

V3F2/F4F1 - Foundations in Stochastic Analysis

Prof. Patrick Ferrari Bonn University Fall term 2012/2013

Florian Wechsung Date: February 8, 2013

For typos and corrections please contact f.wechsung@googlemail.com

Contents

U	Topics for the oral examination	4
1	Introduction to Stochastical Analysis	5
2	Brownian Motion 2.1 Construction of the Brownian Motion 2.2 Trajectories of Browian Motions 2.3 Stochastic Processes 2.4 Hölder continuity for Brownian Motion	8 12 15 16
3	Filtrations and Stoppingtimes 3.1 Filtrations	19 19 20 20 21
4	Continuous time martingales 4.1 Conditional expectation	24 24 24 26 27 29
5	Continuous semimartingales and quadratic variation 5.1 Semimartingales 5.2 Doob-Meyer decomposition 5.3 Quadratic Variation 5.4 L ² -bounded martingales	32 34 35 41
6	Stochastic Integration 6.1 Lebesgue-Stieltjes Integral 6.2 Stochastic Integration w.r.t. bounded variation processes 6.3 Itô-Integral 6.3.1 Itô-Integral for elementary processes 6.4 Properties of Itôs Integral. 6.5 The Itô-Integral for continuous local semimartingales	43 45 46 46 52 53
7	The Itô-Formula and applications 7.1 The Itô-Formula	59 59 63 66 67 67 69 70

8	Stoc	hastic	lifferential equations														72
	8.1	Strong	solutions to SDE														72
	8.2	Examp	es														79
		8.2.1	Brownian Motion with drif														79
		8.2.2	Ornstein-Uhlenbeck														79
		8.2.3	Geometric Brownian Motio	on													81
		8.2.4	Brownian Bridge														81
		8.2.5	Linear system (d=1)														82
9	Con	nection	to PDE: The Feynman-K	ac Fo	ormu	ıla											84
	9.1	Heat ed	uation														84
10	Brov	wnian N	artingale														88
	10.1	Time c	nanges														88
			tions														91
11	Girsanov's theorem														93		
	11.1	An exa	nple														93
			of measure														93
	11.3	The Th	eorem of Girsanov														96
12	Loca	al time															100
13 Representation of local martingale as stochastic integral												102					
14	Con	nection	between SDE's and PDE	i's													103
Literaturverzeichnie												106					

0 Topics for the oral examination

- 1. Stopping time, optional sampling
- 2. Semimartingales, quadratic variation
- 3. Construction of the Itô integral, Itô-Isometry
- 4. Itô-Formula
- 5. Exponential local martingales, Levy char.
- 6. Strong solutions of SDE
- 7. Time change, Dubins-Schwarz Theorem
- 8. Change of measure, Girsanov Theorem

Important.

1 Introduction to Stochastical Analysis

Plan:

- (a) Brownian Motion: the fil rouge of the lecture
- (b) Filtration & Martingales in continuous time
- (c) Continuous semimartingales
- (d) Stochastic Integrals and the Itô Formula
- (e) Stochastic Differential Equations (SDE)
- (f) Brownian Martingale

Examples

1. Population Dynamics

Let S_t the size of a population at time t (if $S_t >> 1$: a continuous approximation is ok) and let R_t the growth rate at time t

$$\frac{dS_t}{dt} = R_t S_t \tag{1.1}$$

If $R_t = \bar{R}$, where \bar{R} is a constant, then $S_t = S_0 e^{\bar{R}t}$. If R_t is random, e.g.

$$R_t = \underbrace{\bar{R}}_{average} + \underbrace{N_t}_{noiseterm}$$
 (1.2)

Question: What is the law of S_t ? What is a good choice for N_t ?

2. Langevin Equation

$$m\frac{dv_t}{dt} = -\underbrace{\eta}_{viscosity} v_t + \underbrace{N_t}_{noiseterm}$$
 (1.3)

3. Stocks

If S_t = Stockprice at time t and evolves as

$$\frac{dS_t}{dt} = (R + N_t)S_t \tag{1.4}$$

and if \tilde{R} is the bond rate let C_0 be the portfolio at time t = 0 made by A_0 stocks and B_0 bonds. $\Rightarrow C_t = A_t S_t + B_t e^{\tilde{R}t}$. For a self financing portfolio

$$\Rightarrow dC_t = A_t dS_t + B_t d\left(e^{\tilde{R}t}\right) \tag{1.5}$$

Question: How much is the fair price of an European Call Option?

Answer: Black Scholes Formula

But: 1.4 ist not necessarily satisfied by the market.

4. Dirichlet Problems

Let f be an harmonic function on D (bounded and regular) and f(x) = 0 on ∂D .

$$\Rightarrow f(x) = E[f(B_t^x)] \tag{1.6}$$

where $B_t^x = x + \int_0^t N_s ds$ and τ is the time t when B_t^x reaches ∂D . Goals:

- Understand what is $N_t \& B_t$
- Work with them
- **1. Trial** N_t should be the continuous analogue of a sequence of iid random variables. We would like to have:
 - 1. N_t should be independent of N_s for $s \neq t$.
 - 2. N_t , $t \ge 0$ should all have the same distribution μ .
 - 3. $E[N_t] = 0$.

 $t \equiv \text{time is in } \mathbb{R}$. Problem (if $N_t \neq 0$): Such an object is not well defined (e.g. N_t is not measurable (in t)).

2. Trial In examples (1), (2) & (4) we are actually interested in the integral of N_t . Denote by

$$B_t = \int_0^s N_s ds. \tag{1.7}$$

The 3 conditions become:

- (BM1) *Independent increments* For $0 \le t_0 < t_1 < \cdots < t_n$: the variables $B_{t_{k+1}} B_{t_k}$, for k = 0, ..., n-1 are independent.
- (BM2) B_t has stationary increment, i.e. the joint distribution of $(B_{t_1+s} B_{u_1+s}, \dots, B_{t_n+s} B_{u_n+s})$ for $u_k < t_k, k = 1, \dots, n$ is independent of s > 0.
- (BM3) $E[B_t] = 0$
- (BM4) And a normalization $Var[B_1] = E[B_1^2] = 1$.

But: (BM1)-(BM4) are not enough to determine the process B_t uniquely. Thus we add:

(BM5) $t \mapsto B_t$ is continuous (almost surely).

 B_t is called the Wiener Process or Brownian Motion.

Lemma 1.1.

It holds:

$$\forall \varepsilon > 0 \lim_{n \to \infty} nP(|B_{t + \frac{1}{n}} - B_t| > \epsilon) = 0$$
 (1.8)

Proof. Let $H_n := \sup_{1 \le k \le n} \left| B_{\frac{k}{n}} - B_{\frac{k-1}{n}} \right|$. By (BM5) H_n is almost surely continuous on [0, 1].

$$\Rightarrow \forall \varepsilon > 0 \lim_{n \to \infty} P(H_n > \varepsilon) = 0 \tag{1.9}$$

But:

$$P(H_n > \varepsilon) = 1 - P(H_n < \varepsilon) \tag{1.10}$$

$$\stackrel{BM1}{=} 1 - \prod_{k=1}^{n} P(|B_{\frac{k}{n}} - B_{\frac{k-1}{n}}| \le \varepsilon)$$
 (1.11)

$$\stackrel{BM2}{\underset{B_0=0}{=}} 1 - (P(|B_{\frac{1}{n}}| \le \varepsilon))^n \tag{1.12}$$

$$= 1 - (1 - P(|B_{\frac{1}{n}}| > \varepsilon))^n \tag{1.13}$$

$$\geq 1 - \underbrace{e^{-nP(|B_{\frac{1}{n}}|>\varepsilon)}}_{\leq 1} \tag{1.14}$$

because $1 - x \le e^{-x}$. As we take $n \to \infty$ we get

$$\lim_{n \to \infty} nP(|B_{\frac{1}{n}}| > \varepsilon) = 0 \tag{1.15}$$

Using (BM2) we get the general result by seeing that

$$P(|B_{t+\frac{1}{n}} - B_t| > \varepsilon) = P(|B_{\frac{1}{n}}| > \varepsilon)$$
(1.16)

What is the distribution of B_t ?

Lemma 1.2.

It holds:

$$\forall t, s \ge 0 : P(B_{t+s} - B_t \in A) = \frac{1}{\sqrt{2\pi s}} \int_A e^{\frac{-x^2}{2s}} dx \quad \forall A \in \mathcal{B}(\mathbb{R})$$
 (1.17)

Proof. Without loss of generality we can assume t = 0 (because of BM2). Define

$$B_s := \sum_{k=1}^{n} X_{n,k} \tag{1.18}$$

with $X_{n,k} = B_{\frac{sk}{n}} - B_{\frac{s(k-1)}{n}}$ are iid R.V. From BM3 it follows $E[X_{n,k}] = 0$ and from BM4 $Var[B_s] = s$. As we use the CLT we get

$$\lim_{n \to \infty} \sum_{k=1}^{n} X_{n,k} \sim \mathcal{N}(0,s)$$
(1.19)

New condition:

 $(\widetilde{BM2}) \ \forall s, t \ge 0 \forall A \in \mathcal{B}(\mathbb{R})$

$$P(B_{s+t} - B_s \in A) = \frac{1}{\sqrt{2\pi t}} \int_A e^{\frac{-x^2}{2t}} dx$$
 (1.20)

and $B_0 = 0$.

Definition 1.3.

A one-dimensional (standard) Brownian-Motion (BM) is a real-valued process in continuous time satisfying (BM1), $(\widetilde{BM2})$, (BM5).

[09.10.2012] [12.10.2012]

2 Brownian Motion

2.1 Construction of the Brownian Motion

Question: Is there an object satisfying Definition 1.3? We construct $\{B_t, t \in [0, T]\}$. WLOG T = 1, otherwise one has to multiply time variables by T and space variables by \sqrt{T} .

Remark: Let's assume the Brownian Motion is constructed.

Question: Given that $B_s = x$, $B_t = z$, what is the distribution of B_{ϑ} ? Answer: $B_{\vartheta} \sim \mathcal{N}(\mu = \frac{x+z}{2}, \sigma^2 = \frac{t-s}{4})$. Using BM1 $(B_s, B_{\vartheta} - B_s \text{ and } B_t - B_{\vartheta} \text{ are independent})$:

$$\mathbb{P}(B_s \in dx, B_\vartheta \in dy, B_t \in dz) = p(0, x, s) p\left(x, y, \frac{t-s}{2}\right) p\left(y, z, \frac{t-s}{2}\right) dx dy dz \tag{2.1}$$

$$= p(0, x, s)p(x, z, t - s) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}} dx dy dz$$
 (2.2)

with

$$p(x, y, \tau) := \frac{1}{\sqrt{2\pi\tau}} e^{-\frac{(x-y)^2}{2\tau}}$$
 (2.3)

Also:

$$P(B_s \in dx, B_t \in dz) = p(0, x, s)p(x, z, t - s)dxdz$$
(2.4)

Which leads to

$$P(B_{\vartheta} \in dy | B_s = x, B_t = z) = \frac{P(B_{\vartheta} \in dy, B_s \in dx, B_t \in dz)}{P(B_s \in dx, B_t \in dz)}$$
(2.5)

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy$$
 (2.6)

Construction: Let $\{\xi_k^{(n)}, k \in I(n), n \ge 1\}$ independent R.V.~ $\mathcal{N}(0, 1)$ where $I(n) = \{k \in \mathbb{N} : 1 \le k \le 2^n, k \text{ odd}\}$.

a)
$$B_0^{(n)} = 0, B_1^{(0)} = \xi_1^{(0)}$$

b) For
$$k = 0, \dots, 2^{n-1} : B_{\frac{k}{2^{n-1}}}^{(n)} := B_{\frac{k}{2^{n-1}}}^{(n-1)}$$

¹Algebra

c)
$$B_{\frac{k}{2^n}}^{(n)} = \frac{1}{2} \left(B_{\frac{k-1}{2^n}}^{(n-1)} + B_{\frac{k+1}{2^n}}^{(n-1)} \right) + \frac{1}{2^{\frac{n+1}{2}}} \xi_k^{(n)}$$

Goal: Show that

$$B_t^{(n)} \xrightarrow{n \to \infty} B_t \tag{2.7}$$

uniformly in t and that B_t is almost surely continuous. First we introduce

$$H_1^{(0)} = 1 (2.8)$$

$$H_k^{(n)} = \begin{cases} 2^{\frac{k-1}{2}} &, \frac{k-1}{2^n} \le t < \frac{k}{2^n} \\ -2^{\frac{k-1}{2}} &, \frac{k}{2^n} \le t < \frac{k+1}{2^n} \\ 0 &, \text{ otherwise.} \end{cases}$$
 (2.9)

for $n \ge 1, k \in I(n)$. We set

$$S_k^n(t) = \int_0^t H_k^{(n)}(u) du$$
 (2.10)

For n = 0:

$$B_t^{(0)}(\omega) = S_1^{(0)}(t)\xi_1^{(0)}(\omega) \tag{2.11}$$

For general n (e.g. by induction):

$$B_t^{(n)}(\omega) = \sum_{m=0}^n \sum_{n \in I(m)} S_k^{(m)}(t) \xi_k^{(m)}(\omega)$$
 (2.12)

Lemma 2.1.

The sequence of functions

$$(B_t^{(n)}(\omega), 0 \le t \le 1)_{n>1}$$
 (2.13)

converges uniformly to a continuous function $\{B_t(\omega), 0 \le t \le 1\}$ for almost every ω .

Proof. Let $b_n := \max_{k \in I(m)} \left| \xi_k^{(n)} \right|$. $\forall x > 0, k, n$ it holds

$$P(\left|\xi_{k}^{(n)}\right| > x) = \frac{2}{\sqrt{2\pi}} \int_{x}^{\infty} e^{\frac{-u^{2}}{2}} du$$
 (2.14)

$$\leq \sqrt{\frac{2}{\pi}} \int_{x}^{\infty} \frac{u}{x} e^{\frac{-u^2}{2}} du \tag{2.15}$$

$$= \sqrt{\frac{2}{\pi}} \int_{\frac{x^2}{2}}^{\infty} \frac{\sqrt{2v}}{x} e^{-v} \sqrt{\frac{2}{v}} \frac{1}{2} dv$$
 (2.16)

$$=\sqrt{\frac{2}{\pi}}\frac{1}{x}e^{-\frac{x^2}{2}}\tag{2.17}$$

$$\Rightarrow P(b_n > n) = P\left(\bigcup_{k \in I(m)} \left\{ |\xi_k^{(n)}| > n \right\} \right) \tag{2.18}$$

$$\leq \sum_{k \in I(n)} P\left(|\xi_k^{(n)}| > n\right) \tag{2.19}$$

$$= \sum_{k \in I(n)} P(|\xi_1^{(n)}| > n)$$
 (2.20)

$$\leq \sqrt{\frac{2}{\pi}} e^{-\frac{u^2}{2}} \cdot \underbrace{2^n}_{|I(n)| \leq 2^n} \tag{2.21}$$

 $\Rightarrow \sum_{n\geq 1} P(b_n > n) < \infty$. We can now use Borel-Cantelli I:

$$\exists \tilde{\Omega} \subset \Omega \text{ s.t. } P(\tilde{\Omega}) = 1 \text{ s.t. } \forall \omega \in \tilde{\Omega} \exists n_0(\omega) \text{ s.t. } \forall n \geq n_0(\omega) b_n(\omega) \leq n$$
 (2.22)

$$\Rightarrow \sum_{n \ge n_0(\omega)} \sum_{k \in I(n)} \underbrace{S_k^{(n)}(t)}_{\le \frac{1}{2^{\frac{n+1}{2}}}} \underbrace{|\xi_k^{(n)}(\omega)|}_{\le n} \le \sum_{n \ge n_0(\omega)} n \frac{1}{2^{\frac{n+1}{2}}}$$
 (2.23)

because $\forall t$ at most one $k \in I(n)$ is s.t. $S_k^{(n)}(t) > 0$. Moreover, as $n_0 \to \infty$

$$\sum_{n \ge n_0(\omega)} \sum_{k \in I(n)} S_k^{(n)}(t) |\xi_k^{(n)}(\omega)| \to 0$$
 (2.24)

 $\Rightarrow \forall \omega \in \tilde{\Omega}$ it holds: $B_t^{(n)}(\omega)$ converges uniformly in $t \in [0, 1]$ to a limit $B_t(\omega)$. Due to the uniform convergence $B_t(\omega)$ is continuous.

Lemma 2.2.

The Haarfunctions $\{H_k^{(n)}, n \ge 0, k \in I(n)\}$ are a complete orthonormal system of $L^2([0, 1])$ with the scalar product

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx$$
 (2.25)

It holds the parseval equation

$$\langle f, g \rangle = \sum_{n \geq 0} \sum_{k \in I(n)} \langle f, H_k^{(n)} \rangle \langle H_k^{(n)}, g \rangle$$
 (2.26)

 $^{^2}u\mapsto \sqrt{2v}$

Proof. See exercises.

If we take $f = \mathbb{1}_{[0,t]}, g = \mathbb{1}_{[0,s]}, (2.26)$ becomes

$$\min(s,t) = \underbrace{\langle f,g \rangle}_{=\int_0^1 \mathbb{1}_{[0,s]}(x)\mathbb{1}_{[0,t]}(x)dx} = \sum_{n \ge 0} \sum_{k \in I(n)} S_k^{(n)}(t) S_k^{(n)}(s)$$
(2.27)

Lemma 2.3.

Let

$$B_t := \lim_{n \to \infty} B_t^{(n)}. \tag{2.28}$$

Then B_t is a Brownian Motion on [0, 1].

Proof. We have to show: $\forall 0 = t_0 < t_1 < \cdots < t_n \le 1$ the R.V. $B_{t_j} - B_{t_{j-1}}, j = 1, \ldots, n$ are independent and $\sim \mathcal{N}(0, t_j - t_{j-1})$. We will show:

$$\underbrace{E\left[e^{-i\sum_{j=1}^{n}(\lambda_{j+1}-\lambda_{j})B_{t_{j}}}\right]}_{=E\left[e^{-i\sum_{j=1}^{n}(\lambda_{j+1}-\lambda_{j})B_{t_{j}}}\right]} = \prod_{j=1}^{n} e^{-\frac{1}{2}\lambda_{j}^{2}(t_{j}-t_{j-1})} \tag{2.29}$$

setting $\lambda_{n+1} = 0 = B_0$. Now let $M \in \mathbb{N}$.

$$E\left[\exp(-i\sum_{j=1}^{n}(\lambda_{j+1}-\lambda_{j})B_{t_{j}}^{(M)})\right] = E\left[\exp(-i\sum_{j=1}^{n}(\lambda_{j+1}-\lambda_{j})\cdot\sum_{m=0}^{M}\sum_{j\in I(m)}S_{k}^{(m)}(t_{j})\xi_{k}^{(m)})\right]$$
(2.30)

$$= \prod_{m=0}^{M} \prod_{k \in I(m)} E \left[\exp(-i \sum_{j=1}^{n} (\lambda_{j+1} - \lambda_j) S_j^{(m)}(t_j) \xi_k^{(m)}) \right] = \Delta \quad (2.31)$$

We use $\xi \sim \mathcal{N}(0,1) \Rightarrow E\left[e^{-i\alpha\xi}\right] = e^{-\frac{1}{2}\alpha^2}$ and get

$$\Delta = \prod_{m=0}^{M} \prod_{k \in I(m)} \exp(-\frac{1}{2} (\sum_{i=1}^{n} (\lambda_{j+1} - \lambda_j) S_k^{(m)}(t_j))^2)$$
 (2.32)

$$= \exp\left[-\frac{1}{2} \sum_{m=0}^{M} \sum_{k \in I(m)} \sum_{j,l=1}^{n} (\lambda_{j+1} - \lambda_j)(\lambda_{l+1} - \lambda_l) S_k^{(m)}(t_j) S_k^{(m)}(t_l)\right]$$
(2.33)

$$= \exp\left[-\frac{1}{2} \sum_{i,l=1}^{n} (\lambda_{j+1} - \lambda_j)(\lambda_{l+1} - \lambda_l) \sum_{m=0}^{M} \sum_{k \in I(m)} S_k^{(m)}(t_j) S_k^{(m)}(t_l)\right]$$
(2.34)

if we reconsider (2.27) this becomes

$$\stackrel{M \to \infty}{\longrightarrow} \exp \left[-\frac{1}{2} \sum_{i,l=1}^{n} (\lambda_{j+1} - \lambda_j)(\lambda_{l+1} - \lambda_l) \min(t_j, t_l) \right]$$
(2.35)

$$= \exp\left[-\frac{1}{2}\sum_{j=1}^{n}(\lambda_{j+1} - \lambda_{j})^{2}t_{j} - \sum_{j=1}^{n-1}\sum_{l=j+1}^{n}(\lambda_{j+1} - \lambda_{j})(\lambda_{l+1} - \lambda_{l})t_{j}\right]$$
(2.36)

$$= \exp\left[-\frac{1}{2}\sum_{j=1}^{n}(\lambda_{j+1} - \lambda_{j})^{2}t_{j} - \sum_{j=1}^{n-1}(\lambda_{j+1} - \lambda_{j})\sum_{l=j+1}^{n}(\lambda_{l+1} - \lambda_{l})t_{j}\right] = \Delta$$
 (2.37)

the last sum is a telescoping series (and $\lambda_{n+1} = 0$)

$$\Delta = \exp\left[-\frac{1}{2} \sum_{j=1}^{n} (\lambda_{j+1} - \lambda_j)^2 t_j + \sum_{j=1}^{n-1} (\lambda_{j+1} - \lambda_j) \lambda_{j+1} t_j\right]$$
(2.38)

$$= \exp\left[-\frac{1}{2} \sum_{j=1}^{n} t_j (\lambda_{j+1}^2 - 2\lambda_{j+1}\lambda_j + \lambda_j^2 - 2\lambda_{j+1}^2 + 2\lambda_j \lambda_{j+1})\right]$$
(2.39)

$$= \exp\left[-\frac{1}{2}\sum_{j=1}^{n}t_{j}\lambda_{j}^{2}\right] \cdot \exp\left[\frac{1}{2}\sum_{j=1}^{n}t_{j}\lambda_{j+1}^{2}\right]$$

$$(2.40)$$

$$= \exp\left[-\frac{1}{2}\sum_{j=1}^{n}t_{j}\lambda_{j}^{2}\right] \cdot \exp\left[\frac{1}{2}\sum_{j=1}^{n}t_{j-1}\lambda_{j}^{2}\right]$$

$$(2.41)$$

$$= \exp\left[-\frac{1}{2}\sum_{j=1}^{n}(t_j - t_{j-1})\lambda_j^2\right]$$
 (2.42)

[12.10.2012] [16.10.2012]

2.2 Trajectories of Browian Motions

The BM has continuous trajectories, but they are very rough.

Theorem 2.4.

The trajectories

$$t \mapsto B_t$$
 (2.43)

- a) have an a.s. unbounded variation.
- b) and so they are nowhere differentiable.

This theorem shows why the object " N_t " is difficult to define.

Lemma 2.5.

Let $0 = t_0^{(n)} < t_1^{(n)} < \dots < t_n^{(n)} = T$ a family of partitions of [0, T] s.t.

$$\lim_{n \to \infty} \max_{0 \le i \le n-1} \left| t_{j+1}^{(n)} - t_j^{(n)} \right| = 0. \tag{2.44}$$

Then

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} \left(B_{t_{j+1}}^{(n)} - B_{t_j}^{(n)} \right)^2 = T \text{ in } L^2.$$
 (2.45)

⁴iid.

Proof. Define $\Delta B_j := B_{t_{j+1}}^{(n)} - B_{t_j}^{(n)}; \Delta t_j := t_{j+1}^{(n)} - t_j^{(n)}, \delta_k := \max_j \Delta t_j$. Calculate

$$\|\sum_{j} (\Delta B_{j})^{2} - T\|^{2} = E\left[\left(\sum_{j} (\Delta B_{j})^{2} - T \right)^{2} \right]$$
(2.46)

$$= E \left[\sum_{i,j} (\Delta B_j)^2 (\Delta B_i)^2 - 2T \sum_i (\Delta B_j)^2 + T^2 \right]$$
 (2.47)

$$= \sum_{i} \underbrace{E\left[(\Delta B_{i})^{4}\right]}_{=3(\Delta t_{i})^{2}} + \sum_{i \neq j} \underbrace{E\left[(\Delta B_{j})^{2}\right]}_{=\Delta t_{i}} E\left[(\Delta B_{i})^{2}\right] - 2T \sum_{i} E\left[(\Delta B_{j})^{2}\right] + T^{2} \quad (2.48)$$

$$=2\sum_{i}(\Delta t_{j})^{2} \tag{2.49}$$

$$\leq 2\Delta_n \sum_j \Delta t_j = 2\delta_n T \xrightarrow[n \to \infty]{} 0 \tag{2.50}$$

by using in (2.48) that we know for $X \sim \mathcal{N}(0, \sigma^2) \Rightarrow E[X^2] = \sigma^2, E[X^4] = 3\sigma^4$

Informally Lemma 2.5 shows with T = dt

$$(dB_t)^2 \approx dt \tag{2.51}$$

$$\Rightarrow dB_t \approx \sqrt{dt} \gg dt$$
 (2.52)

Therefore B_t will not be differentiable, since

$$\frac{dB_t}{dt} \to \infty. {(2.53)}$$

Lemma 2.6.

Let X_1, X_2, \ldots be a sequence of R.V. s.t

$$\lim_{n \to \infty} \mathbb{E}\left[|X_k|^2 \right] = 0 \tag{2.54}$$

Then there exists a subsequence $(X_{n_k})_{k\geq 1}$ s.t. $X_{n_k} \to 0$ almost surely.

Proof. We choose a subsequence s.t. $\mathbb{E}\left[|X_{n_k}|^2\right] < \frac{1}{k^2}$. Then $\sum_{k=1}^{\infty} \mathbb{E}\left[|X_{n_k}|^2\right] < \infty$. By using Cebicev we get

$$\forall m \in \mathbb{N} \sum_{k=1}^{\infty} \mathbb{P}\left(|X_{n_k}| \ge \frac{1}{m}\right) \le m^2 \mathbb{E}\left[|X_{n_k}|^2\right]$$
 (2.55)

$$\Rightarrow \forall m \in \mathbb{N} \sum_{k=1}^{\infty} \mathbb{P}\left(|X_{n_k}| \ge \frac{1}{m}\right) \le m^2 \sum_{k=1}^{\infty} \mathbb{E}\left[|X_{n_k}|^2\right] < \infty \tag{2.56}$$

$$\Rightarrow \forall m \in \mathbb{N} \ \mathbb{P}\left(|X_{n_k}| \ge \frac{1}{m} \text{ u.o.}\right) = 0 \tag{2.57}$$

$$\Rightarrow X_{n_k} \to 0 \text{ a.s.}$$
 (2.58)

Proof of Theorem 2.4(a). The previous two lemmas give: \exists subsequence $(n_k)_{k\geq 1}$ s.t. for almost all $\omega \in \Omega$

$$\lim_{k \to \infty} \sum_{i=1}^{n-1} \left(B_{t_{j+1}^{(n_k)}}(w) - B_{t_j^{(n_k)}}(w) \right)^2 = T.$$
 (2.59)

⁵Nach Defintion der L²-Norm

Let $\omega \in \Omega$ be fix s.t.(2.59) holds. Let $\varepsilon_{n_k} := \max_j |\Delta B_j| \Rightarrow \lim_{k \to \infty} \varepsilon_{n_k} = 0$ because $t \mapsto B_t$ is uniformly continuous.

$$\Rightarrow \sum_{j=0}^{n_k-1} |\Delta B_j| \ge \sum_{j=0}^{n_k-1} \frac{1}{\varepsilon_{n_k}} |\Delta B_j|^2 \approx \frac{T}{\varepsilon_{n_k}} \to \infty \text{ as } k \to \infty$$
 (2.60)

Lemma 2.7.

Let $(B_t)_{0 \le t \le T}$ be a Brownian Motion on [0, T]. Then, $\forall c > 0$

$$(cB_{\frac{t}{2}})_{0 \le t \le T} \tag{2.61}$$

is a Brownian Motion on $[0, \frac{T}{c^2}]$.

Proof. Exercise Sheet 1.

Proof of Theorem 2.4(b). Let

$$X_{n,k} := \max_{j=k,k+1,k+2} |B_{\frac{j}{2^n}} - B_{\frac{j-1}{2^n}}|$$
 (2.62)

$$\Rightarrow \forall \varepsilon > 0 \mathbb{P} \left(X_{n,k} \le \varepsilon \right) = \mathbb{P} \left(|B_{\frac{1}{2^n}}| \le \varepsilon| \right)^3 \tag{2.63}$$

$$= \mathbb{P}\left(|B_1| \le 2^{\frac{n}{2}}\varepsilon\right)^3 \tag{2.64}$$

$$\leq (2^{\frac{n}{2}}\varepsilon)^3\tag{2.65}$$

Now let $Y_n := \min_{k \le 2^n T} X_{n,k}$.

$$\Rightarrow \mathbb{P}(Y_n \le \varepsilon) \le T2^n (2^{\frac{n}{2}}\varepsilon)^3 \tag{2.66}$$

Let $A := \{\omega \in \Omega \text{ s.t. } t \mapsto B_t(\omega) \text{ is differentiable somewhere} \}$. For an $\omega \in A$, $t \mapsto B_t(\omega)$ is in $t_0(\omega)$ differentiable. Let D be the derivative.

$$\Rightarrow \exists \delta > 0 \text{ s.t. } \forall t \in [t_0 - \delta, t_0 + \delta] \quad |B_t - B_{t_0}| \le (|D| + 1)|t - t_0| \tag{2.67}$$

We now choose n_0 big enough s.t.

$$\delta > \frac{1}{2^{n_0 - 1}}, n_0 > 2(|D| + 1), n_0 > t_0$$
 (2.68)

Now for $\forall n \geq n_0$ choose k s.t.

$$\frac{k}{2^n} \le t_0 \le \frac{k+1}{2^n}. (2.69)$$

Then

$$|t_0 - \frac{j}{2^n}| < \delta \text{ for } j = k, k+1, k+2.$$
 (2.70)

$$\Rightarrow X_{n,k}(\omega) \le (|D|+1)\frac{1}{2^n} \le \frac{n}{2^n} \tag{2.71}$$

and, since $n > t_0 > \frac{k}{2^n}$, also $Y_n(\omega) \le X_{n,k}(\omega) \le \frac{n}{2^n}$. Therefore $A \subset A_n := \{Y_n(\omega) \le \frac{n}{2^n}\}$ for n large enough and hence also

$$A \subset \liminf_{n} A_n \tag{2.72}$$

⁶Lemma 2.7

But (2.66) implies

$$\sum_{n\geq 1} \mathbb{P}(A_n) \leq \sum_{n\geq 1} n2^2 (2^{\frac{n}{2}+1} n2^{-n})^3 < \infty$$
 (2.73)

$$\Rightarrow \mathbb{P}\left(\liminf_{n\to\infty} A_n\right) = 0 \tag{2.74}$$

i.e. $t \mapsto B_t(\omega)$ is a.s. not differentiable.

[16.10.2012] [19.10.2012]

Definition 2.8.

Let

$$p(x, y, \tau) := \frac{1}{\sqrt{2\pi\tau}} \exp(-\frac{(x-y)^2}{2\tau})$$
 (2.75)

be the Heat-Kernel $\forall x, y \in \mathbb{R}, \tau > 0$. A stochastic process $(B_t)_{0 \le t \le T}$ with values in \mathbb{R}^d is called a d-dimensional Brownian Motion if

- $B_0 = (0, \dots, 0)$
- The increments are independent and stationary with distribution

$$\mathbb{P}(B_t - B_s \in A) = \int_A p(0, x_1, t - s) \dots p(0, x_d, t - s) dx_1 \dots dx_n$$
 (2.76)

 $\forall A \in \mathcal{B}(\mathbb{R}^d) \ \forall 0 \leq s < t \leq T.$

• The trajectories $t \mapsto B_t(\omega)$ are continuous for a.e. $\omega \in \Omega$.

2.3 Stochastic Processes

Definition 2.9.

A family $(X_t)_{t\geq 0}$ is a stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$ with values in a measurable space (E, \mathcal{S}) if $\forall t \geq 0 \ X_t$ is a R.V.. t usually plays the role of time and E is the space where X lives (=state space). For all $\omega \in \Omega$, $t \mapsto X_t(\omega)$ is called a trajectory.

Definition 2.10.

Let *X* and *Y* two stochastic processes (defined on the same probability space and with the same state space). Then

(a) X is a modification/version of Y if

$$\mathbb{P}\left(X_{t}=Y_{t}\right)=1\ \forall t. \tag{2.77}$$

(b) X and Y are indistinguishable if

$$\mathbb{P}\left(X_t = Y_t, \forall t \ge 0\right) = 1. \tag{2.78}$$

It holds b) \Rightarrow a) but not the other way round.

Example: $\Omega = [0, 1], \mathbb{P}$ the Lebesguemeasure. Define

$$\begin{cases} X_t(\omega) = 0 \\ Y_t(\omega) = \mathbb{1}_{\{t=\omega\}} \end{cases}$$
 (2.79)

Then, $\forall t \geq 0 \mathbb{P}(X_t = Y_t) = \mathbb{P}(t \neq \omega) = 1 \text{ but } \mathbb{P}(X_t = Y_t, \forall t \in [0, 1]) = 0.$

Lemma 2.11.

Let Y be a modification of X. If X and Y have a.s. right-continuous paths (trajectories). Then X and Y are indistinguishable.

Proof. Let $\Omega_0 \subset \Omega$ be the set where either X or Y are not right continuous. By assumption: $\mathbb{P}\left(\Omega_{0}\right)=0$. For $q\in\mathbb{Q}_{+}$ let $N_{q}=\{\omega\in\Omega|X_{q}(\omega)\neq Y_{q}(\omega)\}$. Since Y is a modification of $X\,\mathbb{P}\left(N_{q}\right)=0$. As \mathbb{Q}_+ is countable also $\mathbb{P}\left(\bigcup_{q\in\mathbb{Q}_+} N_q\right) = 0 \Rightarrow \mathbb{P}(\Omega_0 \cup \bigcup_{q\in\mathbb{Q}_+} N_q) = 0.$

$$\underbrace{q \in \mathbb{Q}_+}_{=\tilde{\Omega}}$$

Therefore $\forall \omega \notin \tilde{\Omega} X_t(\omega) = Y_t(\omega) \forall t \in Q_+$ and as $X_t(\omega)$ and $Y_t(\omega)$ are rightcontinuous it holds $X_t(\omega) = Y_t(\omega) \forall t \ge 0$ and with $\mathbb{P}(\tilde{\Omega}^c) = 1$ the statement follows.

2.4 Hölder continuity for Brownian Motion

Definition 2.12.

A function $f: \mathbb{R}_+ \to \mathbb{R}$ is called γ -Hölder continuous in $x \ge 0$ if $\exists \varepsilon > 0C < \infty$ s.t.

$$|f(x) - f(y)| \le C|x - y|^{\gamma} \ \forall y \ge 0 : |y - x| \le \varepsilon \tag{2.80}$$

 γ is called the Hölder-exponent.

Theorem 2.13 (Kolmogorov-Chentsov).

Let $(X_t)_{t\geq 0}$ be a stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$, $\alpha \geq 1, \beta \geq 0, c > 0$ s.t.

$$\mathbb{E}\left[|X_t - X_s|^{\alpha}\right] \le C|t - s|^{\beta + 1} \tag{2.81}$$

Then there exists a version/modification $(Y_t)_{0 \le t \le T}$ of $(X_t)_{0 \le t \le T}$ for all T > 0 s.t. Y is γ -Hölder continuous $\forall \gamma \in (0, \beta/\alpha)$.

Before we proof this theorem, we will apply it on BM. We have

$$\mathbb{E}\left[|B_t - B_s|^n\right] = \frac{(2n)!}{2^n n!} |t - s|^n \tag{2.82}$$

Therefore with $\alpha = 2n, \beta + 1 = n$ there exists a γ -Hölder-continuous version $\forall \gamma < \frac{n-1}{2n} \forall n \Longrightarrow$ $\forall \gamma < 1/2$.

Corollary 2.14.

Let B be a BM. Then there exists a Version \tilde{B} s.t. \tilde{B} is γ -Hölder-continuous forall $\gamma < \frac{1}{2}$ s.t.

$$\mathbb{P}\left(\sup_{0 \le t - s \le h(\omega), 0 \le s, t \le T} \frac{|B_t(\omega) - B_s(\omega)|}{|t - s|^{\gamma}} \le C\right) = 1$$
(2.83)

where $h(\omega)$ is a positive R.V. (a.s.).

Proof of Theorem 2.13. WLOG T = 1. The proof consists of 5 claims.

1. claim $X_s \xrightarrow{P} X_t$ when $s \to t$. Proof:

$$\forall \varepsilon > 0 \mathbb{P} (|X_t - X_s| \ge \varepsilon) \le \frac{\mathbb{E} [|X_t - X_s|^{\alpha}]}{\varepsilon^{\alpha}}$$
 (2.84)

$$\leq C \frac{C|t - s|^{\beta + 1}}{\varepsilon^{\alpha}} \to 0 \tag{2.85}$$

2. claim $\exists \Omega^* \subset \Omega$ with $\mathbb{P}(\Omega^*) = 1$ s.t. $\forall \omega \in \Omega^*$

$$\max_{1 \le k \le 2^n} |X_{\frac{k}{2^n}}(\omega) - X_{\frac{k-1}{2^n}}(\omega)| < 2^{-\gamma n} \forall n > n^*(\omega), \gamma \in (0, \beta/\alpha)$$
 (2.86)

Proof: Let $D_n = \{\frac{k}{2^n}, 0 \le k \le 2^n, k \in \mathbb{N}\}$ and $D = \bigcup_{n \ge 1} D_n$. Using (2.85) with $t = \frac{k}{2^n}$, $s = \frac{k-1}{2^n}$, $\varepsilon = 2^{-\gamma n}$ we get

$$\mathbb{P}\left(|X_{\frac{k}{2^n}} - X_{\frac{k-1}{2^n}}| \ge 2^{-\gamma n}\right) \le C2^{-n(\beta+1)}2^{\alpha\gamma n} \tag{2.87}$$

$$=C2^{-n(\beta+1-\gamma\alpha)}\tag{2.88}$$

Let $E_n = \{\omega : \max_{1 \le k \le 2^n} |X_{\frac{k}{2^n}} - X_{\frac{k-1}{2^n}}| \ge 2^{-\gamma n}\}.$

$$\Rightarrow \mathbb{P}(E_n) \le 2^n C 2^{-n(\beta + 1 - \alpha \gamma)} \tag{2.89}$$

$$\leq C2^{-n(\beta-\alpha\gamma)}
\tag{2.90}$$

$$\Rightarrow \sum_{n\geq 1} \mathbb{P}(E_n) \leq C \sum_{n\geq 1} \frac{C}{2^{n(\beta - \alpha \gamma)}} < \infty$$
 (2.91)

whenever $\gamma < \beta/\alpha$. Using Borel-Cantelli we get claim 2.

3. claim: For any given $\omega \in \Omega^*$, $n > n^*(\omega)$, $\forall m \ge n$

$$|X_t(\omega) - X_s(\omega)| \le 2\sum_{j=n+1}^m \frac{1}{2^{j\gamma}}, \forall s, t \in D_m, 0 \le t - s \le 2^{-n}$$
(2.92)

Proof (induction): $m = n + 1 \Rightarrow t = \frac{k}{2^n}$, $s = \frac{k-1}{2^n}$ follows from claim 2. Now assume that claim 3 holds for m = n + 1, ..., M - 1. Choose $s, t \in D_m$, s < t and define $t' = \max\{u \in D_{m-1}, u \le t\}$, $s' = \min\{u \in D_{m-1}, u \ge s\}$. Therefore $s \le s' \le t' \le t$, $s' - s \le 2^{-M}$, $t - t' \le 2^{-M}$. Claim 2 gives

$$\Rightarrow |X_{s'}(\omega) - X_s(\omega)| \le 2^{-\gamma M} \tag{2.93}$$

$$|X_{t'}(\omega) - X_t(\omega)| \le 2^{-\gamma M} \tag{2.94}$$

By the induction hypothesis:

$$|X_{t'}(\omega) - X_{s'}(\omega)| \le 2 \sum_{n=1}^{M-1} \frac{1}{2^{\gamma j}}$$
 (2.95)

and with the triangular inequality

$$|X_s(\omega) - X_t(\omega)| \le 2\sum_{j=n+1}^M \frac{1}{2^{\gamma j}}$$
(2.96)

4. claim: $t \mapsto X_t(\omega)$ is uniformly continuous $\forall \omega \in \Omega^*$.

