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0 Topics for the oral examination

1. Stopping time, optional sampling

2. Semimartingales, quadratic variation

3. Construction of the It6 integral, [t6-Isometry
4. Itd6-Formula

5. Exponential local martingales, Levy char.

6. Strong solutions of SDE

7. Time change, Dubins-Schwarz Theorem

8. Change of measure, Girsanov Theorem

Important.



1 Introduction to Stochastical Analysis

Plan:
(a) Brownian Motion: the fil rouge of the lecture
(b) Filtration & Martingales in continuous time
(c) Continuous semimartingales
(d) Stochastic Integrals and the It6 Formula
(e) Stochastic Differential Equations (SDE)
(f) Brownian Martingale

Examples

1. Population Dynamics
Let S, the size of a population at time t (if S; >> 1: a continuous approximation is ok) and
let R; the growth rate at time t
ds;

If R, = R, where R is a constant, then S, = Soe®’. If R, is random, e.g.

R= R + N, . (1.2)

average  poiseterm

Question: What is the law of S,? What is a good choice for N,?

2. Langevin Equation

v
m—=- 1 v+ N (1.3)
dt S~—— S~——
viscosity noiseterm

3. Stocks
If S, = Stockprice at time t and evolves as
ds
d—t‘ = (R+N)S, (1.4)

and if R is the bond rate let Co be the portfolio at time 7 = 0 made by Ag stocks and By bonds.
= C, = A;S, + B,e™. For a self financing portfolio

= dC, = A,dS, + B,d (ekt) (1.5)

Question: How much is the fair price of an European Call Option?
Answer: Black Scholes Formula
But: 1.4 ist not necessarily satisfied by the market.



1 Introduction to Stochastical Analysis

4. Dirichlet Problems
Let f be an harmonic function on D (bounded and regular) and f(x) = 0 on dD.

= f(x) = E[f(B))] (1.6)

where By = x + fot Nids and 7 is the time ¢ when By reaches dD.
Goals:

e Understand what is N; & B,
e Work with them

1. Trial N, should be the contiuous analogue of a sequence of iid random variables. We would
like to have:

1. N, should be independent of N, for s # .
2. N;, t > 0 should all have the same distribution .
3. E[N] =0.

t = time is in R. Problem (if N; # 0): Such an object is not well defined (e.g. NV, is not measurable

(in 7).
2. Trial In examples (1), (2) & (4) we are actually interested in the integral of N;. Denote by

S
B,:f Ngds. 1.7
0

The 3 conditions become:

(BM1) Independent increments For 0 < ty < t; <--- < t,: the variables B, ,, — B, fork =0, ...,n—1
are independent.

(BM2) B, has stationary increment, i.e. the joint distribution of (By,+s — By +s, - - - s Bi,+s — By, +s) for
ur < tg,k=1,...,nisindependent of s > 0.

(BM3) E[B]=0
(BM4) And a normalization Var[B;] = E [B%] =1.

But: (BM1)-(BM4) are not enough to determine the process B; uniquely. Thus we add:
(BM5S) ¢ +— B, is continuous (almost surely).

B; is called the Wiener Process or Brownian Motion.

Lemma 1.1.
It holds:
Ve >0 lim nP(B,,. —B|>¢€)=0 (1.8)
n—o00 n
Proof. Let H, := sup 4, |Bx — Bi=1|. By (BMS) H,, is almost surely continuous on [0, 1].

= Ve >0 lim P(H, > &) =0 (1.9)
n—oo



1 Introduction to Stochastical Analysis

But:

P(H, > &) = 1 — P(H, < &) (1.10)

BA:“]—HP(IBK—BQISS) (1.11)
k=1 n n
"= 1 - (P(B1| < &))" (1.12)
By=0 n
=1—-(1-P(Bi| > &))" (1.13)
> 1= "PIBPe (1.14)
<1

because 1 — x < e™*. As we take n — oo we get
lim nP(|B1|>¢) =0 (1.15)
n—o00 n

Using (BM2) we get the general result by seeing that

P(|Bt+% — B >¢)= P(|B%| > g) (1.16)
O
What is the distribution of B;?
Lemma 1.2.
It holds:
Vt,s 20: P(Byys — B € A) = V%Le%dx YA € B(R) (1.17)

Proof. Without loss of generality we can assume ¢ = 0 (because of BM2). Define
n
B, = Zx,,,k (1.18)
k=1

with X, = Bs — Bse—n are iid R.V. From BM3 it follows E[X,,x] = 0 and from BM4 Var|[B;] = s.
As we use the CLT we get

n

lim Y X, ~ N(O, s) (1.19)
n—oo k:l
|
New condition:
(BM2) Vs,t> O0YA € B(R)
1 2
P(Bgy — B € A) = f e dx (1.20)
2t JA

and By = 0.

Definition 1.3.
A one-dimensional (standard) Brownian-Motion (BM) is a real-valued process in continuous
time satisfying (BM1), (BM2), (BM5).

[09.10.2012]
[12.10.2012]




2 Brownian Motion

2.1 Construction of the Brownian Motion

Question: Is there an object satisfying Definition 1.3? We construct {B;,f € [0, T]}. WLOG T =1,
otherwise one has to multiply time variables by T and space variables by V7.

Remark: Let’s assume the Brownian Motion is constructed.

5

S &= %45 o A £

Question: Given that By = x, B, = z, what is the distribution of By ?
Answer: By ~ N(u = &2 ot = ’Z—S). Using BM1 (B, By — Bs; and B; — By are independent):

5
P(B; € dx, By € dy, B; € dz) = p(0, x, s)p (x, Y, I_Ts)p (y, Z, I_Ts)dxdydz 2.1)
1 o

= p(0,x, $)p(x,2,1 = 5) We 202 dxdydz (2.2)

with

I e?

p(x,y,7) = %e 2 (2.3)

Also:
P(B € dx, B; € dz) = p(0, x, $)p(x,z,t — s)dxdz 2.4)

Which leads to

P(By € dy, B; € dx, B; € dz)

P(By € dy|B; = x,B, = 2) = =
(By € dy|Bs = x,B; = 2) P(Bg € dx, B; € dz) 22
1 _ ()‘*/1;2 d (2 6)
= e 2o y ’

V2702

Construction: Let {5(”), k € I(n),n > 1} independent R.V.~ N(0,1) where I(n) ={k e N: 1 <
k < 2" k odd}.

(n) _ 0) _ 0
a) By" =0,B," =¢

b) Fork=0,...,2%"1: B := "

on—1 on—1

! Algebra



2.1 Construction of the Brownian Motion

’\ e
AV

0 Y 4 WUy

c) BY = %(Bﬁ,”;j” n B(k";)) + e
2n o o 22

Goal: Show that

n—oo
B" "5 B @.7)
uniformly in t and that B, is almost surely continuous. First we introduce
H” =1 (2.8)
2% , kz_nl <t< %
H" ={-2%  k<r<il (2.9)
0 , otherwise.
forn > 1,k € I(n). We set
!
HOE f H" (u)du (2.10)
0
For n = 0:
BY(w) = 5§V (¢ (w) @11)
For general n (e.g. by induction):
n
B =) > S0 w) (2.12)
m=0 nel(m)
Lemma 2.1.
The sequence of functions
({B"@).0<t<1)) (2.13)

n>1

converges uniformly to a continuous function {B;(w),0 < t < 1} for almost every w.




2.1 Construction of the Brownian Motion

Proof. Let by = maxkeron [£"] . Vx> 0,k n it holds
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= P(by > n) = P[ L {ie”1> n}]

kel(m)

< > P > n)

kel(n)
2. P(E"1>n)
~ kel(n)

2
—e

SRS

271
~——
[1(n)|<2"

= Y1 P(b, > n) < co. We can now use Borel-Cantelli I:

AQ c Qs.t. P(Q) = 1 s.t. Yo € Q Tng(w) s.t. ¥n > np(w) by(w) < n

1
= > DUSP0 @< ) n—y
nzno(w) kel(n) =" T nzng(w) 2

= ntl
22

<n

because Yt at most one k € I(n) is s.t. S ,(C")(t) > (. Moreover, as ng — oo

> 8P @) -0

n>no(w) kel(n)

(2.14)

(2.15)

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

= Yw € Q it holds: Bﬁ")(a)) converges uniformly in ¢ € [0, 1] to a limit B,(w). Due to the uniform

convergence B;(w) is continuous.

O

Lemma 2.2.

The Haarfunctions {H,E"), n>0kel (n)} are a complete orthonormal system of L2([0, 1]) with the

scalarproduct

1
<f.g>= fo JF(x)g(x)dx
It holds the parseval equation

< f,g>= Z Z <f,H,(€") >< H,E”),g>

n>0 kel(n)

(2.25)

(2.26)

2y V2v

10




2.1 Construction of the Brownian Motion

Proof. See exercises. O
If we take f = 19,8 = Lo, (2.26) becomes
min(s,f) = < f,g> = Z Z SP0)s " (s) (2.27)
T >0 kel(n)
= fo Lj0,51(x) Lo, (x)dx
Lemma 2.3.
Let
B, := lim B". (2.28)
n—o00
Then B, is a Brownian Motion on [0, 1].
Proof. We have to show: VO = 19 < t; < --- < t, < 1 the RV.B, - B ,,] = 1,...,n are
independent and ~ N(0,¢; — t;_1). We will show:
n
E[e Bt | T o400 229)
=1
:E[e*iz;%:](ﬂjJrl’/lj)Brj] !
setting A,,+1 = 0 = Bg. Now let M € N.
n n M
E |exp(—i Y (A1 = APNBIM| = E lexp(=i D (A1 =)= Y. > S ape™) (2.30)
=1 =1 m=0 jel(m)
M n
- l—[ ]_[ E exp(—iZ(/lj+1 —SapE™| = A 231
m=0 kel(m) =1
We use £ ~ N(0,1) = E [e‘iaf] = ¢72% and get
M 1 n
_ (m) 2
A=TT [T expl-502 (A1 = S0 (2.32)
m=0 kel(m) j=1
M n
_ (m) (m)
=expl-3 ), D Zu,-ﬂ — st = DS NS (1) (2.33)
m=0 kel(m) j,I=1
1 n M
=exp|=5 D (1 = A = A) ) ) S aps @) (2.34)
jI=1 m=0 kel(m)
if we reconsider (2.27) this becomes
M—oo » 1 -
= exp| =5 D (s = At — i) min(tj, ) (2.35)
j=1
[ 1 n n-1 n ]
=exp| =5 ) (1 = P 1= 3 > (et = At = )t (2.36)
| “ =1 J=1 i=j+1 |
[ 1 n n—1 n ]
=exp| =5 D (et = V1= 3 (w1 = 4) Y (et = )i | = A (2.37)
L J=1 j=1 |

11

I=j+1




2.2 Trajectories of Browian Motions

the last sum is a telescoping series (and 4,1 = 0)

[ 1 n n—1
A=exp|—3 Z(/ljﬂ - )t + Z(/ljn - /lj)/lj+ltj}
|~ =1

1 n
=exp|-3 DUy = 2005+ B = 23+ 205451)
| =l
N L - ,1 i .
2 2
=exp ‘52’”1 - exp Eth/le
| =l ! [ =1 !

[ 1 | e —
=exp —Eztj/li - €Xp Ele_l/li
i = | | J=1 ]

[
=exp —5 Z(l‘j - l‘jq)/l?

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

O

[12.10.2012]

2.2 Trajectories of Browian Motions

The BM has continuous trajectories, but they are very rough.

[16.10.2012]

Theorem 2.4.
The trajectories
t— B; (2.43)
a) have an a.s. unbounded variation.
b) and so they are nowhere differentiable.
This theorem shows why the object “N;* is difficult to define.
Lemma 2.5.
Let0 =" <#"” <--- <4 = T a family of partitions of [0, 7] s.t.
g (m _ )| _
,111—>I£10 o glsarf(_ : i1~ L 0. (2.44)
Then
n—1 )
2 . 2
lim »" (B, ~B") =TinL’. (2.45)
j=0
4id.

12




2.2 Trajectories of Browian Motions

Proof. Define AB; := Bg?) B(") Atj = tyi)] - t?”,&k := max At;. Calculate

I
|

||Z<ABJ~>2—T||2; (Z(AB»Z—T)2 (2.46)
J . J

(2.47)

- E Z(AB DX(AB)? - 2T Z(AB )2+ T2
i.J i

= Z E[(AB)*]+ Z E[(AB)?| E[(AB?] - 2T Z E[(AB)?|+T? (2.48)
i T —_— i

i#]
=3(At)? =At;
) Z(At-i)z (2.49)
J
<24, Z Aty =26,T — 0 (2.50)
J
by using in (2.48) that we know for X ~ N(0,0?) = E[X?] = 0%, E[X*] = 30* O

Informally Lemma 2.5 shows with T = dt

(dB,)* ~ dt (2.51)
=dB, ~ Vdt > dt (2.52)

Therefore B, will not be differentiable, since

% — 00, (2.53)

Lemma 2.6.
Let X1, X5, ... be a sequence of R.V. s.t

lim B [|Xk|2] =0 (2.54)

Then there exists a subsequence (X, )k>1 S.t. X;,, — 0 almost surely.

Proof. We choose a subsequence s.t. E [anklz] < kiz Then };2 | E [IXnkF] < oo. By using Cebicev
we get

Vm e NZ P (|xnk| > %) < m*B[1X,, | (2.55)
=Vm € Ni P (lX,,kI > E) < m? i E [1X,,[*] < o0 (2.56)

k=1 k=1
=Vm e NP(|X, |z% .0.):0 (2.57)
=X, — Oas. (2.58)
O

Proof of Theorem 2.4(a). The previous two lemmas give: 3 subsequence (1 )r>1 S.t. for almost all
weQ

—

n—

2
lim (B ) 00) = By () (2.59)

k— o0 /+1

.
Il
—

SNach Defintion der L?>-Norm

13




2.2 Trajectories of Browian Motions

Let w € Q be fix s.t.(2.59) holds. Let g,, := max;|ABj| = lim;_, &, = 0 because ¢ — B is
uniformely continuous.

n—1

T
:>Z|AB|>Z—|AB|2 — sk e (2.60)

Nk

Lemma 2.7.
Let (By)o<:<r be a Brownian Motion on [0, 7']. Then, Yc > 0

(B Josir (2.61)
is a Brownian Motion on [0, Clz].

Proof. Exercise Sheet 1. O

Proof of Theorem 2.4(b). Let
Xpk:= max |B; — B (2.62)

J=kk+1,k+2 27 on

= Ve > 0P (X < &) = P( e ) (2.63)
= ( 23 ) (2.64)
< (2%g)? (2.65)

Now let Y}, := ming<or7 Xy k-
= P(Y, <& <T2"(2%s)° (2.66)

Let A := {w € Qs.t. t = B,(w) is differentiable somewhere}. For an w € A, t — B,(w) is in fy(w)
differentiable. Let D be the derivative.

=35> 0s.t. Vi€ [tg— 5,10+ 8] |B,— Byl < (D] + Dt — 1] 2.67)

We now choose ng big enough s.t.

1
> S0 > 2(IDl + 1),ng > 1o (2.68)
Now for ¥Yn > ng choose k s.t.
k k + 1
— < 2.69
T (2.69)
Then
|t0—i|<5forj=k,k+1,k+z. (2.70)
n
=Xni(w) < (D] + 1)5 <om (2.71)

and, since n > fy > 2,,,
enough and hence also

also Yy(w) < Xpi(w) < 5. Therefore A C A, := {Y,(w) < 2,1} for n large

A Climinf A, (2.72)
n

“Lemma 2.7

14




2.3 Stochastic Processes

But (2.66) implies
DP@A) <) m2228 2 < oo 2.73)
n>1 n>1
=P (lim ian,,) ) (2.74)
n—oo
i.e. t — Bi(w) is a.s. not differentiable. O
[16.10.2012]
[19.10.2012]
Definition 2.8.
Let
1 (x=y)°
px,y, 1) = exp(— ) (2.75)
V2t 27

be the Heat-Kernel Yx,y € R, 7 > 0. A stochastic process (B;)o<<r With values in R is called a
d-dimensional Brownian Motion if

e By=(0,...,0)

e The increments are independent and stationary with distribution
P(B;— B;€A) = fp(O, x1,t—8)...p0, x4, — s)dxy ...dx, (2.76)
A

YAe BRHVO<s<t<T.

e The trajectories ¢t — B;(w) are continuous for a.e. w € Q.

2.3 Stochastic Processes

Definition 2.9.

A family (X;);>0 is a stochastic process on (£, ¥, P) with values in a measurable space (E, S) if
Vt > 0 X; is a R.V.. ¢ usually plays the role of time and E is the space where X lives (=state space).
Forall w € Q, t — X,(w) is called a trajectory.

Definition 2.10.
Let X and Y two stochastic processes (defined on the same probability space and with the same
state space). Then

(a) X is a modification/version of Y if

PX;=Y;) =1Vt 2.77)

(b) X and Y are indistinguishable if

It holds ) = a) but not the other way round.
Example: Q = [0, 1], P the Lebesguemeasure. Define

{X,(w) =0

2.79
Yiw) = ]l{t:w} ( )

Then Yt >2 0P (X; =Y)) =Pt #w)=1butP(X; =Y,,Vt€[0,1]) = 0.

15




2.4 Holder continuity for Brownian Motion

Lemma 2.11.
Let Y be a modification of X. If X and Y have a.s. right-continuous paths (trajectories). Then X
and Y are indistinguishable.

Proof. Let Qp C Q be the set where either X or Y are not right continuous. By assumption:
P () = 0. For g € Q4 let N, = {w € Q|X,(w) # Y,(w)}. Since Y is a modification of X P (Nq) =0.

As Q is countable also P(qu@ Nq) =0=>P(QuU U Ny) = 0.

q€Q.
‘i—/
=0
Therefore Yw ¢ QXt(cu) = Yi(w)Vt € O, and as Xy(w) and Y,(w) are rightcontinuous it holds
X/(w) = Y (w)¥t > 0 and with P (QC) = 1 the statement follows. O

2.4 Holder continuity for Brownian Motion

Definition 2.12.
A function f : Ry — Ris called y—Holder continuous in x > 0 if e > 0C < oo s.t.

If() = fMI<Clx—y"Vy=20:ly-x<e (2.80)

v is called the Holder-exponent.

Theorem 2.13 (Kolmogorov-Chentsov).
Let (X;)>0 be a stochastic process on (Q,7,P),a > 1,8 > 0,c > 0 s.t.

E[IX; — X,|*] < Clt — s/P*! (2.81)

Then there exists a version/modification (Y;)o<;<7 of (X;)o<i<7 for all T > 0 s.t. Y is y—Holder
continuous Yy € (0,5/a).

Before we proof this theorem, we will apply it on BM. We have

BB - B = 5

|t — s|" (2.82)

Therefore with @ = 2n,8 + 1 = n there exists a y—Holder-continuous version Yy < %Vn =
—00

Yy < 1/2.

Corollary 2.14.
Let B be a BM. Then there exists a Version B s.t. B is y—Hélder-continuous forall y < 1 s.t.

B — By

0<t—s<h(w),0<s,t<T

where h(w) is a positive R.V. (a.s.).

Proof of Theorem 2.13. WLOG T = 1. The proof consists of 5 claims.

P
1. claim X, — X; when s — 1.

Proof:
E[1X, — X,|*
Ve > 0P (X, - X| > &) < M (2.84)
E
Clt - +1
Lol (2.85)
8(1/

16




2.4 Holder continuity for Brownian Motion

2. claim AQ* c Q with P(Q*) = 1 s.t. Yw € QF

max X (w) - sz;nl (w)] < 27"%n > n*(w),y € (0,8/a) (2.86)

I<k<2n 27

Proof: Let D, = {%,0 < k < 2"k € N} and D = Uy D,. Using (2.85) with t = %, 5 =
k=1

>, € =277 we get

P(p% = 2—7") < Co B+ (2.87)
= 27 (2.88)

Let E, = {w : max <<y [Xx — X1 | > 277",
n on

= P(E,) < 2"C27"f+1-an) (2.89)
< c2 B (2.90)
C
= Y PE)C) i < (2.91)
nx>1 n>1

whenever y < B/o. Using Borel-Cantelli we get claim 2.

3. claim: For any given w € Q*,n > n*(w), Ym > n

m

1

1X,(w) — Xs(w)| <2 Z S 7S E€ D0 <1 -5 <27 (2.92)
Jj=n+1

Proof (induction): m = n+1 =t = 2% s = kz‘n] follows from claim 2. Now assume that claim

3holds form =n+1,..., M—1. Choose s,t € D,,, s < t and define ¢’ = max{u € D,,_1,u < t},
s’ = min{u € Dy,_1,u > s}. Therefore s < s’ <t <t,5 —s <2M t—¢ < 2™ Claim 2
gives

=Xy (W) - X (W) <27M (2.93)
Xy (@) = Xi(w)| < 277M (2.94)
By the induction hypothesis:
M-l
Xe(@) = Xe@) €2 ) 5 (2.95)
n+l

and with the triangular inequality

1

> (2.96)

M
Xy() - Xi(@) <2

j=n+1

4. claim: t = X,(w) is uniformly continuous Yw € Q*.
Proof: Choose s, € D,0 <t — s < h(w) :=2""@ and n > n*(w) s.t. 270D <r— g <277,
Then from claim 3

S
X)Xl 2 ) 5 2.97)
j=n+1
1
=C— — Y
= Co < Clr— sl (2.98)
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2.4 Holder continuity for Brownian Motion

5. step: Define a modification:

%) X(w) ,iffweQ* teD (2.99)
w) = .
! 0 ifwe QF

For w € Q*,t ¢ D choose a sequence (s,),>1 in D s.t. s, — t. From claim 4 we gett that X,
is a convergent sequence (cauchy-sequence). So we can define

X/(w) = lim X;, (w) (2.100)
n—oo
= X, is continuous and satisfies
IXi(w) = Xs(w)| < Clt — 5] (2.101)

for ¢t — s small enough. Finally one verify that X; is indeed a modification of X;.

