Anomalous shock fluctuations in the asymmetric exclusion process

Peter Nejjar with Patrik Ferrari

Bonn University
Institute for Applied Mathematics

GPDS, Ulm 2014

Outline

Introduction

Microscopic shock

Generic Last Passage Percolation (LPP)

Transversal Fluctuations in LPP

Other Geometries

Outline

Introduction

Microscopic shock

Generic Last Passage Percolation (LPP)

Transversal Fluctuations in LPP

Other Geometries

Totally asymmetric simple exclusion process (TASEP)

- Dynamics: particles on \mathbb{Z} perform independent jumps to the right subject to the exclusion constraint
- We will also consider particle-dependent jump rates
- continous-time Markov process with state space $\{0,1\}^{\mathbb{Z}}$

Totally asymmetric simple exclusion process (TASEP)

- Dynamics: particles on \mathbb{Z} perform independent jumps to the right subject to the exclusion constraint
- We will also consider particle-dependent jump rates
- continous-time Markov process with state space $\{0,1\}^{\mathbb{Z}}$

We can number particles from right to left

$$
\begin{gathered}
\ldots<x_{3}(0)<x_{2}(0)<x_{1}(0)<0 \leq x_{0}(0)<x_{-1}(0)<\ldots \\
\ldots<x_{3}(t)<x_{2}(t)<x_{1}(t)<x_{0}(t)<x_{-1}(t)<\ldots
\end{gathered}
$$

Shocks

- Discontinuities of the particle density are called shocks

- Initial condition: $\operatorname{Ber}(\rho)$ on \mathbb{N} and $\operatorname{Ber}(\lambda)$ on \mathbb{Z}_{-}.
- one can identify the shock with the position Z_{t} of a second-class particle initially at 0 :

$$
\lim _{t \rightarrow \infty} \frac{Z_{t}-v t}{t^{1 / 2}} \rightarrow \mathcal{N}(0,1), v=1-\lambda-\rho \text { [see Lig'99] }
$$

Question: What are the shock fluctuations for non-random initial configuration (IC)?

Two Speed TASEP with periodic IC

Heuristics from macroscopic continuity equation

- The last slow particle is macroscopically at position

$$
(1-\rho) \alpha t=\frac{\alpha}{2} t
$$

- Behind it is a jam region A of increased density $\rho=1-\alpha / 2$.
- The particle ηt, with $\eta=\frac{2-\alpha}{4}$ is at the macro shock position.

Inside the constant density regions, $\eta^{\prime} \neq \eta$, the fluctuations of $x_{\eta^{\prime} t}$ are governed by the F_{1} GOE Tracy-Widom distribution from random matrix theory and live in the $t^{1 / 3}$ scale.

Goal: Determine the large time fluctuations of the (rescaled) particle position $x_{n(t)}$ around the shock:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{x_{n(t)}-v t}{t^{1 / 3}} \leq s\right)=?
$$

where $v t=\frac{-1+\alpha}{2} t$ is the macroscopic position of $x_{n(t)}$.
For arbitrary fixed IC, the law of $x_{n(t)}$ is given as a Fredholm determinant of a kernel K_{t} [Borodin-Ferrari'08],

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{x_{n(t)}-v t}{t^{1 / 3}} \leq s\right)=\lim _{t \rightarrow \infty} \operatorname{det}\left(1-\chi_{s} K_{t} \chi_{s}\right), \tag{1}
\end{equation*}
$$

The series expansion of $\operatorname{det}\left(1-\chi_{s} K_{t} \chi_{s}\right)$ is
$\operatorname{det}\left(1-\chi_{s} K_{t} \chi_{s}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{s}^{\infty} \mathrm{d} s_{n} \cdots \int_{s}^{\infty} \mathrm{d} s_{1} \operatorname{det}\left(K_{t}\left(s_{i}, s_{j}\right)_{1 \leq i, j \leq n}\right)$

Problem: K_{t} is diverging for our example (but its Fredholm determinant will still converge), so one cannot analyze (1) directly.

Problem: K_{t} is diverging for our example (but its Fredholm determinant will still converge), so one cannot analyze (1) directly.

Possible ways to circumvent this problem:

- find a kernel \tilde{K}_{t} so that $\operatorname{det}\left(1-\chi_{s} K_{t} \chi_{s}\right)=\operatorname{det}\left(1-\chi_{s} \tilde{K}_{t} \chi_{s}\right)$ and \tilde{K}_{t} no longer diverges

Problem: K_{t} is diverging for our example (but its Fredholm determinant will still converge), so one cannot analyze (1) directly.