Proof: Choose $s, t \in D, 0 < t - s < h(\omega) := 2^{-n^*(\omega)}$ and $n > n^*(\omega)$ s.t. $2^{-(n+1)} \le t - s \le 2^{-n}$. Then from claim 3

$$|X_t(\omega) - X_s(\omega)| \le 2\sum_{j=n+1}^{\infty} \frac{1}{2^{\gamma j}}$$
(2.97)

$$=C\frac{1}{2^{\gamma n}} \le C|t-s|^{\gamma} \tag{2.98}$$

5. step: Define a modification:

$$\tilde{X}_{t}(\omega) = \begin{cases} X_{t}(\omega) & , \text{if } \omega \in \Omega^{*}, t \in D \\ 0 & , \text{if } \omega \notin \Omega^{*} \end{cases}$$
 (2.99)

For $\omega \in \Omega^*$, $t \notin D$ choose a sequence $(s_n)_{n \ge 1}$ in D s.t. $s_n \to t$. From claim 4 we gett that X_{s_n} is a convergent sequence (cauchy-sequence). So we can define

$$\tilde{X}_t(\omega) = \lim_{n \to \infty} X_{s_n}(\omega) \tag{2.100}$$

 $\Rightarrow \tilde{X}_t$ is continuous and satisfies

$$|X_t(\omega) - X_s(\omega)| < C|t - s|^{\gamma} \tag{2.101}$$

for t - s small enough. Finally one verify that \tilde{X}_t is indeed a modification of X_t .

$$\left.\begin{array}{c}
X_{s_n} \xrightarrow{a.s.} \tilde{X}_t \\
X_{s_n} \xrightarrow{P} X_t
\end{array}\right\} \Rightarrow X_t \stackrel{a.s.}{=} X_t \tag{2.102}$$

19.10.2012] 23.10.2012]

3 Filtrations and Stoppingtimes

3.1 Filtrations

From now on $(\Omega, \mathcal{F}, \mathbb{P})$ is always a probability space.

Definition 3.1 (Filtration).

An increasing family $\{\mathcal{F}_t, t \geq 0\}$ of σ -algebras of \mathcal{F} is called a *filtration*, i.e.

$$\mathcal{F}_s \subset \mathcal{F}_t \subset \mathcal{F} \quad \forall \ 0 \le s \le t \le \infty.$$
 (3.1)

Intuition: \mathcal{F}_t contains the information, that are known until the time $t \in [0, \infty)$.

Definition 3.2 (Filtered probability space).

 $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ is called *filtered probabilty space*.

Notation: We define

$$\mathcal{F}_{\infty} := \sigma(\mathcal{F}_t, t \ge 0) \qquad \qquad \mathcal{F}_{t+} := \cap_{s > t} \mathcal{F}_s \qquad (3.2)$$

$$\mathcal{F}_{t-} := \sigma(\mathcal{F}_s, s < t) \text{ the past} \qquad \qquad \mathcal{F}_{0-} = \{\emptyset, \Omega\}$$
 (3.3)

Obviously it holds $\mathcal{F}_{t-} \subset \mathcal{F}_t \subset \mathcal{F}_{t+}$.

If we have a stochastic process X on $(\Omega, \mathcal{F}, \mathbb{P})$ we denote by $\mathcal{F}_t^X := \sigma(X_s, 0 \le s \le t)$ the natural filtration (of X)

Definition 3.3.

If $\mathcal{F}_t = \mathcal{F}_{t+} \forall t \geq 0$, then we say that $(\mathcal{F}_t)_{t\geq 0}$ is *right-continuous*.

 $(\mathcal{F}_{t+})_{t\geq 0}$ is always right-continuous.

Definition 3.4.

A set A is called a $(\mathcal{F}, \mathbb{P})$ -nullset if

$$\exists \tilde{A} \in \mathcal{F} \text{ s.t. } A \subset \tilde{A} \text{ and } \mathbb{P}(\tilde{A}) = 0. \tag{3.4}$$

 $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0})$ is called *complete*, if all $(\mathcal{F}, \mathbb{P})$ -nullsets are in \mathcal{F}_0

Remark: • If $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ is complete, then every $(\Omega, \mathcal{F}_t, \mathbb{P})$ is complete.

- The other direction does not hold!
- Augmentation: Let $\mathcal{N} = \{(\mathcal{F}, \mathbb{P})\text{-nullsets}\}$. Set $\mathcal{F}' = \sigma(\mathcal{F} \cup \mathcal{N}), \mathcal{F}'_t = \sigma(\mathcal{F}_t \cup \mathcal{N})$. Then $(\Omega, \mathcal{F}', \mathcal{F}'_t, \mathbb{P})$ is complete.

Definition 3.5.

A filtered probabilty space $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \ge 0})$ is called *standard*, if it is complete and the filtration is right-continuous.

One can extend an filtration s.t. it becomes standard by

- Augmentation of \mathcal{F}_t and \mathcal{F} , and
- using \mathcal{F}_{t+} instead of \mathcal{F}_t .

3.2 Adapted processes

Definition 3.6.

(i) Let *X* be a stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$ with values in (E, \mathcal{E}) .

$$\mathcal{F}_t^X := \sigma(X_s : s \le t) \tag{3.5}$$

is called the *filtration generated by X*.

(ii) A stochastic process $(X_t)_{t\geq 0}$ is called *adapted* to the filtration $(\mathcal{F}_t)_{t\geq 0}$ if

$$\mathcal{F}_t^X \subset \mathcal{F}_t \ \forall t \ge 0, \tag{3.6}$$

i.e. if X_t is \mathcal{F}_t -measurable $\forall t \geq 0$.

Example: a) Let B_t a standard B; and \mathcal{F}_t the natural filtration. Then $X_t = B_{t/2}$ is adapted to $(\mathcal{F}_t)_{t\geq 0}$ but $Y_t := B_{2t}$ is not adapted to $(\mathcal{F}_t)_{t\geq 0}$.

b) Let $f \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $(\mathcal{F}_t)_{t\geq 0}$ a filtration, then $X_t := \mathbb{E}[f|\mathcal{F}_t]$ is adapted to $(\mathcal{F}_t)_{t\geq 0}$.

3.3 Progressively measurable processes

Definition 3.7 (Progressively measurable).

A process $(X_t)_{t\geq 0}$ is called *progressively measurable* (or simply *progressiv*) with respect to a filtration $(\mathcal{F}_t)_{t\geq 0}$ if $\forall t\geq 0$ the map

$$X: [0, t] \times \Omega \to E \tag{3.7}$$

$$(s,\omega) \mapsto X_s(\omega)$$
 (3.8)

is measurable with respect to $\mathcal{B}([0,t]) \otimes \mathcal{F}_t$.

Remark: • *It holds: progressively measurable* \Rightarrow *adapted but not the otherway round.*

• As one can see in Theorem 3.15 we need this property to ensure that the stopped process is again measurable.

Proposition 3.8.

Let $(X_t)_{t\geq 0}$ be a stochastic process which is adapted to $(\mathcal{F}_t)_{t\geq 0}$. Assume that each trajectory $t\mapsto X_t(\omega)$ is right-continuous (or left-continuous). Then $(X_t)_{t\geq 0}$ is progressively measurable.

Remark: For a BM there exists a modification that is progressively measurable.

Proof. Let t > 0 fixed. We approximate X by $X^{(n)}$. So for $k = 0, 1, ..., 2^{n-1}, 0 \le s \le t$, set

$$X_s^{(n)}(\omega) := X_{\frac{(k+1)t}{2^n}}(\omega) \text{ for } \frac{kt}{2^n} < s \le \frac{(k+1)t}{2^n}$$
 (3.9)

and $X_0^{(n)}(\omega) := X_0(\omega)$. Then $X^{(n)}: (s, \omega) \mapsto X_s^{(n)}(\omega)$ is measurable w.r.t. $\mathcal{B}([0, t]) \otimes \mathcal{F}_t$, since this map is equal to $(s, \omega) \mapsto \sum_{k=0}^{2^n-1} X_{\frac{(k+1)t}{2^n}} \mathbb{1}_{\left\{\frac{kt}{2^n} < s \le \frac{(k+1)t}{2^n}\right\}}$. But since X is right-continuous $\lim_{r \to \infty} X_s^{(n)}(\omega) = X_s(\omega) \forall (s, \omega) \in [0, t] \times \Omega$. $\Rightarrow (s, \omega) \mapsto X_s(\omega)$ is also $\mathcal{B}([0, t] \otimes \mathcal{F}_t$ measurable.

3.4 Stopping times

Definition 3.9 (Stopping time).

A map $T: \Omega \to [0, \infty]$ is called a (strong) stopping time w.r.t. $(\mathcal{F}_t)_{t\geq 0}$ if $\forall t \geq 0$

$$\{T \le t\} = \{\omega \in \Omega : T(\omega) \le t\} \in \mathcal{F}_t. \tag{3.10}$$

T is called a weak stopping time if

$$\{T < t\} \in \mathcal{F}_t. \tag{3.11}$$

If T is a (weak) stopping time, then T is measurable w.r.t. \mathcal{F} .

Proposition 3.10.

- a) Each fixed time $T = c \ge 0$ is a stopping time.
- b) Each stopping time is also a weak stopping time.
- c) If $(\mathcal{F}_t)_{t\geq 0}$ is a right-continuous filtration, then a weak stopping time is a stopping time.
- d) T is a stopping time $\Leftrightarrow X_t = \mathbb{1}_{[0,T)}$ is adapted to the filtration.
- e) *T* is a weak stopping time w.r.t. $(\mathcal{F}_t) \Leftrightarrow T$ is a stopping time w.r.t. (\mathcal{F}_{t+}) .

Proof. ad a) $A_t := \{ \omega \in \Omega | c \le t \}$ is either Ω or \emptyset . So $A_t \in \mathcal{F}_t \ \forall t$.

ad b)
$$\{T < t\} = \bigcup_{n \ge 1} \underbrace{\{T \le t - \frac{1}{n}\}}_{\in \mathcal{F}_{t - \frac{1}{n}}} \in \mathcal{F}_t$$

ad c) Let T be a weak stopping time. Recall that $\mathcal{F}_t = \mathcal{F}_{t+} = \bigcap_{s>t} \mathcal{F}_s$. Then

$$\forall m \ge 1\{T \le t\} = (\bigcap_{n \ge m} \{T < t + \frac{1}{n}\}) \in \mathcal{F}_{t + \frac{1}{m}}$$

$$\underbrace{(3.12)}$$

$$\Rightarrow \{T \le t\} \in \mathcal{F}_{t + \frac{1}{m}} \forall m \Rightarrow \{T \le t\} \in \mathcal{F}_{t + 1} \Rightarrow \{T \le t\} \in \mathcal{F}_{t + 2}$$

$$(3.13)$$

ad d)
$$\{T \le t\} = \{X_t = 0\} \in \mathcal{F}_t \text{ since } X_t \text{ is adapted.}$$

Proposition 3.11.

- a) Let T be a weak stopping time and $\vartheta > 0$ a constant $\Rightarrow T + \vartheta$ is a stopping time.
- b) Let T, S be stopping times $\Rightarrow T \land S, T \lor S$ and S + T are also stopping times.
- c) Let S, T be weak stopping times $\Rightarrow S + T$ is a weak stopping time.
- d) Let S, T be weak stopping times. If T > 0 and S > 0 OR if T > 0 and T is even a strong stopping time, then T + S is a strong stopping time.
- e) Let $\{T_n\}_{n\geq 0}$ be a sequence of weak stopping times. $\Rightarrow \sup_{n\geq 1} T_n$, $\inf_{n\geq 1} T_n$, $\limsup_{n\to\infty} T_n$ and $\liminf_{n\to\infty} T_n$ are also weak stopping times. If the T_n are strong stopping times, $\Rightarrow \sup_{n\geq 1} T_n$ is a strong stopping time.

Example: Let $(X_t)_{t\geq 0}$ be right-continuous and adapted, with $X_t \in \mathbb{R}^d$. For $A \in \mathcal{B}(\mathbb{R}^d)$. Define

$$T_A(\omega) := \inf\{t \ge 0 | X_t(\omega) \in A\} \text{ with inf } \emptyset = \infty$$
 (3.14)

is called the first entrance time of
$$A$$
. (3.15)

$$T_A^*(\omega) := \inf\{t > 0 | X_t(\omega) \in A\}$$
(3.16)

Remark: Each stopping time is a first entrance time $(X_t := \mathbb{1}_{(0,T_A)}(t))$.

Lemma 3.12.

- a) If A is open $\Rightarrow T_A$ is a weak stopping time.
- b) If A is closed and $X_t(\omega)$ is continuous $\Rightarrow T_A$ is a stopping time.

Proof. ad a)

$$\{T_A < t\} = \{X_s(\omega) \in A \text{ for some } 0 \le s \le t\}$$
(3.18)

$$\stackrel{\Delta}{=} \cup_{s \in \mathbb{Q}, 0 \le s < t} \{ X_s(\omega) \in A \} \in \mathcal{F}_t \tag{3.19}$$

Regarding Δ : " \supset " is clear. " \subset " follows from the right-continuity of X_t and A open. ad **b**)

$$\{T_A \le t\}^c = \{T_A > t\} \tag{3.20}$$

$$= \{ ||X_s - A|| > 0, \forall 0 \le s \le t \}$$
 (3.21)

$$= \cup_{n \ge 1} \{ ||X_s - A|| > \frac{1}{n}, \forall 0 \le s \le t \}$$
 (3.22)

$$\stackrel{\text{continuity}}{=} \cup_{n \ge 1} \{ ||X_s - A|| > \frac{1}{n}, \forall 0 \le s \le t, s \in \mathbb{Q} \}$$
 (3.23)

$$= \bigcup_{n \ge 1} \bigcap_{s \in \mathbb{Q}, 0 \le s \le t} \underbrace{\{\|X_s - A\| > \frac{1}{n}\}}_{\in \mathcal{F}_s \subset \mathcal{F}_t}$$
 (3.24)

[23.10.2012] [26.10.2012]

Definition 3.13 (\mathcal{F}_T).

Let *T* be a stopping time, then

$$\mathcal{F}_T := \{ A \in \mathcal{F} : A \cap \{ T \le t \} \in \mathcal{F}_t \forall t \ge 0 \}$$
 (3.25)

is called the σ -algebra of events determined prior to the stopping time T. Zu deutsch: Die σ -Algebra der T-Vergangenheit.

Lemma 3.14.

Let S and T be stopping times for a filtration (\mathcal{F}_t) . It holds

- a) Let $A \in \mathcal{F}_s \Rightarrow A \cap \{S \leq T\} \in \mathcal{F}_T$.
- b) $S \leq T \Rightarrow \mathcal{F}_S \subset \mathcal{F}_T$
- c) $\mathcal{F}_{T \wedge S} = \mathcal{F}_T \cap \mathcal{F}_S$
- d) $\{\{T < S\}, \{T \le S\}, \{T = S\}, \{T \ge S\}, \{T > S\}\} \subset \mathcal{F}_T \cap \mathcal{F}_S$.
- e) $\mathbb{E}[\cdot|\mathcal{F}_{T\wedge S}] = \mathbb{E}[\mathbb{E}[\cdot|\mathcal{F}_{S}]|\mathcal{F}_{T}].$
- f) $\mathbb{E}[\cdot|\mathcal{F}_T] = \mathbb{E}[\cdot|\mathcal{F}_{T \wedge S}]$ a.s. on the set $\{T \leq S\}$.

Theorem 3.15.

Let X be progressively measurable w.r.t. $(\mathcal{F}_t)_{t\geq 0}$ and T be a stopping time. Then

- 1. $X_T: \{T < \infty\} \to E, \ \omega \mapsto X_{T(\omega)}(\omega) \text{ is } \mathcal{F}_T\text{-measurable.}$
- 2. The stopped process

$$X^T: (t,\omega) \mapsto X_{T(\omega) \wedge t}(\omega)$$
 (3.26)

is also progressively measurable w.r.t. $(\mathcal{F}_t)_{t\geq 0}$.

Proof. ad 1) To show (1) we have to see that $\forall B \in \mathcal{B}(E)$ and $\forall t \geq 0$ it holds

$$\{X_T \in B\} \cap \{T \le t\} = \underbrace{\{X_{T \land t} \in B\}}_{\in \mathcal{F}_t \text{ if } (2) \text{ holds}} \cap \underbrace{\{T \le t\}}_{\in \mathcal{F}_t} \stackrel{!}{\in \mathcal{F}_t}$$
(3.27)

ad 2)

$$(s,\omega) \xrightarrow{\text{measurable being T a r.v.}} (T(\omega) \land s,\omega) \longmapsto X_{T(\omega) \land s}(\omega)$$
(3.28)

$$(s,\omega) \xrightarrow{\text{measurable}} X_s(\omega)$$
 (3.29)

$$\Rightarrow$$
 $(s, \omega) \mapsto X_{T(\omega) \wedge s}(\omega)$ is also measurable w.r.t. $\mathcal{B}([0, t]) \otimes \mathcal{F}_t \forall t \geq 0$.

Example: Let B be a standard BM and b > 0 a constant. Let $T_b = \inf\{t \ge 0 | B_t = b\}$. Question: $\mathbb{P}(T_b \le t) = ?$.

We know that for fixed $s: B_t - B_s$ and B_s are independent (Markov property). The same holds if s is stopping time (strong markov property).

$$\mathbb{P}(T_b \le t) = \mathbb{P}(T_b \le t, B_t < b) + \underbrace{\mathbb{P}(T_B \le t, B_t = b)}_{=0} + \mathbb{P}(T_b \le t, B_t > b)$$
(3.30)

$$=2\mathbb{P}\left(T_{b}\leq t,B_{t}>b\right)\tag{3.31}$$

$$=2\mathbb{P}\left(B_{t}>b\right)\tag{3.32}$$

$$=2\frac{1}{\sqrt{2\pi t}}\int_{b}^{\infty}e^{-\frac{x^{2}}{2t}}dx\tag{3.33}$$

$$= \frac{2}{1} \frac{2}{\sqrt{2\pi}} \int_{b/\sqrt{t}}^{\infty} e^{-\frac{y^2}{2}} dy \tag{3.34}$$

In particular

$$\mathbb{P}(T_b \in dt) = \frac{1}{\sqrt{2\pi t^3}} e^{-b^2/2t} |b| dt \tag{3.35}$$

 $[\]frac{1}{\sqrt{t}} = y$

4 Continuous time martingales

From now on $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ is always a filtered probability space and we have $E = \mathbb{R}$.

4.1 Conditional expectation

Definition 4.1 (Conditional expectation).

Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra and $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ a random variable. Then a random variable *Y* is called *conditional expectation* of *X* if $\forall A \in \mathcal{G}$

$$\int_{A} X d\mathbb{P} = \int_{A} Y d\mathbb{P} \quad \text{and } Y \text{ is } \mathcal{G}\text{-measurable.}$$
 (4.1)

and it is usually denoted by

$$Y = \mathbb{E}\left[X|\mathcal{G}\right]. \tag{4.2}$$

Remark: $\mathbb{E}[X|\mathcal{G}]$ *is a.s. unique.*

Properties: • $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]\right] = \mathbb{E}\left[X\right]$

- If X is G-measurable, then $\mathbb{E}[X|G] = X$ a.s..
- If Y is G-measurable and bounded, then $\mathbb{E}[XY|G] = Y\mathbb{E}[X|G]$ a.s.
- If X is G independent i.e., X independent from $\mathbb{1}_A$, $\forall A \in \mathcal{G}$, then $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$.
- If $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F} \Rightarrow \mathbb{E} [\mathbb{E} [X|\mathcal{G}] | \mathcal{H}] = \mathbb{E} [X|\mathcal{H}] \text{ a.s.}$
- $\mathbb{E}\left[\alpha X + \beta Y | \mathcal{G}\right] = \alpha \mathbb{E}\left[X | \mathcal{G}\right] + \beta \mathbb{E}\left[Y | \mathcal{G}\right] \forall X, Y \ r.v. \ and \ \alpha, \beta \in \mathbb{R}.$
- If $X \leq Y$ a.s., then $\mathbb{E}[X|\mathcal{G}] \leq \mathbb{E}[Y|\mathcal{G}]$ a.s.
- Jensen: Let φ be a convex function, then $\varphi(\mathbb{E}[X|\mathcal{G}]) \leq \mathbb{E}[\varphi(X)|\mathcal{G}]$. Now let $(X_n)_{n\geq 1}$ be a sequence of r.v.

- Fatou: If there exists a \mathcal{F} -measurable r.v. Y with $\mathbb{E}[Y] > -\infty$ s.t. $\forall k \geq 1, X_k \geq Y$, then $\mathbb{E}\left[\liminf_{n\to\infty} X_k|\mathcal{G}\right] \leq \lim\inf_{n\to\infty} \mathbb{E}\left[X_k|\mathcal{G}\right]$
- Monoton convergence: If $\mathbb{E}[X] > -\infty$ and $X_k \nearrow X$ a.s., then $\mathbb{E}[X_k|\mathcal{G}] \nearrow \mathbb{E}[X|\mathcal{G}]$ a.s.
- Dominated convergence: If there exists a \mathcal{F} -measurable r.v. Y s.t. $\mathbb{E}[Y] < \infty$ and $|X_k| \le Y$ and if $X_k \to X$ a.s., then $\mathbb{E}[X_k|\mathcal{G}] \to \mathbb{E}[X|\mathcal{G}]$ a.s.

4.2 Martingale

Definition 4.2 (Martingale).

Let X be a stochastic process adapted to a filtration $(\mathcal{F}_t)_{t\geq 0}$. X is called *submartingale*, if

- $X_t \in \mathbb{R}$ with $\mathbb{E}[X_t^+] \equiv \mathbb{E}[\max\{X_t, 0\}] < \infty$ for all $t \ge 0$.
- $\mathbb{E}[X_t|\mathcal{F}_s] \ge X_s \text{ a.s. } \forall 0 \le s \le t.$

X is a *supermartingale* if -X is a submartingale.

X is a *martingale* if it is both a super- and a submartingale.

Properties: $\forall 0 \le s \le t$

$$\mathbb{E}[X_t] = \mathbb{E}[\mathbb{E}[X_t | \mathcal{F}_s]] \ge \mathbb{E}[X_s] \text{ for submartingales}$$
(4.3)

$$\mathbb{E}[X_t] = \mathbb{E}\left[\mathbb{E}\left[X_t \middle| \mathcal{F}_s\right]\right] \le \mathbb{E}\left[X_s\right] \text{ for supermartingales} \tag{4.4}$$

$$\mathbb{E}[X_t] = \mathbb{E}[\mathbb{E}[X_t | \mathcal{F}_s]] = \mathbb{E}[X_s] \text{ for martingales}$$
(4.5)

We will now see some examples for martingales.

Proposition 4.3.

Let B be a d-dimensional (standard) BM and $\mathcal{F}_t \equiv \mathcal{F}_t^B$ the natural filtration. Then

a) For any fixed vector $Y \in \mathbb{R}^d$

$$Y \cdot B_t = \langle Y, B_t \rangle \tag{4.6}$$

is a martingale.

- b) $|B_t|^2 t \cdot d$ is a martingale.
- c) For $Y \in \mathbb{R}^d$

$$\exp\left(Y \cdot B_t - \frac{1}{2}|Y|^2 t\right) \tag{4.7}$$

is a martingale.

Remark: We will see that for any X with properties a) and b) + a.s. continuity and $(X_0 = 0) \Rightarrow X$ is a BM. (Levy-Martingale-Characterization)

Proof. B is adapted, therefore the transformations are also adapted.

Integrability is easy, due to the gaussian tails of the normal distribution. We will now check $\mathbb{E}\left[X_t|\mathcal{F}_s\right] = X_s.$

ad a) Let $0 \le s \le t$.

$$\mathbb{E}\left[Y \cdot B_t | \mathcal{F}_s\right] = \sum_{k=1}^d Y_k \mathbb{E}\left[B_t^{(k)} | \mathcal{F}_s\right]$$
(4.8)

$$= \sum_{k=1}^{d} Y_{k} \left[\mathbb{E} \left[\underbrace{B_{t}^{(k)} - B_{s}^{(k)}}_{\text{independent of } \mathcal{F}_{s}} | \mathcal{F}_{s} \right] + \mathbb{E} \left[\underbrace{B_{s}^{(k)}}_{\text{measurable w.r.t. } \mathcal{F}_{s}} | \mathcal{F}_{s} \right] \right]$$
(4.9)

$$= \sum_{k=1}^{d} Y_k \left(\mathbb{E} \left[B_t^{(k)} - B_s^{(k)} \right] + B_s^{(k)} \right)$$
 (4.10)

$$= Y \cdot B_s \tag{4.11}$$

ad b) Let $0 \le s \le t$.

$$\mathbb{E}\left[|B_t|^2|\mathcal{F}_s\right] = \mathbb{E}\left[|B_t - B_s|^2|\mathcal{F}_s\right] + \mathbb{E}\left[|B_s|^2 - |\mathcal{F}_s|\right] + 2\mathbb{E}\left[(B_t - B_s)\right] B_s \quad |\mathcal{F}_s|$$

$$= \mathbb{E}\left[|B_t - B_s|^2\right] + |B_s|^2 + 2B_s \underbrace{\mathbb{E}\left[B_t - B_s\right]}_{=0}$$
(4.12)

$$= \mathbb{E}\left[|B_t - B_s|^2\right] + |B_s|^2 + 2B_s \underbrace{\mathbb{E}\left[B_t - B_s\right]}_{=0}$$
(4.13)

$$= d(t - s) + |B_s|^2 (4.14)$$

ad c) Let $0 \le s \le t$.

$$\mathbb{E}\left[e^{Y \cdot B_t} | \mathcal{F}_s\right] = \mathbb{E}\left[e^{Y(B_t - B_s)} e^{Y B_s} | \mathcal{F}_s\right]$$
(4.15)

$$= e^{YB_s} \underbrace{\mathbb{E}\left[e^{Y(B_t - B_s)}|\mathcal{F}_s\right]}_{=\mathbb{E}\left[e^{YB_{t-s}}\right]}$$
(4.16)

It holds

$$\mathbb{E}\left[e^{YB_{t-s}}\right] = \prod_{k=1}^{d} \underbrace{\mathbb{E}\left[e^{Y^{(k)}B_{t-s}^{(k)}}\right]}_{=e^{\frac{(Y^{(k)})^2}{2}(t-s)}} = e^{\frac{t-s}{2}|Y|^2}$$
(4.17)

[26.10.12] [30.10.12]

Example: Let X be a L^1 r.v. and $(\mathcal{F}_t)_{t\geq 0}$ a filtration. $\Rightarrow Y_t := \mathbb{E}[X|F_t]$ is a martingale. Indeed:

- adapted by def of the conditional expectation
- L^1 since : $\mathbb{E}[|Y_t|] = \mathbb{E}[\mathbb{E}[X|\mathcal{F}_t]] \le \mathbb{E}[\mathbb{E}[|X||\mathcal{F}_t]] = \mathbb{E}[|X|] < \infty$ by using Jensen.
- For all $0 \le s \le t$: $\mathbb{E}[Y_t | \mathcal{F}_s] = \mathbb{E}[\mathbb{E}[X | \mathcal{F}_t] | \mathcal{F}_s] = \mathbb{E}[X | \mathcal{F}_s] = Y_s$ a.s. because $\mathcal{F}_s \subset \mathcal{F}_t$

4.3 Properties and inequalities

Proposition 4.4.

a) Let X, Y be two martingales, $\alpha \in \mathbb{R}$

$$X + Y, \quad X - Y, \quad \alpha X \tag{4.18}$$

are also martingales.

b) Let X, Y be two submartingales, $\alpha \ge 0$,

$$X + Y$$
, αX , $X \vee Y$, (4.19)

are also submartingales.

- c) Let *X* be a martingale and φ a convex funktion with $\varphi(X_t) \in L^1$ for all $t \ge 0$, then $\varphi(X)$ is a submartingale.
- d) X is a Martingale \Leftrightarrow X is a L^1 -sub-/supermartingale and $t \mapsto \mathbb{E}[X_t]$ is constant.

Example: $|B_t|$ with B_t a BM is a submartingale.

Proof. **ad a),b)** trivial.

ad c) Let $0 \le s \le t$

$$\mathbb{E}\left[\varphi(X_t)|\mathcal{F}_s\right] \stackrel{Jensen}{\geq} \varphi(\mathbb{E}\left[X_t|\mathcal{F}_s\right]) = \varphi(X_s) \tag{4.20}$$

Theorem 4.5 (Doobs maximum inequality).

Let $(X_t)_{t\geq 0}$ be a submartingale with

a) each trajectory is right-continuous and $I = [\sigma, \tau] \subset [0, \infty)$ ($I = [\sigma, \infty)$ also possible)

or b)
$$I = {\tau_1, \tau_2, ...}$$
 with $\tau_k \le \tau_{k+1}$ and $\lim_{k \to \infty} \tau_k = \tau$

Then

- 1. $\lambda \cdot \mathbb{P}\left(\sup_{t \in I} X_t \geq \lambda\right) \leq \mathbb{E}\left[X_{\tau}^+\right] \text{ with } X_{\tau}^+ = \max\{X_{\tau}, 0\}, \lambda > 0.$
- 2. If *X* is even a martingale or $X \ge 0$, then

$$\mathbb{E}\left[\left(\sup_{t\in I} X_t\right)^p\right] \le \left(\frac{p}{1-p}\right)^p \mathbb{E}\left[\left|X_{\tau}\right|^p\right] \forall p > 1 \tag{4.21}$$

Proof. **ad b**) \equiv discrete case \rightarrow proven in Stochastic Processes Thm 4.3.1 and 4.3.4. **ad a**) Strategy: discrete time \rightarrow use the fact that the trajectories are rightcontinuous

Definition 4.6.

The number of upcrossings of [a, b] (for $a < b \in \mathbb{R}$) during the time I = [0, T] is given by

$$U_{I}(a, b, X(\omega)) = \sup\{n \in \mathbb{N} : \exists t_{1} < t_{2} < \dots < t_{2n} \le T \text{ s.t. } X_{t_{1}}(\omega) < a, X_{t_{2}}(\omega) > b, X_{t_{3}}(\omega) < a, \dots\}$$

$$(4.22)$$

Theorem 4.7.

Let $a < b \in \mathbb{R}$, X_t a submartingale like in Thm 4.5

$$\mathbb{E}\left[U_I(a,b,X)\right] \le \frac{\mathbb{E}\left[X_T^+\right] + |a|}{b-a} \tag{4.23}$$

Proof. The proof is similar to the discrete case.

4.4 Convergence

Theorem 4.8.

Let *X* be a right-continuous submartingale with

$$C := \sup_{t>0} \mathbb{E}\left[X_t^+\right] < \infty \tag{4.24}$$

then there exists a r.v. X_{∞} s.t.

$$X_{\infty} = \lim_{t \to \infty} X_t \text{ a.s.} \tag{4.25}$$

Corollary 4.9.

Let *X* be a supermartingale, right-continuous and positive.

$$X_{\infty} = \lim_{t \to \infty} X_s \text{ exists a.s.} \tag{4.26}$$

Proof of the Corollary. Trivial from Thm 4.8 $Y_t = -X_t \Rightarrow C = \sup_{t \geq 0} \mathbb{E}[Y_t^+] = 0$.

Proof of the Theorem. From Thm 4.7 we know that $\forall n \ge 1, a < b$

$$\mathbb{E}\left[U_{[0,n]}(a,b,X)\right] \le \frac{\mathbb{E}\left[X_{n}^{+}\right] + |a|}{b-a} \le \frac{C+a}{b-a} \tag{4.27}$$

Taking $n \to \infty$ gives with monoton convergence

$$E[U_{[0,\infty)}(a,b,X)] \le \frac{C+a}{b-a} < \infty \tag{4.28}$$

$$\Rightarrow P(\underbrace{U_{[0,\infty)}(a,b,X) = \infty}) = 0 \forall a < b$$

$$\Rightarrow P(\underbrace{U_{[0,\infty)}(a,b,X) = \infty}) = 0 \forall a < b$$

$$\Rightarrow \mathbb{P}\left(\bigcup_{a < b,a,b \in \mathbb{Q}} \Lambda_{a,b}\right) = 0 \Rightarrow \mathbb{P}\left(\limsup_{t \to \infty} X_t > \liminf_{t \to \infty} X_t\right) = 0.$$

Remark: Finally one can also verify that X_{∞} is a.s. finite.

$$\mathbb{E}\left[|X_{\infty}|\right] \le \liminf_{t \to \infty} \mathbb{E}\left[|X_t|\right] \stackrel{?}{<} \infty \tag{4.29}$$

by using Fatou. Regarding "?":

$$\mathbb{E}\left[|X_t|\right] = 2\mathbb{E}\left[X_t^+\right] - \mathbb{E}\left[X_t\right] \le 2C - \mathbb{E}\left[X_0\right] < \infty \tag{4.30}$$

because $\mathbb{E}[X_t] \geq \mathbb{E}[X_0]$ (since X_t is a submartingale)

In the exercise we will show

Theorem 4.10.

Let X be a right-continuous, positive submartingale (resp. martingale). Then we have 3 equivalent statements

- 1. $\lim_{t\to\infty} X_t$ exists in L^1 .
- 2. $\{X_t, t \in [0, \infty)\}$ is uniformly integrable
- 3. $\exists X_{\infty} \in L^1$ s.t. $X_{\infty} = \lim_{t \to \infty} X_t$ a.s. and $(X_t)_{t \in [0,\infty]}$ is a submartingale (resp. martingale) w.r.t. $(\mathcal{F}_t)_{t\in[0,\infty]}$.

Remark: For the case of a martingale, $\exists X_{\infty} \in L^1$ s.t. $X_t = \mathbb{E}[X_{\infty} | \mathcal{F}_t]$ a.s.

Remark (So nicht in der Vorlesung): Es gilt:

$$\{X_t: t \in [0,\infty)\} \ unif. \ integ. \Leftrightarrow \begin{cases} \{X_t: t \in [0,\infty)\} \ unif. \ bounded \ in \ L^1 \ and \\ \forall \varepsilon > 0 \exists \delta > 0: \ \forall A \in \mathcal{F}: \mathbb{P}(A) < \delta \Rightarrow \sup_t \mathbb{E}\left[|X_t|\mathbb{1}_A\right] < \varepsilon \end{cases} \tag{4.31}$$

Angenommen $\sup_t \mathbb{E}[|X_t|^p] \le C < \infty$ für ein p > 1. Dann sind die beiden rechten Bedingungen erfüllt.

$$\sup \mathbb{E}\left[|X_t|\right]^p \le \sup \mathbb{E}\left[|X_t|^p\right] < \infty \Rightarrow \sup \mathbb{E}\left[|X_t|\right] < \infty \tag{4.32}$$

$$\sup_{t} \mathbb{E}\left[|X_{t}|\right]^{p} \leq \sup_{t} \mathbb{E}\left[|X_{t}|^{p}\right] < \infty \Rightarrow \sup_{t} \mathbb{E}\left[|X_{t}|\right] < \infty$$

$$\mathbb{E}\left[|X_{t}|\mathbb{1}_{A}\right] \stackrel{H\"{o}lder}{\leq} \mathbb{E}\left[|X_{t}|^{p}\right]^{1/p} \mathbb{E}\left[|\mathbb{1}_{A}|^{p'}\right]^{1/p'} \leq C \cdot \mathbb{P}\left(A\right)^{1/p'} \stackrel{\mathbb{P}(A) \to 0}{\longrightarrow} 0$$

$$(4.32)$$

Somit sind die Vorraussetzungen für das obige Theorem erfüllt! Tatsächlich gilt sogar $X_t \to X_{\infty}$ in L^p .

4.5 Optional Sampling

For a submartingale *X* it holds

$$X_s \le \mathbb{E}\left[X_t \middle| \mathcal{F}_s\right] \text{ a.s.}$$
 (4.34)

We now want a generalisation for s, t two stopping times.

Theorem 4.11 (Optional Sampling).

Let X be a right-continuous submartingale w.r.t $(\mathcal{F}_t)_{t\geq 0}$ and S, T two bounded stopping times satisfying $S \leq T$.

$$\Rightarrow X_S \le \mathbb{E}\left[X_T | \mathcal{F}_S\right] \text{ a.s.} \tag{4.35}$$

Remark: To verify $X_S \leq \mathbb{E}[X_T | \mathcal{F}_S]$ a.s. we have to show that $\forall A \in \mathcal{F}_S$

$$\int_{A} X_{S} d\mathbb{P} \leq \int_{A} X_{T} d\mathbb{P} \stackrel{def}{\equiv} \int_{A} \mathbb{E} \left[X_{T} | \mathcal{F}_{S} \right] d\mathbb{P} \tag{4.36}$$

Proof. $\exists t_0 \text{ s.t. } S \leq T \leq t_0$. Assume that $X_S \leq \mathbb{E}[X_T | \mathcal{F}_S]$ holds for $X_t \geq 0$. \Rightarrow for $X_t \geq -m \Rightarrow Y_t := X_t + m \geq 0$ by linearity \Rightarrow statement holds $\forall X_t \geq -m$. $\Rightarrow X_t^{(m)} := X_t \vee (-m)$. Monotone convergence gives that it is always true.

A simple bound $\mathbb{E}[X_T] \leq \mathbb{E}[X_{t_0}] < \infty$.

a) Discrete approximation.

We define

$$T_n := \frac{k+1}{2^n} \text{ if } \frac{k}{2^n} \le T < \frac{k+1}{2^n} \text{ for a } k \ge 0.$$
 (4.37)

Similarly define S_n . It is clear that $T \leq T_n \forall n$ and $T_n \geq T_{n+1} \geq \dots$ Is T_n a stopping time?

$$\{T_n \le t\} = \underbrace{\left\{T < \frac{\lceil 2^n t \rceil}{2^n}\right\}}_{\in \mathcal{F}_t} \cap \underbrace{\left\{T < \frac{\lceil 2^n t \rceil - 1}{2^n}\right\}^c}_{\in \mathcal{F}_t} \in \mathcal{F}_t$$
 (4.38)

Also $\forall n : T_n \geq S_n$. Using that X is right-continuous it follows that

$$\lim_{n \to \infty} X_{S_n} = X_S \text{ and } \lim_{n \to \infty} X_{T_n} = X_T \tag{4.39}$$

b) Show: $X_{T_n} \leq \mathbb{E}\left[X_{t_0} | \mathcal{F}_{T_n}\right]$.

Take $K_n := \lceil t_0 2^n \rceil$.

$$\Rightarrow \mathbb{E}\left[X_{t_0}|\mathcal{F}_{T_n}\right] = \sum_{l=1}^{K_n} \mathbb{E}\left[X_{t_0}|T_n = \frac{l}{2^n}\right] \mathbb{1}_{\left[T_n = \frac{l}{2^n}\right]}$$
(4.40)

submart.
$$\sum_{l=1}^{K_n} X_{\frac{l}{2^n}} \mathbb{1}_{[T_n = \frac{l}{2^n}]} = X_{T_n}$$
 (4.41)

 $\Rightarrow \{X_{T_n} : n \in \mathbb{N}\}\$ is uniformely integrable, since $\{\mathbb{E}[X_{t_0}|\mathcal{F}_{T_n}] : n \in \mathbb{N}\}\$ unif. integ.

$$\Rightarrow \lim_{n \to \infty} X_{T_n} = X_T \in L^1 \tag{4.42}$$

(analogue for S_n).

c) Show: $\forall A \in \mathcal{F}_{S_n}$:

$$\int_{A} X_{S_{n}} d\mathbb{P} \le \int_{A} X_{T_{n}} d\mathbb{P} \tag{4.43}$$

Too see this: Let

$$A_j = A \cap \{S_n = \frac{j}{2^n}\} \in \mathcal{F}_{\frac{j}{2^n}}$$
 (4.44)

 $\Rightarrow \forall k \geq j : A_j \cap \{T_n > \frac{k}{2^n}\} \in \mathcal{F}_{\frac{k}{2^n}}$

$$\Rightarrow \int_{A_{j} \cap \{T_{n} \geq \frac{k}{2^{n}}\}} X_{\frac{k}{2^{n}}} d\mathbb{P} \stackrel{submart.}{\leq} \int_{A_{j} \cap \{T_{n} = \frac{k}{2^{n}}\}} X_{T_{n}} d\mathbb{P} + \int_{A_{j} \cap \{T_{n} \geq \frac{k+1}{2^{n}}\}} X_{\frac{k+1}{2^{n}}} d\mathbb{P}$$
(4.45)

Starting with k = j and iterating:

$$\int_{A_j} X_{S_n} d\mathbb{P} = \int_{A_j \cap \{T_n \ge \frac{j}{2^n}\}} X_{\frac{j}{2^n}} d\mathbb{P} \le \int_{A_j \cap \{T_n \ge \frac{j}{2^n}\}} X_{T_n} d\mathbb{P}$$

$$\tag{4.46}$$

Now $\sum_{j} \Rightarrow \mathbf{c}$) **d**) $\forall A \in \mathcal{F}_{S} \subset \cap_{n \geq 1} \mathcal{F}_{S_n}$

$$\Rightarrow \int_{A} X_{S_n} d\mathbb{P} \le \int_{A} X_{T_n} d\mathbb{P} \tag{4.47}$$

Now take $\lim_{n\to\infty}$

$$\Rightarrow \forall A \in \mathcal{F}_S \int_A X_S d\mathbb{P} \le \int_A X_T d\mathbb{P} \tag{4.48}$$

[30.10.2012] [02.11.2012]

Corollary 4.12.

Let X a right-continuous adapted process and integrable. Then the following statements are equivalent:

- (i) X is a martingale.
- (ii) For all bounded stopping times T it holds $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.

Proof. " \Rightarrow " Using 2.11 with S = 0 we get

$$\mathbb{E}\left[X_T\right] = \mathbb{E}\left[\mathbb{E}\left[X_T \middle| \mathcal{F}_0\right]\right] \ge \mathbb{E}\left[X_0\right] \tag{4.49}$$

But also the other inequality holds, since $-X_t$ is a submartingale, too.