Xsn ‘1-5-) th a.s.
R = X, =X, (2.102)
X, — X,

O

[19.10.2012]

[23.10.2012]
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3 Filtrations and Stoppingtimes

3.1 Filtrations

From now on (€, 7, P) is always a probability space.

Definition 3.1 (Filtration).
An increasing family {#;,t > 0} of o—algebras of ¥ is called a filtration, i.e.

F.CFCF VYO<s<t<oo. (3.1)

Intuition: #; contains the information, that are known until the time ¢ € [0, o).

Definition 3.2 (Filtered probability space).
(Q, F, (Fr)r=0, P) is called filtered probabilty space.

Notation: We define
Foo :=0(F1, 1 20) Frv 1= Ne>iFs (3.2)
Fi = 0(Fy, s < t) the past Fo- = {0, Q} (3.3)
Obviously it holds F,— C F; C T4

If we have a stochastic process X on (Q, ¥, P) we denote by 7—“,X = 0(X;,0 < s < ¢) the natural
filtration (of X)

Definition 3.3.
If 7 = F:. Yt > 0, then we say that (F;)>0 is right-continuous.

(Fr+ )0 1s always right-continuous.

Definition 3.4.
A set A is called a (F, P)-nullset if

aAe?‘s.t.AcAandP(A):o. (3.4)

(Q,F, P, (F)r0) is called complete, if all (¥, P)-nullsets are in Fy

Remark: o If (Q,F,F:, P) is complete, then every (Q, F;,P) is complete.
o The other direction does not hold!

o Augmentation: Let N = {(F,P)-nullsets}. Set ¥' = o(F UN),F, = c(F: UN). Then
(Q, 7', F,,P) is complete.

Definition 3.5.
A filtered probabilty space (Q, 7, P, (F;)r=0) is called standard, if it is complete and the filtration
is right-continuous.

One can extend an filtration s.t. it becomes standard by

e Augmentation of ¥, and ¥, and

e using ¥, instead of F;.
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3.2 Adapted processes

3.2 Adapted processes

Definition 3.6.
(i) Let X be a stochastic process on (€2, ¥, P) with values in (E, &).
FX =X, :5<1) (3.5)
is called the filtration generated by X.
(i1) A stochastic process (X;),>0 is called adapted to the filtration (F;);>0 if
FXcF V>0, (3.6)

i.e. if X; is F;-measurable Yt > 0.

Example: a) Let B, a standard B; and F, the natural filtration. Then X; = By» is adapted to
(F1)e=0 but Y; := By, is not adapted to (F;)>0.

b) Let f € L'N(Q,F,P) and (F;)i0 a filtration, then X, := B[ f|F;] is adapted to (F7)so.

3.3 Progressively measurable processes

Definition 3.7 (Progressively measurable).
A process (X;);»0 is called progressively measurable (or simply progressiv) with respect to a
filtration (%7);>0 if V¢ > 0 the map

X:[0,{]]xQ > E 3.7
(s, w) B X (w) (3.8)

is measurable with respect to B([0, 1]) ® 7.

Remark: e [t holds: progressively measurable = adapted but not the otherway round.

e As one can see in Theorem 3.15 we need this property to ensure that the stopped process is
again measurable.

Proposition 3.8.
Let (X;)s>0) be a stochastic process which is adapted to (7;)>0. Assume that each trajectory
t — Xy (w) is right-continuous (or left-continuous). Then (X;);>¢ is progressively measurable.

Remark: For a BM there exists a modification that is progressively measurable.
Proof. Lett > 0 fixed. We approximate X by X, Sofork =0, 1,...,2"1,0 < s <1, set

< (k+ 1)t
S~

kt
X (w) = Xgeir (w) for o < (3.9)
2’1
and X(()")(w) := Xo(w). Then X : (s, w) — X§")(w) is measurable w.r.t. B([0, 1])®%;, since this map
is equal to (s, w) — Z%n:al X ey ]l{ﬂ<‘,< Gt But since X is right-continuous lim,_, e va")(w) =
2)1 271 W= 2)1

Xs(w)V(s,w) € [0,1] X Q. = (5,w) — X (w) is also B([0, 1] ® F; measurable. O
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3.4 Stopping times

3.4 Stopping times

Definition 3.9 (Stopping time).
Amap T : Q — [0, o] is called a (strong) stopping time w.r.t. (F;);»0 if Vt > 0

(T<t}={weQ:T(w)<t}eTF,. (3.10)
T is called a weak stopping time if
{T <t}eF. (3.11)

If T is a (weak) stopping time, then 7 is measurable w.r.t. 7.

Proposition 3.10.
a) Each fixed time T = ¢ > 0 is a stopping time.
b) Each stopping time is also a weak stopping time.
c) If ()0 is a right-continuous filtration, then a weak stopping time is a stopping time.
d) T is a stopping time & X; = 1o r) is adapted to the filtration.

e) T is a weak stopping time w.r.t. (¥;) © T is a stopping time w.r.t. (F;+).

Proof. ada) A, :={w € Q|c < t} is either Q or 0. So A, € F, Vt.
1

adb){T <t} =Us 1 {T<t--}eF
n

————
G(F,,L
ad c) Let T be a weak stopping time. Recall that ¥, = ¥, = N, F . Then
1
Vm>HT <t} = (Npom{T <t+-}DeF, 1 (3.12)
L "
€F1<F 1
>{T<tyefF, Vm=>{T<t}eFu=>{T<H}eF, (3.13)
ad d) {T <1} = {X; = 0} € ¥, since X; is adapted. O

Proposition 3.11.
a) Let T be a weak stopping time and & > 0 a constant = 7" + ¢ is a stopping time.
b) Let T, S be stopping times = T A S,T V S and S + T are also stopping times.
c) LetS,T be weak stopping times = S + T is a weak stopping time.

d) LetS,T be weak stopping times. If 7 > 0 and S > 0 OR if 7 > 0 and T is even a strong
stopping time, then 7 + § is a strong stopping time.

e) Let{T,}.>0 be a sequence of weak stopping times. = sup,,»; T}, inf,;»1 T, limsup,,_, ., T, and
liminf,_,. T, are also weak stopping times. If the 7, are strong stopping times, = sup,,»; Ty,
is a strong stopping time.

Example: Let (X;)s0 be right-continuous and adapted, with X, € RY. For A € B(R?). Define

Th(w) := inf{t > 0| X (w) € A} with inf( = oo (3.14)
is called the first entrance time of A. (3.15)
T (w) := inf{t > 0|X,(w) € A} (3.16)
is called the first hitting time. 3.17)
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3.4 Stopping times

Remark: Each stopping time is a first entrance time (X, := 1(o,1,)()).

Lemma 3.12.
a) If Ais open = T, is a weak stopping time.

b) If A is closed and X;(w) is continuous = T4 is a stopping time.

Proof. ad a)

{Ty <t} ={X,(w) € Aforsome0 < s <t} (3.18)
£ UseqossdX(w) € A} € (3.19)

Regarding A: 72" is clear. ”C” follows from the right-continuity of X; and A open.
ad b)

{Th <t} ={Tp>1} (3.20)
={IX; - A|l>0,YO< s <1} (3.21)
1
=Upst{liXs —All> -, ¥V0 < s <1} (3.22)
n
continuit 1
=" Upsi{lIXs —All > =,YO < s < 1,5 € Q) (3.23)
n
1
= Upz1 Nye,0<s<r HIXs — All > ;} €F (3.24)
N——
€FsCFy
[

[23.10.2012]
[26.10.2012]

Definition 3.13 (¥7).
Let T be a stopping time, then

Fr={AeF :An{T <t} e F¥t > 0} (3.25)

is called the o-algebra of events determined prior to the stopping time T. Zu deutsch: Die
o—Algebra der T-Vergangenheit.

Lemma 3.14.
Let S and T be stopping times for a filtration (7). It holds

a) LetAeF,=>AN{S <T}eFr.

b) S <T=%Fs CcFr

©) Fras =FrNFs

d) YT < SIAT < S} AT =S} AT =S} {T > S} cFrnFs.
e) E[Fras] = E[E[|Fs]IFr].

f) E[|F7] = E[|Fras] as. on the set {T < S}.
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3.4 Stopping times

Theorem 3.15.

Let X be progressively measurable w.r.t. (#;)>0 and T be a stopping time. Then

1. X7 :{T < oo} = E, w — X7(u)(w) is Fr-measurable.

2. The stopped process

X" (1, w) > Xrn(w) (3.26)
is also progressively measurable w.r.t. (7)>0.
Proof. ad 1) To show (1) we have to see that YB € B(F) and Yt > 0 it holds
!
XreBINn{T<t)={Xrp €BIN{T <t} €F, (3.27)
—
€F; if (2) holds €F,
ad 2)
measurable being T a r.v.
(s,w) (T(w) A 5, 0) ¥ Xr(W)ns(W) (3.28)
(S, w) measurable Xs(a)) (329)
w.rt B([0,1)®F;
= (5, W) = X7(w)rs(w) is also measurable w.r.t. B([0, t]) ® F;Vt > 0. O

Example: Let B be a standard BM and b > 0 a constant. Let Ty, = inf{t > O|B; = b}. Question:

P(Tp, <1) ="

We know that for fixed s : By — By and Bj are independent (Markov property). The same holds if s

is stopping time (strong markov property).

P(T,<t)=P(Tp <t,B;<b)+P(Tp<t,B;=b)+P(Ty, <t,B; > b) (3.30)
=0
=2P(Tp <t,B; > b) (3.31)
=2P (B, > b) (3.32)
00 x2
= e 2dx (333)
V2nut fl:
2 A
= f e zdy (3.34)
N2 Iy
In particular
1 2
P(T, € df) = ——e~"|b|dt (3.35)
V2rt3
1% =y
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4 Continuous time martingales

From now on (Q, ¥, 7, P) is always a filtered probability space and we have E = R.

4.1 Conditional expectation

Definition 4.1 (Conditional expectation).
Let G C ¥ be a sub-o-algebra and X € LY(Q, F,P) a random variable. Then a random variable
Y is called conditional expectation of X it YA € G

f XdP = f YdP and Y is G-measurable. “4.1)
A A

and it is usually denoted by

Y =E[X|G]. 4.2)

Remark: E [X|G] is a.s. unique.
Properties: e E[E[X|G]] = E[X]

e If X is G-measurable, then E[X|G] = X a.s..

o IfY is G-measurable and bounded, then E [XY|G] = YE [X|G] a.s.

o IfX is G independent i.e., X independent from 14,YA € G, then E[X|G] = E[X].
o IfH CGcCF = E[E[XIG]IH] = E[XIH] a.s.

o E[aX +BYIG] = aE[X|G] + BE[YIG] VX, Y rv. and a8 € R.

o IfX <Y as., then E[X|G] <E[Y|G] a.s.

e Jensen: Let ¢ be a convex function, then ¢(E [X|G)) < E [¢(X)|G].
Now let (X,,)>1 be a sequence of r.v.

o Fatou: If there exists a F —measurable rv. Y with E[Y] > —oco s.t. Yk > 1, Xy > Y, then
E [liminf, . X;|G] < liminf, - E [X;|G]

e Monoton convergence: If E[X] > —co and X, / X a.s., then E[X;|G] /" E [X|G] a.s.

e Dominated convergence: If there exists a ¥ -measurable r.v. Y s.t. E[Y] < co and |Xz| <Y
and if X; — X a.s., then E [X;|G] — E[X|G] a.s.

4.2 Martingale

Definition 4.2 (Martingale).
Let X be a stochastic process adapted to a filtration (%;),»0. X is called submartingale, if

e X, € R with E[X/| = E [max{X;,0}] < oo forall r > 0.
o E[X/|Fs]>X,as.VO<s<t

X is a supermartingale if —X is a submartingale.
X is a martingale if it is both a super- and a submartingale.
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4.2 Martingale

Properties: V0 < s <t

E[X/] = E[E[X/|F]] = E [X,] for submartingales “4.3)
E[X/] = E[E[X/|F;]] < E[X|] for supermartingales “4.4)
E[X,] = E[E [X/|F]] = E [X;] for martingales 4.5)
We will now see some examples for martingales.
Proposition 4.3.
Let B be a d-dimensional (standard) BM and ¥; = 7—;3 the natural filtration. Then
a) For any fixed vector Y € R?
Y-B = <Y, Bt> (4-6)
is a martingale.
b) IBJP-t-disa martingale.
¢) For Y e R?
exp (Y - B, - 1/2]Y[*%) (4.7)

is a martingale.

Remark: We will see that for any X with properties a) and b) + a.s. continuity and (Xo = 0) = X

is a BM. (Levy-Martingale-Characterization)

Proof. B is adapted, therefore the transformations are also adapted.

Integrability is easy, due to the gaussian tails of the normal distribution. We will now check

E [Xi|F5] = X;.
ada)Let0<s<t.

d
ELY-BIF,] = ) VB [BPIF]
k=1

d
=Y nEl BY -BY 1F1+El BY 1A
— N ——

T
n

independent of F measurable w.r.t. Fy

M&

v (E[B" - BY| + BYY)
1
- B,

I
T

adb)Let0<s<t.
indep. of F;

2 2 2
E|BPI1Fs| = ElIB, - BJ* 171+ Bl |BJ* |71+ 2E[(B - B,) By 7]
— T

indep. of ¥ F, measurable Fs measurable
=E|IB, - B,| + |B,* + 2B,E[B, - B;]
=0
=d(t - 5) + |B,*

adc)LetO<s<t
E [EY'B’VS] -E [eY(B,—BK)eYBSW:S]
- eYBXE[ eV BBy ]

——————
:E[eYBt—s ]
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4.3 Properties and inequalities

It holds
YB ‘ y®p® Sy

]E[e H] _ ]—[E[e t] =2/ 4.17)

k=l — =

k)2

e I G
O
[26.10.12]
[30.10.12]

Example: Let X be a L' rv. and (F)s0 a filtration. = Y, := E[X|F;] is a martingale.
Indeed:

e adapted by def of the conditional expectation
o L' since : E[|Y)]] = E[IE[X|F:11] < E[E[X|IF:]] = E[IX]] < oo by using Jensen.

o Forall0 < s <t:E[Y|F] = BE[E[X|F]|Fs] = E[X|Fs] = Y a.s. because Fy C F;

4.3 Properties and inequalities

Proposition 4.4.
a) Let X, Y be two martingales, @ € R
X+Y, X-Y, aX (4.18)
are also martingales.
b) Let X, Y be two submartingales, @ > 0,
X+Y, aX, XVY, 4.19)

are also submartingales.

¢) Let X be a martingale and ¢ a convex funktion with ¢(X;) € L! for all ¢ > 0, then p(X)isa
submartingale.

d) X is a Martingale & X is a L!-sub-/supermartingale and ¢ — E [X,] is constant.

Example: |B;| with B; a BM is a submartingale.

Proof. ad a),b) trivial.
adc)LletO<s<t

Jensen

E[p(X)IFs] = @BIXIF]) = o(X,) (4.20)
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4.4 Convergence

Theorem 4.5 (Doobs maximum inequality).
Let (X;)>0 be a submartingale with

a) each trajectory is right-continuous and I = [o, 7] C [0, o0) (I = [o, 00) also possible)
orb) I ={r,7,..} with 7; < Tg4; and limgeo 7% = T
Then

1. 1-P(sup,e; X; > A) < E[X;] with X} = max{X;,0},4 > 0.

2. If X is even a martingale or X > 0, then

P
]E[(supXt)p] < ( 1 £ p) E[IX,P]Vp > 1 421)

tel

Proof. ad b) = discrete case — proven in Stochastic Processes Thm 4.3.1 and 4.3.4.
ad a) Strategy: discrete time — use the fact that the trajectories are rightcontinuous O

Definition 4.6.
The number of upcrossings of [a, b] (for a < b € R) during the time I = [0, T] is given by

Ula,b,X(w)) =supfn e N : Ity <tr < ... <1, < T s.t. X;,(w) < a,X,(w) > b, X,(w) < a, ...}

(4.22)
Theorem 4.7.
Leta < b € R, X; a submartingale like in Thm 4.5
E[X;:] +lal
E[Ui(a,b,X)] £ ———— (4.23)
b—a
Proof. The proof is similar to the discrete case. O
4.4 Convergence
Theorem 4.8.
Let X be a right-continuous submartingale with
C:=supE[X/] < o0 (4.24)
>0
then there exists a r.v. X s.t.
X = tlim X; a.s. (4.25)
Corollary 4.9.
Let X be a supermartingale, right-continuous and positive.
X = tlim X exists a.s. (4.26)
Proof of the Corollary. Trivial from Thm 4.8 ¥; = =X, = C = sup,,(E[Y;] = 0. O
Proof of the Theorem. From Thm 4.7 we know thatVn > 1,a < b
E[X'] + C+
E [Upo.n(a, b, X)] < X, ]+l < . (4.27)

b—-a T b-a
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4.4 Convergence

Taking n — oo gives with monoton convergence

C+
ElUoeo(@.b.X)1 < 5 e (4.28)
= P(U[(),Oo)(a, b, X) =00) = OVa < b
Aa,b
= P(Uu<b,a,be@ Aa,b) =0 = P(limsup,_,,, X; > liminf,,, X;) = 0. O
5, \» L ] ) L - . ; » j\.. - \.’ e\\fjh?
o »__F_,,,.._, .44,“. e e ey sy s -.---«,-w“:‘ff'*"-«z...‘“j_‘...,,“,“\___‘r/;__,,g..w: i il '&i\;; ———

P o

Remark: Finally one can also verify that X is a.s. finite.

E[[Xol] < lign inf E[|X;]] < oo (4.29)
by using Fatou. Regarding ’?”:
E[1X]] =2E[X]]-E[X/] <2C -E[Xq] < o0 (4.30)

because B [X;] > E [Xo] (since X; is a submartingale)

In the exercise we will show

Theorem 4.10.
Let X be a right-continuous, positive submartingale (resp. martingale). Then we have 3 equivalent
Statements

1. lim,_,o X; exists in L',
2. {X;,t € [0, )} is uniformely integrable

3. AXo € L s.t. X = lim,ye0 X; a.s. and (X1)re[0.001 15 @ submartingale (resp. martingale) w.r.t.

(F1)ie10,00]-

Remark: For the case of a martingale, X, € L' s.t. X; = E[Xoo|F7] a.s.
Remark (So nicht in der Vorlesung): Es gilt:

{X, : t € [0, 00)} unif. bounded in L' and
Ve>0d6>0:YVAeF :P(A) <d=sup, E[IXilas]l < ¢
(4.31)

{X; : t € [0, 00)} unif. integ. & {

Angenommen sup, E [|X;|’] < C < oo fiir ein p > 1. Dann sind die beiden rechten Bedingungen
erfiillt.

supE [|X/]]” < supE[|X;|] < co = supE[|X,]] < o (4.32)
t t t
lder 11 / ; P(A)—0
BlIX{1a1 "< E[xP1 P E[Lar ] < ¢ @y "5 0 (433)

Somit sind die Vorraussetzungen fiir das obige Theorem erfiillt! Tatsdchlich gilt sogar X; — X in
LP.
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4.5 Optional Sampling

4.5 Optional Sampling
For a submartingale X it holds
X < E[X{F5] a.s. (4.34)

We now want a generalisation for s,  two stopping times.

Theorem 4.11 (Optional Sampling).
Let X be a right-continuous submartingale w.r.t ()0 and S, T two bounded stopping times
satisfying S < T.

= Xs <E[X7|Fs] as. (4.35)

Remark: 7o verify Xs < E[X7|Fs] a.s. we have to show that YA € Fg

f XsdP < f Xpdp Y f E [X7|Fs] dP (4.36)
A A A

Proof. Aty s.t. S < T < typ. Assume that Xy < E[X7|Fs] holds for X; > 0. = for X; > —-m =
Y; := X; + m > 0 by linearity = statement holds VX; > —-m. = X,(m) := X; V (—m). Monotone
convergence gives that it is always true.
A simple bound E [X7] < E[X,,] < oo.
a) Discrete approximation.
We define
k+1 . k k+1

T, := if —<T<
n 2n 2n

forak > 0. 4.37)

Similarily define S,. Itisclearthat T < T,Vnand T, > Tj,4+1 > .... Is T, a stopping time?

(T, <1} = {T < rz;ﬂ}m {T < r2z21_—1} cF (4.38)
€y €F,;

Also Vn : T, > S,. Using that X is right-continuous it follows that

lim XS,, = XS and lim XT,, = Xr (439)
n—o00 n—,oo
b) Show: X7, < E[X,|FT,]
Take K, := [1p2"].
K, !
= E[X,|¥7,] = E[xmm = 2—] L7t (4.40)
=1
Ky
submart.

> X3 oty = Xr, (4.41)

~
I

1

= {X7, : n € N} is uniformely integrable, since {E [X,,|¥7,] : n € N} unif. integ.