Possible ways to circumvent this problem:

- find a kernel \tilde{K}_{t} so that $\operatorname{det}\left(1-\chi_{s} K_{t} \chi_{s}\right)=\operatorname{det}\left(1-\chi_{s} \tilde{K}_{t} \chi_{s}\right)$ and \tilde{K}_{t} no longer diverges
This was done in [BFS '09], but referred to as a 'wonder' by its finder, does not seem to be systematically feasable

Problem: K_{t} is diverging for our example (but its Fredholm determinant will still converge), so one cannot analyze (1) directly.

Possible ways to circumvent this problem:

- find a kernel \tilde{K}_{t} so that $\operatorname{det}\left(1-\chi_{s} K_{t} \chi_{s}\right)=\operatorname{det}\left(1-\chi_{s} \tilde{K}_{t} \chi_{s}\right)$ and \tilde{K}_{t} no longer diverges
This was done in [BFS '09], but referred to as a 'wonder' by its finder, does not seem to be systematically feasable
- consider a microscopic shock first, and then recover the macroscopic situation

Problem: K_{t} is diverging for our example (but its Fredholm determinant will still converge), so one cannot analyze (1) directly.

Possible ways to circumvent this problem:

- find a kernel \tilde{K}_{t} so that $\operatorname{det}\left(1-\chi_{s} K_{t} \chi_{s}\right)=\operatorname{det}\left(1-\chi_{s} \tilde{K}_{t} \chi_{s}\right)$ and \tilde{K}_{t} no longer diverges
This was done in [BFS '09], but referred to as a 'wonder' by its finder, does not seem to be systematically feasable
- consider a microscopic shock first, and then recover the macroscopic situation
Again divergence at the micro-macro transition, but useful for conjectures via numerics

Problem: K_{t} is diverging for our example (but its Fredholm determinant will still converge), so one cannot analyze (1) directly.

Possible ways to circumvent this problem:

- find a kernel \tilde{K}_{t} so that $\operatorname{det}\left(1-\chi_{s} K_{t} \chi_{s}\right)=\operatorname{det}\left(1-\chi_{s} \tilde{K}_{t} \chi_{s}\right)$ and \tilde{K}_{t} no longer diverges
This was done in [BFS '09], but referred to as a 'wonder' by its finder, does not seem to be systematically feasable
- consider a microscopic shock first, and then recover the macroscopic situation
Again divergence at the micro-macro transition, but useful for conjectures via numerics
We will actually translate TASEP into a different and more generic model, and determine the limit there.

Outline

Introduction

Microscopic shock

Generic Last Passage Percolation (LPP)

Transversal Fluctuations in LPP

Other Geometries

Microscopic shock analysis

- We choose $\alpha=1-\frac{a}{2^{4 / 3} t^{1 / 3}}, a>0$. For this $\alpha, \lim _{t \rightarrow} K_{t}$ (modulo some prefactors) exists and is denoted by K_{a}
- K_{a} is explicitly given in terms of the Airy-function Ai
- As $a \rightarrow+\infty, K_{a}$ is again diverging.

Microscopic shock analysis

- We choose $\alpha=1-\frac{a}{2^{4 / 3} t^{1 / 3}}, a>0$. For this $\alpha, \lim _{t \rightarrow} K_{t}$ (modulo some prefactors) exists and is denoted by K_{a}
- K_{a} is explicitly given in terms of the Airy-function Ai
- As $a \rightarrow+\infty, K_{a}$ is again diverging. However, we may numerically ([Bor '10]) compute

$$
G_{a}(s)=\operatorname{det}\left(1-\chi_{s} K_{a} \chi_{s}\right)
$$

for a getting larger so as to recover the macroscopic shock distribution

Microscopic shock analysis

- We choose $\alpha=1-\frac{a}{2^{4 / 3} t^{1 / 3}}, a>0$. For this $\alpha, \lim _{t \rightarrow} K_{t}$ (modulo some prefactors) exists and is denoted by K_{a}
- K_{a} is explicitly given in terms of the Airy-function Ai
- As $a \rightarrow+\infty, K_{a}$ is again diverging. However, we may numerically ([Bor '10]) compute

$$
G_{a}(s)=\operatorname{det}\left(1-\chi_{s} K_{a} \chi_{s}\right)
$$

for a getting larger so as to recover the macroscopic shock distribution
Numerical limitations:

$$
G_{3}(s)=N a N \text { and } G_{2.1}(-3)=-5.25 \times 10^{25}
$$

The red line is $F_{1}(2 s)$ for $s=-2,-1.9, \ldots, 2$
The blue lines are $G_{a}(s)$ for $a=0,0.05,0.1, \ldots, 2.05$

