponding kernel K

I II. We have

(µL+→Dγ + µDγ→E+ + ε− µL+→E+)t
t1/3 ≤ −Ctβ−1/3

Let IDγ = {Dγ ∈ πmax}. We can conclude

P(IDγ ) ≤ P
(

IDγ ∩ (
⋂

Ec
Dγ )
)
+ P

(⋃
γ

EDγ

)
≤ P(LL+→E+ ≤ µL+→E+ t − Ctβ) + C exp(−ctβ−1/3)

≤ P(LZ+→E+ ≤ µL+→E+ t − Ctβ) + C exp(−ctβ−1/3)

≤ C̃ exp(−c̃tβ−1/3)

This implies P(
⋃
γ IDγ ) ≤ tC̃ exp(−c̃tβ0−1/3)→ 0, since only

O(t) many points Dγ .
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L−

L+

Z
(η0t , t)

α(−(η0 − 1)t ,0)

Z

η0 = α(3−2α)
2−α , ωi,j ∼ exp(1)

in white region, exp(α) in
green.

vt − 1 0 1 2 3 Z

Particles initially occupy
2N0 ∪ {−vt − 1,−vt − 2, . . .},
where v = (1−α)2

2(2−α) .



Theorem (At the F2–F1 shock, Ferrari, Nej’ 13)
For α < 1 let µ = 4 and v = − (1−α)2

2(2−α) . Let xn(0) = vt − n for
n ≥ 1 and xn(0) = −2n for n ≤ 0. Then it holds

lim
t→∞

P
(

xt/µ+ξt1/3(t) ≥ vt − st1/3
)
= F2

(
s − c1ξ

σ1

)
× F1

(
s − c2ξ

σ2

)
,

with c1, c2, σ1, σ2 some constants depending on α. F2 is the
GUE Tracy-Widom distribution from random matrix theory.



Thanks for your attention!
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