= lim X7, = X7 € L! (4.42)
n—oo
(analogue for S ).
¢) Show: VA € ¥y, :
szndP < fXT,,dP (4.43)
A A
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4.5 Optional Sampling

Too see this: Let

=S Vk>j: A N{T,> %)} e Fu

2 5

submart.
= XidP < Xr,dP + X1 dP
An(T,> Ly AN(T,=%) ANT,z%1y 2

Starting with k = j and iterating:

fXS"dP:f .dePSf ,XTnd]P
Aj Ain(Tp25r) 2 ATz 5}

J J

Now >}; = ¢)
d) VA e Fs C Np>1Fs,

ﬁfXSndPSfXTndP
A A

:VAeTSszdPstTd]P
A A

Now take lim,,_, oo

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

O

[30.10.2012]

[02.11.2012]

Corollary 4.12.

Let X a right-continuous adapted process and integrable. Then the following statements are

equivalent:
(i) X is a martingale.

(i1) For all bounded stopping times T it holds E [X7] = E [Xp].

Proof. ”=" Using 2.11 with § = 0 we get
E [X7] = E[E [X7]Fol] = E [Xo]

But also the other inequality holds, since —X; is a submartingale, too.
7”& To show Vs < t,A € Fy

E[Xs1a]l = E[X/14]

Define two stopping times as follows: Let 7'(w) := ¢ and

s ,WwEA
S(w) = .
t ,otherwise

Let us compute
E[Xo] ¥ E(Xr] = E[X,14] + E[X/ L]

but also

E[Xo]l T E[Xs] =E[X,14] + E[X,1a] = E[X,14] =E[X,I4]VA € Fy.s <1,

re. Xy = E[X(|F;] a.s.
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4.5 Optional Sampling

Corollary 4.13.
Let X be right-continuous, adapted and integrable. Then X is a submartingale & V bounded
stopping times S < 7 it holds

E[Xs] <E[X7] (4.54)

Proof. ”="

FsCFr 4.11
E[Xr] "= EI[E[X7|Fs]] = E[Xs] (4.55)

"<" Let s <t,A € Fydefine S and T as in the previous proof.

S EXs] 2 EXr] = E[X1a] + B X, 1] (4.56)

But the right side is
E[Xs] = E[X,14] + B [X,Ts] (4.57)
= B[X,14] < E[X14],¥s < 1,A € Fs. o

Corollary 4.14 (Optional Stopping).
Let X be a (sub-)martingale and 7 a stopping time. Then,

X! () = Xr(@yn(w) (4.58)

is also a (sub-)martingale.

Proof. Let s < t. Define S = s AT and U = ¢t A T. Then by definition § < U. By Theorem
4.11 we get Xg < E[Xyl|Fs]. If we do the same for —X we have Xy = E[Xy|Fs] and thus
Xsar = E [XtAT|chT]-

O
Next goal: Understand what is
!
f f(Bs)dB; =? (4.59)
0
with B a Brownian Motion. We will see
! 74 1 ! 44
f(By) = f(Bo) + f f(By)dBs + 5 f S (By)ds (4.60)
0 0

where ds will be the quadratic variation of B.
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5 Continuous semimartingales and quadratic
variation

5.1 Semimartingales

Definition 5.1.

a) X € A*: An adapted process X is called continuous and increasing if for almost all w € Q
the map ¢ — X;(w) is continuous and increasing.

b) X € A: An adapted process is called continuous with bounded variation if for almost all
w € Q: t — X,(w) is continuous and has finite variation, i.e.

n

Vt>0,5(w) = S(X(w):=  sup Z X, (@) = X, (w)] < o (5.1)

0<ip<...<t, <t,neN 4y

¢) X € M: X is a continuous martingale.

d) X € My,.: An adapted process X is a local, continuous martingale if 3 a sequence of stopping
times T < T, < ... with lim,_,oo T, = c0 a.s. and X" is a martingale Vn > 1.

Lemma 5.2.
XeAeX=Y-ZwithY,Zec A".

Proof. Take Y = S%X and Z = S%X where S is the variation of X. O

Lemma 5.3.
a) Xe M= Xe Mg,
b) X € Mjoe, X = 0 = X supermartingale.
¢) X € My, and X is bounded = X € M.

d) Xe Me X e My and VYt > 0 : {X7,, : T stopping time} is uniformely integrable.

Remark: X € M., X uniformely integrable s.t. X ¢ M. (ex. 3.36 in Karatzas, Shreve)
Proof. ad a) Take as sequence of stopping times
T, =ocV¥n > 1. 5.2)
adb)Vs<t:

. Fatou = XTneM ,. .
E [X;|F5] = E[hm XTnAtlﬂ] < lminfE X7 7] © =" liminf X745 = X; ass.. (5.3)
n—0o0 n—0o0

n—oo

"There exist T,, /" oo s.t. X is martingale
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5.1 Semimartingales

ad c¢) We have |X| < C < oo, therefore C — X > 0,C + X > 0. Using b) we get C — X is
a supermartingale and C + X is a supermartingale. = +X are both supermartingales = X is a
martingale.

ad d) ”=": Let X € M. From a): X € M,.. Let T be any stopping time and ¢ € R fixed. To
show: E [|X7¢]] < C uniformely in T.

< Jensen
E[Xradl "L EIEXIF7adll < EEIXIFradl < EIXA] < o0 (5.4)

The bound is uniformely in 7.
”<”: By assumption, 3 a sequence of T,, ,/ oo of stopping times s.t. X’» € M. Let T be a
bounded stopping time. By Cor. 4.12 we have

E [XT,an7] = E [Xo] (5.5)
=E[Xo] = nh_)fgoE [XT,,/\TM] nir=_meg E [nh_{g, XT,,ATA;] =E[Xra ]V 20. (5.6)
4.12
= for all bounded T (by taking r > T') E [Xo] = E [X7]. = X is a martingale. O

Definition 5.4 (Semimartingale).
X € S: A process X is called a continuous semimartingale if AM € M;,. and A € A s.t.

X=M+A. 6.7

Theorem 5.5.
Let M?OC = {X € My : Xo = 0as.}. Then,

M nA = {0} (5.8)

loc

and S = M? & A.

loc

[02.11.2012]
[06.11.2012]

Remark: Recall Doob for p=2: E [suptzo X,z] <4E [Xfo]
Proof. Assume that we can prove that
ifXe \NA=X=0as. (5.9)

Then, by the definition of M, there exist T} < T, < ... stopping times with 7,, / oo a.s. s.t.
(5.9) . .
X' e M. NowletX e M?UCHA = Xhe MNA = X7, = 0butsince V¢ > 0lim, o0 Ty At =t

a.s. it holds X; = OVr > 0.
We will now show, that (5.9) holds. So let X € M® N A. We can also restrict ourself to processes
X s.t. X is bounded and S - (X) < oo. Indeed, we can introduce stopping times

T, :=inf{r > 0 :|X;| > nor S,(x) > n}. (5.10)

, , 59 .,
Then X7 is bounded with finite variation. = X”» € M° N AYn X —ovn = x = 0.
Now show (5.9) for X bounded and S (X) < co. Let & > 0.

To:=0 (.11)
Tier = inf{t > Ty ¢ | X — X7,| > €} (5.12)
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5.2 Doob-Meyer decomposition

Since X is continuous and X € A = limy_,o T = 0

Z( T+ _X%k

-E Z(XTk+1 ~Xr)*|+2) E[Xp(Xz,,, - X1,)] (5.14)

E[XTk [XTk X1y |7'—Tk”Ma”

(5.13)

3
|
—

T
=

n—1 ]
<eE| )" X7, - Xr,| (5.15)

k=0 ]
<e-So(X)—>0ase—0 (5.16)
= E|X7|=0 (5.17)

By taking n — oo we get
0<E [Xfo] hmlan% ] < liminf E [X2 ] 0 (5.18)
n—o0 n—oo

and thus E [Xfo] = 0. Using Doob Max inequality (p=2):
[sup X2] <4E[x%]|=0 (5.19)
>0

Therefore X = 0 a.s.. O

5.2 Doob-Meyer decomposition

Theorem 5.6. o)
Let X be a continuous sﬂlpermartmgale then AM € /\/(0 and A € A* s.t.

X, =M 24, (5.20)

Moreover, M and A are unique (up to indistinguishability).

Hints for the proof: Uniqueness: Assume X; = M;—A; = M| —A] = M; - M; = A, — A; 2 0as.
T ~——
eM €A

loc
Existence in discrete time case: Let (X,),>1 be a discrete time supermartingale = Y, :=
E[X, — X,.x1/F»] = 0. Then define A,, := ZZ;(I) Y, = is increasing in n, and it is ¥,,_; —measurable
and M, = X, + A, is a Martingale. Show for the case m = n — 1:

n—1

E[Xy + AnlFn-1] = E[XplFn-1]1 + ZE [E [Xk — Xir1|Fe] [Fn-1] (5.21)
k=0
n=2
= B [XnFn-1]+ E[Xp-1 — XplFn1] + Z E [Xk — Xis11Fx] (5.22)
k=0
= Xp-1 + An-i (5.23)

O

Corollary 5.7.
Continuous Supermartingales (and Submartingales) are continuous semi-martingales.

Proof. Let X be a continuous supermartingale. By Theorem 5.6 X = M — A where M € MIOOC and
A € A*. By Lemma 5.2 we have (—A) € A. Therefore X € S. O
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5.3 Quadratic Variation

5.3 Quadratic Variation

Definition 5.8 (Preliminary).
Let X be a stochastic processs. Then the quadratic variation of X is defined by

o S _ 2
0(X)(w) := ||il||13 " ; Xt (w) = X (W) (5.24)

where A={0=1¢ <t <...<t, =t}is apartition of [0, f] with "mash-size”

IAll = max (fx+1 — ). (5.25)
0<k<n-1

We know that for X = B = Brownian Motion:
0,B) = tin L?, (5.26)

(see Lemma 2.5)

Theorem 5.9.

a) YM € M, (M) € Ay s.t. M> = ME — (M) € MO

loc®

b) YM,N € Mjye, AM,N) € Ay s.t. M- N — My - Ny — (M, N) € MO

loc*

(uniqueness up to indistinguishability)

Proof. a) Let M € M, = M? is a local submartingale. By the Doob-Meyer-decomposition,

JA € Ay s.t. M?> = M’ + A with M’ € Myy.. We now define (M) := A = M’ = M> — (M) € My,

and since (M)y = 0 we also get M? - Mé —(M) € M?OC
b) Just use the polarisation identity

M-N = %((M + N> — (M = N)? (5.27)

Example: For a Brownian Motion B, we already know that
B —t (5.28)

is a martingale and t & t is in Ay. = 5.9 implies: (B); = t. We also know: Q,(B) = t and this is
not an accident.

Definition 5.10 (Final version of Definition 5.8).
a) (M) = (M, M) is called the quadratic variation of M.

b) (M, N) is called the covariation of M and N.

Remark: It holds (M,N) = X((M + N) — (M — N))

Some properties:

Lemma 5.11.
YM,N € M,,. it holds

a) (-,-) is symmetric, billinear, positive definit.
b) For all stopping times T it holds (M, N)T = (MT NT).
¢) (M) =M - My)

d) (M) =0 < M is a constant.
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5.3 Quadratic Variation

Proof. ad a) easy, use also (d).
ad b) Show (M)T = (M) and use the remark before the Lemma.

(M? = M — (M) = (M")? = M} — (M)T € My, (Cor 4.14) (5.29)
EMIUC

but there A(MT) s.t.
(MTY? = M —(MTy € Mype (5.30)

= (MTy =(M)T.

ad ¢) and d) We can assume M — M, bounded (otherwise use T, = inf{t > 0 : |M — Mo| > n*}
and b)). Therefore (by 5.3 (c)) M — My € M.

ad ¢) By Theorem 5.9 AM — My) € Ay s.t. (M — My)* — (M — My) € M° but we also have

(M = Mp)* = (M) = M* = M§ — (M) = 2My(M — Mo) (5.31)
eMO eMO?

If Mo(M — My) € MO, then (M — M) — (M) € M. Therefore by uniqueness (M) = (M — Mp).
Regarding Mo(M — M) € MO YO < s <t

E [Mo(M, — Mo)|F5] = MoE [M, — MolF51 "M Mo(M, — M) (5.32)

Therefore Mo(M — M) € MC.
add) ”=": (M) =0on [0,¢] g (M — My)? € Mon [0, 1], since

(M = My)* = (M — My) € M (5.33)
= (M - My)* — (M) e M (5.34)
= (M - My)* e M (5.35)
2 Doob 2 . 2
= E[ sup (M — Mp) ] < 4E [(M, - My) ] =0since (M — My)“ e M (5.36)
0<s<t
= M is constant on [0, ¢], Y > 0 = M is constant. O

Example: Let X be continuous, adapted process, X, € L* with independent and centered increments.
Then,

a) X € Mand
b) (X), = Var(X, - Xp) = E[(X, - X0)*| a.s.

Indeed:

a)

- adapted v

-E[IX{] < o0],VYt > 0V since it even holds E [lX,lz] < ooVt > 0.
~For0<s <t E[X|Fl = E[X; — X|F5] + Xy = E[X, — X5+ X5 = X§
b)

- It holds

E[X? - X§ - E[(X, - X0?|| = E[X7 - X — E[X] - X3 — 2Xo(X; - Xo)|| (5.37)
= 2B [Xo(X, — X0)] = 0 (5.38)

since Xo(X; — Xo) is a Marti D x2_x2_ — X2 0 ; w2l
o(X; 0) is a Martingale). = X; — Xj —E|(X; — Xo)*| € M, i.e. E|(X; — Xo)*| = (X)r.
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5.3 Quadratic Variation

[06.11.2012]
[09.11.2012]

Definition 5.12.
For a partition A = {t, 1, ...} with 4z — oo and 0 =ty < #; < 1,.. and a stochastic process X the
quadratic variation of X on A is defined by

Q,A = Z |Xt/\tk - Xt/\tk,l |2 (5-39)
k>1
The quantity
IAll := sup |t — tx—1l (5.40)
k>1
is the mesh-size of A.
Theorem 5.13.
Let M € My, and t > 0. Then,
”ii”mO QtA = (M), stochastically. 5.41)

ie.,Ye>0,n>0,r>0,36 > 0 s.t.

P| sup |QF — (M) >s) <7 (5.42)

0<s<t

holds VA with [|A]| < §.

To prove this we need one technical lemma.

Lemma 5.14.

a) Let (A,),>0 be an increasing process with
- A)=0
— A, is ¥,-measurable.
Then if E [Ac — A,|F5] < K, Vn 2 0, = E[AL] < 2K2.

b) Let AV and A® asina)and B := AV — A®. Then, if Jar.v. W > 0 with E [WZ] < oo and
|E[Bw — BylFnl| < E[W|F,], there dc > 0 s.t.

< c(]E [W?] + K \JE [W2]) (5.43)

E [sup B2

n>0

Proof. ad a) Define a,, := A,+1 — A, > 0 since A, is increasing.

2
=42 " {Zan) = D aan =Y an+2y lan ) an (5:44)

m,n>0 n=0 n=0 m>n+1

[ —
=Ac—An+1=Ac—Ay—ay

=2 Z an(Ac — Ap) (5.45)

n>0
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5.3 Quadratic Variation

E[A%] <2 ) E[E[auAs - ADIF11 =2 ) BlayE[Aw — Adl7] (5.46)
n=0 n>0 <K
< 2KZ]E [an] < 2KE [Aw] = 2KE [Ac — Ag] = 2KE [E [Ac — Ag|Fol] < 2K>  (5.47)
n>0
ad b) Let b, := B,y — By.a) =AY —AD.
E[B] <2E Z E [Boo — BulFy] ba (5.48)
————
n20 ) <E[WIF,]
bl i m_ @
< " 2E[E Z W - a?yF, (5.49)
n>0
= 2B WAL +AQ)] (5.50)
.S. 1/2 1/2 1/2 1/2
<om[w]” @[udy]"” +B[a®)]") <4 v2E[w?] "k (5.51)
<V2K <V2K
Now we introduce the martingales
M, := E [Bu|Fn] (5.52)
and
W, := E[W|F,] (5.53)
and set
X, := M, - B, (5.54)
Since |B,|* < 2(1X,| + |M,|*) We have to compute/bound |X,,|
1X| = [E[Boo — BulFull (5.55)
<E[W|F] = W, (5.56)
E [sup |B,,|2} <2E [sup 1X,.* + sup |Mn|2] (5.57)
n>0 n=0 n>0
<2E [sup W2 |+ 2E |sup |Mn|2] (5.58)
n>0 n>0

Poohrgied SE|W2|+ =E[B] ) (5.59)
——— ————

E[W?]  <«2vakE[w?]"?

<e@|w?| + KE[w?]") (5.60)

|

Proof of the theorem. Let M € My, t > 0 fixed. Let A = {#g, 11, ...} a partition with ||A|| < 6.

38



5.3 Quadratic Variation

Case a) Let M and (M) be bounded.

Define
al) = (My,,, - My (5.61)
al = (M, — (My; (5.62)
by = a](cl) - al(cz) (5.63)
n—1
= A = > a = oh(m); (5.64)
k=0
n—1
AP =) d? = (my, (5.65)
k=0
n—1
= B, = A - A® = Z by = QX (M) — (M), (5.66)
k=0

Define F, :== o(M,,,,. k < n) = a,g]), aﬁ? are ¥,-measurable and A,g]),Ai,z) are ¥,_1-measurable.
Since M and (M) are bounded (and M is a continuous local martingale) = M and (M) are
uniformely continuous on the interval [0, ¢] (for any ¢)

0—0
W)= sup  (Mgpe — M* + (M)goe —(M)))  — 0 (5.67)
0<s5<t,0<e<6 a.s. and also in L2
We will now show: |E [Be — B,|Fn]| < E[W()|F,] It holds
B., - B, = Z by (5.68)
k>n
and
E [bFn] = OVKk > n (5.69)

since by is independent of 7,Vk > n + 1 and E[b;] = 0

= [E[Bw = BulFl | = [E[balFl | = Ibul < @, + ¢ = Ba} + a7, | <BIWE)IF,] (5.70)
Now apply Lemma 5.14 b)

S E [sup Bﬁ] < c®B[Wer]+E[W©?]"H =0 (5.71)

n>0

Finally

E [ sup |Q5 (M) - <M>s|2] <E [(sup Q4 (M) = (M), | + W(6))* +2E[W(6)?] 75 0

] (a+b)? <2(a?+b2)
0<s<t neN

< 2E [sup B’

n>0

(5.72)

Case b) General M,(M). Let T,, := inf{t > 0 : |[M,,| > n or (M), > n}.

P( sup |QNM) — (M) > s) < P( sup |Q8(MTy— < MT > | > s) + PT,<0 (5.73)
0<s<t 0<s<t —
<n/2 for n large enough

For n large enough s.t. the right term is smaller 17/2 choose ¢ small enough s.t. the left term is
<n/2. O
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5.3 Quadratic Variation

Corollary 5.15.
Let M, N € M,.,t > 0 fixed. Then,
| iiumo O™NM, N) = (M, N), stochastically (5.74)
where
QMM N) 1= > My p1 = Mind)Nynt = Nignr) (5.75)
reA
Lemma 5.16.
Let M € M.
a) For almost all w € Q,Ya < b
(M)o(w) = (M)p(w) & M(w) = My(w), V1 € [a,b] (5.76)
b) For almost all w € Q s.t. (M)w(w) := sup,o{(M)(w) < oo
= tlim M,(w) exists and is finite. (5.77)
Remark: For a process A € A it holds (A) = 0.
A), = lim Anne — An il 5.78
(A) = lim ; [Asne = Ao (5.78)
= lim [supl|A;, — A Ao — A 5.79
||A||—>0[ kzll)l At tk+1/\t| ; | kAt tk+1/\t| ] ( )
-0 <S.(A)
For a semimartingale X = M + A, M € Mj,., A € Ay.
Definition 5.17.
Let X,X € SwithX = M + A, X = M + A where M, M € My,.. We define
(X,X) := (M, M) and (5.80)
(X) :=(M). (5.81)
Theorem 5.18.
Let X, X’ € S,t > 0. Then
” ii”rno Q™(X,X’) = (X, X’) stochastically (5.82)
Proof.
0rX.X) = QNM,M') +QNM,A")+ QNA, M) + ONA,A) (5.83)
———
—(MM"y=(X.X")
Now check if the last 3 summands go to 0.
QMM AN =1 (M n0 = Mynd) (Al 5y = An) (5.84)
reA
, , IAll—0
< SUp My e = Miadd DAY pr = Afpd = 0 (5.85)
treA e
=0 <5.(4)
_ A < lIAI=0 Ao g 18150
Similarly: |Q2(A, M) — 0, ]|0%A,A")| — 0. o
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5.4 L?-bounded martingales

Corollary 5.19.
Let X, X" €S8,t>0.
4 1 4
= (XX < VXX ) < 5 (X0 +4X ) (5.86)
Proof. Cauchy Schwarz and (ab)'/? < # fora,b > 0. O
[09.11.2012]
[13.11.2012]

5.4 [’-bounded martingales

Definition 5.20 (L2-bounded martingales).
The space of continuous L?-bounded martingales is defined by

H? := {M € M: supE|M?| < o} (5.87)
>0
Example: Let T € R, then
Mt = B[/\T (588)

is in H?, since E [BIZAT] =tAT = supoE [BIZAT] < oo,

Remark: Let M € H?, then {M;,t > 0} is uniformely integrable, i.e.

sup E [|M| 1y, 5x] = 0 for K — oo (5.89)
>0
since
2
|M,? sup,.o E ||M]
E[|M,|]1|M,|>K] <E Kt Lipm k| < # — 0for K — o (5.90)
From this it follows:
lim M, = Mo, € L' exists (a.s.) and M, = E [Mu|F;] a.s. (5.91)

>0

Finally: M, € L*.