The red line is $F_{1}(2 s)$ for $s=-2,-1.9, \ldots, 2$
The blue lines are $G_{a}(s)$ for $a=0,0.05,0.1, \ldots, 2.05$
For $a=2.05$ the fit with $F_{1}(2 s)^{2}$ is very good

Basic statistics of G_{a}

Expectation, Variance, Skewness, Kurtosis of G_{a} (dashed) and $F_{1}^{2}(2 s)$. for $a=0,0.05,0.1, \ldots, 2.05$

Product structure for Two-Speed TASEP

Theorem (At the $F_{1}-F_{1}$ shock, Ferrari, Nej. '13)
Let $x_{n}(0)=-2 n$ for $n \in \mathbb{Z}$. For $\alpha<1$ let $\eta=\frac{2-\alpha}{4}$ and $v=-\frac{1-\alpha}{2}$. Then it holds

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{x_{\eta t+\xi t^{1 / 3}}(t)-v t}{t^{1 / 3}} \leq s\right)=F_{1}\left(\frac{s-2 \xi}{\sigma_{1}}\right) F_{1}\left(\frac{s-\frac{2 \xi}{2-\alpha}}{\sigma_{2}}\right),
$$

where F_{1} is the GOE Tracy-Widom distribution, $\sigma_{1}=\frac{1}{2}$ and $\sigma_{2}=\frac{\alpha^{1 / 3}\left(2-2 \alpha+\alpha^{2}\right)^{1 / 3}}{2(2-\alpha)^{2 / 3}}$.

Product structure for Two-Speed TASEP

Theorem (At the $F_{1}-F_{1}$ shock, Ferrari, Nej. '13)
Let $x_{n}(0)=-2 n$ for $n \in \mathbb{Z}$. For $\alpha<1$ let $\eta=\frac{2-\alpha}{4}$ and
$v=-\frac{1-\alpha}{2}$. Then it holds

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{x_{\eta t+\xi t^{1 / 3}}(t)-v t}{t^{1 / 3}} \leq s\right)=F_{1}\left(\frac{s-2 \xi}{\sigma_{1}}\right) F_{1}\left(\frac{s-\frac{2 \xi}{2-\alpha}}{\sigma_{2}}\right),
$$

where F_{1} is the GOE Tracy-Widom distribution, $\sigma_{1}=\frac{1}{2}$ and $\sigma_{2}=\frac{\alpha^{1 / 3}\left(2-2 \alpha+\alpha^{2}\right)^{1 / 3}}{2(2-\alpha)^{2 / 3}}$.
One recovers GOE by changing $s \rightarrow s+2 \xi$ and $\xi \rightarrow+\infty$, resp. by $s \rightarrow s+2 \xi /(2-\alpha)$ and $\xi \rightarrow-\infty$

Outline

Introduction
 Microscopic shock

Generic Last Passage Percolation (LPP)

Transversal Fluctuations in LPP

Other Geometries

Last Passage Percolation (LPP)

Ansatz: Reformulate the problem in terms of a generic LPP model: Let $\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}}$ be independent random variables, $\mathcal{L} \subseteq \mathbb{Z}^{2}$ and π be an up-right path from \mathcal{L} to (m, n). Then $L_{\mathcal{L} \rightarrow(m, n)}$ is the maximal percolation time

$$
L_{\mathcal{L} \rightarrow(m, n)}:=\max _{\pi: \mathcal{L} \rightarrow(m, n)} \sum_{(i, j) \in \pi} \omega_{i, j}=\sum_{(i, j) \in \pi^{\max }} \omega_{i, j}
$$

TASEP with IC $\left(x_{k}(0)\right)_{k \in \mathbb{Z}}$. Setting

- $\omega_{i, j}$ to be the time particle j needs to jump from site $i-j-1$ to $i-j$,
- $\mathcal{L}=\left\{(k, u) \mid u=k+x_{k}(0), k \in \mathbb{Z}\right\}$,
it holds

$$
\mathbb{P}\left(L_{\mathcal{L} \rightarrow(m, n)} \leq t\right)=\mathbb{P}\left(x_{n}(t) \geq m-n\right) .
$$

Example: Two-Speed TASEP as LPP

- $\mathcal{L}=\{(u,-u): u \in \mathbb{Z}\}=\mathcal{L}^{+} \cup \mathcal{L}^{-}$
- $\omega_{i, j} \sim \exp (1)$ in white region, $\exp (\alpha)$ in green.