"\(\)" To show $\forall s < t, A \in \mathcal{F}_s$

$$\mathbb{E}\left[X_{s}\mathbb{1}_{A}\right] = \mathbb{E}\left[X_{t}\mathbb{1}_{A}\right] \tag{4.50}$$

Define two stopping times as follows: Let $T(\omega) := t$ and

$$S(\omega) := \begin{cases} s &, \omega \in A \\ t &, \text{ otherwise} \end{cases}$$
 (4.51)

Let us compute

$$\mathbb{E}\left[X_{0}\right] \stackrel{\text{hyp}}{=} \mathbb{E}\left[X_{T}\right] = \mathbb{E}\left[X_{t}\mathbb{1}_{A}\right] + \mathbb{E}\left[X_{t}\mathbb{1}_{A^{c}}\right] \tag{4.52}$$

but also

$$\mathbb{E}[X_0] \stackrel{\text{hyp}}{=} \mathbb{E}[X_S] = \mathbb{E}[X_s \mathbb{1}_A] + \mathbb{E}[X_t \mathbb{1}_{A^c}] \implies \mathbb{E}[X_s \mathbb{1}_A] = \mathbb{E}[X_t \mathbb{1}_A] \,\forall A \in \mathcal{F}_s, \, s < t, \tag{4.53}$$

i.e.
$$X_s = \mathbb{E}[X_t | \mathcal{F}_s]$$
 a.s.

Corollary 4.13.

Let X be right-continuous, adapted and integrable. Then X is a submartingale $\Leftrightarrow \forall$ bounded stopping times $S \leq T$ it holds

$$\mathbb{E}\left[X_S\right] \le \mathbb{E}\left[X_T\right] \tag{4.54}$$

Proof. "⇒"

$$\mathbb{E}\left[X_{T}\right] \stackrel{\mathcal{F}_{S} \subset \mathcal{F}_{T}}{=} \mathbb{E}\left[\mathbb{E}\left[X_{T} \middle| \mathcal{F}_{S}\right]\right] \stackrel{4.11}{\geq} \mathbb{E}\left[X_{S}\right] \tag{4.55}$$

" \Leftarrow " Let $s < t, A \in \mathcal{F}_s$ define S and T as in the previous proof.

$$\Rightarrow \mathbb{E}\left[X_{S}\right] \stackrel{hyp}{\leq} \mathbb{E}\left[X_{T}\right] = \mathbb{E}\left[X_{t}\mathbb{1}_{A}\right] + \mathbb{E}\left[X_{t}\mathbb{1}_{A^{c}}\right] \tag{4.56}$$

But the right side is

$$\mathbb{E}\left[X_{S}\right] = \mathbb{E}\left[X_{S}\mathbb{1}_{A}\right] + \mathbb{E}\left[X_{t}\mathbb{1}_{A^{c}}\right] \tag{4.57}$$

$$\Rightarrow \mathbb{E}\left[X_{s}\mathbb{1}_{A}\right] \leq \mathbb{E}\left[X_{t}\mathbb{1}_{A}\right], \forall s < t, A \in \mathcal{F}_{s}.$$

Corollary 4.14 (Optional Stopping).

Let *X* be a (sub-)martingale and *T* a stopping time. Then,

$$X_t^T(\omega) \equiv X_{T(\omega) \wedge t}(\omega) \tag{4.58}$$

is also a (sub-)martingale.

Proof. Let s < t. Define $S = s \wedge T$ and $U = t \wedge T$. Then by definition $S \le U$. By Theorem 4.11 we get $X_S \le \mathbb{E}[X_U | \mathcal{F}_S]$. If we do the same for -X we have $X_S = \mathbb{E}[X_U | \mathcal{F}_S]$ and thus $X_{S \wedge T} = \mathbb{E}[X_{t \wedge T} | \mathcal{F}_{S \wedge T}]$.

Next goal: Understand what is

$$\int_0^t f(B_s)dB_s = ? \tag{4.59}$$

with B a Brownian Motion. We will see

$$f(B_t) = f(B_0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds$$
 (4.60)

where ds will be the quadratic variation of B.

5 Continuous semimartingales and quadratic variation

5.1 Semimartingales

Definition 5.1.

- a) $X \in \mathcal{A}^+$: An adapted process X is called *continuous and increasing* if for almost all $\omega \in \Omega$ the map $t \mapsto X_t(\omega)$ is continuous and increasing.
- b) $X \in \mathcal{A}$: An adapted process is called *continuous with bounded variation* if for almost all $\omega \in \Omega$: $t \mapsto X_t(\omega)$ is continuous and has finite variation, i.e.

$$\forall t \ge 0, S_t(\omega) \equiv S_t(X(\omega)) := \sup_{0 \le t_0 \le \dots \le t_n \le t, n \in \mathbb{N}} \sum_{k=1}^n |X_{t_{k+1}}(\omega) - X_{t_k}(\omega)| < \infty$$
 (5.1)

- c) $X \in \mathcal{M}$: X is a continuous martingale.
- d) $X \in \mathcal{M}_{loc}$: An adapted process X is a *local*, *continuous martingale* if \exists a sequence of stopping times $T_1 \leq T_2 \leq ...$ with $\lim_{n \to \infty} T_n = \infty$ a.s. and X^{T_n} is a martingale $\forall n \geq 1$.

Lemma 5.2.

 $X \in \mathcal{A} \Leftrightarrow X = Y - Z \text{ with } Y, Z \in \mathcal{A}^+.$

Proof. Take $Y = \frac{S+X}{2}$ and $Z = \frac{S-X}{2}$ where S is the variation of X.

Lemma 5.3.

- a) $X \in \mathcal{M} \Rightarrow X \in \mathcal{M}_{loc}$
- b) $X \in \mathcal{M}_{loc}, X \ge 0 \Rightarrow X$ supermartingale.
- c) $X \in \mathcal{M}_{loc}$ and X is bounded $\Rightarrow X \in \mathcal{M}$.
- d) $X \in \mathcal{M} \Leftrightarrow X \in \mathcal{M}_{loc}$ and $\forall t \geq 0 : \{X_{T \wedge t} : T \text{ stopping time}\}\$ is uniformly integrable.

Remark: $\exists X \in \mathcal{M}_{loc}, X$ uniformely integrable s.t. $X \notin \mathcal{M}$. (ex. 3.36 in Karatzas, Shreve)

Proof. ad a) Take as sequence of stopping times

$$T_n = \infty \forall n \ge 1. \tag{5.2}$$

ad b) $\forall s < t$:

$$\mathbb{E}\left[X_{t}|\mathcal{F}_{s}\right] = \mathbb{E}\left[\lim_{n\to\infty}X_{T_{n}\wedge t}|\mathcal{F}_{s}\right] \stackrel{Fatou}{\leq} \liminf_{n\to\infty}\mathbb{E}\left[X_{T_{n}\wedge t}|\mathcal{F}_{s}\right] \stackrel{X^{T_{n}}\in\mathcal{M}}{=} \liminf_{n\to\infty}X_{T_{n}\wedge s} = X_{s} \text{ a.s..}$$
 (5.3)

¹There exist $T_n \nearrow \infty$ s.t. X^{T_n} is martingale

ad c) We have $|X| \le C < \infty$, therefore $C - X \ge 0$, $C + X \ge 0$. Using b) we get C - X is a supermartingale and C + X is a supermartingale. $\Rightarrow \pm X$ are both supermartingales $\Rightarrow X$ is a martingale.

ad d) " \Rightarrow ": Let $X \in \mathcal{M}$. From a): $X \in \mathcal{M}_{loc}$. Let T be any stopping time and $t \in \mathbb{R}_+$ fixed. To show: $\mathbb{E}[|X_{T \wedge t}|] \leq C$ uniformly in T.

$$\mathbb{E}\left[|X_{T \wedge t}|\right] \stackrel{X \in \mathcal{M}}{=} \mathbb{E}\left[|\mathbb{E}\left[X_{t}|\mathcal{F}_{T \wedge t}\right]|\right] \stackrel{Jensen}{\leq} \mathbb{E}\left[\mathbb{E}\left[|X_{t}||\mathcal{F}_{T \wedge t}\right]\right] \leq \mathbb{E}\left[|X_{t}|\right] < \infty \tag{5.4}$$

The bound is uniformly in T.

"\(\infty\)": By assumption, \exists a sequence of T_n \(\triangle\) ∞ of stopping times s.t. $X^{T_n} \in \mathcal{M}$. Let T be a bounded stopping time. By Cor. 4.12 we have

$$\mathbb{E}\left[X_{T_n \wedge t \wedge T}\right] = \mathbb{E}\left[X_0\right] \tag{5.5}$$

$$\Rightarrow \mathbb{E}\left[X_{0}\right] = \lim_{n \to \infty} \mathbb{E}\left[X_{T_{n} \wedge T \wedge t}\right] = \mathbb{E}\left[\lim_{n \to \infty} X_{T_{n} \wedge T \wedge t}\right] = \mathbb{E}\left[X_{T \wedge t}\right] \forall t \geq 0. \tag{5.6}$$

 \Rightarrow for all bounded T (by taking t > T) $\mathbb{E}[X_0] = \mathbb{E}[X_T]$. $\overset{4.12}{\Rightarrow} X$ is a martingale.

Definition 5.4 (Semimartingale).

 $X \in \mathcal{S}$: A process X is called a *continuous semimartingale* if $\exists M \in \mathcal{M}_{loc}$ and $A \in \mathcal{A}$ s.t.

$$X = M + A. (5.7)$$

Theorem 5.5.

Let $\mathcal{M}_{loc}^0 := \{X \in \mathcal{M}_{loc} : X_0 = 0 \text{ a.s.} \}$. Then,

$$\mathcal{M}_{loc}^0 \cap \mathcal{A} = \{0\} \tag{5.8}$$

and $S = \mathcal{M}_{loc}^0 \oplus \mathcal{A}$.

[02.11.2012] [06.11.2012]

Remark: Recall Doob for p=2: $\mathbb{E}\left[\sup_{t\geq 0} X_t^2\right] \leq 4\mathbb{E}\left[X_{\infty}^2\right]$

Proof. Assume that we can prove that

if
$$X \in \mathcal{M}^0 \cap \mathcal{A} \Rightarrow X = 0$$
 a.s.. (5.9)

Then, by the definition of \mathcal{M}_{loc} there exist $T_1 \leq T_2 \leq \ldots$ stopping times with $T_n \nearrow \infty$ a.s. s.t. $X^{T_n} \in \mathcal{M}$. Now let $X \in \mathcal{M}^0_{loc} \cap A \Rightarrow X^{T_n} \in \mathcal{M}^0 \cap \mathcal{A} \stackrel{(5.9)}{\Rightarrow} X_{T_n \wedge t} = 0$ but since $\forall t \geq 0 \lim_{n \to \infty} T_n \wedge t = t$ a.s. it holds $X_t = 0 \forall t \geq 0$.

We will now show, that (5.9) holds. So let $X \in \mathcal{M}^0 \cap \mathcal{A}$. We can also restrict ourself to processes X s.t. X is bounded and $S_{\infty}(X) < \infty$. Indeed, we can introduce stopping times

$$T'_n := \inf\{t > 0 : |X_t| > n \text{ or } S_t(x) > n\}.$$
(5.10)

Then $X^{T'_n}$ is bounded with finite variation. $\Rightarrow X^{T'_n} \in \mathcal{M}^0 \cap \mathcal{A} \forall n \stackrel{(5.9)}{\Rightarrow} X^{T'_n} = 0 \forall n \Rightarrow X = 0$. Now show (5.9) for X bounded and $S_{\infty}(X) < \infty$. Let $\varepsilon > 0$.

$$T_0 := 0$$
 (5.11)

$$T_{k+1} := \inf\{t \ge T_k : |X_k - X_{T_k}| > \varepsilon\}.$$
 (5.12)

Since *X* is continuous and $X \in \mathcal{A} \Rightarrow \lim_{k \to \infty} T_k = \infty$.

$$\mathbb{E}\left[X_{T_n}^2\right] = \mathbb{E}\left[\sum_{k=0}^{n-1} (X_{T_{k+1}}^2 - X_{T_k}^2)\right]$$
(5.13)

$$= \mathbb{E}\left[\sum_{k=0}^{n-1} (X_{T_{k+1}} - X_{T_k})^2\right] + 2\sum_{k=0}^{n-1} \underbrace{\mathbb{E}\left[X_{T_k}(X_{T_{k+1}} - X_{T_k})\right]}_{\mathbb{E}\left[X_{T_k}\mathbb{E}\left[X_{T_k} - X_{T_{k+1}} | \mathcal{F}_{T_k}\right]\right]^{Mart.}}_{= 0}$$
(5.14)

$$\leq \varepsilon \mathbb{E}\left[\sum_{k=0}^{n-1} |X_{T_{k+1}} - X_{T_k}|\right] \tag{5.15}$$

$$\leq \varepsilon \cdot S_{\infty}(X) \to 0 \text{ as } \varepsilon \to 0$$
 (5.16)

$$\Rightarrow \mathbb{E}\left[X_{T_n}^2\right] = 0 \tag{5.17}$$

By taking $n \to \infty$ we get

$$0 \le \mathbb{E}\left[X_{\infty}^{2}\right] = \mathbb{E}\left[\liminf_{n \to \infty} X_{T_{n}}^{2}\right] \le \liminf_{n \to \infty} \mathbb{E}\left[X_{T_{n}}^{2}\right] = 0$$
(5.18)

and thus $\mathbb{E}\left[X_{\infty}^{2}\right]=0$. Using Doob Max inequality (p=2):

$$\mathbb{E}\left[\sup_{t\geq 0} X_t^2\right] \leq 4\mathbb{E}\left[X_\infty^2\right] = 0 \tag{5.19}$$

Therefore X = 0 a.s..

5.2 Doob-Meyer decomposition

Theorem 5.6.

Let *X* be a continuous supermartingale, then $\exists M \in \mathcal{M}_{loc}^0$ and $A \in \mathcal{A}^+$ s.t.

$$X_t = M_t \stackrel{(+)}{-} A_t \tag{5.20}$$

Moreover, *M* and *A* are unique (up to indistinguishability).

Hints for the proof: Uniqueness: Assume $X_t = M_t - A_t = M_t' - A_t' \Rightarrow \underbrace{M_t - M_t'}_{\in \mathcal{M}_{loc}} = \underbrace{A_t - A_t'}_{\in \mathcal{R}} \stackrel{5.5}{=} 0$ a.s.

Existence in discrete time case: Let $(X_n)_{n\geq 1}$ be a discrete time supermartingale $\Rightarrow Y_n := \mathbb{E}[X_n - X_{n+1}|\mathcal{F}_n] \geq 0$. Then define $A_n := \sum_{k=0}^{n-1} Y_k \Rightarrow$ is increasing in n, and it is \mathcal{F}_{n-1} -measurable and $M_n = X_n + A_n$ is a Martingale. Show for the case m = n - 1:

$$\mathbb{E}\left[X_n + A_n | \mathcal{F}_{n-1}\right] = \mathbb{E}\left[X_n | \mathcal{F}_{n-1}\right] + \sum_{k=0}^{n-1} \mathbb{E}\left[\mathbb{E}\left[X_k - X_{k+1} | \mathcal{F}_k\right] | \mathcal{F}_{n-1}\right]$$
(5.21)

$$= \mathbb{E}\left[X_n | \mathcal{F}_{n-1}\right] + \mathbb{E}\left[X_{n-1} - X_n | \mathcal{F}_{n-1}\right] + \sum_{k=0}^{n-2} \mathbb{E}\left[X_k - X_{k+1} | \mathcal{F}_k\right]$$
 (5.22)

$$=X_{n-1}+A_{n-1} (5.23)$$

Corollary 5.7.

Continuous Supermartingales (and Submartingales) are continuous semi-martingales.

Proof. Let *X* be a continuous supermartingale. By Theorem 5.6 X = M - A where $M \in \mathcal{M}^0_{loc}$ and $A \in \mathcal{A}^+$. By Lemma 5.2 we have $(-A) \in \mathcal{A}$. Therefore $X \in \mathcal{S}$.

5.3 Quadratic Variation

Definition 5.8 (Preliminary).

Let *X* be a stochastic processs. Then the quadratic variation of *X* is defined by

$$Q_t(X)(\omega) := \lim_{\|\Delta\| \to 0} \sum_{k=1}^n |X_{t_k}(\omega) - X_{t_{k-1}}(\omega)|^2$$
 (5.24)

where $\Delta = \{0 = t_0 \le t_1 \le ... \le t_n = t\}$ is a partition of [0, t] with "mash-size"

$$\|\Delta\| = \max_{0 \le k \le n-1} (t_{k+1} - t_k). \tag{5.25}$$

We know that for $X = B \equiv$ Brownian Motion:

$$Q_t(B) = t \text{ in } L^2, \tag{5.26}$$

(see Lemma 2.5)

Theorem 5.9.

- a) $\forall M \in \mathcal{M}_{loc}, \exists ! \langle M \rangle \in \mathcal{A}_0 \text{ s.t. } M^2 M_0^2 \langle M \rangle \in \mathcal{M}_{loc}^0$.
- b) $\forall M, N \in \mathcal{M}_{loc}, \exists ! \langle M, N \rangle \in \mathcal{A}_0 \text{ s.t. } M \cdot N M_0 \cdot N_0 \langle M, N \rangle \in \mathcal{M}^0_{loc}.$

(uniqueness up to indistinguishability)

Proof. **a)** Let $M \in \mathcal{M}_{loc} \Rightarrow M^2$ is a local submartingale. By the Doob-Meyer-decomposition, $\exists A \in \mathcal{A}_0$ s.t. $M^2 = M' + A$ with $M' \in \mathcal{M}_{loc}$. We now define $\langle M \rangle := A \Rightarrow M' = M^2 - \langle M \rangle \in \mathcal{M}_{loc}$ and since $\langle M \rangle_0 = 0$ we also get $M^2 - M_0^2 - \langle M \rangle \in \mathcal{M}_{loc}^0$

b) Just use the polarisation identity

$$M \cdot N = \frac{1}{4}((M+N)^2 - (M-N)^2)$$
 (5.27)

Example: For a Brownian Motion B, we already know that

$$B_t^2 - t \tag{5.28}$$

is a martingale and $t \mapsto t$ is in \mathcal{A}_0 . $\Rightarrow 5.9$ implies: $\langle B \rangle_t = t$. We also know: $Q_t(B) = t$ and this is **not** an accident.

Definition 5.10 (Final version of Definition 5.8).

- a) $\langle M \rangle \equiv \langle M, M \rangle$ is called the quadratic variation of M.
- b) $\langle M, N \rangle$ is called the covariation of M and N.

Remark: It holds $\langle M, N \rangle = \frac{1}{4}(\langle M + N \rangle - \langle M - N \rangle)$

Some properties:

Lemma 5.11.

 $\forall M, N \in \mathcal{M}_{loc}$ it holds

- a) $\langle \cdot, \cdot \rangle$ is symmetric, billinear, positive definit.
- b) For all stopping times T it holds $\langle M, N \rangle^T = \langle M^T, N^T \rangle$.
- c) $\langle M \rangle = \langle M M_0 \rangle$
- d) $\langle M \rangle = 0 \Leftrightarrow M$ is a constant.

Proof. ad a) easy, use also (d).

ad b) Show $\langle M \rangle^T = \langle M^T \rangle$ and use the remark before the Lemma.

$$(\underbrace{M^2 - M_0^2 - \langle M \rangle}^T)^T = (M^T)^2 - M_0^2 - \langle M \rangle^T \in \mathcal{M}_{loc} \text{ (Cor 4.14)}$$

$$(5.29)$$

but there $\exists ! \langle M^T \rangle$ s.t.

$$(M^T)^2 - M_0^2 - \langle M^T \rangle \in \mathcal{M}_{loc} \tag{5.30}$$

 $\Rightarrow \langle M^T \rangle = \langle M \rangle^T.$

ad c) and d) We can assume $M-M_0$ bounded (otherwise use $T_n=\inf\{t>0: |M-M_0|>n^2\}$ and b)). Therefore (by 5.3 (c)) $M-M_0\in\mathcal{M}$.

ad c) By Theorem 5.9 $\exists ! \langle M - M_0 \rangle \in \mathcal{A}_0$ s.t. $(M - M_0)^2 - \langle M - M_0 \rangle \in \mathcal{M}^0$ but we also have

$$(M - M_0)^2 - \langle M \rangle = \underbrace{M^2 - M_0^2 - \langle M \rangle}_{\in \mathcal{M}^0} - \underbrace{2M_0(M - M_0)}_{\in \mathcal{M}^0?}$$
 (5.31)

If $M_0(M - M_0) \in \mathcal{M}^0$, then $(M - M_0) - \langle M \rangle \in \mathcal{M}^0$. Therefore by uniqueness $\langle M \rangle = \langle M - M_0 \rangle$. Regarding $M_0(M - M_0) \in \mathcal{M}^0$, $\forall 0 \le s \le t$:

$$\mathbb{E}[M_0(M_t - M_0)|\mathcal{F}_s] = M_0 \mathbb{E}[M_t - M_0|\mathcal{F}_s] \stackrel{M - M_0 \in \mathcal{M}}{=} M_0(M_s - M)$$
 (5.32)

Therefore $M_0(M - M_0) \in \mathcal{M}^0$.

ad d) " \Rightarrow ": $\langle M \rangle = 0$ on $[0, t] \stackrel{(c)}{\Rightarrow} (M - M_0)^2 \in \mathcal{M}$ on [0, t], since

$$(M - M_0)^2 - \langle M - M_0 \rangle \in \mathcal{M} \tag{5.33}$$

$$\Rightarrow (M - M_0)^2 - \langle M \rangle \in \mathcal{M} \tag{5.34}$$

$$\Rightarrow (M - M_0)^2 \in \mathcal{M} \tag{5.35}$$

$$\Rightarrow \mathbb{E}\left[\sup_{0 \le s \le t} (M_s - M_0)^2\right]^{\text{Doob}} \le 4\mathbb{E}\left[(M_t - M_0)^2\right] = 0 \text{ since } (M - M_0)^2 \in \mathcal{M}$$
 (5.36)

 \Rightarrow *M* is constant on $[0, t], \forall t \ge 0 \Rightarrow M$ is constant.

Example: Let X be continuous, adapted process, $X_t \in L^2$ with independent and centered increments. Then,

a) $X \in \mathcal{M}$ and

b)
$$\langle X \rangle_t = Var(X_t - X_0) \equiv \mathbb{E}\left[(X_t - X_0)^2 \right] a.s.$$

Indeed:

a)

- $adapted \checkmark$
- $\mathbb{E}[|X_t| < \infty]$, $\forall t \ge 0$ ✓ since it even holds $\mathbb{E}[|X_t|^2] < \infty \forall t \ge 0$.
- $-For \ 0 \le s \le t \colon \mathbb{E}\left[X_t | \mathcal{F}_s\right] = \mathbb{E}\left[X_t X_s | \mathcal{F}_s\right] + X_s = \mathbb{E}\left[X_t X_s\right] + X_s = X_s$

b)

- It holds

$$\mathbb{E}\left[X_t^2 - X_0^2 - \mathbb{E}\left[(X_t - X_0)^2\right]\right] = \mathbb{E}\left[X_t^2 - X_0^2 - \mathbb{E}\left[X_t^2 - X_0^2 - 2X_0(X_t - X_0)\right]\right]$$
(5.37)

$$= 2\mathbb{E}\left[X_0(X_t - X_0)\right] = 0 \tag{5.38}$$

since $X_0(X_t - X_0)$ is a Martingale). $\stackrel{a)}{\Rightarrow} X_t^2 - X_0^2 - \mathbb{E}\left[(X_t - X_0)^2\right] \in \mathcal{M}^0$, i.e. $\mathbb{E}\left[(X_t - X_0)^2\right] = \langle X \rangle_t$.

[06.11.2012] [09.11.2012]

Definition 5.12.

For a partition $\Delta = \{t_0, t_1, ...\}$ with $t_k \to \infty$ and $0 = t_0 \le t_1 \le t_2$.. and a stochastic process X the quadratic variation of X on Δ is defined by

$$Q_t^{\Delta} = \sum_{k>1} |X_{t \wedge t_k} - X_{t \wedge t_{k-1}}|^2$$
 (5.39)

The quantity

$$\|\Delta\| := \sup_{k>1} |t_k - t_{k-1}| \tag{5.40}$$

is the *mesh-size* of Δ .

Theorem 5.13.

Let $M \in \mathcal{M}_{loc}$ and $t \ge 0$. Then,

$$\lim_{\|\Delta\| \to 0} Q_t^{\Delta} = \langle M \rangle_t \text{ stochastically.}$$
 (5.41)

i.e., $\forall \varepsilon > 0, \eta > 0, t \ge 0, \exists \delta > 0 \text{ s.t.}$

$$\mathbb{P}\left(\sup_{0\leq s\leq t}|Q_s^{\Delta}-\langle M\rangle_s|>\varepsilon\right)<\eta\tag{5.42}$$

holds $\forall \Delta$ with $||\Delta|| < \delta$.

To prove this we need one technical lemma.

Lemma 5.14.

- a) Let $(A_n)_{n\geq 0}$ be an increasing process with
 - $-A_0 = 0$
 - A_n is \mathcal{F}_n -measurable.

Then if $\mathbb{E}\left[A_{\infty} - A_n | \mathcal{F}_n\right] \le K, \forall n \ge 0, \Rightarrow \mathbb{E}\left[A_{\infty}^2\right] \le 2K^2$.

b) Let $A^{(1)}$ and $A^{(2)}$ as in a) and $B := A^{(1)} - A^{(2)}$. Then, if \exists a r.v. $W \ge 0$ with $\mathbb{E}\left[W^2\right] < \infty$ and $|\mathbb{E}\left[B_{\infty} - B_n | \mathcal{F}_n\right]| \le \mathbb{E}\left[W | \mathcal{F}_n\right]$, there $\exists c > 0$ s.t.

$$\mathbb{E}\left[\sup_{n>0} B_n^2\right] \le c \left(\mathbb{E}\left[W^2\right] + K\sqrt{\mathbb{E}\left[W^2\right]}\right) \tag{5.43}$$

Proof. ad a) Define $a_n := A_{n+1} - A_n \ge 0$ since A_n is increasing.

$$\Rightarrow A_{\infty}^{2} \stackrel{A_{0}=0}{=} \left(\sum_{n\geq 0} a_{n} \right)^{2} = \sum_{m,n\geq 0} a_{n} a_{m} = \sum_{n\geq 0} a_{n}^{2} + 2 \sum_{n\geq 0} \left(a_{n} \sum_{\substack{m\geq n+1 \\ =A_{\infty}-A_{n+1}=A_{\infty}-A_{n}-a_{n}}} a_{m} \right)$$
(5.44)

$$=2\sum_{n\geq 0}a_n(A_{\infty}-A_n)$$
 (5.45)

$$\mathbb{E}\left[A_{\infty}^{2}\right] \leq 2 \sum_{n \geq 0} \mathbb{E}\left[\mathbb{E}\left[a_{n}(A_{\infty} - A_{n})|\mathcal{F}_{n}\right]\right] = 2 \sum_{n \geq 0} \mathbb{E}\left[a_{n}\underbrace{\mathbb{E}\left[A_{\infty} - A_{n}|\mathcal{F}_{n}\right]}_{\leq K}\right]$$
(5.46)

$$\leq 2K \sum_{n>0} \mathbb{E}\left[a_n\right] \leq 2K \mathbb{E}\left[A_\infty\right] = 2K \mathbb{E}\left[A_\infty - A_0\right] = 2K \mathbb{E}\left[\mathbb{E}\left[A_\infty - A_0|F_0\right]\right] \leq 2K^2 \quad (5.47)$$

ad b) Let $b_n := B_{n+1} - B_n$, $a_n^{(i)} := A_{n+1}^{(i)} - A_n^{(i)}$.

$$\mathbb{E}\left[B_{\infty}^{2}\right] \leq 2\mathbb{E}\left[\sum_{n\geq 0} \underbrace{\mathbb{E}\left[B_{\infty} - B_{n} | \mathcal{F}_{n}\right]}_{||\leq \mathbb{E}[W|\mathcal{F}_{n}]} b_{n}\right]$$
(5.48)

$$\stackrel{|b_n| \le a_n^{(1)} + a_n^{(2)}}{\le} 2\mathbb{E} \left[\mathbb{E} \left[\sum_{n \ge 0} W(a_n^{(1)} - a_n^{(2)}) | \mathcal{F}_n \right] \right]$$
(5.49)

$$= 2\mathbb{E}\left[W(A_{\infty}^{(1)} + A_{\infty}^{(2)})\right] \tag{5.50}$$

$$\stackrel{C.S.}{\leq} 2\mathbb{E} \left[W^2 \right]^{1/2} (\underbrace{\mathbb{E} \left[(A_{\infty}^{(1)})^2 \right]^{1/2}}_{\leq \sqrt{2}K} + \underbrace{\mathbb{E} \left[(A_{\infty}^{(2)}) \right]^{1/2}}_{\leq \sqrt{2}K}) \leq 4\sqrt{2}\mathbb{E} \left[W^2 \right]^{1/2}K$$
 (5.51)

Now we introduce the martingales

$$M_n := \mathbb{E}\left[B_{\infty}|\mathcal{F}_n\right] \tag{5.52}$$

and

$$W_n := \mathbb{E}\left[W|\mathcal{F}_n\right] \tag{5.53}$$

and set

$$X_n := M_n - B_n \tag{5.54}$$

Since $|B_n|^2 \le 2(|X_n| + |M_n|^2)$ We have to compute/bound $|X_n|$

$$|X_n| = |\mathbb{E}\left[B_{\infty} - B_n | \mathcal{F}_n\right]| \tag{5.55}$$

$$\leq \mathbb{E}\left[W|\mathcal{F}_n\right] \equiv W_n \tag{5.56}$$

$$\mathbb{E}\left[\sup_{n\geq 0}|B_n|^2\right] \leq 2\mathbb{E}\left[\sup_{n\geq 0}|X_n|^2 + \sup_{n\geq 0}|M_n|^2\right]$$
(5.57)

$$\leq 2\mathbb{E}\left[\sup_{n\geq 0} W_n^2\right] + 2\mathbb{E}\left[\sup_{n\geq 0} |M_n|^2\right] \tag{5.58}$$

Doobmaxineq.
$$\leq 8(\mathbb{E}\left[W_{\infty}^{2}\right] + \mathbb{E}\left[B_{\infty}^{2}\right]) \qquad (5.59)$$

$$\leq 2\sqrt{2}K\mathbb{E}\left[W^{2}\right]^{1/2}$$

$$\leq \tilde{c}(\mathbb{E}\left[W^2\right] + K\mathbb{E}\left[W^2\right]^{1/2})\tag{5.60}$$

Proof of the theorem. Let $M \in \mathcal{M}_{loc}$, $t \ge 0$ fixed. Let $\Delta = \{t_0, t_1, ...\}$ a partition with $||\Delta|| \le \delta$.

Case a) Let M and $\langle M \rangle$ be bounded.

Define

$$a_k^{(1)} := (M_{t_{k+1}} - M_{t_k})^2; (5.61)$$

$$a_k^{(2)} := \langle M \rangle_{t_{k+1}} - \langle M \rangle_{t_k}; \tag{5.62}$$

$$b_k := a_k^{(1)} - a_k^{(2)} (5.63)$$

$$\Rightarrow A_n^{(1)} := \sum_{k=0}^{n-1} a_k^{(1)} \equiv Q_{t_n}^{\Delta}(M); \tag{5.64}$$

$$A_n^{(2)} := \sum_{k=0}^{n-1} a_k^{(2)} \equiv \langle M \rangle_{t_n}$$
 (5.65)

$$\Rightarrow B_n := A_n^{(1)} - A_n^{(2)} = \sum_{k=0}^{n-1} b_k = Q_{t_n}^{\Delta}(M) - \langle M \rangle_{t_n}$$
 (5.66)

Define $\mathcal{F}_n := \sigma(M_{t_{k+1}}, k \le n) \Rightarrow a_n^{(1)}, a_n^{(2)}$ are \mathcal{F}_n -measurable and $A_n^{(1)}, A_n^{(2)}$ are \mathcal{F}_{n-1} -measurable. Since M and $\langle M \rangle$ are bounded (and M is a continuous local martingale) $\Rightarrow M$ and $\langle M \rangle$ are uniformly continuous on the interval [0, t] (for any t)

$$W(\delta) := \sup_{0 \le s \le t, 0 \le \varepsilon \le \delta} (|M_{s+\varepsilon} - M_s|^2 + |\langle M \rangle_{s+\varepsilon} - \langle M \rangle_s|^2) \xrightarrow{\delta \to 0} 0$$
 (5.67)

We will now show: $|\mathbb{E}[B_{\infty} - B_n | \mathcal{F}_n]| \leq \mathbb{E}[W(\delta) | \mathcal{F}_n]$ It holds

$$B_{\infty} - B_n = \sum_{k > n} b_k \tag{5.68}$$

and

$$\mathbb{E}\left[b_k|\mathcal{F}_n\right] = 0 \,\forall k > n \tag{5.69}$$

since b_k is independent of $\mathcal{F}_n \forall k \geq n+1$ and $\mathbb{E}[b_k] = 0$

$$\Rightarrow |\mathbb{E}[B_{\infty} - B_n | \mathcal{F}_n]| = |\mathbb{E}[b_n | \mathcal{F}_n]| = |b_n| \le a_n^{(1)} + a_n^{(2)} = \mathbb{E}[a_n^{(1)} + a_n^{(2)} | \mathcal{F}_n] \le \mathbb{E}[W(\delta) | \mathcal{F}_n] \quad (5.70)$$

Now apply Lemma 5.14 b)

$$\Rightarrow \mathbb{E}\left[\sup_{n>0} B_n^2\right] \le c(\mathbb{E}\left[W(\delta)^2\right] + \mathbb{E}\left[W(\delta)^2\right]^{1/2}) \stackrel{\delta \to 0}{\longrightarrow} 0 \tag{5.71}$$

Finally

$$\mathbb{E}\left[\sup_{0\leq s\leq t}|Q_{s}^{\Delta}(M)-\langle M\rangle_{s}|^{2}\right]\leq \mathbb{E}\left[\left(\sup_{n\in\mathbb{N}}|Q_{t_{n}}^{\Delta}(M)-\langle M\rangle_{t_{n}}|+W(\delta)\right)^{2}\right]^{\frac{(a+b)^{2}\leq 2(a^{2}+b^{2})}{\leq}}2\mathbb{E}\left[\sup_{n\geq 0}B_{n}^{2}\right]+2\mathbb{E}\left[W(\delta)^{2}\right]\xrightarrow{\delta\to 0}0$$
(5.72)

Case b) General $M, \langle M \rangle$. Let $T_n := \inf\{t \geq 0 : |M_n| \geq n \text{ or } \langle M \rangle_t \geq n\}$.

$$\mathbb{P}\left(\sup_{0\leq s\leq t}|Q_{s}^{\Delta}(M)-\langle M\rangle_{s}|>\varepsilon\right)\leq \mathbb{P}\left(\sup_{0\leq s\leq t}|Q_{s}^{\Delta}(M^{T_{n}})-\langle M^{T_{n}}\rangle_{s}|>\varepsilon\right)+\underbrace{\mathbb{P}\left(T_{n}\leq t\right)}_{\leq \eta/2 \text{ for n large enough}}\tag{5.73}$$

For n large enough s.t. the right term is smaller $\eta/2$ choose δ small enough s.t. the left term is $\leq \eta/2$.

Corollary 5.15.

Let $M, N \in \mathcal{M}_{loc}, t \ge 0$ fixed. Then,

$$\lim_{\|\Delta\| \to 0} Q_t^{\Delta}(M, N) = \langle M, N \rangle_t \text{ stochastically}$$
 (5.74)

where

$$Q_t^{\Delta}(M,N) := \sum_{t_k \in \Delta} (M_{t_{k+1} \wedge t} - M_{t_k \wedge t})(N_{t_{k+1} \wedge t} - N_{t_k \wedge t})$$
 (5.75)

Lemma 5.16.

Let $M \in \mathcal{M}_{loc}$.

a) For almost all $\omega \in \Omega$, $\forall a < b$

$$\langle M \rangle_a(\omega) = \langle M \rangle_b(\omega) \Leftrightarrow M_t(\omega) = M_a(\omega), \forall t \in [a, b]$$
 (5.76)

b) For almost all $\omega \in \Omega$ s.t. $\langle M \rangle_{\infty}(\omega) := \sup_{t > 0} \langle M \rangle_t(\omega) < \infty$

$$\Rightarrow \lim_{t \to \infty} M_t(\omega) \text{ exists and is finite.}$$
 (5.77)

Remark: For a process $A \in \mathcal{A}$ it holds $\langle A \rangle = 0$.

$$\langle A \rangle_t = \lim_{\|\Delta\| \to 0} \sum_{k \ge 1} |A_{t_k \wedge t} - A_{t_{k+1} \wedge t}|^2$$
 (5.78)

$$= \lim_{\|\Delta\| \to 0} \left[\sup_{\underline{k \ge 1}} |A_{t_k \wedge t} - A_{t_{k+1} \wedge t}| \underbrace{\sum_{\underline{k \ge 1}} |A_{t_k \wedge t} - A_{t_{k+1} \wedge t}|}_{\leq S_t(A)} \right]$$
(5.79)

For a semimartingale $X = M + A, M \in \mathcal{M}_{loc}, A \in \mathcal{A}_0$.

Definition 5.17.

Let $X, \tilde{X} \in \mathcal{S}$ with X = M + A, $\tilde{X} = \tilde{M} + \tilde{A}$ where $M, \tilde{M} \in \mathcal{M}_{loc}$. We define

$$\langle X, \tilde{X} \rangle := \langle M, \tilde{M} \rangle \text{ and }$$
 (5.80)

$$\langle X \rangle := \langle M \rangle. \tag{5.81}$$

Theorem 5.18.

Let $X, X' \in \mathcal{S}, t \geq 0$. Then

$$\lim_{\|\Delta\| \to 0} Q_t^{\Delta}(X, X') = \langle X, X' \rangle \text{ stochastically}$$
 (5.82)

Proof.

$$Q_t^{\Delta}(X, X') = \underbrace{Q_t^{\Delta}(M, M')}_{\rightarrow \langle M, M' \rangle =: \langle X, X' \rangle} + Q_t^{\Delta}(M, A') + Q_t^{\Delta}(A, M') + Q_t^{\Delta}(A, A')$$
(5.83)

Now check if the last 3 summands go to 0.

$$|Q_t^{\Delta}(M, A')| = |\sum_{t_k \in \Delta} (M_{t_{k+1} \wedge t} - M_{t_k \wedge t})(A'_{t_{k+1} \wedge t} - A'_{t_k \wedge t})$$
(5.84)

$$\leq \sup_{\substack{t_k \in \Delta \\ \to 0}} |M_{t_{k+1} \wedge t} - M_{t_k \wedge t}| \underbrace{\sum_{t_k \in \Delta} |A'_{t_{k+1} \wedge t} - A'_{t_k \wedge t}|}_{\leq S_t(A)} \stackrel{\|\Delta\| \to 0}{\longrightarrow} 0 \tag{5.85}$$

Similarly:
$$|Q_t^{\Delta}(A, M')| \stackrel{\|\Delta\| \to 0}{\longrightarrow} 0, |Q_t^{\Delta}(A, A')| \stackrel{\|\Delta\| \to 0}{\longrightarrow} 0.$$

Corollary 5.19.

Let $X, X' \in \mathcal{S}, t \geq 0$.

$$\Rightarrow \langle X, X' \rangle_t \le \sqrt{\langle X \rangle_t \langle X' \rangle_t} \le \frac{1}{2} (\langle X \rangle_t + \langle X' \rangle_t) \tag{5.86}$$

Proof. Cauchy Schwarz and $(ab)^{1/2} \le \frac{a+b}{2}$ for $a, b \ge 0$.

[09.11.2012] [13.11.2012]

5.4 L^2 -bounded martingales

Definition 5.20 (L^2 -bounded martingales).

The space of continuous L^2 -bounded martingales is defined by

$$H^{2} := \{ M \in \mathcal{M} : \sup_{t \ge 0} \mathbb{E} \left[M_{t}^{2} \right] < \infty \}$$
 (5.87)

Example: Let $T \in \mathbb{R}_+$ then

$$M_t := B_{t \wedge T} \tag{5.88}$$

is in H^2 , since $\mathbb{E}\left[B_{t\wedge T}^2\right]=t\wedge T\Rightarrow \sup_{t\geq 0}\mathbb{E}\left[B_{t\wedge T}^2\right]<\infty$.

Remark: Let $M \in H^2$, then $\{M_t, t \ge 0\}$ is uniformly integrable, i.e.

$$\sup_{t>0} \mathbb{E}\left[|M_t|\mathbb{1}_{|M_t|>K}\right] \Rightarrow 0 \text{ for } K \to \infty$$
(5.89)

since

$$\mathbb{E}\left[|M_t|\mathbb{1}_{|M_t|>K}\right] \le \mathbb{E}\left[\frac{|M_t|^2}{K}\mathbb{1}_{|M_t|>K}\right] \le \frac{\sup_{t\ge 0}\mathbb{E}\left[|M_t|^2\right]}{K} \to 0 \ for \ K \to \infty \tag{5.90}$$

From this it follows:

$$\lim_{t \to \infty} M_t = M_{\infty} \in L^1 \text{ exists (a.s.) and } M_t = \mathbb{E}\left[M_{\infty}|\mathcal{F}_t\right] \text{ a.s.}$$
 (5.91)

Finally: $M_{\infty} \in L^2$.