Proposition 5.21.

a) H? is a Hilbert space with respect to the norm

M|y := /E |M2] = lim JE [m2] (5.92)

b) Let M7, := sup,.( |M;|. Then an equivalent norm is

IMllz = \E[(M)*] = E[Sulezlz} (5.93)

>0
¢) For M € H} := {X € H* : X, = 0} it holds

Ml = VE [(M)eo] (5.94)
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5.4 L?-bounded martingales

Proof. 1) Verify that || - ||z is a norm: easy.
= the associated scalar product is

1
(M, N)ggz := 2(IM + Nl = IM = Nll) (5.95)

2) Check b): First inequality:

Doob 2
IMJB = E [sup |Mt|2] <" asupE [M2] MR 4 0im B [M2] = 4112, (5.96)
20 20 =00
= MY isin L? (= also in L").
For the second inequality: M; = E [M|7]
. bmart. *
= M2, = lim E [m7] "= supE[M7| < E [sup M,Z] = ||M5|1? (5.97)
>0 >0
3) Verify the completeness of H>.
Let (M"),> be a sequence in H? s.t.
IM" = M2 "7 0 (5.98)
= Jsequence M, € L s.t.
M} = E[MC|F:] (5.99)
We know
n m def n m hyp
M — Mllp2 = IM" =M™l — 0 (5.100)
m,n— oo

= (MZ),> is Cauchy and since [%is complete, it converges to a limit in L?. Let us call this limit
M. Define therefore the Martingale

M; := E [M|F:] (5.101)
Q.: Does M" — M? Yes!
n 2 Doob n 2 n 2 N/
E|sup M — M,?| < 4E [(Mm — M) ]: 4M" - M2, = 0 (5.102)
>0

Q.: Is M a continuous Martingale? Because of (5.102) there exists a subsequence (ng)g>0 S-t.

k—o0
sup,so IM;* — M;| — 0 a.s.. We have uniformely convergence on subsequences, therefore t — M,
is continuous, i.e. M € M.
Q.:IsMe H*?
supE [ M7 ] = supE [(B [Mu|F/])?| < supE[E [M2IF|| = E[MZ ] < 0 (5.103)
>0 >0 20
= M e H>.
5) Verify c): Let M € H? with My = 0. Let (M) be the quadratic variation of M. = M? — (M) is
a (local) martingale. = E|M?| - B[(M),] = E Mg |- E[(M)] = 0¥ > 0
—_— N—

=0 =0
= MG, = B[ME]| = im E[M7] = lim E[(M),] "2" E[(M)eo] (5.104)
O
Example: Let T € R, be a fixed number and B a BM.
= M; := Binr (5.105)
R
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6 Stochastic Integration

Strategy:

a) 6.1)-6.2) Define the Lebesgue-Stieltjes-Integral for functions, then extend to
t
f XdAs=(X-A);—(X-A) (6.1)
0

for X locally bounded and A € A.

b) 6.3)-6.5) Itd-Integral:

1) Define
!
f X,dM s (6.2)
0
for M € H? and X “elementary process”. — Ito-isometry: || X - M ”1292 = X2 (M) ||
It6-int a)
2) Extension to X € L*(M), e.g.
!
f BydB, =2 (63)
0
3) Extension to semi-martingales.
6.1 Lebesgue-Stieltjes Integral
Riemann case: A, = {a = xg < x; < --- < x, = b}. Define
n—1
Riemann-Integral: ”ii”m0 Z f(&)(xgr1 — xp) for some &, € (xg, Xp+1] (6.4)
k=0
The limit exists e.g. when f is continuous.
n—1
Riemann-Stieltjes: IIAliﬁn o Z f(&)(g(xrs1) — g(xz)) for some & € (xk, Xg+1] (6.5)
Ly

The limit exists e.g. if g is continuous and has finite variation.

Proposition 6.1.
Let g : Ry — R be a right-continuous function. Then the following statements are equivalent.

a) g has finite variation.
b) dgi1, g» increasing, right-continuous s.t. g = g1 — g».
c¢) 1 (signed) Radon measure, u8, on R* s.t.

g(®) = p#([0,7]), V1 > 0 (6.6)
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6.1 Lebesgue-Stieltjes Integral

Proof. a & b trivial.

a,be c: "=" WLOG take g > 0, rightcontinuous amd S,(g) < co (variation of g in [0, f]) and
2(0) =0. = u([0,¢]) := g(r)vVt = 0. = u is a Radon-measure on R,.

7”& Given u, define g(¢) := u([0,¢]),Yt > 0. Therefore g is rightcontinuous and has finite
variation. O

Definition 6.2 (Lebesgue-Stieltes-Integral).
Let g : Ry — R be right-continuous, with finite variation and let f : R, — R be a locally
bounded function. Then the Lebesgue-Stieltjes-Integral of f w.r.t. g is defined by

f)usds) (6.7)

0.1]

where ué is the measure of Prop 6.1.

Notation: We sometimes also write
fo Fsb(ds) = fo fdg = fo F(s)dg(s) = fo F(s)g(ds) 6.8)

Remark: (i) IfgeC' = fot f(s)ué(ds) = fot f(s)g’'(s)ds where the last term means the usual
Lebesgue-Integral.

(ii) If g and h are continuous and of finite variation then

d(gh)(s) = g(s)dh(s) + h(s)dg(s) (6.9)

Proposition 6.3.
Let g be right-continuous, increasing and let f be left-continuous and locally bounded. Then
Vi>0

3
o A _
b R = fo fdg (6.10)
where
n—1
INf,8) = ) Ft)(8tken) — 8(1) ©.11)
k=0

and A is a partition of [0,7],i.e. A={0=1<t; <---<t, =t}

Remark: If f is continuous one can replace f(t;) by f(ty+1). The BM analogue will not satisfy this
property.

Proof. Let f* := Y170 f(t)La.,,- Since f is locally bounded = sup g [f2(s)] < C < oo
Also, since f is left continuous,

= lim ) = (Y5 € [0.1 (6.12)

18(/,9) = fo s "5 fo fwsds) fo fdg (6.13)
[

[13.11.2012]

[16.11.2012]
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6.2 Stochastic Integration w.r.t. bounded variation processes

6.2 Stochastic Integration w.r.t. bounded variation processes

We define ” fot X dA;” for A € A and for

X € B :={X : adapted, left-continuous, the trajectories are locally bounded}. (6.14)
Definition 6.4.
Let A € A, X € B then we define the stochastic integral of X w.r.t. A pathwise through
t ! t
(X-A), = f XdA = f X dAs . w > f X (w)dAs(w) « (usual Leb.-Stieltj.-Integral) (6.15)
0 0 0
Notation: X - A = (X - A))r0
Properties:
Theorem 6.5.
For A € Aand X, Y € B it holds
a) X:-A e Ay.
b) X - A is bilinear in X and A.
¢) For any stopping time T it holds (X - A)T = X - AT,
d) X-(Y-A) =(XY)-A.
Proof. ad a) (X - A)g = O clear. (consider the partition in 6.3)
Pathwise continuous since X is locally bounded and A is continuous.
adapted:
f n—1
f X,dAs = lim " X, (A, - Ay) meas. w.rt F; (6.16)
0 IAl—~0 &
(limit of measurable functions again measurable)
Finite variation:
S((X - A)w)) < sup [X(w)| S (A(w)) (6.17)
0<s<
s<t
<00
ad b) Trivial.
ad ¢)
n—1
(X - A (@) = lim " Xy (@) Ay, a7(@) = Agar] (6.18)
k=0
n—1
= 1im " X (@)[ Ay 17(@) = Agar] (6.19)
k=0
= (X-AT)(w) (6.20)
because: if tx > T = ty1 > T = Ay, a7 — Apar = 0.
ad d)
!
(X-(Y-A) = f Xsd((Y - A)s) (6.21)
0
t
= f XsYsdAg = (XY) - A), (6.22)
0
O
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6.3 Ito-Integral

6.3 It6-Integral
We will define

jo‘s XdBg (6.23)
where Bis a BM. If f, g € C! we know

1
f(g®) = f(g(0) + j; I (g(s))g' (s)dss (6.24)

If now g is a brownian path, then g’ does not exists....mmm. :(
One of the results will be for f € C?

f(Bt)—f(BO)+ff(Bs)dB +> ff”(Bs) ds (6.25)

S e’ =d<B>;
[td-Integral

If we try to define

n—1
In = Z f(BZ‘k)(BtkH - Btk)5 (626)
k=0

then, lim,,o, (with |[|A|| — 0) does not exist pointwise in Q (, i.e. pathwise). = I, as Lebesgue-
Stieltjes-Integral can not be defined.

But one can see that the limit is fine in L.

Further issue: Let B be a one-dimensional standard BM. Let ¢, := ft, 0<k<n.

n—1
. —1.
= lim Z B, (B, - By) = in L (6.27)
) B+t
Tim ZO B, (B, - B,) = in L (6.28)
Proof:
n—1 n—1 1 n—1
By (By,, — By) = Z SBL = B =5 ) (Bu, = By (6.29)
k=0 k=0
:%Btz(since t,=t,By=0) —tin L2 for n—oo

1td chooses (6.27) as the definition for fot B.dB;.

6.3.1 It6-Integral for elementary processes

Definition 6.6.
Let (Q, ¥, ¥+, P) be a standard filtered probability space. X : R, X Q — R is called an elementary
process if

a) Exists a sequence of times 0 =#y <t <--- /00

b) Exists a sequence of r.v. (£,),>0 uniformely bounded (i.e. sup,.q |£,(w)| < CYw € Q).
c) &, are F; -measurable.

d)

Xi(w) = éo(w)Lo(t) + Z En(w)L, 1,,1(,0 <t <00, € Q (6.30)

n>0

That means, that X is piecewise constant.
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6.3 Ito-Integral

Notation: X € & © X is an elementary process.

Definition 6.7 (It6-Integral for elementary processes).
Let X € £, M € H?. Then we define the stochastic integral of X w.r.t. M pathwise by

[ xanty = b= Y M= M) (631)
k=0
n—1

= > &My, — My) + E(M; - M;, ) (6.32)
k=0

where 7 is the unique number s.t. t € (-1, #,].

The Ito-Isometry

Theorem 6.8.
Let M € H?> and X € &. Then,

a) X-M e H;
b) (X« M), = [} X2d(M); = (X? - (M)),

c) Isometry:

||X-M||§,25E[< fo Xdes>2]=E[ fo X§d<M>s]suxn,%z(RMQ,d(M}@P) (6.33)

Corollary 6.9.
For M = (Bsxs)s=0, then

a) X-B' € Hj.
b) (X-B) = [} X2ds

o) E[(f; X:dB,)?*| = B [j X2ds]

Proof of the Theorem. Easy to check: (X - M) is adapted, (X - M)y = 0, Continuity.
Martingale? Let s < t, say s € (, tx+1] and t € (¢, ty41]-

E[(X - M)/|F] (6.34)
n—1

=E|(X - M) + &My, — My) + Z E(My,, — My) + (M, — Mz,l)lﬁ} (6.35)
I=k+1

n—1
=X+ M), + &E[M,,,, — MJ|F, | +E|& E[M, — M, |F,, ] I1Fs| + E Z & E[My,, — M|F,]1Fs
5 D I=k+1 A
(6.36)
=(X - M), (6.37)

since Fy C F;, and & is F; -measurable.

L*-boundedness follows from the uniform bound of the &.

ad b) WLOG: s = 1, t = t,41 (otherwise add two points to {t;}). To show (X - M)t2 - fot X,fd(M)u
is a martingale, i.e.

if s<t

E[(X-M>$— f X£d<M>u|ﬁ] = XMy - f XM, (6.38)
0 0

5.9 s )
2oy, =[x, = o o (6.39)
0
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6.3 Ito-Integral

E|(X - M); - (X - M)}|F] (6.40)
=E[((X - M), — (X - M))I7] + 2B [(X - M),((X - M), — (X - M),)IF] (6.41)
=0 by a) since (X-M); Fs-meas.
o 5
=E (Z &(M,,, ~ Mt,>] 7 (6.42)
|\ =k
=E Zf}z(MtHl - Mtl)zlg:s +2E Z é:jgl(MtH] - Mt])(Mtj+1 - Mtj)] (643)
1=k i | k<j<I<n
=E Z glz(Mt]H - Mtl)zlfs‘ +2E Z é‘:jflE [(Mt[H - MII)l?;[](MIjH - Mtj):| (644)
1=k ] kksj<l§n -0
=E f X§d<M>u|7-'s] (6.45)
= (6.38) holds
¢)
X - MIZ, =E[(X - M)Z| 2 ELX - M)o] 2 E [ f ) X2d(M), (6.46)
0
O
[16.11.2012]
[20.11.2012]

Proposition 6.10 (Kunita-Watanabe).
M,N € H*, X,Y € &

a) (X+M.Y-N) = [ XY, d(M.N), = (XY) - (M, NY),

b) E[(X - M, Y - N)oo] < B[ [ x2a(my| B[~ v2a(vy,]

Proof. Claim:(X «- M),(Y - N); — fol XY d(M, N), is a martingale.
We assume, that X and Y are constant on the same intervals. Otherwise one can just add the

respective points.

n
X-M), = D" Xy (M, - M,)
————

=1 =AM,

n
(Y- N) = D Yy(Ny, = Ny)
—

Then

=1 =2AN]

E[(X - M) (Y - N)y = (X - M)s(Y - N)s|F]

LLlI'=k

L I=k

=E

n
DX, Y AMANIF,

n
> X, Y,,,AMIANM}

+E

5 }

1£34
[ ——
=0

al
f XsYsd(M, NM%}
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6.3 Ito-Integral

b)
B MY+ Nyl S B[ M2y - W)L
“EHX - MY PELY - Nyo] 2
Goal of the week

!
f X,dM,
0

X € & (Want a larger space! : today), M € H*(Want the space of semimartingales: friday!)

(6.53)

(6.54)

(6.55)

Definition 6.11 (Predictable o-Algebra).
P = o(¢) smallest o-algebra on R, X Q s.t.

(t, w) — X;(w) measurable VX € ¢ (6.56)
A process X is called predictable iff -measurable.
Proposition 6.12.
o) =oc({X : Ry xQ — R, adapted, X left cont. on (0, c0)}) (6.57)
=o({X : R, xQ — R, adapted, X cont. on (0, 00)}) (6.58)
Proof. Exercise. O
Definition 6.13.
Let M € H*. We define
Lz(M) ={X: Ry XxQ — R, predictable, ||X|[y < oo} (6.59)
with || - ||y defined as
0 12
IXIm 2= Xl 2aemyeap) = E[f X?d<M>s} (6.60)
0
L*(M) is the space of equivalence classes
X~Yo|X-Y|uy=0 (6.61)
The It6-Isometry is now
co 2 co 211/2
IX|ly = E [ f de(M}S] 1‘2 E [( f deMS) l = [IX - Ml (6.62)
O som O
Proposition 6.14.
X € L*(M) = Jasequence of X" € L2 (M) N & s.t.
IX" = Xllpy = 0 (6.63)
i.e.
E[ f X, — X"Pd(M)y;| =5 0 (6.64)
0
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6.3 Ito-Integral

Proof. We give the proof only for the case M=B=Brownian Motion, i.e. d(B); = ds, where ds is
the Lebesgue-measure. (If d(M); < lebesgue, then the considerations are similar. If not, then the
proof is tricky (see Karatzas-Shreve, Lemma 2.7))

Let Bbe a BM and let T > 0O arbitrary.

Step 1: Z € LZ(B), bounded, pathwise continuous.
Consider partitions

An=ltg=0<t" < <. < =T) (6.65)

with [|A,|| = O for n — oo. Define

n—1

$ (W) = Z{) L)1) + ) Zi(@) g1 (8) (6.66)
k=1

Then it holds, by continuity of  — Z;(w) and since ||Al, — 0O:

fo @) - ™S 0 (6.67)
By Lebesgue (dominated convergence)
E[ fo ' " —Zﬁd:} -0 (6.68)
i.e.
" = Zllm — 0 (6.69)

Step 2: Y € L*(B), bounded.
Let K s.t. |Y] < K. We are going to introduce mollifiers ¢, s.t.,

1
Yu(x) = 0,4, continuous, fz,//ndx =1,y,(x)=0if x ¢ [0, -] (6.70)
n
Fort < T define
T
Z! = f Un(t — 5)Yds (6.71)
0
Then ¢ — Z} is continuous and bounded, i.e. |Z}'| < K.
It holds
T
f (ZMw) - Y(w))*dt = 0Vw e Q (6.72)
0
and therefore by dominated convergence
T
SE [ f - Yt)zdt] =0 (6.73)
0
Step 3: X € L*(B).
To make it bounded define
-n X;<-n
Y!=4X;, -n<X,<n (“truncation”) (6.74)
n X/ =n
T
0
r 2 n—oo
<E f X; ]1{|X,|zn}dt] — 0 (6.76)
0

again by dominated convergence. Note that we could use that X was bounded in the previous steps.
Here we have to use the hypothesis that X € L*(B). O
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6.3 Ito-Integral

Theorem 6.15.
Let X € L*(M). Then 3!(X - M) € H} s.t., if X" € £ is a sequence with

n—oo

IX = X"|lyy — 0 (6.77)
then also
IX-M=X"- Mz = 0 (6.78)
Thus
L2 — lim(X" - M), = X - M, (6.79)
uniformely in t. The map L*(M) — H3,X — X - M is an isometry, i.e.
IXIlae = 1IX - Ml|g2 (6.80)
Proof. Let X € L*(M).
Step 1: Definition of (X - M).
By Prop. 6.14: AX" € ¢ : ||IX — X"||p;y — 0. Therefore
X" M = X"« Ml = X = X ST 0, (6.81)

i.e. (X"+ M) is a cauchy sequence in H> which is a Hilbert space. = lim,_,., X" + M exists and is in

H?2. So we can define X - M := im0 X"« M.
Step 2: Show that X - M is independent of X".
Let Y”" be a second approximating sequences, i.e.

IY" — Xlly — 0 (6.82)
Then
X"« M = Y™« Mllge = X" = Y"llyy = 0 (6.83)
Thus we have
lim X"+ M = lim Y" - M (6.84)
Lastly we have to check, whether ||[X - M — X" - M||p> — O.
IX-M-X" Ml < 4 supE [+ my, - (x - b)Y (6.85)
= 4)X" — X|ly — 0 (6.86)
O
Definition 6.16.
We define
fo [ X dM, = (X - M), (6.87)

as Itos Integral, where X - M is the unique process from the previous Theorem.
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6.4 Properties of Itos Integral.

6.4 Properties of Ités Integral.

Kunita-Watanabe holds exactly as in the previous setting.

Corollary 6.17.
Let M,N € H?>,X € L>(M),Y € L*(N). Then

a) (X« M), = [i X2d(M), = (X*- (M),

b) (X+M,Y-N), = ) X,Ysd(M,N), = (XY) - (M,N));

0) [BUX-M.Y - NI <E[ [ IXIYldM. M| < B[ [ X3y | JE[ [ ¥2di),]

Lemma 6.18.
Let X € L>(M) and Y € L*(X - M). Then
XY € L2(M) (6.88)
and the associative property holds, i.e.
Y-(X-M)=(YX)-M. (6.89)
Proof. Step 1: XY € L>(M)
It holds
(X M) =X>-(M) (6.90)
and thus

L2 (X- © e ssoc. Stieltj. ©
oo L>(XM)E[ f Y2d(X - M),] = E[ f Y,zd(Xz.(M»t] Aosoe Sl E[ f Y3x3d<M>,] (6.91)
0 0 0

Step 2: Associativity.
Let N € H? arbitrary. Then

(X)- M) =T (VX) - (MN) P25y - (X (M) 2T Y - (X M) S (Y - (X - M), N)
- (6.92)
Hence we have
(YX)-M]-1Y-(X-M)],N) =0VN e H? (6.93)
and thus (YX) - M =Y - (X - M). O
Proposition 6.19.
Let X € L>(M), T a stopping time. Then
X-MT =Xx-M" = X107 M (6.94)
Proof. Follows from the Lemma above since
M" = TomM (6.95)
O
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6.5 The It6-Integral for continuous local semimartingales

Lemma 6.20.
Let X,Y € L>(M),0 < s < u < t. Then the following properties hold

a) [ X,dM, = ["X,dM, + [ X,dM,
b) [(@X, +BY,)dM, = a [ X,dM, + B [ Y,dM,
o) s<t=E|[[ X,dM,]=0

d) E[[; X,dM,\F] = [}’ X,am,

Proof. a) and b) are obvious. ¢) and d) hold since

!
N; = f X, dM, (6.96)
0
is a Martingale. O

[20.11.2012]
[23.11.2012]

6.5 The It6-Integral for continuous local semimartingales

Let V be a semimartingale. Therefore we can write V = M + A with M € M, and A € A. We
already defined

t
(X+A), = f X,dA; 6.97)
0

where X € 8 := {X : adapted, left-continuous, the trajectories are locally bounded}.
By definition M € M, iff A(T,) stopping times T), , oo s.t. M a Martingale. We also know for
a Martingale M

xX-m'=x-M" (6.98)
Therefore for a local martingale M the following definition makes sense
X-M=lim X-M" (6.99)
and so for a Seminartingale V=M + A

X V=X-M)+(X-A) (6.100)

We are now doing this calculation step by step.