Strategy

- write $\mathcal{L}=\mathcal{L}^{+} \cup \mathcal{L}^{-}$, with $\mathcal{L}^{+} \subseteq\{(x, y): x \leq 0, y \geq 0\}$, and $\mathcal{L}^{-} \subseteq\{(x, y): x \geq 0, y \leq 0\}$,

Strategy

- write $\mathcal{L}=\mathcal{L}^{+} \cup \mathcal{L}^{-}$, with $\mathcal{L}^{+} \subseteq\{(x, y): x \leq 0, y \geq 0\}$, and $\mathcal{L}^{-} \subseteq\{(x, y): x \geq 0, y \leq 0\}$,
- make assumptions that guarantee asymptotic independence of $L_{\mathcal{L}^{+} \rightarrow(m, n)}$ and $L_{\mathcal{L}^{-} \rightarrow(m, n)}$

Strategy

- write $\mathcal{L}=\mathcal{L}^{+} \cup \mathcal{L}^{-}$, with $\mathcal{L}^{+} \subseteq\{(x, y): x \leq 0, y \geq 0\}$, and $\mathcal{L}^{-} \subseteq\{(x, y): x \geq 0, y \leq 0\}$,
- make assumptions that guarantee asymptotic independence of $L_{\mathcal{L}^{+} \rightarrow(m, n)}$ and $L_{\mathcal{L}^{-} \rightarrow(m, n)}$
- since $L_{\mathcal{L} \rightarrow(m, n)}=\max \left\{L_{\mathcal{L}^{+} \rightarrow(m, n)}, L_{\mathcal{L}^{-} \rightarrow(m, n)}\right\}$, this will result in a product structure

Strategy

- write $\mathcal{L}=\mathcal{L}^{+} \cup \mathcal{L}^{-}$, with $\mathcal{L}^{+} \subseteq\{(x, y): x \leq 0, y \geq 0\}$, and $\mathcal{L}^{-} \subseteq\{(x, y): x \geq 0, y \leq 0\}$,
- make assumptions that guarantee asymptotic independence of $L_{\mathcal{L}^{+} \rightarrow(m, n)}$ and $L_{\mathcal{L}^{-} \rightarrow(m, n)}$
- since $L_{\mathcal{L} \rightarrow(m, n)}=\max \left\{L_{\mathcal{L}^{+} \rightarrow(m, n)}, L_{\mathcal{L}^{-} \rightarrow(m, n)}\right\}$, this will result in a product structure
Remarks:
- asymptotic independence is equivalent to asymptotic non-intersection of the maximizing paths
- we will show that $\pi_{-}^{\max }$ of $L_{\mathcal{L}_{-} \rightarrow(m, n)}$ and $\pi_{+}^{\max }$ of $L_{\mathcal{L}_{+} \rightarrow\left(m^{+}, n^{+}\right)}$intersect with vanishing probability

Generic Theorem

Assume that there exists some μ such that

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{L_{\mathcal{L}^{+} \rightarrow\left(\eta_{0} t, t\right)}-\mu t}{t^{1 / 3}} \leq s\right)=G_{1}(s), \\
& \lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{L_{\mathcal{L}^{-} \rightarrow\left(\eta_{0} t, t\right)}-\mu t}{t^{1 / 3}} \leq s\right)=G_{2}(s) .
\end{aligned}
$$

Theorem (Ferrari, Nej. '13)

Under some assumptions we have

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{L_{\mathcal{L} \rightarrow\left(\eta_{0} t, t\right)}-\mu t}{t^{1 / 3}} \leq s\right)=G_{1}(s) G_{2}(s)
$$

where $\mathcal{L}=\mathcal{L}^{+} \cup \mathcal{L}^{-}$.

On the assumptions

I. Slow Decorrelation

II. Assume there is a point D on $(0,0)\left(\eta_{0} t, t\right)$ and to the right of E_{+}such that $\pi_{+}^{\max }$ and $\pi_{-}^{\max }$ cross $\overline{(0,0) D}$ with vanishing probability.