Proposition 5.21.

a) H^2 is a Hilbert space with respect to the norm

$$||M||_{H^2} := \sqrt{\mathbb{E}\left[M_{\infty}^2\right]} = \lim_{t \to \infty} \sqrt{\mathbb{E}\left[M_t^2\right]}$$
 (5.92)

b) Let $M_{\infty}^* := \sup_{t \ge 0} |M_t|$. Then an equivalent norm is

$$||M_{\infty}^*||_2 \equiv \sqrt{\mathbb{E}\left[(M_{\infty}^*)^2\right]} \equiv \sqrt{\mathbb{E}\left[\sup_{t\geq 0}|M_t|^2\right]}$$
 (5.93)

c) For $M \in H_0^2 := \{X \in H^2 : X_0 = 0\}$ it holds

$$||M||_{H^2} = \sqrt{\mathbb{E}\left[\langle M \rangle_{\infty}\right]} \tag{5.94}$$

Proof. 1) Verify that $\|\cdot\|_{H^2}$ is a norm: easy.

⇒ the associated scalar product is

$$(M,N)_{H^2} := \frac{1}{4}(\|M+N\|_{H^2}^2 - \|M-N\|_{H^2}^2)$$
 (5.95)

2) Check b): First inequality:

$$||M_{\infty}^*||_2^2 \equiv \mathbb{E}\left[\sup_{t\geq 0}|M_t|^2\right] \stackrel{\text{Doob}}{\leq} 4\sup_{t\geq 0}\mathbb{E}\left[M_t^2\right] \stackrel{M^2 \text{ submart.}}{=} 4\lim_{t\to\infty}\mathbb{E}\left[M_t^2\right] \equiv 4||M||_{H^2}^2$$
 (5.96)

 $\Rightarrow M_{\infty}^*$ is in L^2 (\Rightarrow also in L^1).

For the second inequality: $M_t = \mathbb{E}[M_{\infty}|\mathcal{F}_t]$

$$\Rightarrow \|M\|_{H^2}^2 = \lim_{t \to \infty} \mathbb{E}\left[M_t^2\right] \stackrel{submart.}{=} \sup_{t > 0} \mathbb{E}\left[M_t^2\right] \le \mathbb{E}\left[\sup_{t > 0} M_t^2\right] \equiv \|M_\infty^*\|_2^2 \tag{5.97}$$

3) Verify the completeness of H^2 .

Let $(M^n)_{n\geq 1}$ be a sequence in H^2 s.t.

$$\|M^n - M^m\|_{H^2} \stackrel{m, n \to \infty}{\longrightarrow} 0 \tag{5.98}$$

 $\Rightarrow \exists$ sequence $M_{\infty}^n \in L^2$ s.t.

$$M_t^n \equiv \mathbb{E}\left[M_\infty^n | \mathcal{F}_t\right] \tag{5.99}$$

We know

$$||M_{\infty}^{n} - M_{\infty}^{m}||_{L^{2}} \stackrel{def}{=} ||M^{n} - M^{m}||_{H^{2}} \xrightarrow{hyp} 0$$
(5.100)

 \Rightarrow $(M_{\infty}^n)_{n\geq 1}$ is Cauchy and since L^2 is complete, it converges to a limit in L^2 . Let us call this limit M_{∞} . Define therefore the Martingale

$$M_t := \mathbb{E}\left[M_{\infty}|\mathcal{F}_t\right] \tag{5.101}$$

Q.: Does $M^n \to M$? Yes!

$$\mathbb{E}\left[\sup_{t\geq 0}|M_t^n - M_t|^2\right] \stackrel{Doob}{\leq} 4\mathbb{E}\left[\left(M_{\infty}^n - M_{\infty}\right)^2\right] = 4\|M^n - M\|_{H^2}^2 \stackrel{n\to\infty}{\longrightarrow} 0 \tag{5.102}$$

Q.: Is M a continuous Martingale? Because of (5.102) there exists a subsequence $(n_k)_{k\geq 0}$ s.t. $\sup_{t\geq 0} |M_t^{n_k} - M_t| \stackrel{k\to\infty}{\longrightarrow} 0$ a.s.. We have uniformly convergence on subsequences, therefore $t\mapsto M_t$ is continuous, i.e. $M\in\mathcal{M}$.

Q.: Is $M \in H^2$?

$$\sup_{t\geq 0} \mathbb{E}\left[M_t^2\right] = \sup_{t\geq 0} \mathbb{E}\left[\left(\mathbb{E}\left[M_{\infty}|\mathcal{F}_t\right]\right)^2\right] \leq \sup_{t\geq 0} \mathbb{E}\left[\mathbb{E}\left[M_{\infty}^2|\mathcal{F}_t\right]\right] = \mathbb{E}\left[M_{\infty}^2\right] < \infty \tag{5.103}$$

 $\Rightarrow M \in H^2$

5) Verify c): Let $M \in H^2$ with $M_0 = 0$. Let $\langle M \rangle$ be the quadratic variation of $M : \Rightarrow M^2 - \langle M \rangle$ is a (local) martingale. $\Rightarrow \mathbb{E}\left[M_t^2\right] - \mathbb{E}\left[\langle M \rangle_t\right] = \underbrace{\mathbb{E}\left[M_0^2\right]}_{=0} - \underbrace{\mathbb{E}\left[\langle M \rangle_0\right]}_{=0} \equiv 0 \forall t \geq 0$

$$\Rightarrow \|M\|_{H^2}^2 = \mathbb{E}\left[M_{\infty}^2\right] = \lim_{t \to \infty} \mathbb{E}\left[M_t^2\right] = \lim_{t \to \infty} \mathbb{E}\left[\langle M \rangle_t\right] \stackrel{monot.}{=} \mathbb{E}\left[\langle M \rangle_{\infty}\right]$$
 (5.104)

Example: Let $T \in \mathbb{R}_+$ be a fixed number and B a BM.

$$\Rightarrow M_t := B_{t \wedge T} \tag{5.105}$$

$$||M||_{H^2} := \begin{cases} \lim_{t \to \infty} \mathbb{E}\left[B_{t \wedge T}^2\right] = \mathbb{E}\left[B_T^2\right] = T \\ \mathbb{E}\left[\langle B_{t \wedge T} \rangle_{\infty}\right] = \lim_{t \to \infty} t \wedge T = T \end{cases}$$
(5.106)

6 Stochastic Integration

Strategy:

a) 6.1)-6.2) Define the Lebesgue-Stieltjes-Integral for functions, then extend to

$$\int_0^t X_s dAs \equiv (X \cdot A)_t - (X \cdot A)_0 \tag{6.1}$$

for *X* locally bounded and $A \in \mathcal{A}$.

- b) 6.3)-6.5) Itô-Integral:
 - 1) Define

$$\int_0^t X_s dMs \tag{6.2}$$

for $M \in H^2$ and X "elementary process". \rightarrow Itô-isometry: $\|\underbrace{X \cdot M}_{\text{Itô-int}}\|_{H^2}^2 = \|\underbrace{X^2 \cdot \langle M \rangle}_{a)}\|$

2) Extension to $X \in L^2(M)$, e.g.

$$\int_0^t B_s dB_s = ? \tag{6.3}$$

3) Extension to semi-martingales.

6.1 Lebesgue-Stieltjes Integral

Riemann case: $\Delta_n = \{a = x_0 < x_1 < \dots < x_n = b\}$. Define

Riemann-Integral:
$$\lim_{\|\Delta\| \to 0} \sum_{k=0}^{n-1} f(\xi_k)(x_{k+1} - x_k)$$
 for some $\xi_k \in (x_k, x_{k+1}]$ (6.4)

The limit exists e.g. when f is continuous.

Riemann-Stieltjes:
$$\lim_{\|\Delta_n\| \to 0} \sum_{k=0}^{n-1} f(\xi_k) (g(x_{k+1}) - g(x_k)) \text{ for some } \xi_k \in (x_k, x_{k+1}]$$
 (6.5)

The limit exists e.g. if g is continuous and has finite variation.

Proposition 6.1.

Let $g: \mathbb{R}_+ \to \mathbb{R}$ be a right-continuous function. Then the following statements are equivalent.

- a) g has finite variation.
- b) $\exists g_1, g_2$ increasing, right-continuous s.t. $g = g_1 g_2$.
- c) \exists (signed) Radon measure, μ^g , on \mathbb{R}^+ s.t.

$$g(t) = \mu^g([0, t]), \forall t \ge 0$$
 (6.6)

Proof. $a \Leftrightarrow b \text{ trivial.}$

a,b \Leftrightarrow c: " \Rightarrow " WLOG take $g \ge 0$, rightcontinuous amd $S_t(g) < \infty$ (variation of g in [0,t]) and $g(0) = 0. \Rightarrow \mu([0, t]) := g(t) \forall t \ge 0. \Rightarrow \mu \text{ is a Radon-measure on } \mathbb{R}_+.$

"\in " Given μ , define $g(t) := \mu([0,t]), \forall t \geq 0$. Therefore g is rightcontinuous and has finite variation.

Definition 6.2 (Lebesgue-Stieltes-Integral).

Let $g: \mathbb{R}_+ \to \mathbb{R}$ be right-continuous, with finite variation and let $f: \mathbb{R}_+ \to \mathbb{R}$ be a locally bounded function. Then the Lebesgue-Stieltjes-Integral of f w.r.t. g is defined by

$$\int_{(0,t]} f(s)\mu^g(ds) \tag{6.7}$$

where μ^g is the measure of Prop 6.1.

Notation: We sometimes also write

$$\int_0^t f(s)\mu^g(ds) = \int_0^t fdg = \int_0^t f(s)dg(s) = \int_0^t f(s)g(ds)$$
 (6.8)

Remark: (i) If $g \in C^1 \Rightarrow \int_0^t f(s)\mu^g(ds) = \int_0^t f(s)g'(s)ds$ where the last term means the usual Lebesgue-Integral.

(ii) If g and h are continuous and of finite variation then

$$d(gh)(s) = g(s)dh(s) + h(s)dg(s)$$
(6.9)

Proposition 6.3.

Let g be right-continuous, increasing and let f be left-continuous and locally bounded. Then $\forall t \geq 0$

$$\lim_{\|\Delta\| \to 0} I_t^{\Delta}(f, g) = \int_0^t f dg \tag{6.10}$$

where

$$I_t^{\Delta}(f,g) := \sum_{k=0}^{n-1} f(t_k)(g(t_{k+1}) - g(t_k))$$
(6.11)

and Δ is a partition of [0, t], i.e. $\Delta = \{0 = t_0 < t_1 < \cdots < t_n = t\}$.

Remark: If f is continuous one can replace $f(t_k)$ by $f(t_{k+1})$. The BM analogue will **not** satisfy this

Proof. Let $f^{\Delta} := \sum_{k=0}^{n-1} f(t_k) \mathbb{1}_{(t_k, t_{k+1}]}$. Since f is locally bounded $\Rightarrow \sup_{s \in [0, t]} |f^{\Delta}(s)| \leq C < \infty$. Also, since f is left continuous,

$$\Rightarrow \lim_{\|\Delta\| \to 0} f^{\Delta}(s) = f(s) \forall s \in [0, t]$$
(6.12)

$$I_t^{\Delta}(f,g) = \int_0^t f^{\Delta}(s)\mu^g(ds) \xrightarrow{\|\Delta\| \to 0} \int_0^t f(s)\mu^g(ds) \stackrel{def}{=} \int_0^t fdg$$
 (6.13)

6.2 Stochastic Integration w.r.t. bounded variation processes

We define " $\int_0^t X_s dA_s$ " for $A \in \mathcal{A}$ and for

$$X \in \mathcal{B} := \{X : \text{ adapted, left-continuous, the trajectories are locally bounded}\}.$$
 (6.14)

Definition 6.4.

Let $A \in \mathcal{A}, X \in \mathcal{B}$ then we define the *stochastic integral of X w.r.t. A pathwise* through

$$(X \cdot A)_t = \int_0^t X dA = \int_0^t X_s dA_s : \omega \mapsto \int_0^t X_s(\omega) dA_s(\omega) \leftarrow \text{(usual Leb.-Stieltj.-Integral)}$$
 (6.15)

Notation: $X \cdot A \equiv ((X \cdot A)_t)_{t \ge 0}$

Properties:

Theorem 6.5.

For $A \in \mathcal{A}$ and $X, Y \in \mathcal{B}$ it holds

- a) $X \cdot A \in \mathcal{A}_0$.
- b) $X \cdot A$ is bilinear in X and A.
- c) For any stopping time T it holds $(X \cdot A)^T = X \cdot A^T$.
- d) $X \cdot (Y \cdot A) = (XY) \cdot A$.

Proof. ad a) $(X \cdot A)_0 = 0$ clear. (consider the partition in 6.3)

Pathwise continuous since *X* is locally bounded and *A* is continuous. adapted:

$$\int_0^t X_s dA_s = \lim_{\|\Delta\| \to 0} \sum_{k=0}^{n-1} X_{t_k} (A_{t_{k+1}} - A_{t_k}) \text{ meas. w.r.t } \mathcal{F}_t$$
 (6.16)

(limit of measurable functions again measurable)

Finite variation:

$$S_{t}((X \cdot A)(\omega)) \leq \sup_{\substack{0 \leq s \leq t \\ \leq \infty}} |X_{s}(\omega)| S_{t}(A(\omega))$$
(6.17)

ad b) Trivial.

ad c)

$$(X \cdot A)^{T}(\omega) = \lim_{n \to \infty} \sum_{k=0}^{n-1} X_{t_k \wedge T}(\omega) [A_{t_{k+1} \wedge T}(\omega) - A_{t_k \wedge T}]$$
(6.18)

$$= \lim_{n \to \infty} \sum_{k=0}^{n-1} X_{t_k}(\omega) [A_{t_{k+1} \wedge T}(\omega) - A_{t_k \wedge T}]$$
 (6.19)

$$= (X \cdot A^T)(\omega) \tag{6.20}$$

because: if $t_k > T \Rightarrow t_{k+1} > T \Rightarrow A_{t_{k+1} \wedge T} - A_{t_k \wedge T} = 0$.

ad d)

$$(X \cdot (Y \cdot A))_t = \int_0^t X s d((Y \cdot A)_s)$$
(6.21)

$$= \int_0^t X_s Y_s dA_s \equiv ((XY) \cdot A)_t \tag{6.22}$$

6.3 Itô-Integral

We will define

$$\int_0^s X_s dB_s \tag{6.23}$$

where B is a BM. If $f, g \in C^1$ we know

$$f(g(t)) = f(g(0)) + \int_0^t f'(g(s))g'(s)ds$$
 (6.24)

If now g is a brownian path, then g' does not exists....mmm. :(

One of the results will be for $f \in C^2$

$$f(B_t) = f(B_0) + \underbrace{\int_0^t f'(B_s)dB_s}_{\text{It \(\) Integral}} + \frac{1}{2} \int_0^s f''(B_s) \underbrace{ds}_{\equiv d < B >_s}$$
(6.25)

If we try to define

$$I_n := \sum_{k=0}^{n-1} f(B_{t_k})(B_{t_{k+1}} - B_{t_k}), \tag{6.26}$$

then, $\lim_{n\to\infty}$ (with $||\Delta||\to 0$) does not exist pointwise in Ω (, i.e. pathwise). $\Rightarrow I_n$ as Lebesgue-Stieltjes-Integral can not be defined.

But one can see that the limit is fine in L^2 .

Further issue: Let B be a one-dimensional standard BM. Let $t_k := \frac{k}{n}t$, $0 \le k \le n$.

$$\Rightarrow \lim_{n \to \infty} \sum_{k=0}^{n-1} B_{t_k} (B_{t_{k+1}} - B_{t_k}) = \frac{B_t^2 - t}{2} \text{ in } L^2$$
 (6.27)

$$\lim_{n \to \infty} \sum_{k=0}^{n-1} B_{t_{k+1}} (B_{t_{k+1}} - B_{t_k}) = \frac{B_t^2 + t}{2} \text{ in } L^2$$
 (6.28)

Proof:

$$\sum_{k=0}^{n-1} B_{t_k} (B_{t_{k+1}} - B_{t_k}) = \underbrace{\sum_{k=0}^{n-1} \frac{1}{2} (B_{t_{k+1}}^2 - B_{t_k}^2)}_{=\frac{1}{2} B_t^2 (\text{since } t_n = t, B_0 = 0)} - \underbrace{\frac{1}{2} \sum_{k=0}^{n-1} (B_{t_{k+1}} - B_{t_k})^2}_{\rightarrow t \text{ in } L^2 \text{ for } n \to \infty}$$
(6.29)

Itô chooses (6.27) as the definition for $\int_0^t B_s dB_s$.

6.3.1 Itô-Integral for elementary processes

Definition 6.6.

Let $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ be a standard filtered probability space. $X : \mathbb{R}_+ \times \Omega \to \mathbb{R}$ is called an *elementary process* if

- a) Exists a sequence of times $0 = t_0 < t_1 < \cdots > \infty$
- b) Exists a sequence of r.v. $(\xi_n)_{n\geq 0}$ uniformly bounded (i.e. $\sup_{n\geq 0} |\xi_n(\omega)| \leq C \forall \omega \in \Omega$).
- c) ξ_n are \mathcal{F}_{t_n} -measurable.
- d)

$$X_{t}(\omega) = \xi_{0}(\omega) \mathbb{1}_{0}(t) + \sum_{n > 0} \xi_{n}(\omega) \mathbb{1}_{(t_{n}, t_{n+1}]}(t), 0 \le t < \infty, \omega \in \Omega$$
 (6.30)

That means, that *X* is piecewise constant.

Notation: $X \in \xi \Leftrightarrow X$ is an elementary process.

Definition 6.7 (Itô-Integral for elementary processes).

Let $X \in \xi$, $M \in H^2$. Then we define the *stochastic integral of X w.r.t. M* pathwise by

$$\int_{0}^{t} X_{s} dM_{s} \equiv (X \cdot M)_{t} := \sum_{k=0}^{\infty} \xi_{k} (M_{t_{k+1} \wedge t} - M_{t_{k} \wedge t})$$
(6.31)

$$= \sum_{k=0}^{n-1} \xi_k (M_{t_{k+1}} - M_{t_k}) + \xi_n (M_t - M_{t_{n-1}})$$
 (6.32)

where *n* is the unique number s.t. $t \in (t_{n-1}, t_n]$.

The Itô-Isometry

Theorem 6.8.

Let $M \in H^2$ and $X \in \xi$. Then,

a)
$$X \cdot M \in H_0^2$$

b)
$$\langle X \cdot M \rangle_t = \int_0^t X_s^2 d\langle M \rangle_s \equiv (X^2 \cdot \langle M \rangle)_t$$

c) Isometry:

$$||X \cdot M||_{H^2}^2 \equiv \mathbb{E}\left[\left(\int_0^\infty X_s dM_s\right)^2\right] = \mathbb{E}\left[\int_0^\infty X_s^2 d\langle M \rangle_s\right] \equiv ||X||_{L^2(\mathbb{R}_+ \times \Omega, d\langle M \rangle \otimes \mathbb{P})}^2 \tag{6.33}$$

Corollary 6.9.

For $M = (B_{s \wedge t})_{s \geq 0}$, then

a)
$$X \cdot B^t \in H_0^2$$
.

b)
$$\langle X \cdot B \rangle_t = \int_0^t X_s^2 ds$$

c)
$$\mathbb{E}\left[\left(\int_0^t X_s dB_s\right)^2\right] = \mathbb{E}\left[\int_0^t X_s^2 ds\right]$$

Proof of the Theorem. Easy to check: $(X \cdot M)$ is adapted, $(X \cdot M)_0 = 0$, Continuity.

Martingale? Let s < t, say $s \in (t_k, t_{k+1}]$ and $t \in (t_n, t_{n+1}]$.

$$\mathbb{E}\left[(X \cdot M)_{t} | \mathcal{F}_{s}\right] \tag{6.34}$$

$$=\mathbb{E}\left[(X \cdot M)_s + \xi_k(M_{t_{k+1}} - M_s) + \sum_{l=k+1}^{n-1} \xi_l(M_{t_{l+1}} - M_{t_l}) + \xi_n(M_t - M_{t_n})|\mathcal{F}_s\right]$$
(6.35)

$$= (X \cdot M)_{s} + \xi_{k} \underbrace{\mathbb{E}\left[M_{t_{k+1}} - M_{s} | \mathcal{F}_{s}\right]}_{=0} + \mathbb{E}\left[\xi_{n} \underbrace{\mathbb{E}\left[M_{t} - M_{t_{n}} | \mathcal{F}_{t_{n}}\right]}_{=0} | \mathcal{F}_{s}\right] + \mathbb{E}\left[\sum_{l=k+1}^{n-1} \xi_{l} \underbrace{\mathbb{E}\left[M_{t_{l+1}} - M_{t_{l}} | \mathcal{F}_{t_{l}}\right]}_{=0} | \mathcal{F}_{s}\right]$$

$$(6.36)$$

$$=(X \cdot M)_{s} \tag{6.37}$$

since $\mathcal{F}_s \subset \mathcal{F}_{t_n}$ and ξ_k is F_{t_n} -measurable.

 L^2 -boundedness follows from the uniform bound of the ξ_k .

ad b) WLOG: $s = t_k, t = t_{n+1}$ (otherwise add two points to $\{t_i\}$). To show $(X \cdot M)_t^2 - \int_0^t X_u^2 d\langle M \rangle_u$ is a martingale, i.e.

$$\mathbb{E}\left[(X \cdot M)_t^2 - \int_0^t X_u^2 d\langle M \rangle_u | \mathcal{F}_s \right] \stackrel{\text{if } s < t}{=} (X \cdot M)_s^2 - \int_0^s X_u^2 d\langle M \rangle_u. \tag{6.38}$$

$$\stackrel{5.9}{\Rightarrow} \langle X \cdot M \rangle_t = \int_0^t X_u^2 d\langle M \rangle_u \equiv (X^2 \cdot \langle M \rangle)_t \tag{6.39}$$

$$\mathbb{E}\left[(X \cdot M)_t^2 - (X \cdot M)_s^2 | \mathcal{F}_s\right] \tag{6.40}$$

$$=\mathbb{E}\left[\left((X \cdot M)_t - (X \cdot M)_s\right)^2 | \mathcal{F}_s\right] + \underbrace{2\mathbb{E}\left[\left(X \cdot M\right)_s \left((X \cdot M)_t - (X \cdot M)_s\right) | \mathcal{F}_s\right]}_{=0 \text{ by a) since } (X \cdot M)_s \mathcal{F}_s\text{-meas.}}$$

$$(6.41)$$

$$=\mathbb{E}\left[\left(\sum_{l=k}^{n} \xi_{l}(M_{t_{l+1}} - M_{t_{l}})\right)^{2} | \mathcal{F}_{s}\right]$$

$$(6.42)$$

$$=\mathbb{E}\left[\sum_{l=k}^{n} \xi_{l}^{2} (M_{t_{l+1}} - M_{t_{l}})^{2} | \mathcal{F}_{s}\right] + 2\mathbb{E}\left[\sum_{k \leq j < l \leq n} \xi_{j} \xi_{l} (M_{t_{l+1}} - M_{t_{l}}) (M_{t_{j+1}} - M_{t_{j}})\right]$$
(6.43)

$$= \mathbb{E}\left[\sum_{l=k}^{n} \xi_{l}^{2} (M_{t_{l+1}} - M_{t_{l}})^{2} | \mathcal{F}_{s}\right] + 2 \mathbb{E}\left[\sum_{k \leq j < l \leq n} \xi_{j} \xi_{l} \underbrace{\mathbb{E}\left[(M_{t_{l+1}} - M_{t_{l}}) | \mathcal{F}_{t_{l}}\right]}_{=0} (M_{t_{j+1}} - M_{t_{j}})\right]$$
(6.44)

$$=\mathbb{E}\left[\int_{s}^{t} X_{u}^{2} d\langle M \rangle_{u} | \mathcal{F}_{s}\right] \tag{6.45}$$

 \Rightarrow (6.38) holds **c**)

$$\|X \cdot M\|_{H^2}^2 = \mathbb{E}\left[(X \cdot M)_{\infty}^2 \right]^{\frac{5.21}{2}} \mathbb{E}\left[\langle X \cdot M \rangle_{\infty} \right] \stackrel{b)}{=} \mathbb{E}\left[\int_0^{\infty} X_u^2 d\langle M \rangle_u \right]$$
(6.46)

[16.11.2012] [20.11.2012]

Proposition 6.10 (Kunita-Watanabe).

 $M, N \in H^2, X, Y \in \xi$.

a)
$$\langle X \cdot M, Y \cdot N \rangle_t = \int_0^t X_s Y_s d\langle M, N \rangle_s \equiv ((XY) \cdot \langle M, N \rangle)_t$$

b)
$$\mathbb{E}\left[\langle X\cdot M, Y\cdot N\rangle_{\infty}\right] \leq \mathbb{E}\left[\int_{0}^{\infty}X_{s}^{2}d\langle M\rangle_{s}\right]^{1/2}\mathbb{E}\left[\int_{0}^{\infty}Y_{s}^{2}d\langle N\rangle_{s}\right]^{1/2}$$

Proof. Claim: $(X \cdot M)_t (Y \cdot N)_t - \int_0^t X_s Y_s d\langle M, N \rangle_s$ is a martingale.

We assume, that *X* and *Y* are constant on the same intervals. Otherwise one can just add the respective points.

$$(X \cdot M)_{t} = \sum_{l=1}^{n} X_{t_{l}} (\underbrace{M_{t_{l+1}} - M_{t_{l}}}_{=: \land M_{t}})$$
(6.47)

$$(Y \cdot N)_t = \sum_{l=1}^n Y_{t_l} \underbrace{(N_{t_{l+1}} - N_{t_l})}_{=:\Delta N_l}$$
(6.48)

Then

$$\mathbb{E}\left[(X \cdot M)_t (Y \cdot N)_t - (X \cdot M)_s (Y \cdot N)_s | \mathcal{F}_s\right] \tag{6.49}$$

$$= \mathbb{E}\left[\sum_{l,l'=k}^{n} X_{t_l} Y_{t_{l'}} \Delta M_l \Delta N_{l'} | \mathcal{F}_s\right]$$
(6.50)

$$\stackrel{k:t_{\underline{k}}=s}{=} \mathbb{E}\left[\sum_{l=k}^{n} X_{t_{l}} Y_{t_{l}} \Delta M_{l} \Delta N_{l} | \mathcal{F}_{s}\right] + \mathbb{E}\left[\sum_{l\neq l'} \dots\right]$$
(6.51)

$$=\mathbb{E}\left[\int_{s}^{t} X_{s} Y_{s} d\langle M, N \rangle_{s} | \mathcal{F}_{s}\right]$$
(6.52)

b)

$$\mathbb{E}\left[\langle X \cdot M, Y \cdot N \rangle_{\infty}\right] \stackrel{5.19}{\leq} \mathbb{E}\left[\langle X \cdot M \rangle_{\infty}^{1/2} \langle Y \cdot N \rangle_{\infty}^{1/2}\right] \tag{6.53}$$

$$\stackrel{C.-S.}{\leq} \mathbb{E} \left[\langle X \cdot M \rangle_{\infty} \right]^{1/2} \mathbb{E} \left[\langle Y \cdot N \rangle_{\infty} \right]^{1/2} \tag{6.54}$$

Goal of the week

$$\int_0^t X_s dM_s \tag{6.55}$$

 $X \in \xi$ (Want a larger space! : today), $M \in H^2$ (Want the space of semimartingales: friday!)

Definition 6.11 (Predictable σ -Algebra).

 $\mathcal{P} = \sigma(\xi)$ smallest σ -algebra on $\mathbb{R}_+ \times \Omega$ s.t.

$$(t, \omega) \mapsto X_t(\omega)$$
 measurable $\forall X \in \xi$ (6.56)

A process X is called *predictable iff* \mathcal{P} -measurable.

Proposition 6.12.

$$\sigma(\xi) = \sigma(\{X : \mathbb{R}_+ \times \Omega \to \mathbb{R}, \text{ adapted, } X \text{ left cont. on } (0, \infty)\})$$
 (6.57)

$$= \sigma(\{X : \mathbb{R}_+ \times \Omega \to \mathbb{R}, \text{ adapted, } X \text{ cont. on } (0, \infty)\})$$
 (6.58)

Proof. Exercise.

Definition 6.13.

Let $M \in H^2$. We define

$$\mathcal{L}^{2}(M) = \{X : \mathbb{R}_{+} \times \Omega \to \mathbb{R}, \text{ predictable}, ||X||_{M} < \infty\}$$
(6.59)

with $\|\cdot\|_M$ defined as

$$||X||_{M} := ||X||_{L^{2}(d\langle M \rangle \otimes dP)} := \mathbb{E} \left[\int_{0}^{\infty} X_{s}^{2} d\langle M \rangle_{s} \right]^{1/2}$$
(6.60)

 $L^2(M)$ is the space of equivalence classes

$$X \sim Y \Leftrightarrow ||X - Y||_M = 0 \tag{6.61}$$

The Itô-Isometry is now

$$||X||_{M} \equiv \mathbb{E}\left[\int_{0}^{\infty} X_{s}^{2} d\langle M \rangle_{s}\right]^{1/2} \stackrel{\text{li\theta}}{=} \mathbb{E}\left[\left(\int_{0}^{\infty} X_{s} dM_{s}\right)^{2}\right]^{1/2} \equiv ||X \cdot M||_{H^{2}}$$

$$(6.62)$$

Proposition 6.14.

 $X \in L^2(M) \Rightarrow \exists$ a sequence of $X^n \in L^2(M) \cap \xi$ s.t.

$$||X^n - X||_M \stackrel{n \to \infty}{\longrightarrow} 0 \tag{6.63}$$

i.e.

$$\mathbb{E}\left[\int_0^\infty |X_s - X_s^n|^2 d\langle M \rangle_s\right] \stackrel{n \to \infty}{\longrightarrow} 0 \tag{6.64}$$

Proof. We give the proof only for the case M=B=Brownian Motion, i.e. $d\langle B\rangle_s=ds$, where ds is the Lebesgue-measure. (If $d\langle M\rangle_s\ll$ lebesgue, then the considerations are similar. If not, then the proof is tricky (see Karatzas-Shreve, Lemma 2.7))

Let B be a BM and let T > 0 arbitrary.

Step 1: $Z \in L^2(B)$, bounded, pathwise continuous.

Consider partitions

$$\Delta_n = \{ t_0 = 0 < t_1^{(n)} < t_2^{(n)} < \dots < t_n^{(n)} = T \}$$
 (6.65)

with $\|\Delta_n\| \to 0$ for $n \to \infty$. Define

$$\phi_t^n(\omega) = Z_t(\omega) \mathbb{1}_{\{0\}}(t) + \sum_{k=1}^{n-1} Z_{t_k}(\omega) \mathbb{1}_{(t_k, t_{k+1}]}(t)$$
(6.66)

Then it holds, by continuity of $t \mapsto Z_t(\omega)$ and since $||\Delta||_n \to 0$:

$$\int_0^T |\phi_t^n(\omega) - Z_t(\omega)|^2 dt \xrightarrow{n \to \infty} 0$$
 (6.67)

By Lebesgue (dominated convergence)

$$\mathbb{E}\left[\int_0^T |\phi_t^n - Z_t|^2 dt\right] \to 0 \tag{6.68}$$

i.e.

$$\|\phi^n - Z\|_M \to 0 \tag{6.69}$$

Step 2: $Y \in L^2(B)$, bounded.

Let K s.t. $|Y| \le K$. We are going to introduce mollifiers ψ_n s.t.,

$$\psi_n(x) \ge 0, \psi_n \text{ continuous}, \quad \int \psi_n dx = 1, \psi_n(x) = 0 \text{ if } x \notin [0, \frac{1}{n}]$$
 (6.70)

For $t \le T$ define

$$Z_{t}^{n} = \int_{0}^{T} \psi_{n}(t - s) Y_{s} ds \tag{6.71}$$

Then $t \mapsto Z_t^n$ is continuous and bounded, i.e. $|Z_t^n| \le K$.

It holds

$$\int_0^T (Z_t^n(\omega) - Y_t(\omega))^2 dt \to 0 \ \forall \omega \in \Omega$$
 (6.72)

and therefore by dominated convergence

$$\Rightarrow \mathbb{E}\left[\int_0^T (Z_t^n - Y_t)^2 dt\right] \stackrel{n \to \infty}{\longrightarrow} 0 \tag{6.73}$$

Step 3: $X \in L^2(B)$.

To make it bounded define

$$Y_t^n = \begin{cases} -n & X_t \le -n \\ X_t & -n \le X_t \le n \\ n & X_t \ge n \end{cases}$$
 ("truncation") (6.74)

$$||X - Y^n||_{L^2(B)} = \mathbb{E}\left[\int_0^T (X_t - Y_T^n)^2 dt\right]$$
(6.75)

$$\leq \mathbb{E}\left[\int_0^T X_t^2 \mathbb{1}_{\{|X_t| \geq n\}} dt\right] \stackrel{n \to \infty}{\longrightarrow} 0 \tag{6.76}$$

again by dominated convergence. Note that we could use that X was bounded in the previous steps. Here we have to use the hypothesis that $X \in L^2(B)$.

Theorem 6.15.

Let $X \in L^2(M)$. Then $\exists ! (X \cdot M) \in H_0^2$ s.t., if $X^n \in \xi$ is a sequence with

$$||X - X^n||_M \stackrel{n \to \infty}{\longrightarrow} 0 \tag{6.77}$$

then also

$$||X \cdot M - X^n \cdot M||_{H^2} \xrightarrow{n \to \infty} 0 \tag{6.78}$$

Thus

$$L^{2} - \lim_{n \to \infty} (X^{n} \cdot M)_{t} = X \cdot M_{t}$$

$$(6.79)$$

uniformly in t. The map $L^2(M) \to H_0^2, X \mapsto X \cdot M$ is an isometry, i.e.

$$||X||_{M} = ||X \cdot M||_{H^{2}} \tag{6.80}$$

Proof. Let $X \in L^2(M)$.

Step 1: Definition of $(X \cdot M)$.

By Prop. 6.14: $\exists X^n \in \xi : ||X - X^n||_M \to 0$. Therefore

$$||X^n \cdot M - X^m \cdot M||_{H^2} \stackrel{\text{Isometry}}{=} ||X^n - X^m||_M \stackrel{m, n \to \infty}{\longrightarrow} 0, \tag{6.81}$$

i.e. $(X^n \cdot M)$ is a cauchy sequence in H^2 which is a Hilbert space. $\Rightarrow \lim_{n \to \infty} X^n \cdot M$ exists and is in H^2 . So we can define $X \cdot M := \lim_{n \to \infty} X^n \cdot M$.

Step 2: Show that $X \cdot M$ is independent of X^n .

Let Y^n be a second approximating sequences, i.e.

$$||Y^n - X||_M \to 0 \tag{6.82}$$

Then

$$||X^n \cdot M - Y^n \cdot M||_{H^2} = ||X^n - Y^n||_M \stackrel{n \to \infty}{\longrightarrow} 0$$

$$(6.83)$$

Thus we have

$$\lim_{n \to \infty} X^n \cdot M = \lim_{n \to \infty} Y^n \cdot M \tag{6.84}$$

Lastly we have to check, whether $||X \cdot M - X^n \cdot M||_{H^2} \to 0$.

$$||X \cdot M - X^n \cdot M||_{H^2} \le 4 \sup_{t} \mathbb{E} \left[((X^n \cdot M)_t - (X \cdot M)_t)^2 \right]$$
 (6.85)

$$=4||X^n - X||_M \to 0 \tag{6.86}$$

Definition 6.16.

We define

$$\int_0^t X_s dM_s := (X \cdot M)_t \tag{6.87}$$

as *Itôs Integral*, where $X \cdot M$ is the unique process from the previous Theorem.

6.4 Properties of Itôs Integral.

Kunita-Watanabe holds exactly as in the previous setting.

Corollary 6.17.

Let $M, N \in H^2, X \in L^2(M), Y \in L^2(N)$. Then

a)
$$\langle X \cdot M \rangle_t = \int_0^t X_s^2 d\langle M \rangle_s = (X^2 \cdot \langle M \rangle)_t$$

b)
$$\langle X \cdot M, Y \cdot N \rangle_t = \int_0^t X_s Y_s d\langle M, N \rangle_s = ((XY) \cdot \langle M, N \rangle)_t$$

c)
$$|\mathbb{E}\left[\langle X\cdot M, Y\cdot N\rangle_t\right]| \leq \mathbb{E}\left[\int_0^t |X_s||Y_s||d\langle M,N\rangle|\right] \leq \sqrt{\mathbb{E}\left[\int_0^t X_s^2 d\langle M\rangle_s\right]}\sqrt{\mathbb{E}\left[\int_0^t Y_s^2 d\langle N\rangle_s\right]}$$

Lemma 6.18.

Let $X \in L^2(M)$ and $Y \in L^2(X \cdot M)$. Then

$$XY \in L^2(M) \tag{6.88}$$

and the associative property holds, i.e.

$$Y \cdot (X \cdot M) = (YX) \cdot M. \tag{6.89}$$

Proof. **Step 1:** $XY \in L^2(M)$ It holds

$$\langle X \cdot M \rangle = X^2 \cdot \langle M \rangle \tag{6.90}$$

and thus

$$\infty \stackrel{Y \in L^2(X \cdot M)}{>} \mathbb{E} \left[\int_0^\infty Y_t^2 d\langle X \cdot M \rangle_t \right] = \mathbb{E} \left[\int_0^\infty Y_t^2 d\langle X^2 \cdot \langle M \rangle_t \right] \stackrel{\text{Assoc. Stieltj.}}{=} \mathbb{E} \left[\int_0^\infty Y_t^2 X_t^2 d\langle M \rangle_t \right]$$
(6.91)

Step 2: Associativity.

Let $N \in H^2$ arbitrary. Then

$$\langle (YX) \cdot M, N \rangle \stackrel{6.17}{=} (YX) \cdot \langle M, N \rangle \stackrel{\text{Assoc.}}{\underset{\text{Stieltj.}}{=}} Y \cdot (X \cdot \langle M, N \rangle) \stackrel{6.17}{=} Y \cdot \langle X \cdot M, N \rangle \stackrel{6.17}{=} \langle Y \cdot (X \cdot M), N \rangle$$

$$(6.92)$$

Hence we have

$$\langle [(YX) \cdot M] - [Y \cdot (X \cdot M)], N \rangle = 0 \ \forall N \in H^2$$
 (6.93)

and thus $(YX) \cdot M = Y \cdot (X \cdot M)$.

Proposition 6.19.

Let $X \in L^2(M)$, T a stopping time. Then

$$(X \cdot M)^T = X \cdot M^T = (X \mathbb{1}_{[0,T]}) \cdot M \tag{6.94}$$

Proof. Follows from the Lemma above since

$$M^T = \mathbb{1}_{[0,T]}M\tag{6.95}$$

Lemma 6.20.

Let $X, Y \in L^2(M), 0 \le s \le u < t$. Then the following properties hold

a)
$$\int_{s}^{t} X_{\nu} dM_{\nu} = \int_{s}^{u} X_{\nu} dM_{\nu} + \int_{u}^{t} X_{\nu} dM_{\nu}$$

b)
$$\int_{s}^{t} (\alpha X_{v} + \beta Y_{v}) dM_{v} = \alpha \int_{s}^{t} X_{v} dM_{v} + \beta \int_{s}^{t} Y_{v} dM_{v}$$

c)
$$s < t \Rightarrow \mathbb{E}\left[\int_{s}^{t} X_{v} dM_{v}\right] = 0$$

d)
$$\mathbb{E}\left[\int_0^t X_v dM_v | \mathcal{F}_s\right] = \int_0^s X_v dM_v$$

Proof. **a)** and **b)** are obvious. **c)** and **d)** hold since

$$N_t := \int_0^t X_{\nu} dM_{\nu} \tag{6.96}$$

is a Martingale.

[20.11.2012] [23.11.2012]

6.5 The Itô-Integral for continuous local semimartingales

Let *V* be a semimartingale. Therefore we can write V = M + A with $M \in \mathcal{M}_{loc}$ and $A \in \mathcal{A}$. We already defined

$$(X \cdot A)_t = \int_0^t X_s dA_s \tag{6.97}$$

where $X \in \mathcal{B} := \{X : \text{ adapted, left-continuous, the trajectories are locally bounded}\}$.

By definition $M \in \mathcal{M}_{loc}$ iff $\exists (T_n)$ stopping times $T_n \nearrow \infty$ s.t. M^{T_n} a Martingale. We also know for a Martingale M

$$(X \cdot M)^T = X \cdot M^T \tag{6.98}$$

Therefore for a local martingale M the following definition makes sense

$$X \cdot M = \lim_{n \to \infty} X \cdot M^{T_n} \tag{6.99}$$

and so for a Seminartingale V = M + A

$$X \cdot V = (X \cdot M) + (X \cdot A) \tag{6.100}$$

We are now doing this calculation step by step.

Definition 6.21.

For $M \in \mathcal{M}_{loc}$ we define

$$\mathcal{L}_{loc}^{2}(M) = \{X : X \text{ is measurable, predictable and } \forall t \in [0, \infty) : \mathbb{P}\left(\int_{0}^{t} X_{s}^{2} d\langle M \rangle_{s} < \infty\right) = 1\}$$
(6.101)

$$L_{loc}^2(M)$$
 = space of equivalence classes. (6.102)

Lemma 6.22.