Definition 6.21.
For M € M,,. we define

!
L,ZOC(M) = {X : X is measurable, predictable and V¢ € [0, o) : P(f de(M)s < oo) =1}
0

(6.101)
LIZUC(M) = space of equivalence classes. (6.102)
Lemma 6.22.
Let M € M;,.. It holds X € leOC(M) & X is predictable, 4 stopping times (7, )neny / o0 S.t.
Ty
E[ f X2d(M);| < VneN. (6.103)
0
(=X e L2M™)) (6.104)
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6.5 The Ito-Integral for continuous local semimartingales

Proof. ”=": Construct T},:
!
T, = inf{z : f X2d(M), > n} / oo (6.105)
0

By definition fOT" de(M Ys < n and therefore

Tn
]E[ f de(M)s} <n (6.106)

0

<" Assume A(T,) s.t. E [fOT" de(M)S] < oo. Then

T, At
E[ f de(M)s] < o0 (6.107)
0
T, At
=P ( f X2d(M)y, < oo) =1 (6.108)
0
T, At
= lim P( f X2d(M), < oo) =1 (6.109)
n—oo 0
!
=1>P( f X2d(M)y, < oo) =1 (6.110)
0
O
Definition 6.23.
Let M € My, and X € LIZOC(M ). We define the stochastic integral as
XM := lim(X-M") (6.111)

Remark: Does the limit exist?’m > n,t < T,
X - My, = (X« MT) = (X« MTA Ty = (X« M), (6.112)

Therefore the sequence ’stabilizes’ at a certain point = Convergence.

Definition 6.24.
Let V € S be a semimartingale with V = M + A where M € M;,.,A € A. Let X € B. We define

X-V):i=X-M)+(X-A) (6.113)

Proposition 6.25.
LetV,;WeSand X,Y € B.

a) (X,V) > X-Visbilinear.

b) Ve Mipe=>X-VeM
VeAy=X-VeA

c) Associativity (XY):-V =X-(Y-V)
d) X-V,Y-W)=XY)-(V,W)=0if VorWeA)
e) XV =X1py-V)=X-Vh)

f) Leta,b € R => P(X; = 0on [a,b] or V; is const. on [a,b) = X - V is const. on [a, b]) = 1

'Limes reinziehen, da Folge von absteigenden Mengen, vergl. Ana III Satz 2.10
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6.5 The It6-Integral for continuous local semimartingales

Proof. a) Obvious.
b) Let V € Mje. Then IS,  cos.t. VS» € M. Thus (X - V57) € M. But since (X - V57) =
(X - V)S» it follows that (X « V) € Myge.
For V € A see Theorem 6.5.
¢) Theorem 6.5 and Lemma 6.18.
d) Corollary 6.17.
e) Theorem 6.5 and Proposition 6.19.
f) Clear for V € A by the definition of (X - V) (Lebesgue-Stieltjes).
Now let V € M;,.. By the assumption it holds either

Xo(w) = 0on[a,b] (6.114)
or
(V)(w) constant on [a, b]. (6.115)
Hence
1 (X2 (VY = fot X2d(V)y, (6.116)
is constant on [a, b]. Since (X%« (V)); = (X + V), we get that X - V is constant on [a, b]. O

Theorem 6.26 (Convergence of Stochastic Integrals).
LetVeS, and X", Y € Bs.t. [ X"| <Y Vn. If

X' "5 0as., Vi >0, (6.117)
then
X" -V — 0 P-stochastically, uniformly on compacts. (6.118)
i.e.
Yt >0,&e>0, lim P(sup |X”-V|s26)=0. (6.119)
=00 \0<s<t

Proof. If V € Ay then the statement follow from dominated convergence. So now let V € M,
and let T be a stopping time s.t. V7 € H? and X7 bounded. Since (X")” — 0, we get by dominated
convergence

X |lyr = E[ fo ((X?)T)2d<VT>S] -0 (6.120)
Hence
X" > 0in LX(VT) (6.121)

and the Lz-isometry (Theorem 6.15) gives

(X" V)" - 0in H? (6.122)
and thus
x". V)T — 0 uniformly on R, P-stochastic (6.123)
=(X" - V) — 0 locally uniformly P-stochastic (6.124)
O

55




6.5 The Ito-Integral for continuous local semimartingales

Theorem 6.27 (Approximation by Riemann-sums).
LetVeS,XeBt>0.A,={0=1yg<t < <ty =t} partitions of [0, ], s.t. [|Asl] —> O.
Then for

ISAn(X’ V) = Z th(VSAtk+1 - S/\tk)a (6.125)

e,

I*(X, V) converges stochastically uniformly on [0, f) towards fos X,dv,.

Proof. WLOG assume X, = 0 and X bounded (otherwise there exist T,, ,/* oo s.t. X’ bounded).
Consider XIA” = Yneh, X Lgn,,1- Since X is left-continuous XtA” =X, pointwise. Thus

S
12X, V) = f X2qv, (6.126)
0
S S
= f (XM — X,)dV, + f X, dV, (6.127)
0 0
—0by Theorem 6.26
O

Theorem 6.28 (Integration by parts).
Let X,Y € S. Then it holds

! 1
XY, = XoYy + f XdY, + f YidX, +(X,Y); (6.128)
0 0
and in particular

!
X=X +2 f XdX; + (X);. (6.129)
0

Proof. We show the second statement. The general case follows from polarisation.
Let A, be a partition of [0, ].

<X>I — Z (Xlk+1 - X[k)2 = Z (th+1 _th)(thH - Xlk) (6130)
lkGAn e,
= Z ka+1(th+1 _Xlk) - Z th(Xlk+1 _th) (6'131)
e, e,
=1*"(X,X)
- Z X2, - Z Xy, — X)Xy, — Z X2 -IMX,X)  (6.132)
e, e, e,
— X} - X} - 21,(X, X) (6.133)
for ||A,|| = . O
Corollary 6.29.
Let X=B=BM.
f f
B> =2 f BydBy + (B); = 2 f BydB; + t (6.134)
0 0
t BZ —t
f BydB; = —L (6.135)
0 2
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If we write this in differential notation this is

d(XY), = X, dY, + Y, dX, + (X, Y), (6.136)
= X, dY, + Y, dX, + dX,dY, (6.137)
if we define dX,dY, = d(X,Y);. Hence
(dX,)* = dX,dX, = d(X), (6.138)
If X € AyorY € Ay we have
dX,dY, =0 (6.139)
Thus VX, Y,Z € S:
(dX,dYy)dZ, = dX,(dY,dZ,) = 0 (6.140)

since (dX.dY;)dZ; = (d (X, Y))dZ,.
——

eA
Now consider a BM B. Then we have

t
B} =B+ 2f B,dB; +1 (6.141)
0
=dB? = 2B,dB; + dt (6.142)
Rules for calculation:
(dB))* = dt (6.143)
dB,dt = dtdB, = 0 (6.144)
dt* =0 (6.145)
For d > 2 one gets
dB.dB! = ¢;;dt (6.146)
dBidt = dtdB. = 0 (6.147)
(dt)* =0 (6.148)

Back to d = 1. When we write dV, we should interpret it as a map from {(a, b) € R?,a < b} — R®.

dV; :[a,b] — fb dv, =V, -V, (6.149)
ab
dX V) = X, dV; :[a,b] — L XdVi=(X- V) —(X:V), (6.150)
Now recall the associative property, i.e.
Y- X-V)=(X)-V. (6.151)
In the new notation this is
dY-X-V)=YdX- V), =Y, X)dV,. (6.152)
Kunita-Watabe
(X-V,Y-W) =(XY)-(V,W) (6.153)
(X-Vy=X>(V) (6.154)
becomes
X dV Y dW, = d(X - V), d(Y - W), = X;Y,dV,dW,; (6.155)
d(X - V))? = X2 dV,)>*. (6.156)
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Example: Let X; = Btz. We want to get (X),.

d(X), =(dX,)*

=(dB?)*
2 (2B,dB, + di)?
=4B? (dB;)* + 4B,dB,dt + (dr)’
N—— N——— N——
=dt =0 =0
=4B%dt

and hence
!
(X), =(B*>)=4 f B2ds
0
Now consider the case

f € C™, X; "regular function” (finite variation)

Then

1 1
d(fX)), = f/(X)dX, + Ef”(Xt)(dXt)z - gf"'(Xt)(dXtﬁ +.

=0

since (dX;)" = 0 for n > 3 (see (6.140)). In the case of a BM we get as a result

1
df(By) = f'(B)dB; + Ef”(Bt)(dBt)z

This is It6’s-Formula!

(6.157)
(6.158)

(6.159)
(6.160)

(6.161)

(6.162)

(6.163)

(6.164)

(6.165)
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7 The Ito-Formula and applications

7.1 The It6-Formula

Theorem 7.1 (It6-Formula).
Let F € C?(R%,R) and X = (X!,..., X%) with X; € S. Then F(X) € S and

d t n 1
1
F(X) = F(Xo) + ). f OF (X)X + ) = f 92 F(X,)d(x*, X1, (7.1)
k=10 k=1 <0
Remark: It6-Formula in differentialform is
d n
1
dF(X;)) = Y F(X)dX* + 5 0 F(X)d(X*, X", (7.2)
k=1 ki=1
Corollary 7.2.
Let F € C3(R%,R), (B:)s>0 a d-dimensional BM. Then,
3 1 !
F(B)) = F(By) + f VF(By)dB;s + 3 f AF(By)ds (7.3)
0 0
Proof. We use (B*, By, = Ok dt to see this. O

Corollary 7.3.
Let F € C2(RY*!,R), (B)i>0 a d-dimensional BM. Then,

!

! . 1 t
F(, B;) = F(0, By) + f VF(s, B;)dB; + f F(s, By)ds + 3 f AF (s, B)ds (7.4)
0 0 0

where VF is the gradient and A is the Laplace-operator of F with differentials w.r.t. the space-
variables and F is the time-derivative.

Remark: Corollary 7.2 in differential form:
dF(By) = VF(By)dB;s + %AF(BS)ds (7.5)
Corollary 7.3 in differential form:
dF(t,B;) = VF(t, B))dB, + %AF(t, By)dt + F(t, B)dt (7.6)
Proof of Theorem 7.1. Step 1) Prove (7.1) for F being a polynomial.

Let’s see first, that (7.1) holds true for F' = 1. Now assume that (7.1) holds for a polynomial . We
have to show that (7.1) holds for G(xy, ..., Xx4) = X, F(x1, ..., x7). Then Step 1 holds by induction
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and linearity.

G(Xy) — G(Xo) =X{"F(Xy) — X§'F(Xo) (1.7

1megr

f XVdF(Xy) +f F(X)dXT + (X", F(X))s (7.8)
O

by parts

10 Form. Z f X"9,F(XdX! + Z f XPR FX)dXE XD, (1.9)

for F

f F(X,)dX" (7.10)
0
d t
) f IF(X)dX™, X", (7.11)
=1 Y0
Where we used in the last step that
(X", F(X))s = dX{'dF(X); (7.12)
d d
1
— m 1 - k!
= dX7'() | OF(X,)dX, + Z SOLF (X)X X)) (7.13)

=1 k=1

d
1
OF(X;)dX"dX' + § 5 i F(X,)dX"dX*dx! (7.14)
_ E/_/

=0

M&

=1

Thus we have

d f
G(X1) = G(Xo) = Z f (F(X5)Bkm + X0k F (X,))dX§ (7.15)
k=10
AR
) f D O FX)X] + OkF (X,)0,md(X', XE), (7.16)
k=1

d
:Z f hG(Xs)dX* N Z f 0 G(X)d(X*, XY, (7.17)
k=1

kll

Step 2) Extension to F € C, (Z)(Rd ,R) (with bounded support). By the Weierstrass-Approximation
theorem we can get F' as the limit of polynomials F,, i.e.

F,—> F (7.18)
OF, — OkF (7.19)
OO F, — 0kOF (7.20)

= Itd-Formula holds for F,, = also for F € C3(R?, R).
Step 3) Extension to F € C*(RY, R).
Let K, = [-n,n]? and

T, =inf{t>0: X, ¢ K,} (7.21)

Then T, / o0 as n — oco. Now consider F,, = Flg, € C(z)(Rd ,R). We know that the formula holds
for F,,. Therefore it holds for all {w € Q : T,(w) > t}. Butasn — oo T\,(w) > Nw € QVt > 0.
Therefore the formula holds for all Q. O
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Corollary 7.4.
LetX=Xo+M+AMe M) ,AcAand F € C*(R,R). Then
F(X;) = F(Xo) + M, + A, (7.22)
with
Me M) and A € Ay (7.23)
where
» t
M; = f F'(X,)dM; (7.24)
0
_ 2 1
A, = f F/(X)dA; + 5 f F"(X,)d(M), (7.25)
0 0
Let us compute e.g. the quadratic variation of F(X;).
Corollary 7.5.
Let X € 8¢, F € C>(R4,R). Then
d !
PO = Y, [ OFE)aFAat X, (7.26)
k=10
In particular, if X = B is a BM
d ! 73
(FB)) = ) f (OkF(By))*ds = f (VF(By)*ds (7.27)
Proof. The differential form to be proven is
d
AFO) = ) OF(XDAFX)d(X*, X'), (7.28)
k=1
Remember: d{X, Y), = dX,dY,. Therefore
d 1 d
1t6
d(FX)), = @FX)F 2 F XX + 5 > OdF (X)X, X)? (7.29)
k=1 k=1
k gyl d
dXt dXthtm=0 k I
£ F(X)OiF (X)) dXfdX, (7.30)
k=1 T
=d(X*.X")
The statement for the BM follows from
d(B*, B'ys = 6; ds. (7.31)
O

Remember one exercise: If M, := exp(aB; — %azt) € M and B; is a continuous process with By = 0.
Then B is a BM. M; is an example for a so called ’exponential martingale’ and will later be the

"Levy characterization’.
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Proposition 7.6.

a) Let B be a d-dimensional BM, f € C2(R%*!,R) and

_1 . of
Af = 2Af+ i (7.32)
Then,

M, := f(t, B,) — f(0, By) — fo Af(s,Byds € M) (7.33)

In particular, if Af = 0, then
(f(t, B))iz0 € M) . (7.34)

b) If f € C*(RY), then
1 !

M, = f(B) ~ f(Bo) 5 fo Af(By)ds € MO, (7.35)

In particular if f is harmonic on RY, ie. A f = 0, then (f(By))0 € Mo (is a local
martingale).

¢) Let DcR?and T = inf{r > 0 : B, ¢ D}. Then, if f is harmonic on D,

F(B") = f(By) e M) (7.36)

loc*

Proof. ad a) Follows from Cor. 7.3:

M, = f(t. B) - f(0, By) - f (Af)(s., B)ds = f (V)5 B)dBs € M (137)
0 0

ad b) Follows similarly from Cor. 7.2.
ad c) Take B” in b). Then one will get MIT is M?OC. Important: We need at least f € C*(D’") for
anD’'st. Dc D'. |

Lemma 7.7.
Let M, as in Prop. 7.6 a). Then

(M), = f IV f(s, By)l*ds (7.38)
0
Proof.
dM; = (Vf)(s, By)dB; (7.39)
=d(M), = (dM,)* = (Vf(t, B)) dt (7.40)
O

A generalisation:
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Proposition 7.8.
Let B be a d-dimensional BM. o (x) := (0 j(x))1<i,j<¢ @ Matrix with continuous coefficients and
let X be a continuous, adapted d-dimensional process with

d 1
= xk+ Z f oj(X,)dB. (7.41)
=1 Y0
Then,
a) X¥is alocal martingale.
b) Forall f € C2(R; x RY), let
t
= £, X)) — £(0,Xo) — f Af(s,Xy)ds (7.42)
0
with
d
Af(t,x) = 2 (%) + Z (D)3, f (8, %) (7.43)

k=1

and ay; = Zi:l TimOim (= (o). Then Mf is a local martingale.

Proof. a) Follows since B is a martingale.
b) We compute first:

d
dX* X"y = dXfdx| 2 Y o (X)X,  dBldB] (7.44)
ij=1 —
=d(B!,BIY=6;;dt
d
= Z oioidt = aydt (7.45)
i=1

Thus

£6.x) 2 50,50+ [ 00505 X + Z [ xoans+ 3 Ly [ auarsxo o x0,
——————

k I=1 =a(Xy)ds
(7.46)
And therefore
d t
=> f Of (s, X,)dXE € Myge (7.47)
k=10
O
7.2 Exponential Martingales
Lemma 7.9.
Let F € C2(Ry X R,R), s.t. ,F + 302, F = 0 and M € M.
= Mt = F(M), M) € My (7.48)
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Proof.
. oF oF 1 1
ANy = —d(M); + =—dM; + S0 F - d{M), + 55(d(M)Y (7.49)
0
oF
= (M), M)dM, € Mo, (7.50)
|
Definition 7.10.
Let A € C,M € M, then
Ea(M), := M=z M (7.51)
is called exponential local martingale.
Lemma 7.11.
AeC,Me M,,.
= E (M) € Miye + iMjpe = CMype (7.52)
Proof. Take F(t, x) := ¢* 2% and apply Lemma 7.9. O
Example: Choose A = i.
= cos(M) 2™ € M. (7.53)
sin(M,)e2 ™" ¢ M, (7.54)
(7.55)
Example for a BM. X, = F(t, B,) = B3l Y e R,
1
dX; = d(F(X)) = 0+F(B;)dB; + EAXF(t, Bydt + 0,F(t, B;)dt = AX,dB; (7.56)
=0
Hence dX; = AX,dB,. Therefore
t t
X; — X? = f dX, = Af XdBg (7.57)
= 0 0
!
=X, =1+2 f X,dB, (7.58)
0

Q.: Is E;(M) € M, i.e. areal, not just a local martingale?
A.: In general no!

Theorem 7.12.
E1(M) € CM if at least one of the following conditions are satisfied:

a) M is bounded and 2 € R.
b) (M) is bounded and A € iR.

c) Mp=0,E[Ex(M)]=1,Yt>0,and 2 € R.
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Proof. a)
/12
IEM)| < |exp(AM;) eXp(—E (M);)| < |exp(AMy)| (7.59)
>0 bounded
————
<1
Thus E(M) is bounded hence a martingale.
b)
: |
IE(M)| < | exp(ilAIM;) eXp(7<M 20l (7.60)
———
<1
|
< lexp(—~(M))| (7.61)
——————
bounded

Thus &(M) is bounded hlence a martingale.
ad c) E;(M), = eMi=3 (M) > (. By Lemma 5.3 we know that E,(M) is a supermartingale.

= 1 2 E[ExM)] = E[Ex(M)o] = 1 (7.62)
= E(M) € M. (see Remark below.) O

Remark: Let M, be a super-martingale s.t. E[M,] = c for all t. Claim: M, is a martingale!

E[X|Fs] - X, <0 (7.63)
but
E[E [X|F] - X1 =E[X:] -E[X;]=0 (7.64)
hence
E[X,|F] = X, a.e. (7.65)
Let B be a 2-dimensional BM.
= f(B;) = f(Bo) + fo v f(By)dBs + % fo ‘A f(By)ds (7.66)

Q.: If f is harmonic on R?, does it follow that
f(B) e M? (7.67)

IsVf e L*(B)?
Answer: In general not. Counterexample: Take f(x,y) = e cos(2xy).

)
/ g;’ Y _ Dxe® cos(2xy) — e sin(2xy)2y (7.68)
of g" Y _ yxe™ cos(2ay) — e sin(2x)2x (7.69)
y
2 2
IAFACS) . " f(xy) _ 0 (7.70)
Ox? ay?

= f is harmonic, but f(B) is not a martingale for all . The problem is that e.g. VF ¢ L?(B) or
f(B;) ¢ L' for t large enough, because:
2y

1 2
E[f(B)] = fR zf(X,y)%e_dedy (7.71)

which is not good for t > 1/2.
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7.3 Levy characterization of the BM

Theorem 7.13 (Levy).
Let X be a d-dimensional, adapted and continuous stochastic process with Xo = 0. Then the
following statements are equivalent.

a) X is a d-dimensional BM w.r.t. ;.
b) X € M0 and (X*, X'), = 65, - 1,V1 <k, 1< d.

¢) X e M and forall f = (fi, ..., f4) with f; € L*(R{,R),

d t d 1
M, := exp [zz fo fu(s)dX* + % > fo f,f(s)ds] e M+ iM(=CM) (7.72)
k=1 k=1

Proof. ”a=b’’: is already known.

”b=c¢”:
d
d(f-X) = ) fils)ax! (7.73)
k=1
d f
(X0 = (X004 Y, [ i)t and (7.74)
R_”_’ k=10
(f X = f fi(s)fi(s) d(x*, X'y (1.75)
k=1 =0ds by hyp.

d t
-y f £(s)ds (7.76)
k=10
Since f; € L>(R4,R)
; d
(f+X) = fo > fls)ds < oo (1.77)
k=1

Now A =i,N; = ZZZI fot fk(s)dX’s‘. = M, = E,-i(N), and since A € iR and (), bounded we have
M; e CM by Theorem 7.12 .
Pe=a”: Letz € R4, T > 0. Define

Je($) = z Lo, (s) (7.78)
Then,
f fils)axt = Z %Xfyr = (@ Xinr), (7.79)
k=1
f fH(s)ds = sz(z AT) = lIP - (t A T) (7.80)
The assumption implies that
1
M; = expli(z, X;a1) + EIIZIIZ(I AT)] e CM (7.81)
=S For0<s<t<T:YAeF
E lAei(Z’Xt)+%||Z||2t|¢q — ]lAei(Z,XsH%llZIle (7.82)
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Therefore

B [14e5 X7 | = B [1 L XX eI =) ] e SEIPE=9) (7.83)

=1by (7.82)

SB [14¢ @55 = B[B[ 14 @¥ )7, = E [ILAe—%“Z“ZU—”] —P(A)e -9 (784

= VA € Ty 1 B[1,e/@XX)] = E[14]e 09 = E [ XX)] = 731879 and X, — X, is
independent of (= of X;). = X is a BM. O

We get some corollaries for d = 1.