On the assumptions

Some remarks:

- (I.) is related to the universal phenomenon known as slow decorrelation [CFP '12]
- (II.) follows if we have that the 'characteristic lines' of the two LPP problems meet at ($\eta_{0} t, t$), together with the transversal fluctuations which are only $\mathcal{O}\left(t^{2 / 3}\right)$ [Johansson'00]

Slow decorrelation for Two-Speed TASEP

- E^{+}lies on $\overline{Z^{+} E}$, where Z^{+}is the orthogonal projection of E on \mathcal{L}^{+}.
- Z^{+}satisfies $\mu_{Z^{+} \rightarrow E}=\mu_{\mathcal{L}^{+} \rightarrow E}=\frac{4}{2-\alpha}$ where $\mu_{Z^{+} \rightarrow E}$ is s.t. $\frac{L_{Z^{+} \rightarrow E}-\mu_{Z^{+} \rightarrow E^{t}} t}{t^{1 / 3}}$ has non-trivial limit (leading order term).

Outline

Introduction
 Microscopic shock
 Generic Last Passage Percolation (LPP)

Transversal Fluctuations in LPP

Other Geometries

Consider a Poisson Point Process on \mathbb{R}_{+}^{2} with intensity one. The length $\ell(\pi)$ of a path π is the number of Poisson Points on it.

$$
\begin{aligned}
L_{(0,0) \rightarrow(t, t)} & =\max _{\substack{\pi:(0,0) \rightarrow(t, t) \\
\text { north-east }}} \ell(\pi) \\
& =\ell\left(\pi^{\max }\right)
\end{aligned}
$$

Consider a Poisson Point Process on \mathbb{R}_{+}^{2} with intensity one. The length $\ell(\pi)$ of a path π is the number of Poisson Points on it.

$$
\begin{aligned}
L_{(0,0) \rightarrow(t, t)} & =\max _{\substack{\pi:(0,0) \rightarrow(t, t) \\
\text { north-east }}} \ell(\pi) \\
& =\ell\left(\pi^{\max }\right)
\end{aligned}
$$

Theorem (Johansson '00)
For $A_{t}^{\gamma}=\left\{(x, y) \in[0, t]^{2}:-\sqrt{2} t^{\gamma} \leq-x+y \leq \sqrt{2} t^{\gamma}\right\}$ we have for any $\gamma>2 / 3$

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(\pi^{\max } \subseteq A_{t}^{\gamma}\right)=1 .
$$

Transversal Fluctuations

Transversal Fluctuations

Transversal Fluctuations

Let $\mu_{\mathcal{L}^{+} \rightarrow E^{+}}, \mu_{\mathcal{L}^{+} \rightarrow D_{\gamma}}$ and $\mu_{D_{\gamma} \rightarrow E^{+}}$, be the leading order terms of $L_{\mathcal{L}^{+} \rightarrow E^{+}}, L_{\mathcal{L}^{+} \rightarrow D_{\gamma}}$ and $L_{D_{\gamma} \rightarrow E^{+}}$.

- I. $\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \leq C \exp \left(-c t^{\beta-1 / 3}\right) \quad\left(t>t_{0}\right)$

This result is based on translating the $L_{\mathcal{L}^{+} \rightarrow E^{+}}$LPP into TASEP, and the decay of the corresponding kernel K

- II. We have

$$
\frac{\left(\mu_{\mathcal{L}^{+} \rightarrow D_{\gamma}}+\mu_{D_{\gamma} \rightarrow E^{+}}+\varepsilon-\mu_{\mathcal{L}^{+} \rightarrow E^{+}}\right) t}{t^{1 / 3}} \leq-C t^{\beta-1 / 3}
$$

- I. $\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \leq C \exp \left(-c t^{\beta-1 / 3}\right) \quad\left(t>t_{0}\right)$

This result is based on translating the $L_{\mathcal{L}^{+} \rightarrow E^{+}}$LPP into TASEP, and the decay of the corresponding kernel K

- II. We have

$$
\frac{\left(\mu_{\mathcal{L}^{+} \rightarrow D_{\gamma}}+\mu_{D_{\gamma} \rightarrow E^{+}}+\varepsilon-\mu_{\mathcal{L}^{+} \rightarrow E^{+}}\right) t}{t^{1 / 3}} \leq-C t^{\beta-1 / 3}
$$