Let $M \in \mathcal{M}_{loc}$. It holds $X \in \mathcal{L}^2_{loc}(M) \Leftrightarrow X$ is predictable, \exists stopping times $(T_n)_{n \in \mathbb{N}} \nearrow \infty$ s.t.

$$\mathbb{E}\left[\int_0^{T_n} X_s^2 d\langle M \rangle_s\right] < \infty \quad \forall n \in \mathbb{N}. \tag{6.103}$$

$$(\equiv X \in \mathcal{L}^2(M^{T_n})) \tag{6.104}$$

Proof. " \Rightarrow ": Construct T_n :

$$T_n = \inf\{t : \int_0^t X_s^2 d\langle M \rangle_s \ge n\} \nearrow \infty$$
 (6.105)

By definition $\int_0^{T_n} X_s^2 d\langle M \rangle_s \le n$ and therefore

$$\mathbb{E}\left[\int_0^{T_n} X_s^2 d\langle M \rangle_s\right] \le n \tag{6.106}$$

"\(\infty\)": Assume $\exists (T_n)$ s.t. $\mathbb{E}\left[\int_0^{T_n} X_s^2 d\langle M \rangle_s\right] < \infty$. Then

$$\mathbb{E}\left[\int_0^{T_n \wedge t} X_s^2 d\langle M \rangle_s\right] < \infty \tag{6.107}$$

$$\Rightarrow \mathbb{P}\left(\int_{0}^{T_{n}\wedge t} X_{s}^{2} d\langle M \rangle_{s} < \infty\right) = 1 \tag{6.108}$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{P}\left(\int_0^{T_n \wedge t} X_s^2 d\langle M \rangle_s < \infty\right) = 1 \tag{6.109}$$

$$\Rightarrow \mathbb{P}\left(\int_0^t X_s^2 d\langle M \rangle_s < \infty\right) = 1 \tag{6.110}$$

Definition 6.23.

Let $M \in \mathcal{M}_{loc}$ and $X \in L^2_{loc}(M)$. We define the stochastic integral as

$$X \cdot M := \lim_{n \to \infty} (X \cdot M^{T_n}) \tag{6.111}$$

Remark: Does the limit exist? $m \ge n, t \le T_n$

$$(X \cdot M^{T_m})_t = (X \cdot M^{T_m})_t^{T_n} = (X \cdot M^{T_m \wedge T_n}) = (X \cdot M^{T_n})_t \tag{6.112}$$

Therefore the sequence 'stabilizes' at a certain point \Rightarrow Convergence.

Definition 6.24.

Let $V \in \mathcal{S}$ be a semimartingale with V = M + A where $M \in \mathcal{M}_{loc}, A \in \mathcal{A}$. Let $X \in \mathcal{B}$. We define

$$(X \cdot V) := (X \cdot M) + (X \cdot A) \tag{6.113}$$

Proposition 6.25.

Let $V, W \in \mathcal{S}$ and $X, Y \in B$.

- a) $(X, V) \mapsto X \cdot V$ is bilinear.
- b) $V \in \mathcal{M}_{loc} \Rightarrow X \cdot V \in \mathcal{M}_{loc}^0$ $V \in \mathcal{R}_0 \Rightarrow X \cdot V \in \mathcal{R}_0$
- c) Associativity $(XY) \cdot V = X \cdot (Y \cdot V)$
- d) $\langle X \cdot V, Y \cdot W \rangle = (XY) \cdot \langle V, W \rangle (\equiv 0 \text{ if } V \text{ or } W \in \mathcal{A}.)$
- e) $(X \cdot V)^T = (X \mathbb{1}_{[0,t]} \cdot V) = (X \cdot V^T)$
- f) Let $a, b \in \mathbb{R} \Rightarrow \mathbb{P}(X_t = 0 \text{ on } [a, b] \text{ or } V_t \text{ is const. on } [a, b) \Rightarrow X \cdot V \text{ is const. on } [a, b]) = 1$

¹Limes reinziehen, da Folge von absteigenden Mengen, vergl. Ana III Satz 2.10

Proof. **a)** Obvious.

b) Let $V \in \mathcal{M}_{loc}$. Then $\exists S_n \nearrow \infty$ s.t. $V^{S_n} \in \mathcal{M}$. Thus $(X \cdot V^{S_n}) \in \mathcal{M}$. But since $(X \cdot V^{S_n}) = (X \cdot V)^{S_n}$ it follows that $(X \cdot V) \in \mathcal{M}_{loc}$.

For $V \in \mathcal{A}$ see Theorem 6.5.

- c) Theorem 6.5 and Lemma 6.18.
- **d**) Corollary 6.17.
- e) Theorem 6.5 and Proposition 6.19.
- **f**) Clear for $V \in \mathcal{A}$ by the definition of $(X \cdot V)$ (Lebesgue-Stieltjes).

Now let $V \in \mathcal{M}_{loc}$. By the assumption it holds either

$$X_0(\omega) = 0 \text{ on } [a, b]$$
 (6.114)

or

$$\langle V \rangle(\omega)$$
 constant on $[a, b]$. (6.115)

Hence

$$t \mapsto (X^2 \cdot \langle V \rangle)_t = \int_0^t X_s^2 d\langle V \rangle_s \tag{6.116}$$

is constant on [a, b]. Since $(X^2 \cdot \langle V \rangle)_t = \langle X \cdot V \rangle_t$ we get that $X \cdot V$ is constant on [a, b].

Theorem 6.26 (Convergence of Stochastic Integrals).

Let $V \in \mathcal{S}$, and $X^n, Y \in B$ s.t. $|X^n| \leq Y \ \forall n$. If

$$X_t^n \stackrel{n \to \infty}{\longrightarrow} 0 \text{ a.s., } \forall t \ge 0,$$
 (6.117)

then

$$X^n \cdot V \to 0$$
 P-stochastically, uniformly on compacts. (6.118)

i.e.

$$\forall t \ge 0, \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}\left(\sup_{0 \le s \le t} |X^n \cdot V|_s \ge \varepsilon\right) = 0. \tag{6.119}$$

Proof. If $V \in \mathcal{A}_0$ then the statement follow from dominated convergence. So now let $V \in \mathcal{M}_{loc}$ and let T be a stopping time s.t. $V^T \in H^2$ and X^T bounded. Since $(X^n)^T \to 0$, we get by dominated convergence

$$\|(X^n)^T\|_{V^T} = \mathbb{E}\left[\int_0^\infty ((X_s^n)^T)^2 d\langle V^T \rangle_s\right] \to 0 \tag{6.120}$$

Hence

$$(X^n)^T \to 0 \text{ in } L^2(V^T)$$
 (6.121)

and the L^2 -isometry (Theorem 6.15) gives

$$(X^n \cdot V)^T \to 0 \text{ in } H^2 \tag{6.122}$$

and thus

$$(X^n \cdot V)^T \to 0$$
 uniformly on \mathbb{R}_+ P-stochastic (6.123)

$$\Rightarrow (X^n \cdot V) \to 0$$
 locally uniformly \mathbb{P} -stochastic (6.124)

Theorem 6.27 (Approximation by Riemann-sums).

Let $V \in S, X \in B, t > 0$. $\Delta_n = \{0 = t_0 < t_1 < \dots < t_n = t\}$ partitions of [0, t], s.t. $||\Delta_n|| \xrightarrow{n \to \infty} 0$. Then for

$$I_s^{\Delta_n}(X, V) := \sum_{t_k \in \Delta_n} X_{t_k} (V_{s \wedge t_{k+1}} - V_{s \wedge t_k}), \tag{6.125}$$

 $I^{\Delta_n}(X, V)$ converges stochastically uniformly on [0, t) towards $\int_0^s X_u dV_u$.

Proof. WLOG assume $X_0 = 0$ and X bounded (otherwise there exist $T_n \nearrow \infty$ s.t. X^{T_n} bounded). Consider $X_t^{\Delta_n} = \sum_{t_k \in \Delta_n} X_{t_k} \mathbb{1}_{(t_k, t_{k+1}]}$. Since X is left-continuous $X_t^{\Delta_n} \xrightarrow{n \to \infty} X_t$ pointwise. Thus

$$I_s^{\Delta_n}(X,V) = \int_0^s X_u^{\Delta_n} dV_u \tag{6.126}$$

$$= \underbrace{\int_0^s (X_u^{\Delta_n} - X_u) dV_u}_{\rightarrow \text{0by Theorem 6.26}} + \int_0^s X_u dV_u$$
 (6.127)

Theorem 6.28 (Integration by parts).

Let $X, Y \in \mathcal{S}$. Then it holds

$$X_{t}Y_{t} = X_{0}Y_{0} + \int_{0}^{t} X_{s}dY_{s} + \int_{0}^{t} Y_{s}dX_{y} + \langle X, Y \rangle_{t}$$
 (6.128)

and in particular

$$X_t^2 = X_0^2 + 2\int_0^t X_s dX_s + \langle X \rangle_t. {(6.129)}$$

Proof. We show the second statement. The general case follows from polarisation. Let Δ_n be a partition of [0, t].

$$\langle X \rangle_t \leftarrow \sum_{t_k \in \Delta_n} (X_{t_{k+1}} - X_{t_k})^2 = \sum_{t_k \in \Delta_n} (X_{t_{k+1}} - X_{t_k})(X_{t_{k+1}} - X_{t_k})$$
(6.130)

$$= \sum_{t_k \in \Delta_n}^{n} X_{t_{k+1}} (X_{t_{k+1}} - X_{t_k}) - \underbrace{\sum_{t_k \in \Delta_n}^{n} X_{t_k} (X_{t_{k+1}} - X_{t_k})}_{=I_t^{\Delta_n} (X, X)}$$
(6.131)

$$= \sum_{t_k \in \Lambda_n} X_{t_{k+1}}^2 - \sum_{t_k \in \Lambda_n} (X_{t_{k+1}} - X_{t_k}) X_{t_k} - \sum_{t_k \in \Lambda_n} X_{t_k}^2 - I_t^{\Delta_n}(X, X)$$
 (6.132)

$$\to X_t^2 - X_0^t - 2I_t(X, X) \tag{6.133}$$

for
$$\|\Delta_n\| \to \infty$$
.

Corollary 6.29.

Let X=B=BM.

$$B_t^2 = 2\int_0^t B_s dB_s + \langle B \rangle_t = 2\int_0^t B_s dB_s + t \tag{6.134}$$

$$\int_{0}^{t} B_{s} dB_{s} = \frac{B_{t}^{2} - t}{2} \tag{6.135}$$

If we write this in differential notation this is

$$d(XY)_t = X_t dY_t + Y_t dX_t + \langle X, Y \rangle_t \tag{6.136}$$

$$= X_t dY_t + Y_t dX_t + dX_t dY_t (6.137)$$

if we define $dX_t dY_t = d\langle X, Y \rangle_t$. Hence

$$(dX_t)^2 = dX_t dX_t = d\langle X \rangle_t \tag{6.138}$$

If $X \in \mathcal{A}_0$ or $Y \in \mathcal{A}_0$ we have

$$dX_t dY_t = 0 (6.139)$$

Thus $\forall X, Y, Z \in \mathcal{S}$:

$$(dX_t dY_t)dZ_t = dX_t (dY_t dZ_t) = 0 (6.140)$$

since $(dX_t dY_t)dZ_t = (d(X, Y))dZ_t$.

Now consider a BM B. Then we have

$$B_t^2 = B_0^2 + 2 \int_0^t B_s dB_s + t \tag{6.141}$$

$$\Rightarrow dB_t^2 = 2B_t dB_t + dt \tag{6.142}$$

Rules for calculation:

$$(dB_t)^2 = dt ag{6.143}$$

$$dB_t dt = dt dB_t = 0 (6.144)$$

$$(dt)^2 = 0 (6.145)$$

For $d \ge 2$ one gets

$$dB_t^i dB_t^j = \delta_{ij} dt (6.146)$$

$$dB_t^i dt = dt dB_t^i = 0 (6.147)$$

$$(dt)^2 = 0 (6.148)$$

Back to d = 1. When we write dV_t we should interpret it as a map from $\{(a, b) \in \mathbb{R}^2, a < b\} \to \mathbb{R}^{\Omega}$.

$$dV_t : [a,b] \mapsto \int_a^b dV_t = V_b - V_a \tag{6.149}$$

$$d(X \cdot V)_t \equiv X_t dV_t : [a, b] \mapsto \int_a^b X_t dV_t \equiv (X \cdot V)_b - (X \cdot V)_a$$
 (6.150)

Now recall the associative property, i.e.

$$Y \cdot (X \cdot V) = (YX) \cdot V. \tag{6.151}$$

In the new notation this is

$$d(Y \cdot (X \cdot V)) = Y_t d(X \cdot V)_t = (Y_t X_t) dV_t. \tag{6.152}$$

Kunita-Watabe

$$\langle X \cdot V, Y \cdot W \rangle = (XY) \cdot \langle V, W \rangle \tag{6.153}$$

$$\langle X \cdot V \rangle = X^2 \cdot \langle V \rangle \tag{6.154}$$

becomes

$$X_t dV_t Y_t dW_t = d(X \cdot V)_t d(Y \cdot W)_t = X_t Y_t dV_t dW_t \tag{6.155}$$

$$(d(X \cdot V)_t)^2 = X_t^2 (dV_t)^2. \tag{6.156}$$

Example: Let $X_t = B_t^2$. We want to get $\langle X \rangle_t$.

$$d\langle X \rangle_t = (dX_t)^2 \tag{6.157}$$

$$=(dB_t^2)^2 (6.158)$$

$$\stackrel{6.29}{=} (2B_t dB_t + dt)^2 \tag{6.159}$$

$$\begin{array}{ll}
(3.29) \\
= (2B_t dB_t + dt)^2 \\
= 4B_t^2 \underbrace{(dB_t)^2}_{=dt} + \underbrace{4B_t dB_t dt}_{=0} + \underbrace{(dt)^2}_{=0} \\
= 4B_t^2 dt
\end{array} (6.159)$$
(6.160)

$$=4B_t^2 dt ag{6.161}$$

and hence

$$\langle X \rangle_t = \langle B^2 \rangle = 4 \int_0^t B_s^2 ds \tag{6.162}$$

Now consider the case

$$f \in C^{\infty}, X_t$$
 "regular function" (finite variation) (6.163)

Then

$$d(f(X))_t = f'(X_t)dX_t + \frac{1}{2}f''(X_t)(dX_t)^2 + \underbrace{\frac{1}{3}f'''(X_t)(dX_t)^3 + \dots}_{=0}$$
(6.164)

since $(dX_t)^n = 0$ for $n \ge 3$ (see (6.140)). In the case of a BM we get as a result

$$df(B_t) = f'(B_t)dB_t + \frac{1}{2}f''(B_t)(dB_t)^2$$
(6.165)

This is Itô's-Formula!

7 The Itô-Formula and applications

7.1 The Itô-Formula

Theorem 7.1 (Itô-Formula).

Let $F \in C^2(\mathbb{R}^d, \mathbb{R})$ and $X = (X^1, ..., X^d)$ with $X_i \in S$. Then $F(X) \in S$ and

$$F(X_t) = F(X_0) + \sum_{k=1}^{d} \int_0^t \partial_k F(X_s) dX_s^k + \sum_{k,l=1}^{n} \frac{1}{2} \int_0^t \partial_{k,l}^2 F(X_s) d\langle X^k, X^l \rangle_s, \tag{7.1}$$

Remark: Itô-Formula in differentialform is

$$dF(X_t) = \sum_{k=1}^d \partial_k F(X_t) dX_t^k + \frac{1}{2} \sum_{k,l=1}^n \partial_{k,l}^2 F(X_t) d\langle X^k, X^l \rangle_t$$
 (7.2)

Corollary 7.2.

Let $F \in C^2(\mathbb{R}^d, \mathbb{R})$, $(B_t)_{t\geq 0}$ a d-dimensional BM. Then,

$$F(B_t) = F(B_0) + \int_0^t \nabla F(B_s) dB_s + \frac{1}{2} \int_0^t \Delta F(B_s) ds$$
 (7.3)

Proof. We use $\langle B^k, B^l \rangle_t = \delta_{k,l} dt$ to see this.

Corollary 7.3.

Let $F \in C^2(\mathbb{R}^{d+1}, \mathbb{R})$, $(B_t)_{t\geq 0}$ a d-dimensional BM. Then,

$$F(t, B_t) = F(0, B_0) + \int_0^t \nabla F(s, B_s) dB_s + \int_0^t \dot{F}(s, B_s) ds + \frac{1}{2} \int_0^t \Delta F(s, B_s) ds$$
 (7.4)

where ∇F is the gradient and Δ is the Laplace-operator of F with differentials w.r.t. the space-variables and \dot{F} is the time-derivative.

Remark: Corollary 7.2 in differential form:

$$dF(B_s) = \nabla F(B_s)dB_s + \frac{1}{2}\Delta F(B_s)ds \tag{7.5}$$

Corollary 7.3 in differential form:

$$dF(t, B_t) = \nabla F(t, B_t) dB_t + \frac{1}{2} \Delta F(t, B_t) dt + \dot{F}(t, B_t) dt$$
 (7.6)

Proof of Theorem 7.1. **Step 1**) Prove (7.1) for F being a polynomial.

Let's see first, that (7.1) holds true for $F \equiv 1$. Now assume that (7.1) holds for a polynomial F. We have to show that (7.1) holds for $G(x_1, ..., x_d) = x_m F(x_1, ..., x_d)$. Then Step 1 holds by induction

and linearity.

$$G(X_t) - G(X_0) = X_t^m F(X_t) - X_0^m F(X_0)$$
(7.7)

$$\stackrel{\text{integr.}}{=} \int_{0}^{t} X_{s}^{m} dF(X_{s}) + \int_{0}^{t} F(X_{s}) dX_{s}^{m} + \langle X^{m}, F(X) \rangle_{s}$$

$$(7.8)$$

$$\stackrel{\text{Itô Form.}}{\underset{\text{for F}}{=}} \sum_{l=1}^{d} \int_{0}^{t} X_{s}^{m} \partial_{s} F(X_{s}) dX_{s}^{l} + \sum_{l,k=1}^{d} \frac{1}{2} \int_{0}^{t} X_{s}^{m} \partial_{k,l}^{2} F(X_{s}) d\langle X^{k}, X^{l} \rangle_{s} \tag{7.9}$$

$$+\int_0^t F(X_s)dX_s^m \tag{7.10}$$

$$+\sum_{l=1}^{d} \int_{0}^{t} \partial_{l} F(X_{s}) d\langle X^{m}, X^{l} \rangle_{s}$$

$$(7.11)$$

Where we used in the last step that

$$\langle X^m, F(X) \rangle_s = dX_s^m dF(X)_s \tag{7.12}$$

$$= dX_s^m \left(\sum_{l=1}^d \partial_l F(X_s) dX_s^l + \sum_{k,l=1}^d \frac{1}{2} \partial_{k,l} F(X_s) d\langle X^k, X^l \rangle_s\right)$$
(7.13)

$$= \sum_{l=1}^{d} \partial_{l} F(X_{s}) dX_{s}^{m} dX_{s}^{l} + \sum_{k,l=1}^{d} \frac{1}{2} \partial_{k,l} F(X_{s}) \underbrace{dX_{s}^{m} dX_{s}^{k} dX_{s}^{l}}_{=0}$$
(7.14)

Thus we have

$$G(X_t) - G(X_0) = \sum_{k=1}^d \int_0^t (F(X_s)\delta_{k,m} + X_s^m \partial_k F(X_s)) dX_s^k$$
 (7.15)

$$+\frac{1}{2}\int_{0}^{t}\sum_{k,l=1}^{d}\partial_{k,l}^{2}F(X_{s})X_{s}^{m}+\partial_{k}F(X_{s})\delta_{l,m}d\langle X^{l},X^{k}\rangle_{s}$$
(7.16)

$$= \sum_{k=1}^{d} \int_{0}^{t} \partial_{k} G(X_{s}) dX_{s}^{k} + \frac{1}{2} \sum_{k,l=1}^{d} \int_{0}^{t} \partial_{k,l}^{2} G(X_{s}) d\langle X^{k}, X^{l} \rangle_{s}$$
 (7.17)

Step 2) Extension to $F \in C_0^2(\mathbb{R}^d, \mathbb{R})$ (with bounded support). By the Weierstrass-Approximation theorem we can get F as the limit of polynomials F_n , i.e.

$$F_n \to F$$
 (7.18)

$$\partial_k F_n \to \partial_k F$$
 (7.19)

$$\partial_k \partial_l F_n \to \partial_k \partial_l F$$
 (7.20)

 \Rightarrow Itô-Formula holds for $F_n \Rightarrow$ also for $F \in C_0^2(\mathbb{R}^d, \mathbb{R})$.

Step 3) Extension to $F \in C^2(\mathbb{R}^d, \mathbb{R})$.

Let $K_n = [-n, n]^d$ and

$$T_n = \inf\{t > 0 : X_t \notin K_n\}$$
 (7.21)

Then $T_n \nearrow \infty$ as $n \to \infty$. Now consider $F_n = F \mathbb{1}_{K_n} \in C_0^2(\mathbb{R}^d, \mathbb{R})$. We know that the formula holds for F_n . Therefore it holds for all $\{\omega \in \Omega : T_n(\omega) > t\}$. But as $n \to \infty$ $T_n(\omega) > t \forall \omega \in \Omega \forall t \geq 0$. Therefore the formula holds for all Ω .

Corollary 7.4.

Let $X = X_0 + M + A$, $M \in \mathcal{M}^0_{loc}$, $A \in \mathcal{A}_0$ and $F \in C^2(\mathbb{R}, \mathbb{R})$. Then

$$F(X_t) = F(X_0) + \tilde{M}_t + \tilde{A}_t \tag{7.22}$$

with

$$\tilde{M} \in \mathcal{M}_{loc}^0 \text{ and } \tilde{A} \in \mathcal{A}_0$$
 (7.23)

where

$$\tilde{M}_t = \int_0^t F'(X_s) dM_s \tag{7.24}$$

$$\tilde{A}_t = \int_0^t F'(X_s) dA_s + \frac{1}{2} \int_0^t F''(X_s) d\langle M \rangle_s \tag{7.25}$$

Let us compute e.g. the quadratic variation of $F(X_t)$.

Corollary 7.5.

Let $X \in \mathcal{S}^d$, $F \in C^2(\mathbb{R}^d, \mathbb{R})$. Then

$$\langle F(X) \rangle_t = \sum_{k,l=1}^d \int_0^t \partial_k F(X_s) \partial_l F(X_s) d\langle X^k, X^l \rangle_s \tag{7.26}$$

In particular, if X = B is a BM

$$\langle F(B)\rangle_t = \sum_{k=1}^d \int_0^t (\partial_k F(B_s))^2 ds = \int_0^t (\nabla F(B_s))^2 ds \tag{7.27}$$

Proof. The differential form to be proven is

$$d\langle F(X)\rangle_t = \sum_{k,l=1}^d \partial_k F(X_t) \partial_l F(X_t) d\langle X^k, X^l \rangle_t$$
 (7.28)

Remember: $d\langle X, Y \rangle_t \equiv dX_t dY_t$. Therefore

$$d\langle F(X)\rangle_t \equiv (dF(X_t))^2 \stackrel{\text{It\^{o}}}{=} (\sum_{k=1}^d \partial_k F(X_t) dX_t^k + \frac{1}{2} \sum_{k,l=1}^d \partial_k \partial_l F(X_t) d\langle X^k, X^l \rangle_t)^2 \tag{7.29}$$

$$\stackrel{dX_t^k dX_t^l dX_t^m = 0}{=} \sum_{k,l=1}^d \partial_k F(X_t) \partial_l F(X_t) \underbrace{dX_t^k dX_t^l}_{=d\langle X^k, X^l \rangle}$$
(7.30)

The statement for the BM follows from

$$d\langle B^k, B^l \rangle_s = \delta_{k,l} ds. \tag{7.31}$$

Remember one exercise: If $M_t := \exp(\alpha B_t - \frac{1}{2}\alpha^2 t) \in \mathcal{M}$ and B_t is a continuous process with $B_0 = 0$. Then B is a BM. M_t is an example for a so called 'exponential martingale' and will later be the 'Levy characterization'.

Proposition 7.6.

a) Let B be a d-dimensional BM, $f \in C^2(\mathbb{R}^{d+1}, \mathbb{R})$ and

$$Af := \frac{1}{2}\Delta f + \frac{\partial f}{\partial t} \tag{7.32}$$

Then,

$$M_t := f(t, B_t) - f(0, B_0) - \int_0^t Af(s, B_s) ds \in \mathcal{M}_{loc}^0$$
 (7.33)

In particular, if Af = 0, then

$$(f(t, B_t))_{t \ge 0} \in \mathcal{M}_{loc}^0 \tag{7.34}$$

b) If $f \in C^2(\mathbb{R}^d)$, then

$$M_{t} := f(B_{t}) - f(B_{0}) - \frac{1}{2} \int_{0}^{t} \Delta f(B_{s}) ds \in \mathcal{M}_{loc}^{0}$$
 (7.35)

In particular if f is harmonic on \mathbb{R}^d , i.e. $\Delta f = 0$, then $(f(B_t))_{t\geq 0} \in \mathcal{M}_{loc}$ (is a local martingale).

c) Let $D \subset \mathbb{R}^d$ and $T = \inf\{t \ge 0 : B_t \notin D\}$. Then, if f is harmonic on D,

$$f(B^T) - f(B_0) \in \mathcal{M}_{loc}^0.$$
 (7.36)

Proof. ad a) Follows from Cor. 7.3:

$$M_t = f(t, B_t) - f(0, B_0) - \int_0^t (Af)(s, B_s) ds = \int_0^t (\nabla f)(s, B_s) dB_s \in \mathcal{M}_{loc}$$
 (7.37)

ad b) Follows similarly from Cor. 7.2.

ad c) Take B^T in b). Then one will get M_t^T is \mathcal{M}_{loc}^0 . Important: We need at least $f \in C^2(D')$ for an D' s.t. $\bar{D} \subset D'$.

Lemma 7.7.

Let M_t as in Prop. 7.6 a). Then

$$\langle M \rangle_t = \int_0^t |\nabla f(s, B_s)|^2 ds \tag{7.38}$$

Proof.

$$dM_t = (\nabla f)(s, B_s)dB_s \tag{7.39}$$

$$\Rightarrow d\langle M \rangle_t = (dM_t)^2 = (\nabla f(t, B_t))^2 dt \tag{7.40}$$

A generalisation:

Proposition 7.8.

Let *B* be a d-dimensional BM. $\sigma(x) := (\sigma_{i,j}(x))_{1 \le i,j \le d}$ a Matrix with continuous coefficients and let *X* be a continuous, adapted d-dimensional process with

$$X_t^k = X_0^k + \sum_{l=1}^d \int_0^t \sigma_{ij}(X_s) dB_s^l$$
 (7.41)

Then,

- a) X^k is a local martingale.
- b) For all $f \in C^2(\mathbb{R}_+ \times \mathbb{R}^d)$, let

$$M_t^f := f(t, X_t) - f(0, X_0) - \int_0^t Af(s, X_s) ds$$
 (7.42)

with

$$Af(t,x) = \frac{\partial}{\partial t}f(t,x) + \frac{1}{2}\sum_{k,l=1}^{d} a_{kl}(x)\partial_{k,l}^{2}f(t,x)$$
 (7.43)

and $a_{kl} = \sum_{m=1}^{d} \sigma_{km} \sigma_{lm}$ ($\equiv (\sigma \sigma^{T})_{kl}$). Then M_{t}^{f} is a local martingale.

[27.11.2012] [30.11.2012]

Proof. **a)** Follows since *B* is a martingale.

b) We compute first:

$$d\langle X^k, X^l \rangle_t \equiv dX_t^k dX_t^l \stackrel{\text{hyp}}{=} \sum_{i,j=1}^d \sigma_{k,j}(X_t) \sigma_{l,i}(X_t) \underbrace{dB_t^j dB_t^i}_{=d\langle B^i, B^j \rangle_t = \delta_{ij} dt}$$
(7.44)

$$=\sum_{i=1}^{d}\sigma_{ki}\sigma_{li}dt=a_{kl}dt\tag{7.45}$$

Thus

$$f(t,X_t) \stackrel{\text{lt\^{o}}}{\underset{Form.}{=}} f(0,X_0) + \int_0^t \partial_s f(s,X_s) ds + \sum_{k=1}^d \int_0^t \partial_k f(s,X_s) dX_s^k + \frac{1}{2} \sum_{k,l=1}^d \int_0^t \partial_{k,l} f(s,X_s) \underbrace{d\langle X^k, X^l \rangle_s}_{=a_{k,l}(X_s)ds}$$

$$(7.46)$$

And therefore

$$M_t^f = \sum_{k=1}^d \int_0^t \partial_k f(s, X_s) dX_s^k \in \mathcal{M}_{loc}$$
 (7.47)

7.2 Exponential Martingales

Lemma 7.9.

Let $F \in C^2(\mathbb{R}_+ \times \mathbb{R}, \mathbb{R})$, s.t. $\partial_t F + \frac{1}{2} \partial_{xx}^2 F = 0$ and $M \in \mathcal{M}_{loc}$.

$$\Rightarrow \tilde{M}_t := F(\langle M \rangle_t, M_t) \in \mathcal{M}_{loc} \tag{7.48}$$

Proof.

$$d\tilde{M}_{t} = \frac{\partial F}{\partial t} d\langle M \rangle_{t} + \frac{\partial F}{\partial x} dM_{t} + \frac{1}{2} \partial_{xx}^{2} F \cdot d\langle M \rangle_{t} + \underbrace{\frac{1}{2} \partial_{tt}^{2} (d\langle M \rangle)^{2}}_{=0}$$
(7.49)

$$\stackrel{\text{Hyp}}{=} \frac{\partial F}{\partial x} (\langle M \rangle_t, M_t) dM_t \in \mathcal{M}_{loc}$$
 (7.50)

Definition 7.10.

Let $\lambda \in \mathbb{C}$, $M \in \mathcal{M}$, then

$$\mathcal{E}_{\lambda}(M)_{t} := e^{\lambda M_{t} - \frac{1}{2}\lambda^{2}\langle M \rangle_{t}} \tag{7.51}$$

is called exponential local martingale.

Lemma 7.11.

 $\lambda \in \mathbb{C}, M \in \mathcal{M}_{loc}$.

$$\Rightarrow \mathcal{E}_{\lambda}(M) \in \mathcal{M}_{loc} + i\mathcal{M}_{loc} \equiv \mathbb{C}\mathcal{M}_{loc} \tag{7.52}$$

Proof. Take $F(t, x) := e^{\lambda x - \frac{1}{2}\lambda^2 t}$ and apply Lemma 7.9.

Example: Choose $\lambda = i$.

$$\Rightarrow \cos(M_t)^{\frac{1}{2}\langle M \rangle_t} \in \mathcal{M}_{loc} \tag{7.53}$$

$$\sin(M_t)e^{\frac{1}{2}\langle M\rangle_t} \in \mathcal{M}_{loc} \tag{7.54}$$

(7.55)

Example for a BM. $X_t = F(t, B_t) = e^{\lambda B_t - \frac{1}{2}\lambda^2 t}, \lambda \in \mathbb{R}$.

$$dX_t = d(F(X)) = \partial_x F(B_t) dB_t + \underbrace{\frac{1}{2} \Delta_x F(t, B_t) dt + \partial_t F(t, B_t) dt}_{=0} = \lambda X_t dB_t$$
 (7.56)

Hence $dX_t = \lambda X_t dB_t$. Therefore

$$X_{t} - X_{0} = \int_{0}^{t} dX_{s} = \lambda \int_{0}^{t} X_{s} dB_{s}$$
 (7.57)

$$\Rightarrow X_t = 1 + \lambda \int_0^t X_s dB_s \tag{7.58}$$

Q.: Is $\mathcal{E}_{\lambda}(M) \in \mathcal{M}$, i.e. a real, not just a local martingale?

A.: In general no!

Theorem 7.12.

 $\mathcal{E}_{\lambda}(M) \in \mathbb{C}\mathcal{M}$ if at least one of the following conditions are satisfied:

- a) *M* is bounded and $\lambda \in \mathbb{R}$.
- b) $\langle M \rangle$ is bounded and $\lambda \in i\mathbb{R}$.
- c) $M_0 = 0, \mathbb{E}\left[\mathcal{E}_{\lambda}(M)_t\right] = 1, \forall t \geq 0$, and $\lambda \in \mathbb{R}$.

Proof. a)

$$|\mathcal{E}(M)| \le |\exp(\lambda M_t) \exp(-\frac{\lambda^2}{2} \underbrace{\langle M \rangle_t}_{\ge 0})| \le \underbrace{|\exp(\lambda M_t)|}_{\text{bounded}}$$
(7.59)

Thus $\mathcal{E}(M)$ is bounded hence a martingale.

b)

$$|\mathcal{E}(M)| \le |\underbrace{\exp(i|\lambda|M_t)}_{\le 1} \exp(\frac{|\lambda|^2}{2}\langle M \rangle_t)|$$
 (7.60)

$$\leq |\underbrace{\exp(\frac{|\lambda|^2}{2}\langle M\rangle_t)|}_{\text{bounded}} \tag{7.61}$$

Thus $\mathcal{E}(M)$ is bounded hence a martingale.

ad c) $\mathcal{E}_{\lambda}(M)_t = e^{\lambda M_t - \frac{1}{2}\lambda^2 \langle M \rangle_t} \ge 0$. By Lemma 5.3 we know that $\mathcal{E}_{\lambda}(M)$ is a supermartingale.

$$\Rightarrow 1 \stackrel{\text{hyp.}}{=} \mathbb{E} \left[\mathcal{E}_{\lambda}(M)_t \right] \ge \mathbb{E} \left[\mathcal{E}_{\lambda}(M)_0 \right] \equiv 1 \tag{7.62}$$

$$\Rightarrow \mathcal{E}_{\lambda}(M) \in \mathcal{M}$$
. (see Remark below.)

Remark: Let M_t be a super-martingale s.t. $\mathbb{E}[M_t] = c$ for all t. Claim: M_t is a martingale!

$$\mathbb{E}\left[X_t|\mathcal{F}_s\right] - X_s \le 0 \tag{7.63}$$

but

$$\mathbb{E}\left[\mathbb{E}\left[X_{t}|\mathcal{F}_{s}\right]-X_{s}\right]=\mathbb{E}\left[X_{t}\right]-\mathbb{E}\left[X_{s}\right]=0\tag{7.64}$$

hence

$$\mathbb{E}\left[X_{t}|\mathcal{F}_{s}\right] = X_{s} \ a.e. \tag{7.65}$$

Let *B* be a 2-dimensional BM.

$$\Rightarrow f(B_t) = f(B_0) + \int_0^t \nabla f(B_s) dB_s + \frac{1}{2} \int_0^t \Delta f(B_s) ds \tag{7.66}$$

Q.: If f is harmonic on \mathbb{R}^2 , does it follow that

$$f(B) \in \mathcal{M}? \tag{7.67}$$

Is $\nabla f \in L^2(B)$?

Answer: In general not. Counterexample: Take $f(x, y) = e^{x^2 - y^2} \cos(2xy)$.

$$\frac{\partial f(x,y)}{\partial x} = 2xe^{x^2 - y^2}\cos(2xy) - e^{x^2 - y^2}\sin(2xy)2y$$
 (7.68)

$$\frac{\partial f(x,y)}{\partial y} = -2yxe^{x^2 - y^2}\cos(2xy) - e^{x^2 - y^2}\sin(2xy)2x \tag{7.69}$$

$$\Rightarrow \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2} = 0 \tag{7.70}$$

 \Rightarrow f is harmonic, but f(B) is not a martingale for all t. The problem is that e.g. $\nabla F \notin L^2(B)$ or $f(B_t) \notin L^1$ for t large enough, because:

$$\mathbb{E}[f(B_t)] = \int_{\mathbb{R}^2} f(x, y) \frac{1}{2\pi t} e^{-\frac{x^2 + y^2}{2t}} dx dy$$
 (7.71)

which is not good for t > 1/2.

7.3 Levy characterization of the BM

Theorem 7.13 (Levy).

Let X be a d-dimensional, adapted and continuous stochastic process with $X_0 = 0$. Then the following statements are equivalent.

a) X is a d-dimensional BM w.r.t. \mathcal{F}_t .

b) $X \in \mathcal{M}_{loc}^0$ and $\langle X^k, X^l \rangle_t = \delta_{k,l} \cdot t, \forall 1 \le k, l \le d$.

c) $X \in \mathcal{M}_{loc}^0$ and for all $f = (f_1, ..., f_d)$ with $f_k \in L^2(\mathbb{R}_+, \mathbb{R})$,

$$M_t := \exp\left[i\sum_{k=1}^d \int_0^t f_k(s)dX_s^k + \frac{1}{2}\sum_{k=1}^d \int_0^t f_k^2(s)ds\right] \in \mathcal{M} + i\mathcal{M}(\equiv \mathbb{C}\mathcal{M})$$
 (7.72)

Proof. " $\mathbf{a} \Rightarrow \mathbf{b}$ ": is already known.

"b⇒c":

$$d(f \cdot X)_t = \sum_{k=1}^d f_k(s) dX_s^k$$
 (7.73)

$$\Rightarrow (f \cdot X)_t = \underbrace{(f \cdot X)_0}_{=0} + \sum_{k=1}^d \int_0^t f_k(S) dX_s^k \text{ and}$$
 (7.74)

$$\langle f \cdot X \rangle_t = \sum_{k,l=1}^d \int_0^t f_k(s) f_l(s) \underbrace{d\langle X^k, X^l \rangle_s}_{=\delta_k l ds \text{ by hyp.}}$$
(7.75)

$$=\sum_{k=1}^{d} \int_{0}^{t} f_{k}^{2}(s)ds \tag{7.76}$$

Since $f_k \in L^2(\mathbb{R}_+, \mathbb{R})$

$$\langle f \cdot X \rangle_t = \int_0^t \sum_{k=1}^d f_k(s)^2 ds < \infty$$
 (7.77)

Now $\lambda = i, N_t = \sum_{k=1}^d \int_0^t f_k(s) dX_s^k$. $\Rightarrow M_t = \mathcal{E}_{\lambda=i}(N)_t$ and since $\lambda \in i\mathbb{R}$ and $\langle N \rangle_t$ bounded we have $M_t \in \mathbb{C}\mathcal{M}$ by Theorem 7.12.

" $\mathbf{c} \Rightarrow \mathbf{a}$ ": Let $z \in \mathbb{R}^d$, T > 0. Define

$$f_k(s) = z_k \mathbb{1}_{[0,T)}(s) \tag{7.78}$$

Then.

$$\sum_{k=1}^{d} \int_{0}^{t} f_{k}(s) dX_{s}^{k} = \sum_{k=1}^{d} z_{k} X_{t \wedge T}^{k} \equiv (z, X_{t \wedge T}), \tag{7.79}$$

$$\sum_{k=1}^{d} \int_{0}^{t} f_{k}^{2}(s)ds = \sum_{k=1}^{d} z_{k}^{2}(t \wedge T) \equiv ||z||^{2} \cdot (t \wedge T)$$
 (7.80)

The assumption implies that

$$M_t = \exp[i(z, X_{t \wedge T}) + \frac{1}{2}||z||^2(t \wedge T)] \in \mathbb{C}\mathcal{M}$$
 (7.81)

 \Rightarrow For $0 < s < t < T : \forall A \in \mathcal{F}_s$

$$\mathbb{E}\left[\mathbb{1}_{A}e^{i(z,X_{t})+\frac{1}{2}\|z\|^{2}t}|\mathcal{F}_{s}\right] = \mathbb{1}_{A}e^{i(z,X_{s})+\frac{1}{2}\|z\|^{2}s}$$
(7.82)

Therefore

$$\mathbb{E}\left[\mathbb{1}_{A}e^{i(z,X_{t}-X_{s})}|\mathcal{F}_{s}\right] = \underbrace{\mathbb{E}\left[\mathbb{1}_{A}e^{i(z,X_{t}-X_{s})}e^{\frac{1}{2}||z||^{2}(t-s)}|\mathcal{F}_{s}\right]}_{=\mathbb{1}_{A}\text{by (7.82)}}e^{-\frac{1}{2}||z||^{2}(t-s)}$$
(7.83)

$$\Rightarrow \mathbb{E}\left[\mathbbm{1}_A e^{i(Z,X_t-X_s)}\right] = \mathbb{E}\left[\mathbb{E}\left[\mathbbm{1}_A e^{i(Z,X_t-X_s)}|\mathcal{F}_s\right]\right] = \mathbb{E}\left[\mathbbm{1}_A e^{-\frac{1}{2}\|z\|^2(t-s)}\right] = \mathbb{P}(A) \, e^{-\frac{1}{2}\|z\|^2(t-s)} \tag{7.84}$$

$$\Rightarrow \forall A \in \mathcal{F}_s : \mathbb{E}\left[\mathbb{1}_A e^{i(z,X_t-X_s)}\right] = \mathbb{E}\left[\mathbb{1}_A\right] e^{-\frac{1}{2}\|z\|^2(t-s)} \Rightarrow \mathbb{E}\left[e^{i(X_t-X_s)}\right] = e^{-\frac{1}{2}\|z\|^2(t-s)} \text{ and } X_t - X_s \text{ is independent of } \mathcal{F}_s (\Rightarrow \text{ of } X_s). \Rightarrow X \text{ is a BM.}$$

We get some corollaries for d = 1.