Corollary 7.14.
Let X € MY with (X); = 7. Then X is a BM.

Corollary 7.15.
Let X € MY with

t> X —re M0 (7.85)

loc

Then X is a BM.

Remark: Continuity is needed! Otherwise, let N, a Poisson Process with intensity I, then
{M; := N; — t}0 (7.86)
is a martingale in continuous time with cadlag trajectories. Also {M),; = t, but M, is not a BM!

[30.11.2012]
[03.12.2012]

7.4 Applications of Ito’s Calculus

7.4.1 Brownian Bridge (BB)
A Brownian Bridge for ¢ € [0, 1] is a BM with Xy = 0 conditioned on X = 0.

Definition 7.16 (Brownian Bridge).
A Brownian Bridge is a continuous Gaussian Process (X;,0 <t < 1) (where 0 < ¢t < 1 is the
lifespan) s.t.

(1) E[X:] =0Vre]0,1].
(i) Cov(Xs, X)) =s(1—HV0<s<t<1

We can see X; ~ N(0, #(1 — ¢)). Therefore X; ~ N(0,0), Xy ~ N(0,0). So the processes starts and
ends at 0.

We know [X;| ~ [E[X?| = VAT =1). So for t well inside [0, 1] we have ~ .
Construction

a) Let B = (B,) be a standard BM. Then

is a BB. Check:
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Xo=0=X, v,
E[X]=E[B]-E[Bi] =0V,

Gaussian Process v/,

continuous v/,

Nowlet0 <s<r<1.

Cov(Xs, X;) = E[(Bs — sB1)(B; — tB))] (7.88)
= E[B,B,] - sE[B\B,] - {E[B,B,] + stE| B} (7.89)
=sAt—st—ts+st=s1-1t) (7.90)

b) BB is a BM conditioned on {B; = 0}. Problem: P (B; = 0) = 0. So for the law
L(X,0<t<]) = liI%P(BMIIBll <e&) (7.91)
E—
=>P(X, €-....X, €)= lir%P(B,] €-...,B, €|Bil<¢) (7.92)
E—

¢) Let Bbe a BM. Then

1-nB- 0<t<1
Xt = 1= (793)
0 t=1
is a BB. Well defined? For¢ 7 1 : 1_ ~ ﬁ = X; ~ Vl-¢ il> 0. Also t — ﬁ is
monoton, goes to oo for # — 1. Check the other conditions:
E[X,] = (1 -E [Bﬁ] =0/ (7.94)
(s <1) Cov(Xs, X)) = (1 —)(1 - $)E [BﬁB]%S] =s(1 -t/ (7.95)

Lemma 7.17.
For a BB it holds (X;,0 < ¢t < 1) € S. Furthermore (X), = ¢, but it’s not a BM, since it is not a
martingale.

Proof. Use X; = (1 - 1B .. Define B; = B_._. Then Bj is a martingale w.r.t. ¥/ = #_. . Choose
F(t,x)=(1-1x.

X,=(-0B, =F(B) (7.96)
! ! 1 !
=F(1,B]) = f 0,F (s, B)ds + f 0.F(s,B,)dB, + = f 82F(s,B.)d(B') (7.97)
! !
- f Blds+ f (1 - s)dB, (7.98)
0 0

finite variation martingale term

Thus X; is a semimartingale. Now for the variation:

<f(1—s)dB’>t f(l—s)2d<B’>y—f(1—S)2dL f( - )2((1 _S);zs §=

(7.99)

Therefore by Levy W; := fot(l — 5)dB’, is a BM! For the finite variation term we can write

! ! X
—f B’sds=—f ~—ds (7.100)
0 0 1-s

YRy, = L+ - since it’s a time change of a BM.

68




7.4 Applications of Ito’s Calculus

Thus we get:

¢
Xt=—f : *ds+ W, (7.101)
0

-5
where W, is a BM. And in differential form

X

dX; = -7 ttdt +dW, (7.102)
O
Remark: Brownian Bridge (X;,0 <t < 1):
(i) Gaussian process with E [X;] = 0, Cov(X, X;) = s(1 —¢).
(ii) X, = B; —tB; for Ba BM.
(iii) X, =1 - t)Bﬁ for Ba BM.
(iv) Solution of the SDE: dX; = —%dt + dW,; where W is a BM.
7.4.2 Ornstein-Uhlenbeck Process (OU)
Definition 7.18.
Let B = (B;)s>0 be a standard BM. Let A > 0, then
e
Y, = Bou(t > 0) (7.103)
24
is a Ornstein-Uhlenbeck Process.
The process does not necessarily start in 0. Y] = Y; — Yj is an OU issued at 0. We can see:
o
E[Y;] = —E|[B,x] =0 (7.104)
t \/27 e
) e—Z/II 5 1
E [Yf ] =57 B [Bez,u] =5 (7.105)
Lemma 7.19.
Let Y be an OU-Process. Then it holds (Y;) € S and (Y); = ¢, but Y is not a martingale.
Proof. We set B; = B,u, then
o
Y; = B, (7.106)
t \/2—/1 t
By is a martingale wr.t. F/ = Fu. (t = e>" is increasing.) Now choose F(t, x) = %x. Then
S !
Y,=F(t,B)) = f OsF(s, BY)ds +f 0+F (s, B,)dB, (7.107)
0 0
t e—/ls 1 e—/ls
= —/lf B',ds+f dB’, (7.108)
0o V22’ 0o V24
finite variation process martingale part
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7.4 Applications of Ito’s Calculus

Hence Y; is a semimartingale. For the variation, see that

- e—/ls te—2/ls
dB); = d{B’ 7.109
(fo oy )t j(; 1 (B')s ( )
te—2/ls 21
= ——d(e™ 7.110
fo 1 (™) ( )
te—2/ls 1
= —21ePds =t 7.111
fo oq 2Aeds ( )
e—/lt
= dY, = —A——B.dt + dW, (7.112)
21
where W, is a BM.
O

So the OU is the solution of the "easiest’ linear stochastic differential equation.

Remark: “A particle in a Brownian Potential”.
Newton: F =m-a. (m=1). F =ma=a=v=-&v+ W where W is a random force action of the
particle.

7.4.3 Bessel Processes (BP)

Let (B;);>0 be a d-dimensional BM, issued at x # 0 on some probability space (Q2, ¥, 7;, P¥). We
define R, := ||B,|| = \/(B})Z (B2 4+ (BY

Remark: y € RY, Iyl = |x]l. Then there exists a rotation matrix s.t. y = Ox and 00T = 1.

Since the distribution of a standard BM is symmetric around 0, the distribution of R; solely
depends on ||x]| = r. Hence from now on we will write

Br = p0..0) (7.114)

where P90 is the mass of a BM issued at (r, 0, ..., 0).

Definition 7.20.
Letr > 0,d > 2. Then R, = ||B;|]| on (Q, F, %, I@”) is a Bessel Process of dimension d.

Consider F : R > R, x = (x1, ..., X,) > /X + ... + x2 = R, = F(B;) and VF = -

Theorem 7.21.
B = (B;) ad-dim BM, d > 2, By = x. R; = || Byl

k
a) X, := ZZ=1 X,k where X,k = Ot I%st. Then (X;)r>0 is a 1-dim BM.

a) dR, = ‘%dr + dW, where W, is a BM but # B.

[03.12.2012]
[07.12.2012]

70




7.4 Applications of Ito’s Calculus

Proof. a) Leb(0<s<t:R;=0)<Leb(0<s<t:B;=0)=0.

Xk xh, = t%dusk By, = 0 k#l (7.115)
A )t = R2 D )s = t(3§)2d k=1 .
0 & T R K E
J s

t Bk 2 t Bk 2 k)2 g2
=(X) = Y (XX =) ( Sz) ds=f Z"(;) ds ™27 (7.116)
k.l © Y0 Rs 0 R;

By Levy: X is a BM.
b) R, = ||Bill = F(B),F : RY = Ry, x = (x1,..,x3) — (x1)? + ... + (x4)2. Tto’s Formula.
Caution: singularity of VF, V2F at x = 0! Way out: Y& > 0 : ||Bs|| > 0. K € N, Fx = F on Bi/k(O).
Define Tx; = inf{t > LB < 1/K) K/‘ inf{t > 1/1 : ||Bs]] = 0} = +oco. But on

7
{(t,w) : Tk (w) =t > 1/} Ito’s formula is valid for Fx and Fx = F.

¢ d t
F(By) = F(Bi;)) + f > 0F(By)dBL +1/2 f > 8; jF(B)d(B', B}, = A (7.117)
1/1 i=1 1/1 ij

Note: 0;F(x) = 7&,8; jF(x) = Gij _ xix

Ixfl> Ixll— [IBSIP
1 (Md-1
A:...=R1/1+X1—X1/1+—f ds (7.118)
2Jin Rs
Let K, [ to infinity, by continuity
1 (Md-1
R, =Ry+ X, + = d 7.119
t 0t X;+ 5 L R, N ( )
O
Remark:
d-1
t

—_———
blows up for R; small

= pushed away from 0.

Proposition 7.22.
Letd=1,a >0.

a) P(||B;|| = @ for some ¢t) = 1(d = 1)
b) d =2,a > 0,P*(]|B|]| = a for some t) = 1(x # 0)
c) d = 3,PX(IBl| = a for some 1) = min{1, &}~

d) d > 2,P*(|B;|| =0 for some ¢ > 0) =0

e) d > 3,P*(lim;_,c ||By]| = +o0) = 1 BM in d > 3 is transient
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8 Stochastic differential equations

Problem/Setting: X is a d-dimensional stochastic process, we know its evolution, i.e.

dX; = b(t, Xy)dt + o(t, X)dW,
(EQ1) t (t, Xy) o(t, X)dW; 8.1)
Xo=¢
where W is a BM on R", ¢ can be a random variable or a constant.
Definition 8.1.
We define
b(t, x) = [b;(t, x)]1<i<a the drift vector. (8.2)
o(t, x) = [0, j(t, V)] 1<i<d.1<j<n the dispersion matrix. (8.3)

From now on tacitly assume that W is a standard n-dimensional BM and that ¢ is a random vector
and that the two are independent.
Assumptions: Vi, j :

bi : R, xRY > R (8.4)
oij Ry x RY 5 R (8.5)
aij=(@ol); Ry xR - R (8.6)
are measurable.
Notation:

n
(@ijh<i,j<a With a;; = Z Tik0 jk (8.7)

k=1

is called Diffusion Matrix.

Definition 8.2.
We define the following norms

d
(e, )l == | Y bilt (88)
i=1

d n
lort, 0l 1= | > D02 (0. 0) (8.9)

i=1 j=1

Q.: What do we understand under a solution of EQ1?

8.1 Strong solutions to SDE

Given:
e Standard filtered probability space (Q, F, (¥7), P).

o W, & both given
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8.1 Strong solutions to SDE

e FV=cWs,s<0,F=FV Vo) =cW,0<s5<1,8)

Definition 8.3 (Strong solution).
A strong solution to EQ1 is a Rd-process (Xy) (on (Q, F, F;, P)) s.t.

a) Xo=~¢&a.s.
b) X is ¥;-adapted.

¢) X is a continuous semimartingale s.t. V¢ < oo

t
f 1b(s, Xl + llo(s, X)IPds < oo P-a.s. (8.10)
0

d) X, = Xo + [ b(s, X)ds + [} o(s, X;)dW, P-as. (the Ito Integral)

Definition 8.4 (Strong uniqueness).
For (EQI) holds strong uniqueness if the following holds: If X and X are strong solutions to
(EQ1) then X and X are indistinguishable, i.e.

P(X, = Xvt) = 1 (8.11)

Check lecture notes for a deterministic example where uniqueness does not hold.

Definition 8.5.
A function f is called locally lipschitz continuous iff

Yn 2130 < K, < cos.tVx,y x| < n, [lyll < n, [1f(x) = DIl < Kallx =yl (8.12)

Theorem 8.6.
Assume b, o are locally lipschitz. Then strong uniqueness for (EQ1) holds.

Remark: The exact condition is

Vn e NIK, < co¥t > OVx,y e R : [lx| < m, |yl < : (8.13)
16z, x) = b(t, Il + llo (2, x) — o (t, Yl < Kyllx =yl (8.14)

Lemma 8.7 (Gronwall’s Lemma).
Let g : [0,7] — R continous, & : [0, 7] — R integrable, 8 > 0. Then if

73
0 < g(r) < h(r) +ﬁf g(s)ds¥t € [0,T] (8.15)
0
then

f
g(H) < h(H)+B f h(s)eP9dsv¥r € [0, T) (8.16)
0

Remark: Ifh = 0 = g(t) = OVt € [0, T]. Therefore if 0 < g(¢) < ,Bfot g(s)ds = g =0/

Proof.

d !
Lo Pt —
dt(e L g(s)ds) = ... (8.17)
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8.1 Strong solutions to SDE

Proof of the Thm. Let X, X be strong solutions. Define

T = inf{t > 0 : ||IX/|| > m}, (8.18)
%, = inf{t > 0 : || X;|| > m}. (8.19)

Easy: 7, T,y /" 00 as m — oo. Define S, = 7, A Tp.

g = B[IX}" - X (8.20)
tAS tAS
=E [u f (b(s, X,) = b(s, X)) + f (s, Xy) = (s, X )dW,|I? 8.21)
0 0
2

d tAS .
= Z E f bi(s, X;) — bi(s,Xs)ds +
i=1 0

=a

n tAS"l ~ .
Zf oij(s, Xy) — 0j(s, X )dW{
=10

b+c+d...

(8.22)

(a+b)2<2a? 21> d IAS 3 ) AS ) -
< Cd,n) Z E (f bi(s,Xy) — bi(s,Xy)ds)" |+ C Z E (f oij(s, Xs) — 0ij(s, X )dWY)
i=1 0 0

i,j

(8.23)
= A (8.24)

use: (a+b+c+..)> <2a®> +2b* + 2¢* + ... By Cauchy Schwarz (ff- ldy)* < ffzdsf 1dx for
the first integral, and Ito isometry for the second.

tAS m
+C Z E [f (0ij(s, Xs) — oij(s, Xs)zds]
0

ij

d IAS
necr) Bl [ X0 - s S0Rds
i=1 0

(8.25)
[ ~tAS, d _ tIAS B
<CiB f D (bils, X,) = bis, X))’ds| + CE f D (Tij(s, Xg) = oigls, X)) ds
[0 =1 0 i
(8.26)
IAS N tAS -
= CiE f lb(s, Xs) — b(s, Xy ds| + CE f llo(s, Xg) — o (s, X)II* ds (8.27)
’ <KX =X ’ <
! !
< CtK?, f E[IX$" - X3"IPds| +CK?, f E[IIX3" - X3"IP| ds (8.28)
0 0
8(s) 8(s)
!
< CK2(1 +1) f g(s)ds (8.29)
0

Now fix T > 0, then cK2(1 + £) < cK2(1 + T) =: 8. Then by Gronwall g = 0. But g(¢) =
E [IIXtSm - )N(,S'”llz] = 0Vt € [0, T]. Therefore for all such t, X,S’” = f(f”’ as.. Letm — 00,§,, — oo.
Then X; = X, a.s. YVt € [0, T]. (by continuity and boundedness statement of theorem) O

07.12.2012]
I

{ .12.2012]
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8.1 Strong solutions to SDE

Theorem 8.8 (Global existence).
Assume E [||§||2] < coand K > O s.t.

Vi > 0x,y,€ RY, (8.30)
lIb(t, x) = b(t, V)|l + llo(z, x) — (1, Y| < K]lx — yl| (globally lipschitz) (8.31)
and
V>0, xeR? (8.32)
[b(t, x)|| + |lov(t, 0)| < K(1 + ||x][) (linear growth) (8.33)
Then
a) 3! strong solution of (EQ1)
b) VT >0,3C >0st. YO<t<T
E[IX?] < C(m) +E [IE17)) (8.34)

Remark: The theorem also holds without the condition E [||§||2] < o0

Proof. Idea: Picard-Lindelof-Iteration. Let

f(Xy) =&+ f b(s, X,)ds +f o(s, X;)dW; (8.35)
0 0
and we define
X? =& (8.36)
Xk = p(xb). (8.37)

k—o0
Hence, X¥ is an adapted and continuous semimartingale. We want to show that X — X, with
f(Xy) = X; (fixpoint), i.e. X; is the solution of (EQ1). But first we need the following lemma. O

Lemma 8.9.
For all T > 0, 4C > 0 (which depends on K and T) s.t. Yk > 0

E[IXfIP| < 1 +E[lePp Vo<t < T, (8.38)
Proof. k=0:
E[IX1P] = B [IelP] < 1+ E[lel’] v (8.39)
For any k:
d .
EW@H:ZEMﬁW] (8.40)
Xk = pcky
< 3 E (&) +( f bi(s, X )ds)? + ( f oii(s, XHdWI? | (8.41)
En apPemyn Z Z /
Holder for b; t !
s 3E[||§||2] + 3B fo Ib(s, X5)\ds | + 3E fo llo(s, X5\ 2ds (8.42)
R
<K22 [[(1+|1Xk)2ds <K22 [1(1+IX5R)ds
0<t<T d
< 3E[l€17] + 6KA(T + 1) f (1 +E[IX412])ds (8.43)
0
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8.1 Strong solutions to SDE

Thus
!
= E[IX/*IP] < 3E [I¢1P] + 6K*(T + 1) f (1 +B[IXIP]ds
S——— ————’ 0
=:gttl()
Then

!
i <C +C, f (1 + gbds
0

f ! S1
<C|+ sz lds + sz ds1(Cy + sz ds;1 +g];2)
0 0 0

<.

Recursively and

t S Sk—1 tk
f dS] f dSz...f dskl = —
0 0 0 k!

= E[IXF'I] < e KA +E [P vo< < T

Continuation of the proof of the theorem.

(8.44)

(8.45)

(8.46)

(8.47)

(8.48)

(8.49)

Step 1) For X* continuous, adapted and well-defined, then also X**1 is continuous, adapted and

well-defined.
Indeed: - Continuity and adaptedness from the definition of the integral.
- Condition c) of Def 8.2 holds:

on b

! CS. ! [
f (s, X9l + llor(s, Xy Byds 5" 4 f (s, Xb)lPds + f lor(s, X dis
0 0 0

!
<1+ t)2K2f(1 +[IXXP)ds < ooVt < 00
0

Step 2: Estimate X! — x*
For fixed k it holds

Xl _xk=B+Mm
with
!
B = f b(s, X*) — b(s, X" Nds,
0
!
M, = f (s, X5 = o (s, X5 NHdw.
0
Claim: We have

< 2E| sup [IM,|I*

0<s<t

]E[sup X5+ xk) 12 +2E

0<s<t

sup ||B,||2]

0<s<t
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8.1 Strong solutions to SDE

Proof:

d
IBIP = > (B}
i=1
d t
= Z( f bi(s, X*) = bi(s, X*"Nds)
i=1 Y0
CS and0O<t<T

d t
< T f (bi(s, X$) = bi(s, Xy ™1)ds
i=1 Y0

!
=T f I6(s, XXy — b(s, X< D)1 ds
0

<K2||X*—X*Y2byLipschitz

Hence

1 '
E[sup ||Bs||2]sK2T f ds BI1X5 - X{~'1P]
0

0<s<t ———————
:E[SUPOSSSI IxE-x¢! ]

<4>'E
i=1

d n

(Z f (01105 X5) = 5, X )W)

1t0150m4ZZE[f (O'U(S X) O',J(S Xk 1))2ds]

i=1 j=1

A
=4E f ds|lo(s, X¥) = o (s, XK1 12
0

<K?|IX{-X{1P

Thus

T !
E[sup M7 | < 4K> f E[sup ||X5—X£‘1||2]
] 0

0<s<t 0<s<t

] t
:E[S“P X5 — xHI?| < 2K*@4 + T) f dsE[ sup |1X5 — X7
i 0

0<s<t 0<u<s

Iterations as in Lemma 8.9 give

¢ k
< (Cli ’) cowithe, = 2KX(T + 4)and
cy=T sup E[IIX1 §||2] < o0
0<s<T

'Supremum wird ganz rechts bei t angenommen da integral iiber was positives

|

(8.56)

(8.57)

(8.58)

(8.59)

(8.60)

(8.61)

(8.62)

(8.63)

(8.64)

(8.65)

(8.66)

(8.67)

(8.68)

(8.69)
(8.70)



8.1 Strong solutions to SDE

last < oo since

B[IX! - ] < 2B [IX!12] + 26 [1e1] < 2(c + DE[jel?]

We have

(Cin)f

E[sup || X+ —X§||2] < CZT

0<s<t

Step 3: uniform convergence on [0, 7] for all fixed 7" > 0.

]P( sup ||Xf+1 —Xfll > — < c2

0<s<T 2k+] k!

Since )i Supy< <7 ||Xf+] - Xf [| > zk% < oo we can use Borel Cantelli which implies

Q7 : P(Q") = 1s.t.Yw € Q"IN = N(w)s.t.