Let $I_{D_{\gamma}}=\left\{D_{\gamma} \in \pi^{\max }\right\}$. We can conclude

$$
\begin{aligned}
\mathbb{P}\left(I_{D_{\gamma}}\right) & \leq \mathbb{P}\left(I_{D_{\gamma}} \cap\left(\bigcap E_{D_{\gamma}}^{c}\right)\right)+\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \\
& \leq \mathbb{P}\left(L_{\mathcal{L}^{+} \rightarrow E^{+}} \leq \mu_{\mathcal{L}^{+} \rightarrow E^{+}} t-C t^{\beta}\right)+C \exp \left(-c t^{\beta-1 / 3}\right)
\end{aligned}
$$

- I. $\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \leq C \exp \left(-c t^{\beta-1 / 3}\right) \quad\left(t>t_{0}\right)$

This result is based on translating the $L_{\mathcal{L}^{+} \rightarrow E^{+}}$LPP into TASEP, and the decay of the corresponding kernel K

- II. We have

$$
\frac{\left(\mu_{\mathcal{L}^{+} \rightarrow D_{\gamma}}+\mu_{D_{\gamma} \rightarrow E^{+}}+\varepsilon-\mu_{\mathcal{L}^{+} \rightarrow E^{+}}\right) t}{t^{1 / 3}} \leq-C t^{\beta-1 / 3}
$$

Let $I_{D_{\gamma}}=\left\{D_{\gamma} \in \pi^{\max }\right\}$. We can conclude

$$
\begin{aligned}
\mathbb{P}\left(I_{D_{\gamma}}\right) & \leq \mathbb{P}\left(I_{D_{\gamma}} \cap\left(\bigcap E_{D_{\gamma}}^{c}\right)\right)+\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \\
& \leq \mathbb{P}\left(L_{\mathcal{L}^{+} \rightarrow E^{+}} \leq \mu_{\mathcal{L}^{+} \rightarrow E^{+}} t-C t^{\beta}\right)+C \exp \left(-c t^{\beta-1 / 3}\right) \\
& \leq \mathbb{P}\left(L_{Z^{+} \rightarrow E^{+}} \leq \mu_{\mathcal{L}^{+} \rightarrow E^{+}} t-C t^{\beta}\right)+C \exp \left(-c t^{\beta-1 / 3}\right)
\end{aligned}
$$

- I. $\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \leq C \exp \left(-c t^{\beta-1 / 3}\right) \quad\left(t>t_{0}\right)$

This result is based on translating the $L_{\mathcal{L}^{+} \rightarrow E^{+}}$LPP into TASEP, and the decay of the corresponding kernel K

- II. We have

$$
\frac{\left(\mu_{\mathcal{L}^{+} \rightarrow D_{\gamma}}+\mu_{D_{\gamma} \rightarrow E^{+}}+\varepsilon-\mu_{\mathcal{L}^{+} \rightarrow E^{+}}\right) t}{t^{1 / 3}} \leq-C t^{\beta-1 / 3}
$$

Let $I_{D_{\gamma}}=\left\{D_{\gamma} \in \pi^{\max }\right\}$. We can conclude

$$
\begin{aligned}
\mathbb{P}\left(I_{D_{\gamma}}\right) & \leq \mathbb{P}\left(I_{D_{\gamma}} \cap\left(\bigcap E_{D_{\gamma}}^{c}\right)\right)+\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \\
& \leq \mathbb{P}\left(L_{\mathcal{L}^{+} \rightarrow E^{+}} \leq \mu_{\mathcal{L}^{+} \rightarrow E^{+}} t-C t^{\beta}\right)+C \exp \left(-c t^{\beta-1 / 3}\right) \\
& \leq \mathbb{P}\left(L_{Z^{+} \rightarrow E^{+}} \leq \mu_{\mathcal{L}^{+} \rightarrow E^{+}} t-C t^{\beta}\right)+C \exp \left(-c t^{\beta-1 / 3}\right) \\
& \leq \tilde{C} \exp \left(-\tilde{c} t^{\beta-1 / 3}\right)
\end{aligned}
$$

- I. $\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \leq C \exp \left(-c t^{\beta-1 / 3}\right) \quad\left(t>t_{0}\right)$

This result is based on translating the $L_{\mathcal{L}^{+} \rightarrow E^{+}}$LPP into TASEP, and the decay of the corresponding kernel K