Corollary 7.14.

Let $X \in \mathcal{M}_{loc}^0$ with $\langle X \rangle_t = t$. Then X is a BM.

Corollary 7.15.

Let $X \in \mathcal{M}_{loc}^0$ with

$$t \mapsto X_t^2 - t \in \mathcal{M}_{loc}^0 \tag{7.85}$$

Then *X* is a BM.

Remark: Continuity is needed! Otherwise, let N_t a Poisson Process with intensity 1, then

$$\{M_t := N_t - t\}_{t \ge 0} \tag{7.86}$$

is a martingale in continuous time with cadlag trajectories. Also $\langle M \rangle_t = t$, but M_t is not a BM!

[30.11.2012]

7.4 Applications of Ito's Calculus

7.4.1 Brownian Bridge (BB)

A Brownian Bridge for $t \in [0, 1]$ is a BM with $X_0 = 0$ conditioned on $X_1 = 0$.

Definition 7.16 (Brownian Bridge).

A Brownian Bridge is a continuous Gaussian Process $(X_t, 0 \le t \le 1)$ (where $0 \le t \le 1$ is the lifespan) s.t.

- (i) $\mathbb{E}[X_t] = 0 \forall t \in [0, 1].$
- (ii) $Cov(X_s, X_t) = s(1 t) \forall 0 \le s \le t \le 1$

We can see $X_t \sim \mathcal{N}(0, t(1-t))$. Therefore $X_1 \sim \mathcal{N}(0,0), X_0 \sim \mathcal{N}(0,0)$. So the processes starts and ends at 0.

We know $|X_t| \approx \sqrt{\mathbb{E}\left[X_t^2\right]} = \sqrt{t(1-t)}$. So for t well inside [0, 1] we have $\approx \sqrt{t}$. Construction

a) Let $B = (B_t)$ be a standard BM. Then

$$X_t = B_t - tB_1 \tag{7.87}$$

is a BB. Check:

- $-X_0=0=X_1 \checkmark$
- $\mathbb{E}[X_t] = \mathbb{E}[B_t] t\mathbb{E}[B_1] = 0 \checkmark,$
- Gaussian Process ✓,
- continuous √,
- Now let $0 \le s \le t \le 1$.

$$Cov(X_s, X_t) = \mathbb{E}\left[(B_s - sB_1)(B_t - tB_1) \right]$$
 (7.88)

$$= \mathbb{E}\left[B_s B_t\right] - s \mathbb{E}\left[B_1 B_t\right] - t \mathbb{E}\left[B_s B_1\right] + s t \mathbb{E}\left[B_1^2\right] \tag{7.89}$$

$$= s \wedge t - st - ts + st = s(1 - t)\sqrt{(7.90)}$$

b) BB is a BM conditioned on $\{B_1 = 0\}$. Problem: $\mathbb{P}(B_1 = 0) = 0$. So for the law

$$\mathcal{L}(X_t, 0 \le t \le 1) = \lim_{\varepsilon \to 0} \mathbb{P}(BM||B_1| < \varepsilon) \tag{7.91}$$

$$\Rightarrow \mathbb{P}\left(X_{t_1} \in \cdot, \dots, X_{t_k} \in \cdot\right) = \lim_{\varepsilon \to 0} \mathbb{P}\left(B_{t_1} \in \cdot, \dots, B_{t_k} \in \cdot ||B_1| < \varepsilon\right) \tag{7.92}$$

c) Let B be a BM. Then

$$X_{t} = \begin{cases} (1-t)B_{\frac{t}{1-t}} & 0 \le t < 1\\ 0 & t = 1 \end{cases}$$
 (7.93)

is a BB. Well defined? For $t \nearrow 1: W_{\frac{t}{1-t}} \sim \frac{1}{\sqrt{1-t}} \Rightarrow X_t \sim \sqrt{1-t} \xrightarrow{t\to 1} 0$. Also $t \mapsto \frac{t}{1-t}$ is monoton, goes to ∞ for $t\to 1$. Check the other conditions:

$$\mathbb{E}\left[X_{t}\right] = (1 - t)\mathbb{E}\left[B_{\frac{t}{1 - t}}\right] = 0 \tag{7.94}$$

$$(s \le t) \ Cov(X_s, X_t) = (1 - t)(1 - s) \mathbb{E}\left[B_{\frac{t}{1 - t}} B_{\frac{s}{1 - s}}\right] = s(1 - t) \checkmark \tag{7.95}$$

Lemma 7.17.

For a BB it holds $(X_t, 0 \le t \le 1) \in S$. Furthermore $\langle X \rangle_t = t$, but it's not a BM, since it is not a martingale.

Proof. Use $X_t = (1-t)B_{\frac{t}{1-t}}$. Define $B_t' = B_{\frac{t}{1-t}}$. Then B_t' is a martingale w.r.t. $\mathcal{F}_t' = \mathcal{F}_{\frac{t}{1-t}}$. Choose F(t,x) = (1-t)x.

$$X_t = (1 - t)B_t' = F(t, B_t') \tag{7.96}$$

$$\Rightarrow F(t, B_t') = \int_0^t \partial_s F(s, B_s') ds + \int_0^t \partial_x F(s, B_s') dB_s' + \frac{1}{2} \int_0^t \underbrace{\partial_x^2 F(s, B_s')}_{0} d\langle B' \rangle_s \tag{7.97}$$

$$= -\int_{0}^{t} B'_{s} ds + \int_{0}^{t} (1-s) dB'_{s}$$
finite variation martingale term (7.98)

Thus X_t is a semimartingale. Now for the variation:

$$\langle \int_0^t (1-s)dB_s' \rangle_t = \int_0^t (1-s)^2 d\langle B' \rangle_s = \int_0^t (1-s)^2 d\frac{s}{1-s} = \int_0^t (1-s)^2 \frac{(1-s)+s}{(1-s)^2} ds = t$$
(7.99)

Therefore by Levy $W_t := \int_0^t (1-s)dB_s'$ is a BM! For the finite variation term we can write

$$-\int_0^t B_s' ds = -\int_0^t \frac{X_s}{1-s} ds \tag{7.100}$$

 $^{{}^{1}\}langle B'\rangle_{t} = \frac{t}{1-t}$ since it's a time change of a BM.

Thus we get:

$$X_t = -\int_0^t \frac{X_s}{1-s} ds + W_t \tag{7.101}$$

where W_t is a BM. And in differential form

$$dX_t = -\frac{X_t}{1 - t}dt + dW_t (7.102)$$

Remark: *Brownian Bridge* $(X_t, 0 \le t \le 1)$:

- (i) Gaussian process with $\mathbb{E}[X_t] = 0$, $Cov(X_s, X_t) = s(1 t)$.
- (ii) $X_t = B_t tB_1$ for B a BM.
- (iii) $X_t = (1-t)B_{\frac{t}{1-t}}$ for B a BM.
- (iv) Solution of the SDE: $dX_t = -\frac{X_t}{1-t}dt + dW_t$ where W is a BM.

7.4.2 Ornstein-Uhlenbeck Process (OU)

Definition 7.18.

Let $B = (B_t)_{t \ge 0}$ be a standard BM. Let $\lambda > 0$, then

$$Y_t = \frac{e^{-\lambda t}}{\sqrt{2\lambda}} B_{e^{2\lambda t}}(t \ge 0) \tag{7.103}$$

is a Ornstein-Uhlenbeck Process.

The process does not necessarily start in 0. $Y'_t = Y_t - Y_0$ is an OU issued at 0. We can see:

$$\mathbb{E}\left[Y_{t}\right] = \frac{e^{-\lambda t}}{\sqrt{2\lambda}} \mathbb{E}\left[B_{e^{2\lambda t}}\right] = 0 \tag{7.104}$$

$$\mathbb{E}\left[Y_t^2\right] = \frac{e^{-2\lambda t}}{2\lambda} \mathbb{E}\left[B_{e^{2\lambda t}}^2\right] = \frac{1}{2\lambda} \tag{7.105}$$

Lemma 7.19.

Let Y be an OU-Process. Then it holds $(Y_t) \in S$ and $(Y)_t = t$, but Y is not a martingale.

Proof. We set $B'_t = B_{e^{2\lambda t}}$, then

$$Y_t = \frac{e^{-\lambda t}}{\sqrt{2\lambda}} B_t' \tag{7.106}$$

 B_t' is a martingale wr.t. $\mathcal{F}_t' = \mathcal{F}_{e^{2\lambda t}}$. $(t \mapsto e^{2\lambda t} \text{ is increasing.})$ Now choose $F(t, x) = \frac{e^{-\lambda t}}{\sqrt{2\lambda}}x$. Then $Y_t = F(t, B_t')$.

$$Y_{t} = F(t, B'_{t}) = \int_{0}^{s} \partial_{s} F(s, B'_{s}) ds + \int_{0}^{t} \partial_{x} F(s, B'_{s}) dB'_{s}$$
 (7.107)

$$= -\lambda \int_0^t \frac{e^{-\lambda s}}{\sqrt{2\lambda}} B_s' ds + \underbrace{\int_0^t \frac{e^{-\lambda s}}{\sqrt{2\lambda}} dB_s'}_{\text{martingale part}}$$
(7.108)

Hence Y_t is a semimartingale. For the variation, see that

$$\langle \int_0^{\cdot} \frac{e^{-\lambda s}}{\sqrt{2\lambda}} dB_s' \rangle_t = \int_0^t \frac{e^{-2\lambda s}}{2\lambda} d\langle B' \rangle_s \tag{7.109}$$

$$= \int_0^t \frac{e^{-2\lambda s}}{2\lambda} d(e^{2\lambda s}) \tag{7.110}$$

$$= \int_0^t \frac{e^{-2\lambda s}}{2\lambda} 2\lambda e^{2\lambda s} ds = t \tag{7.111}$$

$$\Rightarrow dY_t = -\lambda \frac{e^{-\lambda t}}{\sqrt{2\lambda}} B_t' dt + dW_t \tag{7.112}$$

where W_t is a BM.

$$dY_t = -\lambda Y_t dt + dW_t \tag{7.113}$$

So the OU is the solution of the 'easiest' linear stochastic differential equation.

Remark: "A particle in a Brownian Potential".

Newton: $F = m \cdot a$. (m=1). $F = ma = a = \dot{v} = -\xi v + W$ where W is a random force action of the particle.

7.4.3 Bessel Processes (BP)

Let $(B_t)_{t\geq 0}$ be a d-dimensional BM, issued at $x \neq 0$ on some probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P}^x)$. We define $R_t := ||B_t|| = \sqrt{(B_t^1)^2 + (B_t^2)^2 + \dots + (B_t^d)^2}$

Remark: $y \in \mathbb{R}^d$, ||y|| = ||x||. Then there exists a rotation matrix s.t. y = Ox and $OO^T = \mathbb{1}$.

Since the distribution of a standard BM is symmetric around 0, the distribution of R_t solely depends on ||x|| = r. Hence from now on we will write

$$\hat{\mathbb{P}}^r = \mathbb{P}^{(r,0,\dots,0)} \tag{7.114}$$

where $\mathbb{P}^{(r,0,\dots,0)}$ is the mass of a BM issued at $(r,0,\dots,0)$.

Definition 7.20.

Let $r \ge 0$, $d \ge 2$. Then $R_t = ||B_t||$ on $(\Omega, \mathcal{F}, \mathcal{F}_t, \hat{\mathbb{P}}^r)$ is a Bessel Process of dimension d.

Consider
$$F: \mathbb{R}^d \to \mathbb{R}, x = (x_1, ..., x_n) \mapsto \sqrt{x_1^2 + ... + x_n^2} \Rightarrow R_t = F(B_t)$$
 and $\nabla F = \frac{x}{\|x\|}$

Theorem 7.21.

 $B = (B_t)$ a d-dim BM, $d \ge 2$, $B_0 = x$. $R_t = ||B_t||$.

- a) $X_t := \sum_{k=1}^d X_t^k$ where $X_t^k := \int_0^t \frac{B_s^k}{R_s^k} dB_s$. Then $(X_t)_{t \ge 0}$ is a 1-dim BM.
- a) $dR_t = \frac{d-1}{2R_t}dt + dW_t$ where W_t is a BM but $\neq B$.

03.12.2012]

Proof. a) $Leb(0 \le s \le t : R_s = 0) \le Leb(0 \le s \le t : B_s = 0) = 0.$

$$\langle X^k, X^l \rangle_t = \int_0^t \frac{B_s^k B_s^l}{R_s^2} \underbrace{d\langle B^k, B^l \rangle_s}_{\delta \iota ds} = \begin{cases} 0 & k \neq l \\ \int_0^t \frac{(B_s^k)^2}{R_s^2} ds & k = l \end{cases}$$
(7.115)

$$\Rightarrow \langle X \rangle_t = \sum_{k,l} \langle X^k, X^l \rangle_t = \sum_k \int_0^t \frac{(B_s^k)^2}{R_s^2} ds = \int_0^t \frac{\sum_k (B_s^k)^2}{R_s^2} ds \stackrel{\sum_k (B_s^k)^2 = R_s^2}{=} t$$
 (7.116)

By Levy: X is a BM.

b) $R_t = \|B_t\| = F(B_t), F : \mathbb{R}^d \to \mathbb{R}_+, x = (x_1, ..., x_d) \mapsto \sqrt{(x_1)^2 + ... + (x_d)^2}$. Ito's Formula. Caution: singularity of ∇F , $\nabla^2 F$ at x = 0! Way out: $\forall \varepsilon > 0 : \|B_\varepsilon\| > 0$. $K \in \mathbb{N}$, $F_K \equiv F$ on $B_{1/k}^c(0)$. Define $T_{K,l} = \inf\{t \ge \frac{1}{l} : \|B_t\| \le 1/K\}$ $\bigwedge_{K \to \infty} \inf\{t \ge 1/l : \|B_t\| = 0\} = +\infty$. But on $\{(t, \omega) : T_{K,l}(\omega) \ge t \ge 1/l\}$ Ito's formula is valid for F_K and $F_K \equiv F$.

$$F(B_t) = F(B_{1/l}) + \int_{1/l}^t \sum_{i=1}^d \partial_i F(B_s) dB_s^i + 1/2 \int_{1/l}^t \sum_{i,j} \partial_{i,j} F(B_s) d\langle B^i, B^j \rangle_s = \Delta$$
 (7.117)

Note: $\partial_i F(x) = \frac{x_i}{\|x\|}, \partial_{i,j} F(x) = \frac{\delta_{ij}}{\|x\|} - \frac{x^i x^j}{\|B_s\|^2}$

$$\Delta = \dots = R_{1/l} + X_t - X_{1/l} + \frac{1}{2} \int_{1/l}^t \frac{d-1}{R_s} ds$$
 (7.118)

Let K, l to infinity, by continuity

$$R_t = R_0 + X_t + \frac{1}{2} \int_0^t \frac{d-1}{R_s} ds \tag{7.119}$$

Remark:

$$dR_t = \underbrace{\frac{d-1}{R_t}}_{blows\ up\ for\ R_t\ small} + dX_t \tag{7.120}$$

 \Rightarrow pushed away from 0.

Proposition 7.22.

Let $d = 1, \alpha \ge 0$.

- a) $\mathbb{P}(||B_t|| = \alpha \text{ for some } t) = 1(d = 1)$
- b) $d = 2, \alpha > 0, \mathbb{P}^{x}(||B_{t}|| = \alpha \text{ for some } t) = 1(x \neq 0)$
- c) $d \ge 3$, $\mathbb{P}^x(||B_t|| = \alpha \text{ for some } t) = \min\{1, \frac{\alpha}{||x||}\}^{d-2}$
- d) $d \ge 2$, $\mathbb{P}^{x}(||B_t|| = 0 \text{ for some } t > 0) = 0$
- e) $d \ge 3$, $\mathbb{P}^x(\lim_{t\to\infty} ||B_t|| = +\infty) = 1$ BM in $d \ge 3$ is transient

8 Stochastic differential equations

Problem/Setting: *X* is a d-dimensional stochastic process, we know its evolution, i.e.

(EQ1)
$$\begin{cases} dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t \\ X_0 = \xi \end{cases}$$
 (8.1)

where *W* is a BM on \mathbb{R}^n , ξ can be a random variable or a constant.

Definition 8.1.

We define

$$b(t,x) = [b_i(t,x)]_{1 \le i \le d} \text{ the } drift \text{ vector.}$$
(8.2)

$$\sigma(t, x) = [\sigma_{i,j}(t, x)]_{1 \le i \le d, 1 \le j \le n} \text{ the } dispersion \ matrix.$$
 (8.3)

From now on tacitly assume that W is a standard n-dimensional BM and that ξ is a random vector and that the two are independent.

Assumptions: $\forall i, j$:

$$b_i: \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R} \tag{8.4}$$

$$\sigma_{i,j}: \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R} \tag{8.5}$$

$$a_{ij} = (\sigma \sigma^T)_{ij} : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}$$
 (8.6)

are measurable.

Notation:

$$(a_{ij})_{1 \le i,j \le d} \text{ with } a_{ij} = \sum_{k=1}^{n} \sigma_{ik} \sigma_{jk}$$

$$(8.7)$$

is called Diffusion Matrix.

Definition 8.2.

We define the following norms

$$||b(t,x)|| := \sqrt{\sum_{i=1}^{d} b_i(t,x)^2}$$
 (8.8)

$$\|\sigma(t,x)\| := \sqrt{\sum_{i=1}^{d} \sum_{j=1}^{n} \sigma_{i,j}^{2}(t,x)}$$
 (8.9)

Q.: What do we understand under a solution of EQ1?

8.1 Strong solutions to SDE

Given:

- Standard filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$.
- W, ξ both given

•
$$\mathcal{F}_t^W = \sigma(W_s, s \le t), \mathcal{F}_t = \mathcal{F}_t^W \vee \sigma(\xi) = \sigma(W_s, 0 \le s \le t, \xi)$$

Definition 8.3 (Strong solution).

A strong solution to EQ1 is a \mathbb{R}^d -process (X_t) (on $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$) s.t.

- a) $X_0 = \xi$ a.s.
- b) X is \mathcal{F}_t -adapted.
- c) X is a continuous semimartingale s.t. $\forall t < \infty$

$$\int_0^t ||b(s, X_s)|| + ||\sigma(s, X_s)||^2 ds < \infty \text{ } \mathbb{P}\text{-a.s.}$$

$$\tag{8.10}$$

d)
$$X_t = X_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s$$
 P-a.s. (the Ito Integral)

Definition 8.4 (Strong uniqueness).

For (EQ1) holds *strong uniqueness* if the following holds: If X and \tilde{X} are strong solutions to (EQ1) then X and \tilde{X} are indistinguishable, i.e.

$$\mathbb{P}\left(X_t = \tilde{X}_t \forall t\right) = 1 \tag{8.11}$$

Check lecture notes for a deterministic example where uniqueness does not hold.

Definition 8.5.

A function f is called *locally lipschitz continuous iff*

$$\forall n \ge 1 \exists 0 < K_n < \infty \text{ s.t.} \forall x, y : ||x|| \le n, ||y|| \le n, ||f(x) - f(y)|| \le K_n ||x - y||$$
(8.12)

Theorem 8.6.

Assume b, σ are locally lipschitz. Then strong uniqueness for (EQ1) holds.

Remark: The exact condition is

$$\forall n \in \mathbb{N} \exists K_n < \infty \forall t \ge 0 \forall x, y \in \mathbb{R}^d : ||x|| \le n, ||y|| \le n :$$
(8.13)

$$||b(t,x) - b(t,y)|| + ||\sigma(t,x) - \sigma(t,y)|| \le K_n ||x - y||$$
(8.14)

Lemma 8.7 (Gronwall's Lemma).

Let $g:[0,t]\to\mathbb{R}$ continous, $h:[0,T]\to\mathbb{R}$ integrable, $\beta\geq 0$. Then if

$$0 \le g(t) \le h(t) + \beta \int_0^t g(s)ds \, \forall t \in [0, T]$$
 (8.15)

then

$$g(t) \le h(t) + \beta \int_0^t h(s)e^{\beta(t-s)}ds \forall t \in [0, T]$$

$$\tag{8.16}$$

Remark: If $h \equiv 0 \Rightarrow g(t) = 0 \forall t \in [0, T]$. Therefore if $0 \leq g(t) \leq \beta \int_0^t g(s) ds \Rightarrow g = 0$!

Proof.

$$\frac{d}{dt}(e^{-\beta t} \int_0^t g(s)ds) = \dots {8.17}$$

Proof of the Thm. Let X, \tilde{X} be strong solutions. Define

$$\tau_m = \inf\{t \ge 0 : ||X_t|| \ge m\},\tag{8.18}$$

$$\tilde{\tau}_m = \inf\{t \ge 0 : ||\tilde{X}_t|| \ge m\}.$$
 (8.19)

Easy: $\tilde{\tau}_m, \tau_m \nearrow \infty$ as $m \to \infty$. Define $S_m = \tau_m \wedge \tilde{\tau}_m$.

$$g(t) := \mathbb{E}\left[\|X_t^{S_m} - \tilde{X}_t^{S_m}\|^2 \right]$$
 (8.20)

$$= \mathbb{E}\left[\|\int_{0}^{t \wedge S_{m}} (b(s, X_{s}) - b(s, \tilde{X}_{s})) + \int_{0}^{t \wedge S_{m}} (\sigma(s, X_{s}) - \sigma(s, \tilde{X}_{s})) dW_{s}\|^{2}\right]$$
(8.21)

$$=\sum_{i=1}^{d}\mathbb{E}\left[\left(\int_{0}^{t\wedge S_{m}}\underbrace{b_{i}(s,X_{s})-b_{i}(s,\tilde{X}_{s})}_{=a}ds+\sum_{j=1}^{n}\int_{0}^{t\wedge S_{m}}\sigma_{ij}(s,X_{s})-\sigma_{ij}(s,\tilde{X}_{s})dW_{s}^{j}\right)^{2}\right]$$

$$(8.22)$$

$$\stackrel{(a+b)^{2} \leq 2a^{2}+2b^{2}}{\leq} C(d,n) \sum_{i=1}^{d} \mathbb{E} \left[\left(\int_{0}^{t \wedge S_{m}} b_{i}(s,X_{s}) - b_{i}(s,\tilde{X}_{s}) ds \right)^{2} \right] + C \sum_{i,j} \mathbb{E} \left[\left(\int_{0}^{t \wedge S_{m}} \sigma_{ij}(s,X_{s}) - \sigma_{ij}(s,\tilde{X}_{s}) dW_{s}^{j} \right)^{2} \right] \tag{8.23}$$

$$= \Delta \tag{8.24}$$

use: $(a+b+c+...)^2 \le 2a^2+2b^2+2c^2+...$ By Cauchy Schwarz $(\int f \cdot 1dy)^2 \le \int f^2 ds \int 1dx$ for the first integral, and Ito isometry for the second.

$$\Delta \leq Ct \sum_{i=1}^{d} \mathbb{E} \left[\int_{0}^{t \wedge S_{m}} (b_{i}(s, X_{s}) - b_{i}(s, \tilde{X}_{s}))^{2} ds \right] + C \sum_{i,j} \mathbb{E} \left[\int_{0}^{t \wedge S_{m}} (\sigma_{ij}(s, X_{s}) - \sigma_{ij}(s, \tilde{X}_{s})^{2} ds \right]$$

(8.25)

$$\leq Ct\mathbb{E}\left[\int_{0}^{t\wedge S_{m}}\sum_{i=1}^{d}(b_{i}(s,X_{s})-b_{i}(s,\tilde{X}_{s}))^{2}ds\right]+C\mathbb{E}\left[\int_{0}^{t\wedge S_{m}}\sum_{ij}(\sigma_{ij}(s,X_{s})-\sigma_{ij}(s,\tilde{X}_{s}))^{2}ds\right]$$
(8.26)

$$=Ct\mathbb{E}\left[\int_{0}^{t\wedge S_{m}}\underbrace{\|b(s,X_{s})-b(s,\tilde{X}_{s})\|^{2}}_{\leq K_{m}^{2}\|X_{s}-\tilde{X}_{s}\|^{2}}ds\right]+C\mathbb{E}\left[\int_{0}^{t\wedge S_{m}}\underbrace{\|\sigma(s,X_{s})-\sigma(s,\tilde{X}_{s})\|^{2}}_{\leq \dots}ds\right]$$
(8.27)

$$\leq CtK_{m}^{2} \int_{0}^{t} \underbrace{\mathbb{E}\left[\|X_{s}^{S_{m}} - \tilde{X}_{s}^{S_{m}}\|^{2} ds\right]}_{g(s)} + CK_{m}^{2} \int_{0}^{t} \underbrace{\mathbb{E}\left[\|X_{s}^{S_{m}} - \tilde{X}_{s}^{S_{m}}\|^{2}\right]}_{g(s)} ds \tag{8.28}$$

$$\leq CK_m^2(1+t) \int_0^t g(s)ds$$
(8.29)

Now fix T > 0, then $cK_m^2(1+t) \le cK_m^2(1+T) =: \beta$. Then by Gronwall $g \equiv 0$. But $g(t) = \mathbb{E}\left[\|X_t^{S_m} - \tilde{X}_t^{S_m}\|^2\right] = 0 \ \forall t \in [0,T]$. Therefore for all such t, $X_t^{S_m} = \tilde{X}_t^{S_m}$ a.s.. Let $m \to \infty$, $S_m \to \infty$. Then $X_t = \tilde{X}_t$ a.s. $\forall t \in [0,T]$. (by continuity and boundedness statement of theorem)

[07.12.2012] [11.12.2012]

Theorem 8.8 (Global existence).

Assume $\mathbb{E}\left|||\xi||^2\right| < \infty$ and $\exists K > 0$ s.t.

$$\forall t \ge 0, y, \in \mathbb{R}^d, \tag{8.30}$$

$$||b(t,x) - b(t,y)|| + ||\sigma(t,x) - \sigma(t,y)|| \le K||x - y|| \text{ (globally lipschitz)}$$
(8.31)

and

$$\forall t \ge 0, x \in \mathbb{R}^d \tag{8.32}$$

$$||b(t,x)|| + ||\sigma(t,x)|| \le K(1+||x||)$$
 (linear growth) (8.33)

Then

- a) ∃! strong solution of (EQ1)
- b) $\forall T \ge 0, \exists C > 0 \text{ s.t. } \forall 0 \le t \le T$

$$\mathbb{E}\left[\|X_t\|^2\right] \le C(T)(1 + \mathbb{E}\left[\|\xi\|^2\right]) \tag{8.34}$$

Remark: The theorem also holds without the condition $\mathbb{E}\left[\|\xi\|^2\right] < \infty$

Proof. Idea: Picard-Lindelöf-Iteration. Let

$$f(X_t) := \xi + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s$$
 (8.35)

and we define

$$X_t^0 := \xi \tag{8.36}$$

$$X_t^0 := \xi$$
 (8.36)
$$X_t^{k+1} := f(X_t^k).$$
 (8.37)

Hence, X_t^k is an adapted and continuous semimartingale. We want to show that $X_t^k \stackrel{k \to \infty}{\longrightarrow} X_t$ with $f(X_t) = X_t$ (fixpoint), i.e. X_t is the solution of (EQ1). But first we need the following lemma.

Lemma 8.9.

For all T > 0, $\exists C > 0$ (which depends on K and T) s.t. $\forall k \ge 0$

$$\mathbb{E}\left[\|X_t^k\|^2\right] \le C(1 + \mathbb{E}\left[\|\xi\|^2\right]) \,\forall 0 \le t \le T. \tag{8.38}$$

Proof. k = 0:

$$\mathbb{E}\left[\|X_t^0\|^2\right] = \mathbb{E}\left[\|\xi\|^2\right] \le 1 + \mathbb{E}\left[\|\xi\|^2\right] \checkmark \tag{8.39}$$

For any *k*:

$$\mathbb{E}\left[\|X_t^{k+1}\|^2\right] = \sum_{i=1}^d \mathbb{E}\left[(X_t^{k+1,i})^2\right]$$
(8.40)

$$\sum_{\substack{(\Sigma_{i=1}^{m} \alpha_{i})^{2} \leq m \sum_{i=1}^{m} \alpha_{i}^{2}}}^{X^{k+1} = f(X^{k})} 3 \sum_{i=1}^{d} \mathbb{E} \left[(\xi^{i})^{2} + (\int_{0}^{t} b_{i}(s, X_{s}^{k}) ds)^{2} + (\sum_{j=1}^{n} \int_{0}^{t} \sigma_{ij}(s, X_{s}^{k}) dW_{s}^{j})^{2} \right]$$
(8.41)

$$\frac{\text{H\"older for } b_{i}}{\overset{\leq}{\underset{\text{It\"o for } \sigma}{}}} 3\mathbb{E}\left[\|\xi\|^{2}\right] + 3t\mathbb{E}\left[\underbrace{\int_{0}^{t} \|b(s, X_{s}^{k})\|^{2} ds}_{\overset{\leq}{\underset{\text{It\~o}}{}} \text{for } \sigma}\right] + 3\mathbb{E}\left[\underbrace{\int_{0}^{t} \|\sigma(s, X_{s}^{k})\|^{2} ds}_{\overset{\leq}{\underset{\text{It\~o}}{}} \text{for } \sigma}\right] + 3\mathbb{E}\left[\underbrace{\int_{0}^{t} \|\sigma(s, X_{s}^{k})\|^{2} ds}_{\overset{\leq}{\underset{\text{It\~o}}{}} \text{for } \sigma}\right]$$
(8.42)

$$\stackrel{0 \le t \le T}{\le} 3\mathbb{E} \left[\|\xi\|^2 \right] + 6K^2(T+1) \int_0^t (1 + \mathbb{E} \left[\|X_s^k\|^2 \right]) ds \tag{8.43}$$

Thus

$$\Rightarrow \underbrace{\mathbb{E}\left[\|X_{t}^{k+1}\|^{2}\right]}_{=:g^{k+1}(t)} \le 3\mathbb{E}\left[\|\xi\|^{2}\right] + 6K^{2}(T+1)\int_{0}^{t} (1+\mathbb{E}\left[\|X_{s}^{k}\|^{2}\right])ds \tag{8.44}$$

Then

$$g^{k+1}(t) \le C_1 + C_2 \int_0^t (1 + g_s^k) ds \tag{8.45}$$

$$\leq C_1 + C_2 \int_0^t 1ds + C_2 \int_0^t ds_1 (C_1 + C_2 \int_0^{s_1} ds_2 1 + g_{s_2}^k)$$
 (8.46)

$$\leq \dots$$
 (8.47)

Recursively and

$$\int_0^t ds_1 \int_0^{s_1} ds_2 \dots \int_0^{s_{k-1}} ds_k 1 = \frac{t^k}{k!}$$
 (8.48)

$$\Rightarrow \mathbb{E}\left[\|X_t^{k+1}\|^2\right] \le C(T, K)(1 + \mathbb{E}\left[\|\xi\|^2\right] \,\forall 0 \le t \le T \tag{8.49}$$

Continuation of the proof of the theorem.

Step 1) For X^k continuous, adapted and well-defined, then also X^{k+1} is continuous, adapted and well-defined.

Indeed: - Continuity and adaptedness from the definition of the integral.

- Condition c) of Def 8.2 holds:

$$\int_{0}^{t} (\|b(s, X_{s}^{k})\| + \|\sigma(s, X_{s}^{k})\|^{2}) ds \stackrel{\text{C.S. on } b}{\leq} t \int_{0}^{t} \|b(s, X_{s}^{k})\|^{2} ds + \int_{0}^{t} \|\sigma(s, X_{s}^{k})\|^{2} ds$$
(8.50)

$$\leq (1+t)2K^2 \int_0^t (1+||X_s^k||^2) ds < \infty \forall t < \infty$$
 (8.51)

Step 2: Estimate $X^{k+1} - X^k$

For fixed k it holds

$$X^{k+1} - X^k = B + M (8.52)$$

with

$$B_t = \int_0^t b(s, X_s^k) - b(s, X_s^{k-1}) ds, \tag{8.53}$$

$$M_{t} = \int_{0}^{t} \sigma(s, X_{s}^{k}) - \sigma(s, X_{s}^{k-1}) dW_{s}.$$
 (8.54)

Claim: We have

$$\mathbb{E}\left[\sup_{0\leq s\leq t}\|X_s^{k+1} - X_s^k\|^2\right] \leq 2\mathbb{E}\left[\sup_{0\leq s\leq t}\|M_s\|^2\right] + 2\mathbb{E}\left[\sup_{0\leq s\leq t}\|B_t\|^2\right]$$
(8.55)

Proof:

$$||B_t||^2 = \sum_{i=1}^d (B_t^i)^2$$
(8.56)

$$= \sum_{i=1}^{d} \left(\int_{0}^{t} b_{i}(s, X_{s}^{k}) - b_{i}(s, X_{s}^{k-1}) ds \right)^{2}$$
 (8.57)

$$\overset{CS \, and 0 \le t \le T}{\le} T \sum_{i=1}^{d} \int_{0}^{t} (b_{i}(s, X_{s}^{k}) - b_{i}(s, X_{s}^{k-1}))^{2} ds \tag{8.58}$$

$$= T \int_{0}^{t} \frac{\|b(s, X_{s}^{k}) - b(s, X_{s}^{k-1})\|^{2}}{\|b(s, X_{s}^{k}) - b(s, X_{s}^{k-1})\|^{2}} ds$$

$$\leq K^{2} \|X_{s}^{k} - X_{s}^{k-1}\|^{2} by \text{Lipschitz}$$
(8.59)

Hence

$$\mathbb{E}\left[\sup_{0 \le s \le t} \|B_s\|^2\right]^{\frac{1}{2}} \le K^2 T \int_0^t ds \, \underbrace{\mathbb{E}\left[\|X_s^k - X_s^{k-1}\|^2\right]}_{=\mathbb{E}\left[\sup_{0 \le s \le t} \|X_s^k - X_s^{k-1}\right]}$$
(8.60)

$$\mathbb{E}\left[\sup_{0\leq s\leq t}||M_s||^2\right] = \mathbb{E}\left[\sup_{0\leq s\leq t}\sum_{i=1}^d(M_s^i)^2\right]$$
(8.61)

$$\leq \sum_{i=1}^{d} \mathbb{E} \left[\sup_{0 \leq s \leq t} (M_s^i)^2 \right]$$
 (8.62)

$$\stackrel{Doob}{\leq} 4 \sum_{i=1}^{d} \mathbb{E}\left[(M_t^i)^2 \right] \tag{8.63}$$

$$\leq 4 \sum_{i=1}^{d} \mathbb{E} \left[\left(\sum_{i=1}^{n} \int_{0}^{t} (\sigma_{ij}(s, X_{s}^{k}) - \sigma_{ij}(s, X_{s}^{k-1})) dW_{s}^{j} \right)^{2} \right]$$
(8.64)

$$\stackrel{ItoIsom}{=} 4 \sum_{i=1}^{d} \sum_{j=1}^{n} \mathbb{E} \left[\int_{0}^{t} (\sigma_{ij}(s, X_{s}^{k}) - \sigma_{ij}(s, X_{s}^{k-1}))^{2} ds \right]$$
(8.65)

$$= 4\mathbb{E}\left[\int_{0}^{t} ds \underbrace{\|\sigma(s, X_{s}^{k}) - \sigma(s, X_{s}^{k-1})\|^{2}}_{\leq K^{2}\|X_{s}^{k} - X_{s}^{k-1}\|^{2}}\right]$$
(8.66)

Thus

$$\mathbb{E}\left[\sup_{0 \le s \le t} \|M_s\|^2\right] \le 4K^2 \int_0^t \mathbb{E}\left[\sup_{0 \le s \le t} \|X_u^k - X_u^{k-1}\|^2\right]$$
(8.67)

$$\Rightarrow \mathbb{E}\left[\sup_{0 \le s \le t} \|X_s^{k+1} - X_s^k\|^2\right] \le 2K^2(4+T) \int_0^t ds \mathbb{E}\left[\sup_{0 \le u \le s} \|X_u^k - X_u^{k-1}\|^2\right]$$
(8.68)

Iterations as in Lemma 8.9 give

$$\leq \frac{(c_1 t)^k}{k!} c_s with c_1 = 2K^2 (T+4)$$
and (8.69)

$$c_2 = T \sup_{0 \le s \le T} \mathbb{E}\left[||X_s^1 - \xi||^2 \right] < \infty$$
 (8.70)

¹Supremum wird ganz rechts bei t angenommen da integral über was positives

last < ∞ since

$$\mathbb{E}\left[\|X_s^1 - \xi\|^2\right] \le 2\mathbb{E}\left[\|X_s^1\|^2\right] + 2\mathbb{E}\left[\|\xi\|^2\right] \stackrel{lemma}{\le} 2(c+1)\mathbb{E}\left[\|\xi\|^2\right] \tag{8.71}$$

We have

$$\mathbb{E}\left[\sup_{0 \le s \le t} \|X_s^{k+1} - X_s^k\|^2\right] \le C_2 \frac{(C_1 t)^k}{k!} \tag{8.72}$$

Step 3: uniform convergence on [0, T] for all fixed T > 0.

$$\mathbb{P}\left(\sup_{0 \le s \le T} ||X_s^{k+1} - X_s^k|| \ge \frac{1}{2^{k+1}}\right) \stackrel{Cebicevand(8.72)}{\le} 4c_2 \frac{(4c_1T)^k}{k!} \tag{8.73}$$

Since $\sum_k \sup_{0 \le s \le T} ||X_s^{k+1} - X_s^k|| \ge \frac{1}{2^{k+1}} < \infty$ we can use Borel Cantelli which implies

$$\exists \Omega^* : \mathbb{P}(\Omega^*) = 1 \text{ s.t.} \forall \omega \in \Omega^* \exists N = N(\omega) \text{ s.t.}$$
(8.74)

$$\forall k \ge N(\omega) \sup_{0 \le s \le T} ||X_s^{k+1} - X_s^k|| \le \frac{1}{2^{k+1}}$$
 (8.75)

$$\Rightarrow \forall k \ge N(\omega), m \ge 1 \sup_{0 \le s \le T} ||X_s^{m+k} - X_s^k|| \le \frac{1}{2^k}$$

$$\tag{8.76}$$

Hence the sequence $\{X_t^k, 0 \le t \le T\}_{k \ge 1}$ converges in the sup-norm to a continuous process $\{X_t, 0 \le t \le T\} \forall \omega \in \Omega^*$. \Rightarrow But T is any positive time.

$$\Rightarrow X^{k} \stackrel{unif}{\rightarrow} X for any bounded time interval. \tag{8.77}$$

Step 4: Verify b)

$$\mathbb{E}\left[\|X_t\|^2\right] = \mathbb{E}\left[\lim_{k \to \infty} \|X_t^k\|^2\right] \tag{8.78}$$

$$\leq \liminf_{k \to \infty} \mathbb{E}\left[\|X_t^k\|^2 \right] \tag{8.79}$$

$$\leq \liminf_{k \to \infty} \mathbb{E}\left[\|X_t^k\|^2 \right] \tag{8.79}$$

$$\stackrel{Lemma}{\leq} C(1 + \mathbb{E}\left[\|\xi\|^2 \right]) \tag{8.80}$$

Step 5: Check that $X_t = \lim_{k \to \infty} X_t^k$ satisfies (EQ1)

$$\underbrace{X_t^{k+1}}_{\to X_t} = \underbrace{\xi}_{\to X_0} + \underbrace{\int_0^t b(s, X_s^k) ds}_{\to \int_0^t b(s, X_s) ds??} + \underbrace{\int_0^t \sigma(s, X_s^k) dW_s}_{\to \int_0^t \sigma(x, X_s) dW_s??}$$
(8.81)

Recap:

$$X_{t} = \frac{e^{-\lambda t}}{\sqrt{2\lambda}} B_{e^{2\lambda t}} \leadsto dX_{t} = -\lambda X_{t} dt + d\tilde{B}_{t} \text{ (SDE)}$$
(8.82)

Are there unique solutions? Yes under the right conditions.