Yk > N(w) sup [IX*! - X¥|| <
0<s<T

2k+ 1

1
= Vk > Nw),m=>1 sup ||X;"+k - X’S‘II <o
0<s<T 2

Cebi d(8.72 k
1 ) ezcevin( )4 4 T)

8.71)

(8.72)

(8.73)

(8.74)
(8.75)

(8.76)

Hence the sequence {Xf,O < t < T}gs1 converges in the sup-norm to a continuous process

{X;,0 <t <T}Vw € Q. = But T is any positive time.

unif

= x5 X foranyboundedtimeinterval. (8.77)
Step 4: Verify b)
B[IXIP] = & Jim 1X41P] (8.78)
< liminf B [1xf12] (8.79)
Lemma )
< CAa+E[IIEPR) (8.80)
Step 5: Check that X, = lim;_,., X* satisfies (EQ1)
! !
xHl =g 4 f b(s, XXds + f o (s, X5 )dw (8.81)
—_— —— Jo 0
_>Xt —)X()
S [y s X)ds?? = [§ (X )dW,2?
o
[11.12.2012]
[14.12.2012]
Recap:
ot 3
X; = EBeut ~ dX; = —=AX,dt + dB; (SDE) (8.82)

Are there unique solutions? Yes under the right conditions.
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8.2 Examples

8.2 Examples

8.2.1 Brownian Motion with drift

Let v € R (drift vector) and o > 0 a constant and W a BM. Then, the SDE

dX; = vdt + ocdW; (8.83)
has a unique strong solution
! t
X, = Xo + f vds + f odWg = Xo + vt + oW, (8.84)
0 0
It holds
E[X;] = E[Xo] = v¢ (8.85)
Cov(X, X)) = > Cov(W], W/) = 026, (8.86)

8.2.2 Ornstein-Uhlenbeck

Let A > 0 a constant, consider the SDE

dXt = —/IXtdt + th (887)
3! strong solution given by
!
X, =e X+ f e M=) gw; (8.88)
0
How does one get this formula? Let us set % =-1= X, = e "X,. Then
= Y, = e'X, (8.89)
= dY; = edX, + 1" X,dt (8.90)
= eM[-AXdt + dW, + AX,dt] = eM'dW, (8.91)
Hence
!
X, =Y, = f eSdwW, + Y, (8.92)
0
f
=X, =e M Xy + | e MNaw, (8.93)
\/—/ O
=Yo
Let’s check if this is really a solution.
!
X, =e M Xg+e f eYdw, (8.94)
0
t
= dX, = —Ae " Xodt — Ae™Mdt f eBdWy + e Vel dW (8.95)
0
!
= —A(e™Xy + f e aW ) dt + dW o/ (8.96)
0
=X,

The stationary distribution of the O.U. process is given by the initial condition
1
Xo ~ N, — 8.97
0~ N( 5 /l) (8.97)

Then X; ~ N(O, i) and Cov(Xj, X;) = ﬁe‘“"". The OU Process is a Gaussian process. Indeed:
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Lemma 8.10.
Let
!
M, = f h(s)dW, (8.98)
0
with & € L*(R,). Then it holds M, = N(0, (M),).
Proof. Let’s calculate (M), first.
(M), = (h(1))*(dW;)* = (h(t))*dt (8.100)
!
=(M); = f (h(s))*ds < oo by hypothesis. (8.101)
L
deterministic
7.12
= We know that for £ e R
. £2
Mt 3 (M (8.102)
is a martingale. Thus
) 2 . 2
E M e M = B|eM0] e 7 Mo = | (8.103)
. £2
=E M) = e~ T (8.104)
O
In our case h(s) = e~~9_ Thus
t t
f e =9dqw ~ N(O, f e A9 ) (8.105)
0 0
———
2t
- 22
Now assume that Xy is independent of W. Then
N o2
“Xo ~ N, — 8.106
e "Xo ~ N( 71 ) ( )
v t At—s) indep e—Z/lt 1= e—2xlt 1
X, =e"Xo+ ~A=gw, " N0, + =N[0,— |V 8.107
:”eofoe ' (24 21)(2&) 8.107)
Now calculate for s < ¢
Cov(X;, X;) =? (8.108)
Recall that X; = e~ X, + fot e~ =W gW,. Hence (with independence of Xy and W)
S !
Cov(Xs, X;) = e ™ Var(Xy) +e 9 Cow( f eMdw,, f eVdw,) (8.109)
Cov(Xo,X0)
=My
Need to get
Cov(Mg, M) = Cov(My, M) — Cov(M, M, — M) = Var(Mj) (8.110)

=0
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N s
= Cov(Xy, X)) = ") 2 4 MR [( f eﬁ“dwu)z] (8.111)
0
. )
1to I=>om» e—2/l(t+s) i + e—/l(t+S)E f eZ/ludu (81 12)
24 0
1 e2/ls -1
_ 2A(t+s) —A(t+s)
=e 82—/14'8 ST (8113)
_ 8.114
22 @.114)

Remark: Intuition: The drift b(t, x) = —Ax towards 0 € RY leads to X being stationary, i.e.
E[X;]—0 (8.115)

E[x7] - % (8.116)

8.2.3 Geometric Brownian Motion

Let o # 0 and u € R. Consider the SDE

dX; = uX,dt + o X, dW,
(= HAAET R (8.117)
Xo=x> 0
Then there exists a unique strong solution given by
v
X, = xe= Wi > 0 (8.118)
To get (8.118) we set
Y; = In(X;) (8.119)
orom dX; 1 (dX)?  pXudt + 0X,dW, 10*X2dt o?
N ) P = - = L = (u— =)dt + odW, 8.120
= Y, is a BM with drift  — &".
o2
InX) =Y, =Yy + (u- 7)1‘ + oW, (8.121)
o2
=X, = Mk W (8.122)

But since Xp = x = /0 = x ®.

8.2.4 Brownian Bridge

Leta,b € R,T > 0. Then the Brownian Bridge from a at time ¢t = 0 to b at time ¢ = T is the
solution of

dX, = ZXdt+aw, ,0<t<T
! (8.123)
X() =da
The solution is
1-Ly+24T-p [ Ldw, ,0<t<T
x, = =T ) Jy 7AW (8.124)
b =T
Does X; — bfort / T? Consider thecase 7 = 1,a = 0 = b. Then:
X, =1- t)Wﬁ (8.125)

. O N — t—1
Fort/l.Wﬁ \/ﬁixf Vi-t— 0
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8.2.5 Linear system (d=1)
Let us consider the case where the drift is given by

a(t,x) = a1 (t)x + ax(t)
and the dispersion is given by

o(t,x) = o1(t)x + o(t)
with ay, ap, 071, 0, bounded in time. Then our SDE is given by

dX, = a(t, X)dt + o(t, X,)dW, = X,dY, + dZ,
Xo=¢

! !
Y, = f ai(s)ds +f o1(s)dW;
0 0

t t
Z,:fas(Z)ds+f o (8)dW;
0 0

We know that 3! strong solution: Let

with

1
&! = exp(¥, - 5

=X, =&+ fot(asy)—l(dzs — o1(s)aa(s)ds)). How does one get that? We have

(Y), = f o1(s)*ds
0

t 2 f
=87 = exp [f (ol(s) _nl) )ds +f O'I(S)dWs]
0 2 0

Consider
0, = % - X&)
=dQ, :yfg i—? + X, d[(EV) ] + dX,.d[( &)
But

d[(E)] = d(e Y3

1t6 Form.

1 1
=" (ENH N (=dy, + FAX);+ 5d(¥))

=& ay, +dyy)
N—— N——"
aj(Ddt o (1)*dt

X, X X,
= dQ, = % + 8—;(—dY, +d(Y),) + %(—dy, +d(Y),)

t t t
= (SIY)_] dX; + X((=dY; + d(Y);) + dX,(=dY; + d(Y),))
= (EN (X dY, + dZ, -X,dY, + X,d(Y), + (X,dY; + dZ;)(d(Y), — dY,)
N———
(8.1=28)dXt
= (&N NdzZ, + X,d(Yy, - X, d(Y), — dZ,dY,)
=& Ndz,+ dz, dv, )
~—— N——
=02 (t)dW; =01 ()W,
= (&) 1dzZ, - o1 (o2 (H)dr)
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8.2 Examples

And hence with Q, =

Xl XO
&~ &l
——

—lm

:x=$@+£@5ﬂﬂramwmmm

= + f ENNdZ, - o1(s)72(s)ds)
0

(8.140)
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9 Connection to PDE: The Feynman-Kac
Formula

Discrete time:

9.1)

Vu=g onQ
u=>0 on 0Q

< had a probability formula written as E [] with some stopping time Tgq.
Today we consider the heat equation.

9.1 Heat equation

Let u(t, x) be the temperature in an isotropic material without dispersion at time ¢ and position
x € R?. Let D be the diffusion constant. Then it holds

ou D

This is the Heat-equation. Now we add an initial condition, and hence have

du — DAy
{ZLO;Zfﬁﬁ (EQD
More generically we have:
O + divy = o (loss/source of energy) 9.3)
y = —%D(x)ﬁu (current) (9.4)

1) By scaling in space and time we can assume Wlog D=1. One can see that

oy im ©.5)
pix%,y) 1= .
' (V2niyd
solves (1) with u(x, 0) = 6,(x). For general f
uei= [ oy = 1O ©9.6)
R
solves (1). Here W is a BM starting from x.
We now consider a generalisation, with an external cooling:
ou _ 1
i EAM - K(x)u (EQZ)
u(x,0) = f(x)
Here K(x) is the cooling rate at the position x.
Solution (Kac ’49)
u(x, 1) = B [ F(Wye b KW (EQ3)
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9.1 Heat equation

(EQ3) is called the Feynman-Kac formula.

Parenthesis: Consider a particle with mass m in a (conservativ) potential field V(x). In Quantum-
Mechanics the state of the system is given by a complex function y;(x) € L>(R?). Evolution:
(Schrodinger eq.)

h2

o = 2o A+ V0w 9.7)

where 71 = % is the Planck constant.

Feynman Idea (1948):
W(x)” =" average over all possible trajectories of ¢ with S the *action’ of V. (9.8)
= He wrote
Yi(x) = Const f €i¥¢o()’(1)) Dy 9.9)
A \/_/

’"co-dim. leb. meas.”

with A = {Continuous functions y mit y(0) = x} and

t
S = fo %(Y'(S)z) —V(Y(s))ds (9.10)
|
kineticenergy
This is mathematically ill-defined. Kac noticed that if you consider ”purely imaginary” times
(t — it) = the Schrodinger equation becomes (EQ2). Using the idea of Feynman he got the
representation of (EQ2) above.

Definition 9.1.
Let f: R? - R, K : R? — R, be continuous functions. Assume, v is a continuous real function
onR? % [0,T],ve C>'(R?x [0,T)) s.t.

d =1 d
{‘a‘? +Kv=3Av onR?Yx[0,T) (EQ4)

v(x,T) = f(x) ,x R4

Then v is called a solution of the Cauchy problem for the backwards heat equation (EQ4) with
potential K and final condition f.

Theorem 9.2.
Let v as in Def 9.1. Assume that

2
max [v(z, x)| < Ce®l™” vx e R? (9.11)
0<t<T
for a constant C > 0 and 0 < a < 2}—(1. Then v has the stochastic representation

(5) v(x, 1) = EX(f(Wr_y)e~ b KOsy 0 << T x e RY 9.12)

Moreover, v is unique.

Corollary 9.3.
By taking 7 — T — t one gets the stochastic representation of (2) given by

u(x, 1) = BY | f(W,)e™ b KWods 9.13)
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9.1 Heat equation

7 K(Wy)d
Proof of the Theorem. Let g(9) := v(Wy, 1 + 9)e~ b KW What is dg(9)?

d(e N K(Wodsy — o= I KWods _ g (Wg))dd (9.14)
dv(Wy,t +9)) = v(Wy, t + H)dd + Vv(Wy, t + )dWy + %AV(Wﬂ, t + ¥)dd (9.15)
E2Y (W 14+0)d0+Kv(W 1+9)d9
= Vv(Wy, t + H)dWy + Kv(Wy, t + 9)dd (9.16)
And thus

= dg "2 ke b K ay 4 o b KB Kyag + VedWy) (9.17)
= o b KOVets)dsgy 1 4 9)aw, (9.18)

Hence we have
o(9) = g(0) + fo 'k KOWst+)ds (Wt 4+ 1) d W, (9.19)
o

= g is a local martingale with g(0) = v(Wy, ) = v(x, t). Let us introduce the stopping time
Sy = inf{t > 0 Wil = nVd},n> 1. (9.20)
Letr € (0,T —¢t). Then
v(x, 1) = E* [v(Wo,0)] = E*[g(0)] = E*[¢(SH A 1)] 9.21)
= EX[v(Ws, 1+ S0 b K<Ws>‘”1{s,1g}] vE [VO FrWoe b Kby (9.22)

(A) (B)

ad (B) Asn /o and r /' T —t, by dominated convergence
T—t
(B) = E¥ [V(T, Wr_ e b ’“Wﬂ‘“] v (9.23)

Remains to show: Asn 7 co (A)N\ 0.

K>0
Al < EY|(Ws,,t+Sp)ILis,<n) (9.24)
re(0,T1) ——
€(0,T)
< CE* [eallwsnllzﬂs,,gr] (9.25)
Def of adn2 X
<" CeE (1, <r] (9.26)
S)l
s d
adn X ()
< Ce ;P (52% W) > n) (9.27)
5 d
<Ce N B (max W > n) +P* (max W > n) 9.28)
o 0<t<T 0<t<T
R d
= 2Ce ™ N (WY 2 n) + P (-Wy) 2 n) (9.29)

princ.

=1

'P(S, < T) < P(maxoser D(W)? 2 n2d) <P(3: (W) 2 n?)
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9.1 Heat equation

We know

(n:F)c(I))2
T e 2T 1 _a2
PEWP >n) < | —Z— "% & (9.30)
r 2 nF xD

~ 2 _n? .
= |A| < Ce™ =7 — 0 since we assumed a < ﬁ.

[18.12.2012]

[08.01.2013]
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10 Brownian Martingale

10.1 Time changes
Goal: Show the following: Let X € M?{)c with (X). = oo, then if we set
7, =1inf{s > 0 : (X)s > 1} (10.1)
it holds that
B; =X, (10.2)

isa BM (w.r.t. ¥7,) and X; = B(xy,.

Definition 10.1.
Let R = RU{c0}. Let f : R, — R, a monotone increasing, right-continuous function with
foo 1= lim,_,o f(¢) € R,. Then the right-inverse of f, denoted by fI=!1, is defined by

fEN@E) = inf{s > 0: f(s) > 1} (10.3)
=sup{s>0: f(s) <t} (10.4)
= Leb(1 /<) (10.5)

with inf{0} = oo.

Lemma 10.2.
a) flI-1': R, — R, is monotone increasing and right-continuous.
i1
b) (A7) =
c) f(f[‘l]) > 5 A foo. If fis continuous (in t) and fo, = oo, thenf(f[‘”) = 5.

d) fI=!is constant on [f(z), f(£)), Yt > 0.

Proof. ad a) It’s easy to see that fI=!l is increasing. Now verify that fI=! is right-continuous.
Since fI=1is increasing we have e < limg s FI=1(9). To show: limg 4 W) < ).

Let s := fI7U(r) = Ve > Oitholds f(s+&) > tand forall 9 € (¢, f(s+¢&)) we have fI71(9) < s+¢
since fI7H(9) = sup{u : f(u) <9 < f(s + &)}

SuU<s+e
Thus we now have limg , fI7H@) < limg o s + & = 5 = fI7U(@). O

Definition 10.3.
A time change (T});»¢ is an increasing, right-continuous process 7 : Q x R, — R, with T} is a
stopping time V.

Example: o 7, =¢*1>0
o T, =t AT with T stopping time.

o T, =t+ T with T stopping time.
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10.1 Time changes

e T, =inf{s > 0: A > t} where A is an adapted, right-continuous, increasing process. (*)
= From Def 10.1: T, = Ag_l] and we know that: T; is a stopping time & Ay = 1o r,)(s) is
adapted. Thus all time changes are of the form (x) with A, = inf{s > 0 : T > t}.

Definition 10.4.
Let g : R, — R, be an increasing, right-continuous function. A function f : R, — R is called
g-continuous if

f |[g<r_),g(r)] (10.6)

is constant V¢ (with g(7) < co)

Example: Let f : R, — R, continuous, increasing, then f is fi=-continuous. Indeed: Vs €

A1), f70@)] < 00 = f(s) = £(A0)).

Definition 10.5.
Let (X;);=0 an adapted process with X, € R. If either (T});s is a finite time change (i.e. T; < oo
a.s.) or Xo = lim,;, X; € R exists a.s., then we define the time changed process by

X R, xQ->R (10.7)
(t, ) = X(w) := X7,(0) () (10.8)

This process is adapted to % o= ¥r,.

Remark: If X € M = X is not always a Martingale. For example: X = BM, T, = inf{s > 0 :
maXo<yu<s Xy > t}. By the continuity of the BM we have X, =t¢ M.

Definition 10.6.
Let (T7)s>0 a time change. A process (X;)>o is called (T;)>0-continuous if for a.e. w : X(w) is
T (w)-continuous, i.e. 1 — X,(w) is constant on all intervals [T, (w), T;(w)].

This ensures the continuity of X!

Lemma 10.7.
Let X € My, and T, := inf{s > 0 : (X); > t} = (X)E_l]. Then, X is (T;);>0-continuous.

Proof. For given w in a set of measure 1, and s € R, s.t. (T});>0 has a jump at s,

[Ts_(w), Ts(w)] = [a,D)(b > a) (10.9)
&(X)(w) is constant on [a, b] (10.10)
© X, (w) is constant on [a, b] (10.11)
O

Theorem 10.8.

Let (T)s>0 be a time change and X € H? with X is T-continuous.
= X € A? := {continuous L> — bounded Mart. w.r.t (?A',),Zo} (10.12)
Moreover:
A ! —_— —_—

(XD = (X1, = (X)r = (X)o = (X)1, — (X)7, (10.13)
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10.1 Time changes

f of 10.7 A —
Proof (Sketch). X T-continuous prooé (X) T-continuous. = X, := X7, and (X), = (X)r, are

continuous, since X and (X) are constant on jumping points of 7. Now since X € H? it holds

X; = E[Xol|F:] (10.14)
and furthermore
X7, = E|XalF]. (10.15)

Thus (X,),Zo is a (?A',),Zo—Martingal and is L?-bounded. For the latter see

E[supX%] < E[supr] < o (10.16)

>0 >0

Now let’s show the formula. First one can see, that

X7, = (X)1,| < sup X2+ (X)eo (10.17)
>
The right part is in L since
XeH? = supX, eL? (10.18)
>0
and
X2 = (X)eo € Mipe, X2 € L' = (X)oo € L' (10.19)

i.e. unif. integrable. Now one can stop and see

N X% - (X)r,=E [xfo - (X)OO|TTI] (10.20)
i.e. X2 = (X) is ¥ -Martingale. = (X) = (X), — (X)o 5

[08.01.2013]
[11.01.2013]

Remark: We need the term (3?)0. For example if we consider a timechange T, =t + c,c > 0.

Corollary 10.9.
Let X € Moo, T = (Tt)s>0 a finite time change, and assume that X is 7-continuous. Then,
X € M, := {continuous local martingales w.r.t. 75',} (10.21)
and
&) = X) - (X (10.22)

Proof. WLOG X, = 0 and let o be a stopping time s.t. X” € H?. Define the stopping time

G:=inf{s>0:7T; > o} (10.23)

X(J'/\T, o2 TO

= X0 =Xs0, = X7, = .
t TNt G {XTO o < TO

Thus

X7 - X1, = X7 - X§, (10.24)
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10.2 Applications

Similarly one gets
0 = X, = X9 = (X7, (10.25)

Now consider a sequence of stopping times (07),>1 S.t. 0, / o and X7 € Hz(e.g. o, =

: : A . R 108 —
inf{r : |X,| > n}). Then it also holds that &, oo, since {6, < 1} = {0, < T;}. = X» € H?
(10.24) . N A i

= X% e A” and thus we have that X is a local martingale. For the formula, one can calculate

&y 2V (e, R X = (X7 "ET 0 - X, (10.26)
=(&yom
Taking n oo, since &, /* oo a.s. we get the result
Xy = X0, - (X (10.27)
——
=X,
O

10.2 Applications

Theorem 10.12.
Let (X;)s>0 be a d-dimensional BM w.r.t. (¥;);>0 and 7 a finite stopping time. Then,

B, = Xpir — Xo (10.28)

is a d-dimensional BM w.r.t (Fr+/):>0-

A 10.9 & 10.8 N
Proof. Let T, := t + 7. Then X; = X;.. = B, is a Martingale w.r.t (Fr+)s0 = (F1)r0-

Moreover:

(BLBYy, 2 (X XT)r = (X XT)e = 635t + 7) = 8yj7 = 165, (10.29)

Polarisation

By the Levy-characterization, B is a d-dimensional BM w.r.t. (F1r)r>0. O

Theorem 10.13 (Dubins-Schwarz).
LetX € M?oc with (X)o, = o a.s.. Then

B, := Xr, (10.30)
with
T, :=inf{s > 0 : (X), > 1} = (X)} 71! (10.31)
is a standard 1-dimensional BM w.r.t (¥1,)r>0 and

X; = By, (10.32)

Proof. T, is a finite time change, because (X),, = oo a.s.. By Lemma 10.7, we know that X is
T-continuous. By Cor 10.9: (B} )0 € MO Tt starts from 0 since Xo = 0, Ty = 0. Also

loc*

=X,
(BY = (X), = (X0 = (X7, = (X)7y = (X) 1 2y (10.33)
~—— t 1—(X) cont., incr., (X)oo=00

=0
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10.2 Applications

Thus B is a local martingal with (B), = t. By Levy we get that B is a BM. Furthermore

Bixy, = X1y, = X (10.34)
where we use in the last ”="" that
T, =inf{s > 0 : (X); > u} (10.35)
Tix, = infls > 01 (X), > (X)) V=" (10.36)
O
Definition 10.14.
Let 7 be a stopping time. A process (B;);>0 is called BM stopped by 7 if
eBe M) (10.37)
By, =tAT (10.38)
Theorem 10.15.
Let X € M?Oc with X, (w) := lim,_, X;(w) exists and (X)o, < oo a.s.. Define
X if £ < (X)oo
B, = X1 M1 <X (10.39)
Xoo lft > <X>oo
with
T; = inf{s > 0 : (X); > t}. (10.40)
Then (B;);>0 is a BM stopped by (X)w
Proof. For given n, consider
T™ := T, An. (10.41)
Then Tt("> is a finite time change. Now define
B" = X . (10.42)
By Cor 10.9:
(B™Y, = (X) 0 = (X)ypm (10.43)
t 0
=0
= (X)7T,n (10.44)
=t A (X), (10.45)
Taking n — oo finishes the proof. O

.01.2013]
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11 Girsanov’s theorem

11.1 An example

Let Z = (74, ..., Z,) be N (0, 1)-distributed on a space (2, ¥, P). Let 4 = (uy, ..., ) € R" be a fixed
vector. Define a new measure by

Qdw) = eZi-1 AW~ TiL K P(d o), (11.1)

One can compare this to the moment generating function to see, that this is still a probability
measure. We now have

1 %
P(Z, € dzy,....Z, € dz,) = Wﬂe éde (11.2)
and
_ 1 L _(Zk-#k>2
QZy € dz1, s Zy € dzp) = G g e T dz, (11.3)

i.e. Z ~ N(u, 1) with respect to Q. Thus {Z := Zx — uy, k = 1,...,n} are iid. N(0, 1)-distributed r.v.
with respect to Q.