- II. We have

$$
\frac{\left(\mu_{\mathcal{L}^{+} \rightarrow D_{\gamma}}+\mu_{D_{\gamma} \rightarrow E^{+}}+\varepsilon-\mu_{\mathcal{L}^{+} \rightarrow E^{+}}\right) t}{t^{1 / 3}} \leq-C t^{\beta-1 / 3}
$$

Let $I_{D_{\gamma}}=\left\{D_{\gamma} \in \pi^{\max }\right\}$. We can conclude

$$
\begin{aligned}
\mathbb{P}\left(I_{D_{\gamma}}\right) & \leq \mathbb{P}\left(I_{D_{\gamma}} \cap\left(\bigcap E_{D_{\gamma}}^{c}\right)\right)+\mathbb{P}\left(\bigcup_{\gamma} E_{D_{\gamma}}\right) \\
& \leq \mathbb{P}\left(L_{\mathcal{L}^{+} \rightarrow E^{+}} \leq \mu_{\mathcal{L}^{+} \rightarrow E^{+}} t-C t^{\beta}\right)+C \exp \left(-c t^{\beta-1 / 3}\right) \\
& \leq \mathbb{P}\left(L_{Z^{+} \rightarrow E^{+}} \leq \mu_{\mathcal{L}^{+} \rightarrow E^{+}} t-C t^{\beta}\right)+C \exp \left(-c t^{\beta-1 / 3}\right) \\
& \leq \tilde{C} \exp \left(-\tilde{c} t^{\beta-1 / 3}\right)
\end{aligned}
$$

This implies $\mathbb{P}\left(\bigcup_{\gamma} I_{D_{\gamma}}\right) \leq t \tilde{C} \exp \left(-\tilde{c} t^{\beta_{0}-1 / 3}\right) \rightarrow 0$, since only $\mathcal{O}(t)$ many points D_{γ}.

Outline

Introduction

Microscopic shock

Generic Last Passage Percolation (LPP)

Transversal Fluctuations in LPP

Other Geometries

$\eta_{0}=\frac{\alpha(3-2 \alpha)}{2-\alpha}, \omega_{i, j} \sim \exp (1)$
in white region, $\exp (\alpha)$ in green.

Particles initially occupy
$2 \mathbb{N}_{0} \cup\{-v t-1,-v t-2, \ldots\}$, where $v=\frac{(1-\alpha)^{2}}{2(2-\alpha)}$.

Theorem (At the $F_{2}-F_{1}$ shock, Ferrari, Nej' 13)

For $\alpha<1$ let $\mu=4$ and $v=-\frac{(1-\alpha)^{2}}{2(2-\alpha)}$. Let $x_{n}(0)=v t-n$ for $n \geq 1$ and $x_{n}(0)=-2 n$ for $n \leq 0$. Then it holds

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \mathbb{P}\left(x_{t / \mu+\xi t^{1 / 3}}(t) \geq v t-s t^{1 / 3}\right) & =F_{2}\left(\frac{s-c_{1} \xi}{\sigma_{1}}\right) \\
& \times F_{1}\left(\frac{s-c_{2} \xi}{\sigma_{2}}\right),
\end{aligned}
$$

with $c_{1}, c_{2}, \sigma_{1}, \sigma_{2}$ some constants depending on α. F_{2} is the GUE Tracy-Widom distribution from random matrix theory.

Thanks for your attention!

References

[Lig '99]
Thomas Liggett,
Stochastic Interacting Systems, Springer, Grundlehren der mathematischen Wissenschaften 324 (1999), 226-244.
[CFP '12]
Ivan Corwin, Patrik Ferrari, Sandrine Péché,
Universality of slow decorrelation, Ann. Inst. H. Poincaré B 48
(2012), 134-150
[Johansson'00]
K. Johansson,

Transversal fluctuations for increasing subsequences on the plane, Probab. Theory Related Fields 116 (2000), 445-456. [Ferrari, Nej. '13]
Patrik Ferrari, Peter Nejjar,
Anomalous shock fluctuations in TASEP and last passage percolation models, arXiv:1306.3336 (2013), submitted
[Bor '10]
Folkmar Bornemann,
On the Numerical Evaluation of Fredholm determinants, Math.
Comp. 79, pp. 871-915 (2010).
[BFS '09]
A. Borodin, P.L. Ferrari, and T. Sasamoto, Two speed TASEP, J. Stat. Phys. 137 (2009), 936-977.