8.2 Examples

8.2.1 Brownian Motion with drift

Let $v \in \mathbb{R}^d$ (drift vector) and $\sigma > 0$ a constant and W a BM. Then, the SDE

$$dX_t = vdt + \sigma dW_t \tag{8.83}$$

has a unique strong solution

$$X_{t} = X_{0} + \int_{0}^{t} v ds + \int_{0}^{t} \sigma dW_{s} = X_{0} + vt + \sigma W_{t}$$
 (8.84)

It holds

$$\mathbb{E}\left[X_{t}\right] = \mathbb{E}\left[X_{0}\right] = vt \tag{8.85}$$

$$Cov(X_t^i, X_t^j) = \sigma^2 Cov(W_t^i, W_t^j) = \sigma^2 \delta_{ij} t$$
(8.86)

8.2.2 Ornstein-Uhlenbeck

Let $\lambda > 0$ a constant, consider the SDE

$$dX_t = -\lambda X_t dt + dW_t \tag{8.87}$$

∃! strong solution given by

$$X_{t} = e^{-\lambda t} X_{0} + \int_{0}^{t} e^{-\lambda(t-s)} dW_{s}$$
 (8.88)

How does one get this formula? Let us set $\frac{d \ln(X_t)}{dt} = -\lambda \Rightarrow X_t = e^{-\lambda t} X_0$. Then

$$\Rightarrow Y_t := e^{\lambda t} X_t \tag{8.89}$$

$$\Rightarrow dY_t = e^{\lambda t} dX_t + \lambda e^{\lambda t} X_t dt \tag{8.90}$$

$$= e^{\lambda t} [-\lambda X_t dt + dW_t + \lambda X_t dt] = e^{\lambda t} dW_t$$
 (8.91)

Hence

$$e^{\lambda t}X_t = Y_t = \int_0^t e^{\lambda s} dW_s + Y_0 \tag{8.92}$$

$$\Rightarrow X_t = e^{-\lambda t} \underbrace{X_0}_{=Y_0} + \int_0^t e^{-\lambda(t-s)} dW_s$$
 (8.93)

Let's check if this is really a solution.

$$X_t = e^{-\lambda t} X_0 + e^{-\lambda t} \int_0^t e^{\lambda s} dW_s \tag{8.94}$$

$$\Rightarrow dX_t = -\lambda e^{-\lambda t} X_0 dt - \lambda e^{-\lambda t} dt \int_0^t e^{\lambda s} dW_s + e^{-\lambda t} e^{\lambda t} dW_s$$
 (8.95)

$$= -\lambda \left(\underbrace{e^{-\lambda t} X_0 + \int_0^t e^{-\lambda(t-s)} dW_s} \right) dt + dW_s \checkmark$$

$$\underbrace{= X_t}$$
(8.96)

The stationary distribution of the O.U. process is given by the initial condition

$$X_0 \sim \mathcal{N}(0, \frac{1}{2\lambda}) \tag{8.97}$$

Then $X_t \sim \mathcal{N}(0, \frac{1}{2\lambda})$ and $\text{Cov}(X_s, X_t) = \frac{1}{2\lambda} e^{-\lambda |t-s|}$. The OU Process is a Gaussian process. Indeed:

Lemma 8.10.

Let

$$M_t = \int_0^t h(s)dW_s \tag{8.98}$$

with $h \in L^2(\mathbb{R}_+)$. Then it holds $M_t = \mathcal{N}(0, \langle M \rangle_t)$.

Proof. Let's calculate $\langle M \rangle_t$ first.

$$dM_t = h(t)dW_t (8.99)$$

$$d\langle M \rangle_t = (h(t))^2 (dW_t)^2 = (h(t))^2 dt$$
 (8.100)

$$\Rightarrow \langle M \rangle_t = \underbrace{\int_0^t (h(s))^2 ds}_{\text{deterministic}} < \infty \text{ by hypothesis.}$$
 (8.101)

 $\overset{7.12}{\Rightarrow}$ We know that for $\xi \in \mathbb{R}$

$$e^{i\xi M_t + \frac{\xi^2}{2}\langle M \rangle_t} \tag{8.102}$$

is a martingale. Thus

$$\mathbb{E}\left[e^{i\xi M_t}\right]e^{\frac{\xi^2}{2}\langle M\rangle_t} = \mathbb{E}\left[e^{i\xi M_0}\right]e^{\frac{\xi^2}{2}\langle M\rangle_0} = 1 \tag{8.103}$$

$$\Rightarrow \mathbb{E}\left[e^{i\xi M_t}\right] = e^{-\frac{\xi^2}{2}\langle M\rangle_t} \tag{8.104}$$

In our case $h(s) = e^{-\lambda(t-s)}$. Thus

 $\int_0^t e^{-\lambda(t-s)} dW_s \sim \mathcal{N}(0, \underbrace{\int_0^t e^{-2\lambda(t-s)} ds})$ $= \underbrace{\frac{1-e^{-2\lambda t}}{2\lambda}}$ (8.105)

Now assume that X_0 is independent of W. Then

$$e^{-\lambda t}X_0 \sim \mathcal{N}(0, \frac{e^{-2\lambda t}}{2\lambda})$$
 (8.106)

$$\Rightarrow X_t = e^{-\lambda t} X_0 + \int_0^t e^{-\lambda(t-s)} dW_s \stackrel{\text{indep.}}{\sim} \mathcal{N}\left(0, \frac{e^{-2\lambda t}}{2\lambda} + \frac{1 - e^{-2\lambda t}}{2\lambda}\right) = \mathcal{N}\left(0, \frac{1}{2\lambda}\right) \checkmark$$
(8.107)

Now calculate for $s \le t$

$$Cov(X_s, X_t) = ? (8.108)$$

Recall that $X_t = e^{-\lambda t} X_0 + \int_0^t e^{-\lambda(t-u)} dW_u$. Hence (with independence of X_0 and W)

$$Cov(X_s, X_t) = e^{-\lambda t} e^{-\lambda s} \underbrace{Var(X_0)}_{Cov(X_0, X_0)} + e^{-\lambda(t+s)} Cov(\underbrace{\int_0^s e^{\lambda u} dW_u}_{=:M_s}, \int_0^t e^{\lambda v} dW_v)$$
(8.109)

Need to get

$$Cov(M_s, M_t) = Cov(M_s, M_s) - \underbrace{Cov(M_s, M_t - M_s)}_{=0} = Var(M_s)$$
(8.110)

$$\Rightarrow Cov(X_s, X_t) = e^{-2\lambda(t+s)} \frac{1}{2^{\lambda}} + e^{-\lambda(t+s)} \mathbb{E}\left[\left(\int_0^s e^{\lambda u} dW_u\right)^2\right]$$
(8.111)

$$\stackrel{\text{Itô Isom.}}{=} e^{-2\lambda(t+s)} \frac{1}{2^{\lambda}} + e^{-\lambda(t+s)} \mathbb{E} \left[\int_0^s e^{2\lambda u} du \right]$$
 (8.112)

$$=e^{-2\lambda(t+s)}\frac{1}{2^{\lambda}}+e^{-\lambda(t+s)}\frac{e^{2\lambda s}-1}{2\lambda}$$
(8.113)

$$=\frac{e^{-\lambda(t-s)}}{2\lambda} \odot \tag{8.114}$$

Remark: Intuition: The drift $b(t, x) = -\lambda x$ towards $0 \in \mathbb{R}^d$ leads to X being stationary, i.e.

$$\mathbb{E}\left[X_{t}\right] \to 0 \tag{8.115}$$

$$\mathbb{E}\left[X_t^2\right] \to \frac{1}{2\lambda} \tag{8.116}$$

8.2.3 Geometric Brownian Motion

Let $\sigma \neq 0$ and $\mu \in \mathbb{R}$. Consider the SDE

$$\begin{cases} dX_t = \mu X_t dt + \sigma X_t dW_t \\ X_0 = x > 0 \end{cases}$$
(8.117)

Then there exists a unique strong solution given by

$$X_t = xe^{(\mu - \frac{\sigma^2}{2})t + \sigma W_t}, \ t \ge 0$$
 (8.118)

To get (8.118) we set

$$Y_t = \ln(X_t) \tag{8.119}$$

$$\Rightarrow dY_t \stackrel{\text{1t\^{o}-Isom.}}{=} \frac{dX_t}{X_t} - \frac{1}{2} \frac{(dX_t)^2}{X_t^2} = \frac{\mu X_t dt + \sigma X_t dW_t}{X_t} - \frac{1}{2} \frac{\sigma^2 X_t^2 dt}{X_t^2} = (\mu - \frac{\sigma^2}{2}) dt + \sigma dW_t$$
 (8.120)

 \Rightarrow Y_t is a BM with drift $\mu - \frac{\sigma^2}{2}$.

$$\ln(X_t) = Y_t = Y_0 + (\mu - \frac{\sigma^2}{2})t + \sigma W_t$$
 (8.121)

$$\Rightarrow X_t = e^{Y_0} e^{(\mu - \frac{\sigma^2}{2})t + \sigma W_t}$$
(8.122)

But since $X_0 = x \Rightarrow e^{Y_0} = x \odot$.

8.2.4 Brownian Bridge

Let $a, b \in \mathbb{R}, T > 0$. Then the Brownian Bridge from a at time t = 0 to b at time t = T is the solution of

$$\begin{cases} dX_t = \frac{b - X_t}{T - t} dt + dW_t &, 0 \le t \le T \\ X_0 = a \end{cases}$$
 (8.123)

The solution is

$$X_{t} = \begin{cases} a(1 - \frac{t}{T}) + \frac{bt}{T} + (T - t) \int_{0}^{t} \frac{1}{T - s} dW_{s} &, 0 \le t < T \\ b &, t = T \end{cases}$$
(8.124)

Does $X_t \to b$ for $t \nearrow T$? Consider the case T = 1, a = 0 = b. Then:

$$X_t = (1 - t)W_{\frac{t}{1 - t}} \tag{8.125}$$

For
$$t \nearrow 1: W_{\frac{t}{1-t}} \sim \frac{1}{\sqrt{1-t}} \Rightarrow X_t \sim \sqrt{1-t} \stackrel{t\to 1}{\longrightarrow} 0$$

8.2.5 Linear system (d=1)

Let us consider the case where the drift is given by

$$a(t, x) = a_1(t)x + a_2(t)$$
 (8.126)

and the dispersion is given by

$$\sigma(t, x) = \sigma_1(t)x + \sigma_2(t) \tag{8.127}$$

with $a_1, a_2, \sigma_1, \sigma_2$ bounded in time. Then our SDE is given by

$$dX_t = a(t, X_t)dt + \sigma(t, X_t)dW_t = X_t dY_t + dZ_t$$
(8.128)

$$X_0 = \xi \tag{8.129}$$

with

$$Y_{t} = \int_{0}^{t} a_{1}(s)ds + \int_{0}^{t} \sigma_{1}(s)dW_{s}$$
 (8.130)

$$Z_{t} = \int_{0}^{t} a_{s}(2)ds + \int_{0}^{t} \sigma_{2}(s)dW_{s}$$
 (8.131)

We know that $\exists!$ strong solution: Let

$$\mathcal{E}_t^Y := \exp(Y_t - \frac{1}{2} \langle Y \rangle_t) \tag{8.132}$$

 $\Rightarrow X_t = \mathcal{E}_t^Y(\xi + \int_0^t (\mathcal{E}_s^Y)^{-1} (dZ_s - \sigma_1(s)\sigma_2(s)ds))$. How does one get that? We have

$$\langle Y \rangle_t = \int_0^t \sigma_1(s)^2 ds \tag{8.133}$$

$$\Rightarrow \mathcal{E}_t^Y = \exp\left[\int_0^t \left(\sigma_1(s) - \frac{\sigma_1(s)^2}{2}\right) ds + \int_0^t \sigma_1(s) dW_s\right]$$
(8.134)

Consider

$$Q_t := \frac{X_t}{\mathcal{E}_t^Y} = X_t[(\mathcal{E}_t^Y)^{-1}]$$
 (8.135)

$$\Rightarrow dQ_t \stackrel{\text{Integr.}}{=} \frac{dX_t}{\mathcal{E}_t^Y} + X_t d[(\mathcal{E}_t^Y)^{-1}] + dX_t d[(\mathcal{E}_t^Y)^{-1}]$$
(8.136)

But

$$d[(\mathcal{E}_t^Y)^{-1}] = d(e^{-Y_t + \frac{1}{2}\langle Y \rangle_t})$$
(8.137)

$$\stackrel{\text{Itô Form.}}{=} (\mathcal{E}_t^Y)^{-1} (-dY_t + \frac{1}{2}d\langle Y \rangle_t + \frac{1}{2}d\langle Y \rangle_t)$$
 (8.138)

$$= (\mathcal{E}_t^Y)^{-1} \left(-\underbrace{dY_t}_{a_1(t)dt} + \underbrace{d\langle Y \rangle_t}_{\sigma_1(t)^2 dt} \right)$$
(8.139)

$$\Rightarrow dQ_t = \frac{dX_t}{\mathcal{E}_t^Y} + \frac{X_t}{\mathcal{E}_t^Y} (-dY_t + d\langle Y \rangle_t) + \frac{dX_t}{\mathcal{E}_t^Y} (-dY_t + d\langle Y \rangle_t)$$
(8.140)

$$= (\mathcal{E}_t^Y)^{-1} \left(dX_t + X_t (-dY_t + d\langle Y \rangle_t) + dX_t (-dY_t + d\langle Y \rangle_t) \right) \tag{8.141}$$

$$= (\mathcal{E}_t^Y)^{-1} \underbrace{(X_t dY_t + dZ_t - X_t dY_t + X_t d\langle Y \rangle_t + (X_t dY_t + dZ_t)(d\langle Y \rangle_t - dY_t)}_{(8.128)}$$
(8.142)

$$= (\mathcal{E}_t^Y)^{-1} (dZ_t + X_t d\langle Y \rangle_t - X_t d\langle Y \rangle_t - dZ_t dY_t)$$
(8.143)

$$= (\mathcal{E}_t^Y)^{-1} (dZ_t + \underbrace{dZ_t}_{=\sigma_2(t)dW_t} \underbrace{dY_t}_{=\sigma_1(t)W_t})$$
(8.144)

$$= (\mathcal{E}_t^Y)^{-1} (dZ_t - \sigma_1(t)\sigma_2(t)dt)$$
(8.145)

And hence with $Q_t = \frac{X_t}{\xi_t}$

$$\frac{X_t}{\mathcal{E}_t^Y} = \underbrace{\frac{X_0}{\mathcal{E}_0^Y}}_{=\frac{\xi}{1}} + \int_0^t (\mathcal{E}_s^Y)^{-1} (dZ_s - \sigma_1(s)\sigma_2(s)ds) \tag{8.146}$$

$$\Rightarrow X_t = \mathcal{E}_t^Y (\xi + \int_0^t (\mathcal{E}_s^Y)^{-1} (dZ_s - \sigma_1(s)\sigma_2(s)ds)) \tag{8.147}$$

$$\Rightarrow X_t = \mathcal{E}_t^Y(\xi + \int_0^t (\mathcal{E}_s^Y)^{-1} (dZ_s - \sigma_1(s)\sigma_2(s)ds))$$
(8.147)

[14.12.2012] [18.12.2012]

9 Connection to PDE: The Feynman-Kac Formula

Discrete time:

$$\begin{cases} \nabla u = g & \text{on } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
 (9.1)

 \leftrightarrow had a probability formula written as $\mathbb{E}[]$ with some stopping time $\tau_{\partial\Omega}$. Today we consider the heat equation.

9.1 Heat equation

Let u(t, x) be the temperature in an isotropic material without dispersion at time t and position $x \in \mathbb{R}^d$. Let D be the diffusion constant. Then it holds

$$\frac{\partial u}{\partial t} = \frac{D}{2} \Delta u \tag{9.2}$$

This is the Heat-equation. Now we add an initial condition, and hence have

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{D}{2} \Delta u \\ u(x,0) = f(x) \end{cases}$$
 (EQ1)

More generically we have:

$$\partial_t u + di v \vec{\gamma} = \sigma \text{ (loss/source of energy)}$$
 (9.3)

$$\vec{\gamma} = -\frac{1}{2}D(x)\vec{\nabla}u \text{ (current)}$$
 (9.4)

1) By scaling in space and time we can assume Wlog D=1. One can see that

$$p_t(x,y) := \frac{e^{-\frac{(x-y)^2}{2t}}}{(\sqrt{2\pi t})^d}$$
(9.5)

solves (1) with $u(x, 0) = \delta_v(x)$. For general f

$$u(x,t) := \int_{\mathbb{R}^d} p_t(x,y) f(y) dy \equiv \mathbb{E}^x [f(W_t)]$$
 (9.6)

solves (1). Here W is a BM starting from x.

We now consider a generalisation, with an external cooling:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{1}{2}\Delta u - K(x)u\\ u(x,0) = f(x) \end{cases}$$
 (EQ2)

Here K(x) is the cooling rate at the position x.

Solution (Kac '49)

$$u(x,t) = \mathbb{E}^x \left[f(W_t) e^{-\int_0^t K(W_s) ds} \right]$$
 (EQ3)

(EQ3) is called the Feynman-Kac formula.

Parenthesis: Consider a particle with mass m in a (conservativ) potential field V(x). In Quantum-Mechanics the state of the system is given by a complex function $\psi_t(x) \in L^2(\mathbb{R}^3)$. Evolution: (Schrödinger eq.)

$$i\hbar\partial_t\psi = \frac{\hbar^2}{2^m}\Delta\psi + V(x)\psi \tag{9.7}$$

where $\hbar = \frac{h}{2\pi}$ is the Planck constant.

Feynman Idea (1948):

$$\psi_t(x)'' = "$$
 average over all possible trajectories of $e^{i\frac{S(y)}{h}}$ with S the 'action' of y. (9.8)

⇒ He wrote

$$\psi_t(x) = Const \int_A e^{i\frac{S(y_s)}{h}} \psi_0(y(t)) \underbrace{Dy}_{\text{"∞-dim. leb. meas."}}$$
(9.9)

with $A = \{\text{Continuous functions } y \text{ mit } y(0) = x\}$ and

$$S(y) = \int_0^t \underbrace{\frac{m}{2}(\dot{y}(s)^2) - V(Y(s))ds}_{kinetic energy}$$
(9.10)

This is mathematically ill-defined. Kac noticed that if you consider "purely imaginary" times $(t \to it) \Rightarrow$ the Schrödinger equation becomes (EQ2). Using the idea of Feynman he got the representation of (EQ2) above.

Definition 9.1.

Let $f: \mathbb{R}^d \to \mathbb{R}$, $K: \mathbb{R}^d \to \mathbb{R}_+$ be continuous functions. Assume, v is a continuous real function on $\mathbb{R}^d \times [0, T]$, $v \in C^{2,1}(\mathbb{R}^d \times [0, T])$ s.t.

$$\begin{cases} -\frac{\partial v}{\partial t} + Kv = \frac{1}{2}\Delta v & \text{on } \mathbb{R}^d \times [0, T) \\ v(x, T) = f(x) & , x \in \mathbb{R}^d \end{cases}$$
 (EQ4)

Then v is called a solution of the Cauchy problem for the backwards heat equation (EQ4) with potential K and final condition f.

Theorem 9.2.

Let v as in Def 9.1. Assume that

$$\max_{0 \le t \le T} |v(t, x)| \le Ce^{a||x||^2}, \forall x \in \mathbb{R}^d$$
(9.11)

for a constant C > 0 and $0 < a < \frac{1}{2Td}$. Then v has the stochastic representation

(5)
$$v(x,t) = E^x(f(W_{T-t})e^{-\int_0^{T-t} K(W_s)ds}), \ 0 \le t \le T, x \in \mathbb{R}^d$$
 (9.12)

Moreover, v is unique.

Corollary 9.3.

By taking $t \mapsto T - t$ one gets the stochastic representation of (2) given by

$$u(x,t) = \mathbb{E}^x \left[f(W_t) e^{-\int_0^t K(W_s) ds} \right]$$
(9.13)

a

Proof of the Theorem. Let $g(\vartheta) := v(W_{\vartheta}, t + \vartheta)e^{-\int_0^{\vartheta} K(W_s)ds}$. What is $dg(\vartheta)$?

$$d(e^{-\int_0^\theta K(W_s)ds}) = e^{-\int_0^\theta K(W_s)ds}(-K(W_\theta))d\theta$$
(9.14)

$$d(v(W_{\vartheta}, t + \vartheta)) = \dot{v}(W_{\vartheta}, t + \vartheta)d\vartheta + \nabla v(W_{\vartheta}, t + \vartheta)dW_{\vartheta} + \underbrace{\frac{1}{2}\Delta v(W_{\vartheta}, t + \vartheta)d\vartheta}_{(EQ^4) - \dot{v}(W_{\vartheta}, t + \vartheta)d\vartheta + Kv(W_{\vartheta}, t + \vartheta)d\vartheta}$$
(9.15)

$$= \nabla v(W_{\vartheta}, t + \vartheta) dW_{\vartheta} + K v(W_{\vartheta}, t + \vartheta) d\vartheta \tag{9.16}$$

And thus

$$\Rightarrow dg \stackrel{part.}{=} -vKe^{-\int_0^{\vartheta} Kds} d\vartheta + e^{-\int_0^{\vartheta} Kds} (Kvd\vartheta + \nabla vdW_{\vartheta})$$
 (9.17)

$$= e^{-\int_0^{\vartheta} K(W_s, t+s)ds} \nabla \nu(W_{\vartheta}, t+\vartheta) dW_{\vartheta}$$
(9.18)

Hence we have

$$g(\vartheta) = g(0) + \int_0^{\vartheta} e^{-\int_0^u K(W_s, t+s)ds} \nabla v(W_u, t+u) dW_s$$
 (9.19)

 \Rightarrow g is a local martingale with $g(0) = v(W_0, t) = v(x, t)$. Let us introduce the stopping time

$$S_n := \inf\{t \ge 0 : ||W_t|| \ge n\sqrt{d}\}, n \ge 1.$$
 (9.20)

Let $r \in (0, T - t)$. Then

$$v(x,t) = \mathbb{E}^{x} [v(W_{0},t)] = \mathbb{E}^{x} [g(0)] = \mathbb{E}^{x} [g(S_{n} \wedge t)]$$
(9.21)

$$= \underbrace{\mathbb{E}^{x} \left[v(W_{S_{n}}, t + S_{n}) e^{-\int_{0}^{S_{n}} K(W_{s}) ds} \mathbb{1}_{\{S_{n} \leq r\}} \right]}_{(A)} + \underbrace{\mathbb{E}^{x} \left[v(t + r, W_{r}) e^{-\int_{0}^{r} K(W_{s}) ds} \mathbb{1}_{\{S_{n} > r\}} \right]}_{(B)}$$
(9.22)

ad (B) As $n \nearrow \infty$ and $r \nearrow T - t$, by dominated convergence

$$(B) \Rightarrow \mathbb{E}^{x} \left[v(T, W_{T-t}) e^{-\int_{0}^{T-t} K(W_{s}) ds} \right]$$
 (9.23)

Remains to show: As $n \nearrow \infty$ (A) \(\sqrt{0}\).

$$|A| \leq \sum_{r \in (0, T - t)}^{K \ge 0} \mathbb{E}^{x} \left[|v(W_{S_{n}}, \underbrace{t + S_{n}})| \mathbb{1}_{\{S_{n} \le r\}} \right]$$
(9.24)

$$\leq C\mathbb{E}^{x} \left[e^{a ||W_{S_n}||^2} \mathbb{1}_{S_n \leq r} \right] \tag{9.25}$$

$$\underset{S_n}{\overset{\text{Def of}}{\leq}} Ce^{adn^2} \mathbb{E}^x \left[\mathbb{1}_{S_n \leq T} \right] \tag{9.26}$$

$$\leq Ce^{adn^2} \sum_{l=1}^{a} \mathbb{P}^x \left(\max_{0 \leq t \leq T} |W_t^{(l)}| \geq n \right)$$

$$\tag{9.27}$$

$$\leq Ce^{adn^2} \sum_{l=1}^{d} \mathbb{P}^x \left(\max_{0 \leq t \leq T} W_t^{(l)} \geq n \right) + \mathbb{P}^x \left(\max_{0 \leq t \leq T} -W_t^{(l)} \geq n \right) \tag{9.28}$$

$$\stackrel{\text{refl.}}{\underset{\text{princ.}}{=}} 2Ce^{adn^2} \sum_{l=1}^{d} \mathbb{P}^x \left(W_T^{(l)} \ge n \right) + \mathbb{P}^x \left(-W_T^{(l)} \ge n \right) \tag{9.29}$$

 $[\]overline{{}^{1}\mathbb{P}\left(S_{n} \leq T\right)} \leq \mathbb{P}\left(\max_{0 \leq t \leq T} \sum_{i} (W_{t}^{(l)})^{2} \geq n^{2}d\right) \leq \mathbb{P}\left(\exists l : (W_{t}^{(l)})^{2} \geq n^{2}\right)$

We know

$$P^{x}(\pm W_{T}^{(l)} \ge n) \le \sqrt{\frac{T}{2\pi}} \frac{e^{-\frac{(n \mp x^{(l)})^{2}}{2T}}}{n \mp x^{(l)}} \stackrel{n \gg 1}{\approx} e^{-\frac{n^{2}}{2T}}$$
(9.30)

 $\Rightarrow |A| \le \tilde{C}e^{adn^2}e^{-\frac{n^2}{2T}} \to 0$ since we assumed $a < \frac{1}{2dT}$.

[18.12.2012] [08.01.2013]

10 Brownian Martingale

10.1 Time changes

Goal: Show the following: Let $X \in \mathcal{M}_{loc}^0$ with $\langle X \rangle_{\infty} = \infty$, then if we set

$$\tau_t = \inf\{s > 0 : \langle X \rangle_s > t\} \tag{10.1}$$

it holds that

$$B_t := X_{\tau_t} \tag{10.2}$$

is a BM (w.r.t. \mathcal{F}_{τ_t}) and $X_t = B_{\langle X \rangle_t}$.

Definition 10.1.

Let $\bar{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$. Let $f : \mathbb{R}_+ \to \mathbb{R}_+$ a monotone increasing, right-continuous function with $f_{\infty} := \lim_{t \to \infty} f(t) \in \bar{\mathbb{R}}_+$. Then the right-inverse of f, denoted by $f^{[-1]}$, is defined by

$$f^{[-1]}(t) := \inf\{s \ge 0 : f(s) > t\}$$
(10.3)

$$\equiv \sup\{s \ge 0 : f(s) \le t\} \tag{10.4}$$

$$\equiv Leb(\mathbb{1}_{f \le t}) \tag{10.5}$$

with $\inf\{\emptyset\} = \infty$.

Lemma 10.2.

- a) $f^{[-1]}: \mathbb{R}_+ \to \mathbb{R}_+$ is monotone increasing and right-continuous.
- b) $(f^{[-1]})^{[-1]} = f$.
- c) $f(f^{[-1]}) \ge s \land f_{\infty}$. If f is continuous (in t) and $f_{\infty} = \infty$, then $f(f^{[-1]}) = s$.
- d) $f^{[-1]}$ is constant on $[f(t_-), f(t)), \forall t \ge 0$.

Proof. **ad a**) It's easy to see that $f^{[-1]}$ is increasing. Now verify that $f^{[-1]}$ is right-continuous. Since $f^{[-1]}$ is increasing we have $f^{[-1]}(t) \leq \lim_{\vartheta \searrow t} f^{[-1]}(\vartheta)$. To show: $\lim_{\vartheta \searrow t} f^{[-1]}(\vartheta) \leq f^{[-1]}(t)$. Let $s := f^{[-1]}(t) \Rightarrow \forall \varepsilon > 0$ it holds $f(s+\varepsilon) > t$ and for all $\vartheta \in (t, f(s+\varepsilon))$ we have $f^{[-1]}(\vartheta) \leq s + \varepsilon$ since $f^{[-1]}(\vartheta) = \sup\{u : f(u) \leq \vartheta < f(s+\varepsilon)\}$.

Thus we now have
$$\lim_{\vartheta \searrow t} f^{[-1]}(\vartheta) \le \lim_{\varepsilon \searrow 0} s + \varepsilon = s = f^{[-1]}(t)$$
.

Definition 10.3.

A time change $(T_t)_{t\geq 0}$ is an increasing, right-continuous process $T: \Omega \times \mathbb{R}_+ \to \overline{\mathbb{R}}_+$ with T_t is a stopping time $\forall t$.

Example: • $T_t = e^{2\lambda t}, \lambda > 0$

- $T_t = t \wedge \tau$ with τ stopping time.
- $T_t = t + \tau$ with τ stopping time.

• $T_t = \inf\{s \ge 0 : A_s > t\}$ where A is an adapted, right-continuous, increasing process. (*) \Rightarrow From Def 10.1: $T_t = A_t^{[-1]}$ and we know that: T_t is a stopping time $\Leftrightarrow A_s := \mathbb{1}_{[0,T_t)}(s)$ is adapted. Thus all time changes are of the form (*) with $A_t = \inf\{s \ge 0 : T_s > t\}$.

Definition 10.4.

Let $g: \mathbb{R}_+ \to \overline{\mathbb{R}}_+$ be an increasing, right-continuous function. A function $f: \mathbb{R}_+ \to \mathbb{R}$ is called g-continuous if

$$f\big|_{[g(t_-),g(t)]} \tag{10.6}$$

is constant $\forall t \text{ (with } g(t) < \infty)$

Example: Let $f: \mathbb{R}_+ \to \mathbb{R}_+$ continuous, increasing, then f is $f^{[-1]}$ -continuous. Indeed: $\forall s \in [f^{[-1]}(t_-), f^{[-1]}(t)] < \infty \Rightarrow f(s) = f(f^{[-1]}(t))$.

Definition 10.5.

Let $(X_t)_{t\geq 0}$ an adapted process with $X_t \in \mathbb{R}$. If either $(T_t)_{t\geq 0}$ is a finite time change (i.e. $T_t < \infty$ a.s.) or $X_{\infty} = \lim_{t \to \infty} X_t \in \mathbb{R}$ exists a.s., then we define the time changed process by

$$\hat{X}: \mathbb{R}_+ \times \Omega \to \bar{\mathbb{R}} \tag{10.7}$$

$$(t,\omega) \mapsto \hat{X}_t(\omega) := X_{T_t(\omega)}(\omega)$$
 (10.8)

This process is adapted to $\hat{\mathcal{F}}_t := \mathcal{F}_{T_t}$.

Remark: If $X \in \mathcal{M} \Rightarrow \hat{X}$ is not always a Martingale. For example: X = BM, $T_t = \inf\{s > 0 : \max_{0 \le u \le s} X_u > t\}$. By the continuity of the BM we have $\hat{X}_t = t \notin \mathcal{M}$.

Definition 10.6.

Let $(T_t)_{t\geq 0}$ a time change. A process $(X_t)_{t\geq 0}$ is called $(T_t)_{t\geq 0}$ -continuous if for a.e. $\omega: X(\omega)$ is $T(\omega)$ -continuous, i.e. $t\mapsto X_t(\omega)$ is constant on all intervals $[T_{t-}(\omega), T_t(\omega)]$.

This ensures the continuity of \hat{X} !

Lemma 10.7.

Let $X \in \mathcal{M}_{loc}$ and $T_t := \inf\{s \ge 0 : \langle X \rangle_s > t\} \equiv \langle X \rangle_t^{[-1]}$. Then, X is $(T_t)_{t \ge 0}$ -continuous.

Proof. For given ω in a set of measure 1, and $s \in \mathbb{R}_+$ s.t. $(T_t)_{t \ge 0}$ has a jump at s,

$$[T_s(\omega), T_s(\omega)] = [a, b](b > a) \tag{10.9}$$

$$\Leftrightarrow \langle X \rangle(\omega)$$
 is constant on $[a, b]$ (10.10)

$$\Leftrightarrow X_s(\omega)$$
 is constant on $[a,b]$ (10.11)

Theorem 10.8.

Let $(T_t)_{t\geq 0}$ be a time change and $X\in H^2$ with X is T-continuous.

$$\Rightarrow \hat{X} \in \hat{H}^2 := \{\text{continuous } L^2 - \text{bounded Mart. w.r.t } (\hat{\mathcal{F}}_t)_{t > 0} \}$$
 (10.12)

Moreover:

$$\langle \hat{X} \rangle_t \equiv \langle X_{T_t} \rangle \stackrel{!}{=} \widehat{\langle X \rangle_t} - \widehat{\langle X \rangle_0} \equiv \langle X \rangle_{T_t} - \langle X \rangle_{T_0}$$
 (10.13)

Proof (Sketch). X T-continuous $\stackrel{\text{proof of } 10.7}{\Rightarrow} \langle X \rangle$ T-continuous. $\Rightarrow \hat{X}_t := X_{T_t}$ and $\widehat{\langle X \rangle}_t = \langle X \rangle_{T_t}$ are continuous, since X and $\langle X \rangle$ are constant on jumping points of T. Now since $X \in H^2$ it holds

$$X_t = \mathbb{E}\left[X_{\infty}|\mathcal{F}_t\right] \tag{10.14}$$

and furthermore

$$X_{T_t} = \mathbb{E}\left[X_{\infty}|\hat{\mathcal{F}}_t\right]. \tag{10.15}$$

Thus $(\hat{X}_t)_{t\geq 0}$ is a $(\hat{\mathcal{F}}_t)_{t\geq 0}$ -Martingal and is L^2 -bounded. For the latter see

$$\mathbb{E}\left[\sup_{t\geq 0} X_{T_t}^2\right] \leq \mathbb{E}\left[\sup_{t\geq 0} X_t^2\right] < \infty \tag{10.16}$$

Now let's show the formula. First one can see, that

$$|X_{T_t}^2 - \langle X \rangle_{T_t}| \le \sup_{t \ge 0} X_t^2 + \langle X \rangle_{\infty}$$
 (10.17)

The right part is in L^1 since

$$X \in H^2 \Rightarrow \sup_{t \ge 0} X_t \in L^2 \tag{10.18}$$

and

$$X_{\infty}^2 - \langle X \rangle_{\infty} \in \mathcal{M}_{loc}, \ X_{\infty}^2 \in L^1 \Rightarrow \langle X \rangle_{\infty} \in L^1$$
 (10.19)

i.e. unif. integrable. Now one can stop and see

$$\to X_{T_t}^2 - \langle X \rangle_{T_t} = \mathbb{E}\left[X_{\infty}^2 - \langle X \rangle_{\infty} | \mathcal{F}_{T_t}\right]$$
 (10.20)

i.e.
$$\hat{X}^2 - \widehat{\langle X \rangle}$$
 is $\hat{\mathcal{F}}$ -Martingale. $\Rightarrow \langle \hat{X} \rangle = \widehat{\langle X \rangle}_t - \widehat{\langle X \rangle}_0$

[08.01.2013] [11.01.2013]

Remark: We need the term $\widehat{\langle X \rangle}_0$. For example if we consider a timechange $T_t = t + c, c > 0$.

Corollary 10.9.

Let $X \in \mathcal{M}_{loc}$, $T \equiv (T_t)_{t \ge 0}$ a finite time change, and assume that X is T-continuous. Then,

$$\hat{X} \in \hat{M}_{loc} := \{ \text{continuous local martingales w.r.t. } \hat{\mathcal{F}}_t \}$$
 (10.21)

and

$$\langle \hat{X} \rangle = \widehat{\langle X \rangle} - \widehat{\langle X \rangle}_0 \tag{10.22}$$

Proof. WLOG $X_0 = 0$ and let σ be a stopping time s.t. $X^{\sigma} \in H^2$. Define the stopping time

$$\hat{\sigma} := \inf\{s \ge 0 : T_s \ge \sigma\} \tag{10.23}$$

$$\Rightarrow \hat{X}_t^{\hat{\sigma}} \equiv \hat{X}_{\hat{\sigma} \wedge t} = X_{T_{\hat{\sigma} \wedge t}} = \begin{cases} X_{\sigma \wedge T_t} & \sigma \geq T_0 \\ X_{T_0} & \sigma < T_0 \end{cases}.$$

Thus

$$\hat{X}^{\hat{\sigma}} - X_{T_0} = \widehat{X^{\sigma}} - X_{T_0}^{\sigma} \tag{10.24}$$

Similarly one gets

$$\widehat{\langle X \rangle}^{\hat{\sigma}} - \langle X \rangle_{T_0} = \widehat{\langle X^{\sigma} \rangle} - \langle X^{\sigma} \rangle_{T_0} \tag{10.25}$$

Now consider a sequence of stopping times $(\sigma_n)_{n\geq 1}$ s.t. $\sigma_n \nearrow \infty$ and $X^{\sigma_n} \in H^2(\text{e.g. } \sigma_n = \inf\{t: |X_t| > n\})$. Then it also holds that $\hat{\sigma}_n \nearrow \infty$, since $\{\hat{\sigma}_n \leq t\} = \{\sigma_n \leq T_t\}$. $\stackrel{10.8}{\Rightarrow} \widehat{X^{\sigma_n}} \in \hat{H}^2$ $\stackrel{(10.24)}{\Rightarrow} \hat{X}^{\hat{\sigma}_n} \in \hat{H}^2$ and thus we have that \hat{X} is a local martingale. For the formula, one can calculate

$$\underbrace{\langle \hat{X}^{\hat{\sigma}_n} \rangle}_{=\langle \hat{X}\rangle^{\hat{\sigma}_n}} \stackrel{(10.24)}{=} \langle \widehat{X^{\sigma_n}} \rangle_t \stackrel{Thm 10.8}{=} \langle \widehat{X^{\sigma_n}} \rangle - \langle \widehat{X^{\sigma_n}} \rangle_0 \stackrel{(10.25)}{=} \widehat{\langle X \rangle}^{\hat{\sigma}_n} - \langle X \rangle_{T_0}$$

$$(10.26)$$

Taking $n \nearrow \infty$, since $\hat{\sigma}_n \nearrow \infty$ a.s. we get the result

$$\langle \hat{X} \rangle_t = \widehat{\langle X \rangle_t} - \underbrace{\widehat{\langle X \rangle_0}}_{=\langle X \rangle_{T_0}}$$
 (10.27)

10.2 Applications

Theorem 10.12.

Let $(X_t)_{t\geq 0}$ be a d-dimensional BM w.r.t. $(\mathcal{F}_t)_{t\geq 0}$ and τ a finite stopping time. Then,

$$B_t := X_{t+\tau} - X_{\tau} \tag{10.28}$$

is a d-dimensional BM w.r.t $(\mathcal{F}_{\tau+t})_{t\geq 0}$.

Proof. Let $T_t := t + \tau$. Then $\hat{X}_t = X_{t+\tau}$. $\stackrel{10.9 \& 10.8}{\Rightarrow} B_t$ is a Martingale w.r.t $(\mathcal{F}_{\tau+t})_{t\geq 0} = (\hat{\mathcal{F}}_t)_{t\geq 0}$. Moreover:

$$\langle B^i, B^j \rangle_t \stackrel{10.8}{\underset{Polarisation}{=}} \langle X^i, X^j \rangle_{t+\tau} - \langle X^i, X^j \rangle_{\tau} = \delta_{ij}(t+\tau) - \delta_{ij}\tau = t\delta_{ij}. \tag{10.29}$$

By the Levy-characterization, B is a d-dimensional BM w.r.t. $(\mathcal{F}_{t+\tau})_{t>0}$.

Theorem 10.13 (Dubins-Schwarz).

Let $X \in \mathcal{M}_{loc}^0$ with $\langle X \rangle_{\infty} = \infty$ a.s.. Then

$$B_t := X_{T_t}$$
 (10.30)

with

$$T_t := \inf\{s \ge 0 : \langle X \rangle_s > t\} \equiv \langle X \rangle_t^{[-1]}$$
 (10.31)

is a standard 1-dimensional BM w.r.t $(\mathcal{F}_{T_t})_{t\geq 0}$ and

$$X_t = B_{\langle X \rangle_t} \tag{10.32}$$

Proof. T_t is a finite time change, because $\langle X \rangle_{\infty} = \infty$ a.s.. By Lemma 10.7, we know that X is T-continuous. By Cor 10.9: $(B_t)_{t \ge 0} \in \mathcal{M}^0_{loc}$. It starts from 0 since $X_0 = 0$, $X_0 = 0$. Also

$$\langle B \rangle_t = \widehat{\langle X \rangle_t} - \widehat{\langle X \rangle_0} = \langle X \rangle_{T_t} - \underbrace{\langle X \rangle_{T_0}}_{=0} = \langle X \rangle_{\langle X \rangle_t^{[-1]}} \underset{t \mapsto \langle X \rangle_t \text{ cont., incr., } \langle X \rangle_{\infty = \infty}}{\overset{10.2c)}{=}} t$$
 (10.33)

Thus *B* is a local martingal with $\langle B \rangle_t = t$. By Levy we get that *B* is a BM. Furthermore

$$B_{\langle X \rangle_t} = X_{T_{\langle X \rangle_t}} = X_t \tag{10.34}$$

where we use in the last "=" that

$$T_u = \inf\{s \ge 0 : \langle X \rangle_s > u\} \tag{10.35}$$

$$T_{\langle X \rangle_t} = \inf\{s \ge 0 : \langle X \rangle_s > \langle X \rangle_t\} \stackrel{\langle X \rangle_t cont.}{=} t$$
 (10.36)

Definition 10.14.

Let τ be a stopping time. A process $(B_t)_{t\geq 0}$ is called BM stopped by τ if

$$\bullet B \in \mathcal{M}_{loc}^0 \tag{10.37}$$

$$\bullet \langle B \rangle_t = t \wedge \tau \tag{10.38}$$

Theorem 10.15.

Let $X \in \mathcal{M}^0_{loc}$ with $X_{\infty}(\omega) := \lim_{t \to \infty} X_t(\omega)$ exists and $\langle X \rangle_{\infty} < \infty$ a.s.. Define

$$B_t := \begin{cases} X_{T_t} & \text{if } t < \langle X \rangle_{\infty} \\ X_{\infty} & \text{if } t \ge \langle X \rangle_{\infty} \end{cases}$$
 (10.39)

with

$$T_t = \inf\{s \ge 0 : \langle X \rangle_s > t\}. \tag{10.40}$$

Then $(B_t)_{t\geq 0}$ is a BM stopped by $\langle X \rangle_{\infty}$

Proof. For given n, consider

$$T_t^{(n)} := T_t \wedge n. \tag{10.41}$$

Then $T_t^{(n)}$ is a finite time change. Now define

$$B_t^{(n)} := X_{T_n^{(n)}}. (10.42)$$

By Cor 10.9:

$$\langle B^{(n)} \rangle_t = \langle X \rangle_{T_t^{(n)}} - \underbrace{\langle X \rangle_{T_0^{(n)}}}_{=0}$$
(10.43)

$$= \langle X \rangle_{T_t \wedge n} \tag{10.44}$$

$$= t \wedge \langle X \rangle_n \tag{10.45}$$

Taking $n \to \infty$ finishes the proof.