”The Girsanov Theorem extends this idea of invariance of Gaussian finite-dimensional distribu-
tions under appropriate translations and changes of the underlying probability measure, from the
discrete to the continuous setting. Rather than beginning with an n-dimensional vector (Z1, ..., Z,) of
independent, standard normal random variables, we begin with a d-dimensional Brownian motion
under P, and then construct a new measure Q under which a “’translated” process is a d-dimensional
Brownian motion.” - [KS91, p. 190]

11.2 Change of measure

Consider a filtered standard probability space (2, F, (F)r=0,P). Let T € R, and for all ¢ € [0, T']
let Q; a probability measure with Q, <« P. If we take Z; = % as the Radon-Nikodym-derivative,
we have

e Z; >0o0nQ.
e O, =ZP,ie. [,dQ = [, ZdPVA € F,.
o Ep[Z] =1

Definition 11.1.
(Qy)refo.1 is consistent, if

Q=Qon(QFH)V0O<s<t (11.4)

If Q is consistent, then YA € ¥ (s < 1)

f Z.dP < f dQ, e f do, < f Z,dP (11.5)
A A A A

Thus we have Z; = E [Z|F;]. So Z is a martingale on [0, T'].
Viceversa: For all Martingales (Z;)[o,r], with
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11.2 Change of measure

e 7, >0
e E[Z]=1,Yte][0,T]

Qy := Z,P is a family of consistent probability measures.

Lemma 11.2.
Forall Z > 0,Z € Mjpe, AIL € My s.t. Z = EF = exp(L — 3(L)). It is given by

f
1
L, = In(Zp) + f —dZ;. (11.6)
0 Zs
Proof. Tto-Formula:
ln(Z)—ln(Z)+ft1dZ 1j‘tld(Z) (11.7)
t) = 0 0 2 s ) 0 Z% s .
b Q.
1
=L - §<L>t (11.8)
Regarding (A): (LY, = (% + Z) = (& - (D).
Uniqueness follows from
I R 1
L - §<L>z =In(Z) = L, - §<L>t (11.9)
- |
=L — L = (L) — (L)) (11.10)
S—— 2
EMIUC' D
€A
Thus L[ = ZJ[. O

Remark: Z = exp(L — %(L)). IfZo = 1 = Ly = 0 and from Theorem 7.12 we know that Z is a

martingale (not just local!) & E[Z;] = 1Vt

Q.: Is
Me MwrtP o Me Mwurt. Q? (11.11)
No! But it holds
SeSwrtPe S eSwrt. Q (11.12)
S =M;+A S =M, +A (1113)
where M is the martingale part w.r.t. P, M, is the martingale part w.r.t. Q.
Q.: How does one determine M;, A>?
Consider Z € M (not only local) and T € R, fixed. Set Qr := Z7P.
Lemma 11.3.
Let 0 < s <t < T and let Y be ¥;-measurable with Eg, (|Y]) < co. Then,
1
Eq,(YIFs) = Z—EP(YZtlﬁ) a.s. w.r.t. Q7 and P. (11.14)
s
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11.2 Change of measure

Proof. LetA € F.

1
f Leyvzir)  dor = f Ep[YZ,|F,1dE (11.15)
AZs ~— A
B 4Qy=Z;dP
=Ep[ 1a Ep[YZIF]] (11.16)
N——
Fy-meas.
= Ep[Ep[1AYZ/|F5]] (11.17)
:fYZ,dP (11.18)
A \,—/
o
= f YdQr (11.19)
A
[

Notation: We write

M., = {cont. local martingales (Mreo.r) writ (2 Fro (Feror B) : Mo =0} (11.20)
/\N/I?OC,T = {cont. local martingales (M;)ci0.1) W.1.t (&, Fr, (Fi)icio.11- Q) : My = 0} (11.21)

Theorem 11.4.
LetMe M) . andZe M,Z >0,E[Z] = 1V and Q, = ZP, then

M, := M, - (M,Ly, € M}, (11.22)
with
"]
L, :=1n(Zp) + f —dZ, (11.23)
0 Zs
and it holds
(M); = (M), (11.24)

on [0,7] X Q a.s. w.r.t. P and Q7.

Proof. WLOG M, (M), {L) bounded in ¢ and w. Then M is bounded because

(M, L) < N{M)(L) (11.25)
Now, since L; := In(Zy) + fot zivdZS
1
<M9L>l = <Mvz.z>l (1126)
unita 1
ke Z (M, Z), (11.27)
Watanabe Z

Using integration by parts we can now see

! !
ZM, =Zy My + f Z.dM; + f MdZ, +(Z, M), (11.28)
! A A - -
= f Z.dM, — f Zod{M, L)+ f MdZ +(Z, M), (11.29)
Ad(M.Z), (Z.M),

! A
= f ZdM, + f MdZ, (11.30)

0 0
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11.3 The Theorem of Girsanov

Thus ZIMI (S M?OC T (*)
ButVO<s<t<T:

s 51 .
Eo, (M|F,) = —Ep(M,ZIF) (11.31)
S
(%) 1 ~ ~ ~0
= Z—MSZS = M; € My, 1 (11.32)
N
|
11.3 The Theorem of Girsanov
Let W be a d-dimensional BM and X a d-dimensional adapted process with
T
P(f (Xf)2dt<oo)=1v1sksd,T<oo (11.33)
0
Then define
d t
Li:=(X-W), = Zf Xk aw* (11.34)
k=10
and
d 1 1 d !
Z, = &M = exp Z f xkawk - ~ Z f (X*Y2ds (11.35)
0 2 0
k=1 k=1
= (Z))r>0 is a local cont. martingale with Zy = 1.
Theorem 11.5 (Girsanov).
Assume that Z; defined above is a martingale. Set
Wk—Wk—fthds k=1,..d;t>0 (11.36)
t = t K D — Ly ..Uyl = .
0

Then VT € [0, ), the process W= (W,)te[o,ﬂ = (th, ves Wf),e[oj] is a d-dimensional BM w.r.t.

(Q, Fr, (Forero,1), Qr) with Qr = ZrP

[15.01.2013]

Proof. Theorem 11.4 gives us
W, = (W,Ly e M}, ;
We compute
d
W= (WK, Ly, = W= (Wh S (X Wiy

=1

d
W X (WK W),
=1

Watanabe

!
= W{‘—f Xkds
0

= Wk

=0t
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(11.38)
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11.3 The Theorem of Girsanov

And thus Wtk € M° . Further, Theorem 11.4 implies

loc,T*
(Why, = (Why, =1t (11.42)
and with polarisation
(WE, W, = (WK, Wy, = 6t (11.43)
Levy gives that W is a BM. O
Theorem 11.6 (Novikov).
Define Z := &L = oL 2D, If
E[e%<L>f] <00 ¥t 20 (11.44)

then Z is a martingale.

Let W be a 1-dimensional BM w.r.t. (Q,F, ()0, P) and for a b # 0, let
Tp :=inf{s > 0: W, = b} (11.45)

Proposition 11.7.

2
o P(Ty € di) = %e‘%dt
T

o E[e™T] = exp(~Ibl V2a),a > 0

Proof. 1) already computed.

2)
_ © e bl 2
E[e™] :f Mo dt (11.46)
0 V2rs3
= 5 b
= 7[ e e 22 du (1147)
rJo
2 il f Y ey
= —e¢ e u dl,t (1148)
\r 0

with ¢ = 5.

Remains to show F(c) := fooo e dy = \/é For ¢ = 0 /. Then take

dgic) = .. =2F(c)- 2[000 dxe 5 = 0, (11.49)
O
Consider the process
W= (W0 = (W; — ut)s0 (11.50)
where u is a constant. Girsanov gives, that W is a BM w.r.t.
Pt .= ZP (11.51)
with
7, = etWimak't (11.52)

Here we have L, = uW, and (L), = ,uzt.
= W, = ut + W, is a BM with drift g w.r.t. P*. (W, is a BM with drift —u w.r.t. P.)
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11.3 The Theorem of Girsanov

Proposition 11.8.

b —ut)?
PA(T, € di) = — 21 =S oy (11.53)
2113
(e ™) = exp(ub — |b| \Ju? + 2a), @ > 0 (11.54)
Proof.
PA(Ty < 1) = B'(Ti7,<n) (11.55)
PH=7,P
= E(lir,<nZ) (11.56)
= E [E []]-[TbSI]ZtlfTb/\l]] (1 157)
= E[1i1,<nE [Z|F1ynel] (11.58)
Y2 B [Lr,<nZra] (11.59)
Opt. Sampl.
=E(lr,<n Zr, ) (11.60)
N——
el‘b’%ﬂsz
=E [H[Tbg]e_%’“‘zne’“‘b] (1161)
! b 5
= f s L2 (11.62)
0 27ms
Thus
d
PH(Ty € df) = d—tIP’“‘(Tb <1)|dr (11.63)
b 2
_ohrg L -8 (11.64)
2713
bl _ow?
= e 2 dt (11.65)
V2113
00 _% (h—z;m)z |b|
e N
Bf(eTr) = f e —— (11.66)
0 2783
o 00 as —3—2 b|
e ﬂbf PRl (11.67)
e S .
0 V2rs3
=E[e ]
PRI b b V2t (11.68)
O
1 2 2
PYT, <t)=. = f " TIP(T), € ds) = é’E [e—szﬂ[T,,g]] (11.69)
0
Corollary 11.9.
PH(T), < 0) = exp(ub — |ubl) (11.70)
1 if = sgn(b
_ : sgn(u) = sgn(b) (11.71)
exp(=2lubl)  if sgn(u) = —sgn(b)
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11.3 The Theorem of Girsanov

Proof. From (11.69) we have

2
PH(T), < 1) = e"’E [e—”sz] (11.72)
11.8 b Mz
= e exp(—|bl4[2=) (11.73)
i 2
=7
= exp(ub — |ub|) (11.74)
O
Corollary 11.10.
Let u > 0, W, = inf,~o W;. Then
PH(~W, € db) = 2ue”*#°db, for b > 0 (11.75)
PH(-W, <0)=0 (11.76)
Proof. Letb > 0.
PH(=W, < b) = PHT_}, < 00) = e (11.77)
Then differentiate by b to see
PH(—W, € db) = 2ue™*db, forb > 0 (11.78)
(11.79)
O

[18.01.2013]
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12 Local time

Q:Ifge C? and B is a BM, then,

t 1 t
g(Bz)=g(Bo)+fg'(Bs)st+§fg"(Bs)ds
0 0

What happens if g is not C2, but maybe g € C?(R\ {z1s o0 zk))?

(12.1)

Lemma 12.1.

Let (B;)>0 be a 1-dimensional BM. Then, the It6-Formula still holds for Y; = g(B,) if g is C!
everywhere and C 2 except for finite # of points z, ..., 2k, if g’ is (locally) bounded for x ¢ {zy, ..., zx}

Proof. C? approximation as in the picture

Choose f, € C?>st. f, — g, f — g uniformly in n and f/ — g” on R\ {z1,...,zx} and

|,/ (x)| < M for x in a neighbourhood of {zj, ..., zx} Now use Itd on f,:

! / 1 ! 44
Ja(Bp) = fu(Bo) + f Ja(Bs)dBs + 3 f Ju (Bs)ds (12.2)
0 0
This equation converges in L? as n — oo towards
t 1 !
oB) = 5B+ [ BB+ [ ¢ Boas (123
0 0
O
Theorem 12.2 (Tanaka).
Let Bbe a 1-d BM and A the Lebesgue-measure. Then,
1
L :=1lim —A({s € [0,1] : B; € [-&,]}) (12.4)
£l0 2
exists in L?(Q, P) and it is given by
t
L= 18- 180l - [ sgn(z)a, (125)
0
Remark: L, is called the local time of the BM at 0
Proof. Let us consider the function
|| x> e
ge(x) = (12.6)

1 2
sEe+%) Lhxl<e
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12 Local time

Then we have g, € C2(R \ {—¢, &}), g € C'(R).

1 ,X> &
ge(x)=1-1 ,x<-¢ (12.7)
T L hl<e
By the previous Lemma
1 1
iﬁ%st =wﬂ%&ww1£gwm& (12.8)

—
=L A({s€[0,1]:Bye(~e,6))— L,

since g’ (e)(x) = é]l(_a,a)(x), x ¢ {-¢g,&}
—0
g:(B) = |B,|

! t
yﬂgm—w@wm%yfm&m@@%w@MMZ (12.9)
0 0 T
Ito ! BS’ 2
=E f 1 (B,e(-e.e0)(— — sgn(By)) ds) (12.10)
isom 0 E
<1
4 e—0
< f P(Bs € (—¢,8))ds — 0 (12.11)
0
O

Remark: For f € C? : |[f(t)| - |f(0)| - fot sgn(f(s))f'(s)ds = 0, but d|B;| # sgn(B;)dB; since
|Brsar — Byl # sgn(B)(Brrar — Br) (12.12)

e.g. is By < 0 and Biipar > 0. Thus the L; can be viewed as a correction term.

101



13 Representation of local martingale as
stochastic integral

Let B be a BM and denote by 7% the Brownian filtration. i.e. (F ? = 0(Bs,0 < 5 < 1)+
rightcontinuous + complete = 7 5.

Theorem 13.1.
Let (7—‘,3),20 be the Brownian filtration. Then, each local (F ,B)tzo—martingale M has continuous
version with stochastic integral representation:

!
M, :M0+f H,dB, (13.1)
0

where My and H € L>(Q x R,,P ® Leb) are uniquely determined by M. Moreover, if M is a
continuous martingale, then

d
H; = E‘<M’ B) (13.2)
Remark:
= H,dt (13.5)
t
= (M, B), = f Hds (13.6)
0

Remark: EI(TtB)tZo-martingale M s.t. the BM B can not be written as By + fOIA sdM;. Recall:

L; = |By| — |Bo| - fot sgn(Bs)dB;. Let B; := fot sgn(By)dBy. B is adapted to T8 (B has indep. incr.).
What is {8);?

dp; = sgn(B;)dB; (13.7)
= d{(B); = (sgn(B,))*d(B), = dt (13.8)
=B =t (13.9)

ThusBisa FB_BM. Assume that AA,, F B-measurable s.t.
!
B; = f AdBs (13.10)
0

= B is ﬁﬁ-measurable = 7",3 C T;B. Now: B; = |By| — L;. One can prove that L, is a r.v. w.r.t.
o(1Bs,0< s <t)= B, e FP = F8 c FF < FI¥ but this is wrong, it holds F,*' ¢ F58

[22.01.2013]
[25.01.2013]
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14 Connection between SDE’s and PDE’s

b:RY 5 R? (14.1)
o R - R (Lipschitz, bounded, measurable) (14.2)

a=oo'l, a;j = Y- Ok jk Let (By)=0 be a BM. Let X be the solution of

{d)x(;f = b(XX)dt + o(X)dB, (143)
X0 =X
Theorem 14.1.
Let f € Co(R?),u € Cp([0,00) X RY) N C2((0, 0) x RY) s.t. u solves the Cauchy Problem, i.e.
9 d
Eu(t, x) = Au(t, x) for allt > 0, x € R (14.4)
u(0, x) = f(x) for all x € RY (14.5)
where
d 3 1 & 9
Au(t, x) = ; i) cut,X)+ 5 ; 711 g ). (14.6)
Then
u(t, x) = E[f(X])] (14.7)

Proof. (From now on write X; = X;.) Fix T > 0 and use ’time reversal’,
M, = u(T —t,X,). (14.8)

Then, by 1t6’s Formula,

&9 0 ' ARSI O v
M, = My + 5— T—5.X)dX? — | Zu(T - s,X,)ds + = E T — 5, X,)d(X", XU
' 0 j(; ~ 3xz'u( 5 Xs X, j; atu( $: Xs)ds 2[0 = axiaxju( 5 X s

(14.9)
; d P ; d 9 . 1 P
= My + L ; bi(XS)a_xiu(T -5, Xy)ds + L ; 2 a'ij(Xs)a—Xiu(T -5, X,)dBy’ — [) (?_tu(T -5, X;)ds +
: (14.10)
_ " % 0 D, (T4 0
= My + fo ; ; Ty (X) g (T = 5. X,)dB; +f0 (A= 2u(T = 5. X,)ds (14.11)
=0

loc.Mart.

Use that d(X(i),X(j)>S = Zk,l O'ikO'j[d<B(k), B(l)>s =D O'ikO'jde = al-jds.
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14 Connection between SDE’s and PDE’s

Thus we have that (M;);>¢ is a local martingale. u bounded = (M;)o<;<r is bounded. Hence
(M})o<i<T 18 a true martingale. For any £ > 0

(T, x) = u(T - 0,X5) = Mo = E[Mo] = E [u(e, X}._,)| E [u0. x| =E[fxp] (14.12)

because u is bounded continuous. Thus u(7T, x) = E [ f (X;)] O
Theorem 14.2.
Let D ¢ R? be open, Z = ({0}x D) U([0, ) XAD), f € Cp(Z), u € Cp([0, 00) x D)NC3((0, 00) X D)
S.t.
d .
EuzAu in (0, 00) X D (14.13)
u=fonZ (14.14)
Then
u(t,x) =E[f(t=1 ATp. X)) (14.15)

where 7p is the exit time from D,

Tp = inf{t > 0 : X;" ¢ D} (14.16)

Proof. Fix T >0, set M; = u(T —t, X;"). As before, M is a martingale.

= Mrpe, =u(l =T AN1p, X7,,,) (14.17)
0, X% T
_ JuO-Xp) < (14.18)
M(T—TD,X.I).CD ,T>TD
=f(T' =T AN7p, XTr1p) (14.19)
= u(T,x) = E[My] = E[Mrpr,| =E[f(T =T Atp, X72rp)] m|

Theorem 14.3.
Let D c R be open, Tp < o a.s., f € Cp(D),u € Cp(D) N CE(D), s.t. u solves the Dirichlet
problem, i.e.

Au=0in D (14.20)
u= fondD (14.21)
then
u(x) = B[ f(X2)]. (14.22)
Proof. Let v(t, x) := u(x) for all t > 0. Then v solves
gv(l‘, x) = Av(t, x) (14.23)
at ~—
H_a_/ =0
v = fon[0,00) X 0D (14.24)
v=uon{0}xD (14.25)

= u(x) = W(t,x) = B[ f(X5)) Liryen]| + B [ F(XE,) Liry2 |- Take the limit r — oo : since 7pp < 00 a.s.
and f, u are bonded, we get

u(x) = B[f(X2,)]+0 (14.26)

O
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14 Connection between SDE’s and PDE’s

Remark: It is usually not trivial to chek tp < oo. A sufficient condition would be: D bounded &

Zle aiji > 1 > 0 for some A.

Theorem 14.4.
Let D c R% be open, E[rp] < 00, g € Cyp(D),u € Cp(D)N Clz)(D) s.t. u solves the Poisson problem,
i.e.
—Au=gin D (14.27)
u = 0ondD. (14.28)
Then,
TD
u(x) = E[f g(Xf)ds]. (14.29)
0
Proof. Consider M; = u(X;) + fot g(Xy)ds. For t < tp: By Ito’s-formula,
= Mo+ f Z bi(X) u(X )ds + f Z Z 7ij(X)5 - u(X )dBY (14.30)
i=1 j=1
f Z 1 (Xe) g K )ds + f g(X,)ds (14.31)
i,j=1 0
!
= My + local martingale +f Au(X;) + g(Xs)ds (14.32)
0
=0(byassumption)
= (My)o<i<rp 1s a martingale. = (M;a7,)>0 1S @ martingale.
TD TD
= (u(x) = E[My] = E[M,] = E[u(XfD) al g(xs)ds] - E[ | g(xs>ds] (14.33)
0 0
O

Corollary 14.5.
If —Au = g in D, u = f on dD, then u(x) = E [ f(X+,) + [;” g(X,)ds]-

[25.01.2013]
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