[11.01.2013] [15.01.2013]

11 Girsanov's theorem

11.1 An example

Let $Z = (Z_1, ..., Z_n)$ be $\mathcal{N}(0, 1)$ -distributed on a space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mu = (\mu_1, ..., \mu_n) \in \mathbb{R}^n$ be a fixed vector. Define a new measure by

$$\mathbb{Q}(d\omega) = e^{\sum_{k=1}^{n} \mu_k Z_k(\omega) - \frac{1}{2} \sum_{k=1}^{n} \mu_k^2} \mathbb{P}(d\omega). \tag{11.1}$$

One can compare this to the moment generating function to see, that this is still a probability measure. We now have

$$\mathbb{P}(Z_1 \in dz_1, ..., Z_n \in dz_n) = \frac{1}{(2\pi)^{n/2}} \prod_{k=1}^n e^{-\frac{z_k^2}{2}} dz_k$$
 (11.2)

and

$$\mathbb{Q}(Z_1 \in dz_1, ..., Z_n \in dz_n) = \frac{1}{(2\pi)^{n/2}} \prod_{k=1}^n e^{-\frac{(Z_k - \mu_k)^2}{2}} dz_k, \tag{11.3}$$

i.e. $Z \sim \mathcal{N}(\mu, \mathbb{1})$ with respect to \mathbb{Q} . Thus $\{\tilde{Z}_k := Z_k - \mu_k, k = 1, ..., n\}$ are iid. $\mathcal{N}(0, 1)$ -distributed r.v. with respect to \mathbb{Q} .

"The Girsanov Theorem extends this idea of *invariance of Gaussian finite-dimensional distribu*tions under appropriate translations and changes of the underlying probability measure, from the discrete to the continuous setting. Rather than beginning with an n-dimensional vector $(Z_1, ..., Z_n)$ of independent, standard normal random variables, we begin with a d-dimensional Brownian motion under \mathbb{P} , and then construct a new measure \mathbb{Q} under which a "translated" process is a d-dimensional Brownian motion." - [KS91, p. 190]

11.2 Change of measure

Consider a filtered standard probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$. Let $T \in \mathbb{R}_+$ and for all $t \in [0, T]$ let \mathbb{Q}_t a probability measure with $\mathbb{Q}_t \ll \mathbb{P}$. If we take $Z_t = \frac{d\mathbb{Q}_t}{d\mathbb{P}}$ as the Radon-Nikodym-derivative, we have

- $Z_t \ge 0$ on Ω .
- $Q_t = Z_t \mathbb{P}$, i.e. $\int_A d\mathbb{Q}_t = \int_A Z_t d\mathbb{P}$, $\forall A \in \mathcal{F}_t$.
- $\mathbb{E}_{\mathbb{P}}[Z_t] = 1$

Definition 11.1.

 $(\mathbb{Q}_t)_{t\in[0,T]}$ is consistent, if

$$\mathbb{Q}_s = \mathbb{Q}_t \text{ on } (\Omega, \mathcal{F}_s) \ \forall 0 \le s \le t \tag{11.4}$$

If \mathbb{Q} is consistent, then $\forall A \in \mathcal{F}_s \ (s < t)$

$$\int_{A} Z_{s} d\mathbb{P} \stackrel{def}{=} \int_{A} d\mathbb{Q}_{s} \stackrel{consistent}{=} \int_{A} d\mathbb{Q}_{t} \stackrel{def}{=} \int_{A} Z_{t} d\mathbb{P}$$
(11.5)

Thus we have $Z_s = \mathbb{E}[Z_t | \mathcal{F}_s]$. So Z is a martingale on [0, T].

Viceversa: For all Martingales $(Z_t)_{t \in [0,T]}$, with

- $Z_t \ge 0$
- $\mathbb{E}[Z_t] = 1, \forall t \in [0, T]$

 $\mathbb{Q}_t := Z_t \mathbb{P}$ is a family of consistent probability measures.

Lemma 11.2.

For all $Z > 0, Z \in \mathcal{M}_{loc}, \exists ! L \in \mathcal{M}_{loc}$ s.t. $Z = \mathcal{E}^L = \exp(L - \frac{1}{2}\langle L \rangle)$. It is given by

$$L_t = \ln(Z_0) + \int_0^t \frac{1}{Z_s} dZ_s. \tag{11.6}$$

Proof. Ito-Formula:

$$\ln(Z_t) = \underbrace{\ln(Z_0) + \int_0^t \frac{1}{Z_s} dZ_s - \frac{1}{2} \underbrace{\int_0^t \frac{1}{Z_s^2} d\langle Z_s \rangle}_{(\Delta) \atop \underline{\Delta} \langle L \rangle_t}}$$
(11.7)

$$=L_t - \frac{1}{2}\langle L \rangle_t \tag{11.8}$$

Regarding (Δ): $\langle L \rangle_t = \langle \frac{1}{Z} \cdot Z \rangle_t = (\frac{1}{Z^2} \cdot \langle Z \rangle)_t$.

Uniqueness follows from

$$\tilde{L}_t - \frac{1}{2} \langle \tilde{L} \rangle_t = \ln(Z_t) = L_t - \frac{1}{2} \langle L \rangle_t \tag{11.9}$$

$$\Rightarrow \underbrace{L_t - \tilde{L}_t}_{\in \mathcal{M}_{loc}} = \underbrace{\frac{1}{2} (\langle \tilde{L} \rangle_t - \langle L \rangle_t)}_{\in \mathcal{A}}$$
(11.10)

Thus $L_t = \tilde{L}_t$.

Remark: $Z = \exp(L - \frac{1}{2}\langle L \rangle)$. If $Z_0 = 1 \Rightarrow L_0 = 0$ and from Theorem 7.12 we know that Z is a martingale (not just local!) $\Leftrightarrow \mathbb{E}[Z_t] = 1 \forall t$.

Q.: Is

$$M \in \mathcal{M} \text{ w.r.t. } \mathbb{P} \Leftrightarrow M \in \mathcal{M} \text{ w.r.t. } \mathbb{Q}$$
? (11.11)

No! But it holds

$$S \in \mathcal{S} \text{ w.r.t } \mathbb{P} \Leftrightarrow S \in \mathcal{S} \text{ w.r.t. } \mathbb{Q}$$
 (11.12)

$$S = M_1 + A_1 \qquad S = M_2 + A_2 \tag{11.13}$$

where M_1 is the martingale part w.r.t. \mathbb{P} , M_2 is the martingale part w.r.t. \mathbb{Q} .

Q.: How does one determine M_2, A_2 ?

Consider $Z \in \mathcal{M}$ (not only local) and $T \in \mathbb{R}_+$ fixed. Set $\mathbb{Q}_T := Z_T \mathbb{P}$.

Lemma 11.3.

Let $0 \le s \le t \le T$ and let Y be \mathcal{F}_t -measurable with $\mathbb{E}_{\mathbb{Q}_T}(|Y|) < \infty$. Then,

$$\mathbb{E}_{\mathbb{Q}_T}(Y|\mathcal{F}_s) = \frac{1}{Z_s} \mathbb{E}_{\mathbb{P}}(YZ_t|\mathcal{F}_s) \text{ a.s. w.r.t. } \mathbb{Q}_T \text{ and } \mathbb{P}.$$
 (11.14)

Proof. Let $A \in \mathcal{F}_s$.

$$\int_{A} \frac{1}{Z_{s}} \mathbb{E}_{\mathbb{P}}[YZ_{t}|\mathcal{F}_{s}] \underbrace{d\mathbb{Q}_{T}}_{\stackrel{cons.}{=} d\mathbb{Q}_{s} = Z_{s}d\mathbb{P}} = \int_{A} \mathbb{E}_{\mathbb{P}}[YZ_{t}|\mathcal{F}_{s}]d\mathbb{P}$$
(11.15)

$$= \mathbb{E}_{\mathbb{P}}[\underbrace{\mathbb{1}_{A}}_{\mathcal{F}_{s}\text{-meas.}} \mathbb{E}_{\mathbb{P}}[YZ_{t}|\mathcal{F}_{s}]]$$
 (11.16)

$$= \mathbb{E}_{\mathbb{P}}[\mathbb{E}_{\mathbb{P}}[\mathbb{1}_{A}YZ_{t}|\mathcal{F}_{s}]] \tag{11.17}$$

$$= \int_{A} Y \underbrace{Z_{t} d\mathbb{P}}_{dO_{t}} \tag{11.18}$$

$$\stackrel{cons.}{=} \int_{A} Y d\mathbb{Q}_{T} \tag{11.19}$$

Notation: We write

$$\mathcal{M}_{loc,T}^{0} = \{cont. \ local \ martingales \ (M_t)_{t \in [0,T]} \ w.r.t \ (\Omega, \mathcal{F}_T, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P}) : M_0 = 0\}$$
 (11.20)

$$\tilde{\mathcal{M}}_{loc,T}^{0} = \{cont.\ local\ martingales\ (M_t)_{t\in[0,T]}\ w.r.t\ (\Omega,\mathcal{F}_T,(\mathcal{F}_t)_{t\in[0,T]},\mathbb{Q}): M_0 = 0\}$$
 (11.21)

Theorem 11.4

Let $M \in \mathcal{M}^0_{loc\ T}$ and $Z \in \mathcal{M}, Z_t > 0, \mathbb{E}[Z_t] = 1 \forall t$ and $\mathbb{Q}_t = Z_t \mathbb{P}$, then

$$\tilde{M}_t := M_t - \langle M, L \rangle_t \in \tilde{M}_{loc,T}^0 \tag{11.22}$$

with

$$L_t := \ln(Z_0) + \int_0^t \frac{1}{Z_s} dZ_s \tag{11.23}$$

and it holds

$$\langle \tilde{M} \rangle_t = \langle M \rangle_t \tag{11.24}$$

on $[0, T] \times \Omega$ a.s. w.r.t. \mathbb{P} and \mathbb{Q}_T .

Proof. WLOG $M, \langle M \rangle, \langle L \rangle$ bounded in t and ω . Then \tilde{M} is bounded because

$$\langle M, L \rangle \le \sqrt{\langle M \rangle_t \langle L \rangle_t}$$
 (11.25)

Now, since $L_t := \ln(Z_0) + \int_0^t \frac{1}{Z_s} dZ_s$

$$\langle M, L \rangle_t = \langle M, \frac{1}{Z} \cdot Z \rangle_t$$
 (11.26)

$$\stackrel{Kunita}{=} \frac{1}{Z} \cdot \langle M, Z \rangle_t \tag{11.27}$$

Using integration by parts we can now see

$$Z_t \tilde{M}_t = Z_0 \underbrace{\tilde{M}_0}_{-0} + \int_0^t Z_s d\tilde{M}_s + \int_0^t \tilde{M}_s dZ_s + \langle Z, \tilde{M} \rangle_t$$
 (11.28)

$$= \int_{0}^{t} Z_{s} dM_{s} - \int_{0}^{t} Z_{s} \underbrace{d\langle M, L \rangle_{s}}_{\frac{1}{Z_{s}} d\langle M, Z \rangle_{s}} + \int_{0}^{t} \widetilde{M}_{s} dZ_{s} + \underbrace{\langle Z, \widetilde{M} \rangle_{t}}_{\langle Z, M \rangle_{t}}$$
(11.29)

$$= \int_0^t Z_s dM_s + \int_0^t \tilde{M}_s dZ_s \tag{11.30}$$

Thus $Z_t \tilde{M}_t \in \mathcal{M}^0_{loc,T}$ (*). But $\forall 0 \le s \le t \le T$:

$$\mathbb{E}_{\mathbb{Q}_T}(\tilde{M}_t|\mathcal{F}_s) \stackrel{11.3}{=} \frac{1}{Z_s} \mathbb{E}_{\mathbb{P}}(\tilde{M}_t Z_t|\mathcal{F}_s)$$
 (11.31)

$$\stackrel{(*)}{=} \frac{1}{Z_s} \tilde{M}_s Z_s \Rightarrow \tilde{M}_s \in \tilde{M}^0_{loc,T}$$
 (11.32)

11.3 The Theorem of Girsanov

Let W be a d-dimensional BM and X a d-dimensional adapted process with

$$\mathbb{P}\left(\int_0^T (X_t^k)^2 dt < \infty\right) = 1 \,\forall 1 \le k \le d, T < \infty \tag{11.33}$$

Then define

$$L_t := (X \cdot W)_t \equiv \sum_{k=1}^d \int_0^t X_s^k dW_s^k$$
 (11.34)

and

$$Z_t := \mathcal{E}^{L_t} = \exp\left(\sum_{k=1}^d \int_0^t X_s^k dW_s^k - \frac{1}{2} \sum_{k=1}^d \int_0^t (X_s^k)^2 ds\right)$$
(11.35)

 \Rightarrow $(Z_t)_{t\geq 0}$ is a local cont. martingale with $Z_0 = 1$.

Theorem 11.5 (Girsanov).

Assume that Z_t defined above is a martingale. Set

$$\tilde{W}_{t}^{k} = W_{t}^{k} - \int_{0}^{t} X_{s}^{k} ds, \ k = 1, ..., d; t \ge 0$$
(11.36)

Then $\forall T \in [0, \infty)$, the process $\tilde{W} = (\tilde{W}_t)_{t \in [0,T]} = (\tilde{W}_t^1, ..., \tilde{W}_t^d)_{t \in [0,T]}$ is a d-dimensional BM w.r.t. $(\Omega, \mathcal{F}_T, (\mathcal{F}_t)_{t \in [0,T)}, \mathbb{Q}_T)$ with $\mathbb{Q}_T = Z_T \mathbb{P}$

[15.01.2013] [18.01.2013]

Proof. Theorem 11.4 gives us

$$W_t - \langle W, L \rangle \in \tilde{\mathcal{M}}_{loc,T}^0 \tag{11.37}$$

We compute

$$W_t^k - \langle W^k, L \rangle_t = W_t^k - \langle W^k, \sum_{l=1}^d (X^l \cdot W^l)_t \rangle$$
 (11.38)

$$\stackrel{\text{Kunita}}{=} \underset{\text{Watanabe}}{=} W_t^k - \sum_{l=1}^d (X_k \cdot \underbrace{\langle W^k, W^l \rangle}_{=\delta_{kl}t})_t$$
 (11.39)

$$=W_t^k - \int_0^t X_s^k ds \tag{11.40}$$

$$=\tilde{W}_t^k \tag{11.41}$$

And thus $\tilde{W}^k_t \in \tilde{M}^0_{loc,T}$. Further, Theorem 11.4 implies

$$\langle \tilde{W}^k \rangle_t = \langle W^k \rangle_t = t \tag{11.42}$$

and with polarisation

$$\langle \tilde{W}^k, \tilde{W}^l \rangle_t = \langle W^k, W^l \rangle_t = \delta_{kl} t \tag{11.43}$$

Levy gives that \tilde{W} is a BM.

Theorem 11.6 (Novikov).

Define $Z := \mathcal{E}^L \equiv e^{L - \frac{1}{2}\langle L \rangle}$. If

$$\mathbb{E}\left[e^{\frac{1}{2}\langle L\rangle_t}\right] < \infty, \forall t \ge 0 \tag{11.44}$$

then Z is a martingale.

Let *W* be a 1-dimensional BM w.r.t. $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ and for a $b \neq 0$, let

$$T_b := \inf\{s \ge 0 : W_s = b\} \tag{11.45}$$

Proposition 11.7.

 $\bullet \ \mathbb{P}(T_b \in dt) = \frac{|b|}{\sqrt{2\pi t^3}} e^{-\frac{b^2}{2t}} dt$

•
$$\mathbb{E}\left[e^{-\alpha T_b}\right] = \exp(-|b|\sqrt{2\alpha}), \alpha > 0$$

Proof. 1) already computed.

$$\mathbb{E}\left[e^{-\alpha T_b}\right] = \int_0^\infty e^{-\alpha t} \frac{|b|}{\sqrt{2\pi t^3}} e^{-\frac{b^2}{2t}} dt \tag{11.46}$$

$$\stackrel{t=\frac{b^2}{2u^2}}{=} \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-u^2} e^{-\frac{\alpha|b|^2}{2u^2}} du \tag{11.47}$$

$$=\frac{2}{\sqrt{\pi}}e^{-\sqrt{2\alpha}|b|}\int_0^\infty e^{-(u-\frac{c}{u})^2}du\tag{11.48}$$

with $c = \sqrt{\frac{\alpha}{2}}|b|$.

Remains to show $F(c) := \int_0^\infty e^{-(u-\frac{c}{u})^2} du = \sqrt{\frac{\pi}{2}}$ For c = 0. Then take

$$\frac{dF(c)}{dc} = \dots = 2F(c) - 2\int_0^\infty dx e^{-(\frac{c}{x} - x)^2} = 0.$$
 (11.49)

Consider the process

$$\tilde{W} := (\tilde{W}_t)_{t \ge 0} = (W_t - \mu t)_{t \ge 0} \tag{11.50}$$

where μ is a constant. Girsanov gives, that \tilde{W} is a BM w.r.t.

$$\mathbb{P}^{\mu} := Z_t \mathbb{P} \tag{11.51}$$

with

$$Z_t = e^{\mu W_t - \frac{1}{2}\mu^2 t}. (11.52)$$

Here we have $L_t = \mu W_t$ and $\langle L \rangle_t = \mu^2 t$.

 $\Rightarrow W_t = \mu t + \tilde{W}_t$ is a BM with drift μ w.r.t. \mathbb{P}^{μ} . (\tilde{W}_t is a BM with drift $-\mu$ w.r.t. \mathbb{P} .)

Proposition 11.8.

$$\mathbb{P}^{\mu}(T_b \in dt) = \frac{|b|}{\sqrt{2\pi t^3}} e^{-\frac{(b-\mu t)^2}{2t}} dt \tag{11.53}$$

$$\mathbb{E}^{\mu}(e^{-\alpha T_b}) = \exp(\mu b - |b| \sqrt{\mu^2 + 2\alpha}), \alpha > 0$$
 (11.54)

Proof.

$$\mathbb{P}^{\mu}(T_b \le t) = \mathbb{E}^{\mu}(\mathbb{1}_{[T_b \le t]}) \tag{11.55}$$

$$\stackrel{\mathbb{P}^{\mu}=Z_{t}\mathbb{P}}{=}\mathbb{E}(\mathbb{1}_{[T_{h}\leq t]}Z_{t})\tag{11.56}$$

$$= \mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{[T_b \le t]} Z_t | \mathcal{F}_{T_b \land t}\right]\right] \tag{11.57}$$

$$= \mathbb{E}\left[\mathbb{1}_{[T_h \le t]} \mathbb{E}\left[Z_t | \mathcal{F}_{T_h \land t}\right]\right] \tag{11.58}$$

$$\stackrel{\text{Novikov}}{=}_{\text{Opt. Sampl.}} \mathbb{E} \left[\mathbb{1}_{[T_b \le t]} Z_{T_b \land t} \right]$$
 (11.59)

$$= \mathbb{E}(\mathbb{1}_{[T_b \le t]} \underbrace{Z_{T_b}}_{e^{\mu b - \frac{1}{2}\mu^2 T_b}}) \tag{11.60}$$

$$= \mathbb{E}\left[\mathbb{1}_{[T_b \le t]} e^{-\frac{1}{2}\mu^2 T_b} e^{\mu b}\right]$$
 (11.61)

$$= \int_0^t e^{-\frac{1}{2}\mu^2 s} e^{\mu b} \frac{|b|}{\sqrt{2\pi s^3}} e^{-\frac{b^2}{2s}} ds$$
 (11.62)

Thus

$$\mathbb{P}^{\mu}(T_b \in dt) = \left(\frac{d}{dt}\mathbb{P}^{\mu}(T_b \le t)\right)dt \tag{11.63}$$

$$=e^{-\frac{1}{2}\mu^{2}t}e^{\mu b}\frac{|b|}{\sqrt{2\pi t^{3}}}e^{-\frac{b^{2}}{2t}}dt$$
(11.64)

$$=\frac{|b|}{\sqrt{2\pi t^3}}e^{-\frac{(b-\mu t)^2}{2t}}dt\tag{11.65}$$

$$\mathbb{E}^{\mu}(e^{-\alpha T_b}) = \int_0^\infty e^{-\alpha s} \frac{e^{-\frac{1}{2}\frac{(b-\mu s)^2}{2s}}|b|}{\sqrt{2\pi s^3}}$$
(11.66)

$$\stackrel{\tilde{\alpha}=\alpha+\frac{\mu^2}{2}}{=} e^{\mu b} \underbrace{\int_0^\infty ds \frac{e^{\tilde{\alpha}s} e^{-\frac{b^2}{2s}} |b|}{\sqrt{2\pi s^3}}}_{=\mathbb{E}\left[e^{-\tilde{\alpha}T_b}\right]}$$
(11.67)

$$\stackrel{\text{Prop 11.7}}{=} e^{\mu b} e^{-|b|} \sqrt{2\alpha + \mu^2} \tag{11.68}$$

 $\mathbb{P}^{\mu}(T_b \le t) = \dots = \int_0^t e^{\mu b - \frac{\mu^2}{2} s} \mathbb{P}(T_b \in ds) = e^{\mu b} \mathbb{E}\left[e^{-\frac{\mu^2}{2} T_b} \mathbb{1}_{[T_b \le t]}\right]$ (11.69)

Corollary 11.9.

$$\mathbb{P}^{\mu}(T_b < \infty) = \exp(\mu b - |\mu b|) \tag{11.70}$$

$$=\begin{cases} 1 & \text{if } sgn(\mu) = sgn(b) \\ \exp(-2|\mu b|) & \text{if } sgn(\mu) = -sgn(b) \end{cases}$$
 (11.71)

Proof. From (11.69) we have

$$\mathbb{P}^{\mu}(T_b \le t) = e^{\mu b} \mathbb{E}\left[e^{-\frac{\mu^2}{2}T_b}\right]$$
(11.72)

$$\stackrel{11.8}{\underset{\alpha=\frac{\mu^2}{2}}{=}} e^{\mu b} \exp(-|b| \sqrt{2\frac{\mu^2}{2}})$$
 (11.73)

$$= \exp(\mu b - |\mu b|) \tag{11.74}$$

Corollary 11.10.

Let $\mu > 0$, $W_* = \inf_{t>0} W_t$. Then

$$\mathbb{P}^{\mu}(-W_* \in db) = 2\mu e^{-2\mu b} db, \text{ for } b > 0$$
 (11.75)

$$\mathbb{P}^{\mu}(-W_* < 0) = 0 \tag{11.76}$$

Proof. Let b > 0.

$$\mathbb{P}^{\mu}(-W_* \le b) = \mathbb{P}^{\mu}(T_{-b} < \infty) = e^{-2\mu b}$$
 (11.77)

Then differentiate by b to see

$$\mathbb{P}^{\mu}(-W_* \in db) = 2\mu e^{-2\mu b} db, \text{ for } b > 0$$
 (11.78)

(11.79)

[18.01.2013] [22.01.2013]

12 Local time

Q.: If $g \in C^2$ and B is a BM, then,

$$g(B_t) = g(B_0) + \int_0^t g'(B_s)dB_s + \frac{1}{2} \int_0^t g''(B_s)ds$$
 (12.1)

What happens if g is not C^2 , but maybe $g \in C^2(\mathbb{R} \setminus \{z_1, ..., z_k\})$?

Lemma 12.1.

Let $(B_t)_{t\geq 0}$ be a 1-dimensional BM. Then, the Itô-Formula still holds for $Y_t = g(B_t)$ if g is C^1 everywhere and C^2 except for finite # of points $z_1, ..., z_k$, if g'' is (locally) bounded for $x \notin \{z_1, ..., z_k\}$

Proof. C^2 approximation as in the picture

Choose $f_n \in C^2$ s.t. $f_n \to g$, $f'_n \to g'$ uniformly in n and $f''_n \to g''$ on $\mathbb{R} \setminus \{z_1, ..., z_k\}$ and $|f''_n(x)| \leq M$ for x in a neighbourhood of $\{z_1, ..., z_k\}$ Now use Itô on f_n :

$$f_n(B_t) = f_n(B_0) + \int_0^t f_n'(B_s) dB_s + \frac{1}{2} \int_0^t f_n''(B_s) ds$$
 (12.2)

This equation converges in L^2 as $n \to \infty$ towards

$$g(B_t) = g(B_0) + \int_0^t g'(B_s)dB_s + \frac{1}{2} \int_0^t g''(B_s)ds$$
 (12.3)

Theorem 12.2 (Tanaka).

Let *B* be a 1-d BM and λ the Lebesgue-measure. Then,

$$L_{t} := \lim_{\varepsilon \downarrow 0} \frac{1}{2\varepsilon} \lambda(\{s \in [0, t] : B_{s} \in [-\varepsilon, \varepsilon]\})$$
(12.4)

exists in $L^2(\Omega, \mathbb{P})$ and it is given by

$$L_t = |B_t| - |B_0| - \int_0^t sgn(B_s)dB_s$$
 (12.5)

Remark: L_t is called the local time of the BM at 0

Proof. Let us consider the function

$$g_{\varepsilon}(x) = \begin{cases} |x| & , |x| \ge \varepsilon \\ \frac{1}{2}(\varepsilon + \frac{x^2}{\varepsilon}) & , |x| < \varepsilon \end{cases}$$
 (12.6)

100

Then we have $g_{\varepsilon} \in C^2(\mathbb{R} \setminus \{-\varepsilon, \varepsilon\}), g_{\varepsilon} \in C^1(\mathbb{R}).$

$$g_{\varepsilon}'(x) = \begin{cases} 1 & , x > \varepsilon \\ -1 & , x < -\varepsilon \\ \frac{x}{\varepsilon} & , |x| < \varepsilon \end{cases}$$
 (12.7)

By the previous Lemma

$$\underbrace{\frac{1}{2} \int_{0}^{t} g_{\varepsilon}^{\prime\prime}(B_{s}) ds}_{\frac{1}{2} \lambda \left(\left\{ s \in [0,t] : B_{\varepsilon} \in (-\varepsilon,\varepsilon) \right\} \right) \to L_{t}} = g_{\varepsilon}(B_{t}) - g_{\varepsilon}(B_{0}) - \int_{0}^{t} g_{\varepsilon}^{\prime}(B_{s}) dB_{s} \tag{12.8}$$

since $g''(\varepsilon)(x) = \frac{1}{\varepsilon} \mathbb{1}_{(-\varepsilon,\varepsilon)}(x), x \notin \{-\varepsilon, \varepsilon\}.$ $g_{\varepsilon}(B_t) \xrightarrow{\varepsilon \to 0} |B_t|$

$$g_{\varepsilon}(B_t) \stackrel{\varepsilon \to 0}{\longrightarrow} |B_t|$$

$$\|\int_0^t (g_{\varepsilon}'(B_s) - sgn(B_s))dB_s\|^2 = \|\int_0^t \mathbb{1}_{(B_s \in (-\varepsilon, \varepsilon))} (\underbrace{g_{\varepsilon}'(B_s)}_{=\underline{B_s}} - sgn(B_s))dB_s\|^2$$
(12.9)

$$\stackrel{Ito}{=} \mathbb{E} \left[\int_0^t \mathbb{1}_{(B_s \in (-\varepsilon, \varepsilon))} (\underbrace{\frac{B_s}{\varepsilon} - sgn(B_s)})^2 ds) \right]$$
 (12.10)

$$\leq \int_0^t \mathbb{P}(B_s \in (-\varepsilon, \varepsilon)) \, ds \xrightarrow{\varepsilon \to 0} 0 \tag{12.11}$$

Remark: For $f \in C^2$: $|f(t)| - |f(0)| - \int_0^t sgn(f(s))f'(s)ds = 0$, but $d|B_t| \neq sgn(B_t)dB_t$ since

$$|B_{t+\Lambda t} - B_t| \neq sgn(B_t)(B_{t+\Lambda t} - B_t)$$
(12.12)

e.g. is $B_t < 0$ and $B_{t+\Delta t} > 0$. Thus the L_t can be viewed as a correction term.

13 Representation of local martingale as stochastic integral

Let B be a BM and denote by \mathcal{F}^B the Brownian filtration. i.e. $(F_t^0 := \sigma(B_s, 0 \le s \le t)) + \text{rightcontinuous} + \text{complete} \Rightarrow \mathcal{F}^B$.

Theorem 13.1.

Let $(\mathcal{F}_t^B)_{t\geq 0}$ be the Brownian filtration. Then, each local $(F_t^B)_{t\geq 0}$ -martingale M has continuous version with stochastic integral representation:

$$M_t = M_0 + \int_0^t H_s dB_s (13.1)$$

where M_0 and $H \in L^2(\Omega \times \mathbb{R}_+, \mathbb{P} \otimes \text{Leb})$ are uniquely determined by M. Moreover, if M is a continuous martingale, then

$$H_t = \frac{d}{dt} \langle M, B \rangle_t \tag{13.2}$$

Remark:

$$d\langle M, B \rangle_t = dM_t dB_t \tag{13.3}$$

$$= H_t dB_t dB_t \tag{13.4}$$

$$=H_t dt (13.5)$$

$$\Rightarrow \langle M, B \rangle_t = \int_0^t H_s ds \tag{13.6}$$

Remark: $\exists (\mathcal{F}_t^B)_{t\geq 0}$ -martingale M s.t. the BM B can not be written as $B_0 + \int_0^t A_s dM_t$. Recall: $L_t = |B_t| - |B_0| - \int_0^t sgn(B_s)dB_s$. Let $\beta_t := \int_0^t sgn(B_s)dB_s$. β is adapted to \mathcal{F}^B (β has indep. incr.). What is $\langle \beta \rangle_t$?

$$d\beta_t = sgn(B_t)dB_t \tag{13.7}$$

$$\Rightarrow d\langle \beta \rangle_t = (sgn(B_t))^2 d\langle B \rangle_t = dt \tag{13.8}$$

$$\Rightarrow \langle \beta \rangle_t = t \tag{13.9}$$

Thus β is a \mathcal{F}^B -BM. Assume that $\exists A_t, \mathcal{F}^B$ -measurable s.t.

$$B_t = \int_0^t A_s d\beta_s \tag{13.10}$$

 $\Rightarrow B_t \text{ is } \mathcal{F}_t^\beta\text{-measurable} \Rightarrow \mathcal{F}_t^B \subset \mathcal{F}_t^\beta. \text{ Now: } \beta_t = |B_t| - L_t. \text{ One can prove that } L_t \text{ is a r.v. w.r.t.}$ $\sigma(|B_s|, 0 \leq s \leq t) \Rightarrow \beta_t \in \mathcal{F}_t^{|B|} \Rightarrow \mathcal{F}_t^B \subset \mathcal{F}_t^\beta \subset \mathcal{F}_t^{|B|} \text{ but this is wrong, it holds } \mathcal{F}_t^{|B|} \subsetneq \mathcal{F}_t^B$

[22.01.2013] [25.01.2013]

14 Connection between SDE's and PDE's

$$b: \mathbb{R}^d \to \mathbb{R}^d \tag{14.1}$$

$$\sigma: \mathbb{R}^d \to \mathbb{R}^{d \times r}$$
 (Lipschitz, bounded, measurable) (14.2)

 $a = \sigma \sigma^T$, $a_{ij} = \sum_{k=1}^r \sigma_{ik} \sigma_{jk}$ Let $(B_t)_{t \ge 0}$ be a BM. Let X_t^x be the solution of

$$\begin{cases} dX_t^x = b(X_t^x)dt + \sigma(X_t^x)dB_t \\ X_0^x = x \end{cases}$$
 (14.3)

Theorem 14.1.

Let $f \in C_b(\mathbb{R}^d), u \in C_b([0,\infty) \times \mathbb{R}^d) \cap C_b^2((0,\infty) \times \mathbb{R}^d)$ s.t. u solves the Cauchy Problem, i.e.

$$\frac{\partial}{\partial t}u(t,x) = Au(t,x) \text{ for all } t \ge 0, x \in \mathbb{R}^d$$
 (14.4)

$$u(0, x) = f(x)$$
 for all $x \in \mathbb{R}^d$ (14.5)

where

$$Au(t,x) = \sum_{i=1}^{d} b_i(x) \frac{\partial}{\partial x_i} u(t,x) + \frac{1}{2} \sum_{i,j=1}^{d} \sigma_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} u(t,x). \tag{14.6}$$

Then

$$u(t,x) = \mathbb{E}\left[f(X_t^x)\right] \tag{14.7}$$

Proof. (From now on write $X_t = X_t^x$.) Fix T > 0 and use 'time reversal',

$$M_t = u(T - t, X_t). \tag{14.8}$$

Then, by Itô's Formula,

$$M_t = M_0 + \int_0^t \sum_{i=1}^d \frac{\partial}{\partial x_i} u(T-s, X_s) dX_s^{(i)} - \int_0^t \frac{\partial}{\partial t} u(T-s, X_s) ds + \frac{1}{2} \int_0^t \sum_{i=1}^d \frac{\partial^2}{\partial x_i \partial x_j} u(T-s, X_s) d\langle X^{(i)}, X^{(j)} \rangle_s$$

(14.9)

$$= M_0 + \int_0^t \sum_{i=1}^d b_i(X_s) \frac{\partial}{\partial x_i} u(T-s, X_s) ds + \int_0^t \sum_{i=1}^d \sum_{j=1}^r \sigma_{ij}(X_s) \frac{\partial}{\partial x_i} u(T-s, X_s) dB_s^{(j)} - \int_0^t \frac{\partial}{\partial t} u(T-s, X_s) ds + \int_0^t \sum_{i=1}^d \sum_{j=1}^r \sigma_{ij}(X_s) \frac{\partial}{\partial x_i} u(T-s, X_s) dS_s^{(j)} - \int_0^t \frac{\partial}{\partial t} u(T-s, X_s) ds + \int_0^t \sum_{i=1}^d \sum_{j=1}^r \sigma_{ij}(X_s) \frac{\partial}{\partial x_i} u(T-s, X_s) dS_s^{(j)} - \int_0^t \frac{\partial}{\partial t} u(T-s, X_s) ds + \int_0^t \sum_{i=1}^d \sum_{j=1}^r \sigma_{ij}(X_s) \frac{\partial}{\partial x_i} u(T-s, X_s) dS_s^{(j)} - \int_0^t \frac{\partial}{\partial t} u(T-s, X_$$

$$= M_0 + \underbrace{\int_0^t \sum_{i=1}^d \sum_{j=1}^r \sigma_{ij}(X_s) \frac{\partial}{\partial x_i} u(T-s, X_s) dB_s^{(j)}}_{loc.Mart.} + \int_0^t \underbrace{(A - \frac{\partial}{\partial t}) u(T-s, X_s)}_{=0} ds$$
(14.11)

Use that $d\langle X^{(i)}, X^{(j)} \rangle_s = \sum_{k,l} \sigma_{ik} \sigma_{jl} d\langle B^{(k)}, B^{(l)} \rangle_s = \sum_k \sigma_{ik} \sigma_{jk} ds = a_{ij} ds$.

Thus we have that $(M_t)_{t\geq 0}$ is a local martingale. u bounded $\Rightarrow (M_t)_{0\leq t< T}$ is bounded. Hence $(M_t)_{0\leq t< T}$ is a true martingale. For any $\varepsilon > 0$

$$u(T,x) = u(T-0,X_0^x) = M_0 = \mathbb{E}\left[M_0\right] = \mathbb{E}\left[u(\varepsilon,X_{T-\varepsilon}^x)\right] \xrightarrow{\varepsilon \to 0} \mathbb{E}\left[u(0,X_T^x)\right] = \mathbb{E}\left[f(X_T^x)\right] \quad (14.12)$$

because *u* is bounded continuous. Thus $u(T, x) = \mathbb{E}\left[f(X_T^x)\right]$

Theorem 14.2.

Let $D \subset \mathbb{R}^d$ be open, $Z = (\{0\} \times D) \cup ([0, \infty) \times \partial D)$, $f \in C_b(Z)$, $u \in C_b([0, \infty) \times \bar{D}) \cap C_b^2((0, \infty) \times D)$ s.t.

$$\frac{\partial}{\partial t}u = Au \text{ in } (0, \infty) \times D \tag{14.13}$$

$$u = f \text{ on } Z \tag{14.14}$$

Then

$$u(t,x) = \mathbb{E}\left[f(t-t \wedge \tau_D, X_{t \wedge \tau_D}^x)\right]$$
 (14.15)

where τ_D is the exit time from D,

$$\tau_D = \inf\{t > 0 : X_t^x \notin D\} \tag{14.16}$$

Proof. Fix T > 0, set $M_t = u(T - t, X_t^x)$. As before, M is a martingale.

$$\Rightarrow M_{T \wedge \tau_D} = u(T - T \wedge \tau_D, X_{T \wedge \tau_D}^x)$$
 (14.17)

$$= \begin{cases} u(0, X_T^x) &, T < \tau_D \\ u(T - \tau_D, X_{\tau_D}^x, T > \tau_D \end{cases}$$
 (14.18)

$$= f(T - T \wedge \tau_D, X_{T \wedge \tau_D}) \tag{14.19}$$

$$\Rightarrow u(T, x) = \mathbb{E}[M_0] = \mathbb{E}[M_{T \wedge \tau_D}] = \mathbb{E}[f(T - T \wedge \tau_D, X_{T \wedge \tau_D})]$$

Theorem 14.3.

Let $D \subset \mathbb{R}^d$ be open, $\tau_D < \infty$ a.s., $f \in C_b(D), u \in C_b(\bar{D}) \cap C_b^2(D)$, s.t. u solves the Dirichlet problem, i.e.

$$Au = 0 \text{ in } D \tag{14.20}$$

$$u = f \text{ on } \partial D \tag{14.21}$$

then

$$u(x) = \mathbb{E}\left[f(X_{\tau_D}^x)\right]. \tag{14.22}$$

Proof. Let v(t, x) := u(x) for all $t \ge 0$. Then v solves

$$\underbrace{\frac{\partial}{\partial t}v(t,x)}_{=0} = \underbrace{Av(t,x)}_{=0}$$
 (14.23)

$$v = f \text{ on } [0, \infty) \times \partial D \tag{14.24}$$

$$v = u \text{ on } \{0\} \times D$$
 (14.25)

 $\Rightarrow u(x) = v(t, x) = \mathbb{E}\left[f(X_{\tau_D}^x)\mathbb{1}_{\{\tau_D < t\}}\right] + \mathbb{E}\left[f(X_{\tau_D}^x)\mathbb{1}_{\{\tau_D \ge t\}}\right]$. Take the limit $r \to \infty$: since $\tau_D < \infty$ a.s. and f, u are bonded, we get

$$u(x) = \mathbb{E}\left[f(X_{\tau_D}^x)\right] + 0 \tag{14.26}$$

Remark: It is usually not trivial to chek $\tau_D < \infty$. A sufficient condition would be: D bounded & $\sum_{i=1}^{d} a_i i \ge \lambda > 0$ for some λ .

Theorem 14.4.

Let $D \subset \mathbb{R}^d$ be open, $\mathbb{E}[\tau_D] < \infty$, $g \in C_b(D)$, $u \in C_b(\bar{D}) \cap C_b^2(D)$ s.t. u solves the Poisson problem, i.e.

$$-Au = g \text{ in } D \tag{14.27}$$

$$u = 0 \text{ on } \partial D. \tag{14.28}$$

Then,

$$u(x) = \mathbb{E}\left[\int_0^{\tau_D} g(X_s^x) ds\right]. \tag{14.29}$$

Proof. Consider $M_t = u(X_t) + \int_0^t g(X_s) ds$. For $t < \tau_D$: By Itô's-formula,

$$M_t = M_0 + \int_0^t \sum_{i=1}^d b_i(X_s) \frac{\partial}{\partial x_i} u(X_s) ds + \int_0^t \sum_{i=1}^d \sum_{j=1}^r \sigma_{ij}(X_s) \frac{\partial}{\partial x_i} u(X_s) dB_s^{(j)}$$
(14.30)

$$+\frac{1}{2}\int_0^t \sum_{i=1}^d a_{ij}(X_s) \frac{\partial^2}{\partial x_i \partial x_j} u(X_s) ds + \int_0^t g(X_s) ds$$
 (14.31)

$$= M_0 + \text{local martingale} + \underbrace{\int_0^t Au(X_s) + g(X_s)ds}_{=0(byassumption)}$$
(14.32)

 \Rightarrow $(M_t)_{0 \le t < \tau_D}$ is a martingale. \Rightarrow $(M_{t \land \tau_D})_{t \ge 0}$ is a martingale.

$$\Rightarrow (u(x) = \mathbb{E}[M_0] = \mathbb{E}[M_{\tau_D}] = \mathbb{E}\left[u(X_{\tau_D}^x) + \int_0^{\tau_D} g(X_s)ds\right] = \mathbb{E}\left[\int_0^{\tau_D} g(X_s)ds\right]$$
(14.33)

Corollary 14.5.

If
$$-Au = g$$
 in D , $u = f$ on ∂D , then $u(x) = \mathbb{E}\left[f(X_{\tau_D}) + \int_0^{\tau_D} g(X_s)ds\right]$.

[25.01.2013 ++.01.2013

Bibliography

[Hol00] Hollander, H. M. d.: Stochastic Analysis. August 2000

[KS91] KARATZAS, I.; SHREVE, S.E.: Brownian Motion and Stochastic Calculus. Springer, 1991 (Graduate Texts in Mathematics). http://books.google.de/books?id=ATNy_ Zg3PSsC. – ISBN 9780387976556