
Appendix

We collect here some definitions and results (largely without proofs) that
are usually included in first year graduate analysis and probability courses.
Proofs that are omitted can be found in standard texts for such courses,
such as [9], [11], [18], [23], [26], and [41]. Precise locations of these proofs
are given following the statements of the results.

A.1. Commonly used notation

Here are some notational conventions that we will adopt:
(a) The complement and closure of a set Aare denoted by AC and A

respectively.

(b) If A is an event, lA will denote the indicator random variable that
takes the value 1 on A and 0 on AC.

(c) If F is a o-algebra of subsets of 0, ~ E F means that ~ is measurable
on (0, F).

(d) If ~k are random variables, then 0-(6, 6, ... ) is the smallest rr-algebra
with respect to which they are all measurable.

(e) The expected value of a random variable X is denoted by EX.

(f) If ~ is a random variable and A is an event, then E(~, A) means
E(~lA).

(g) The maximum .and minimum of two numbers are denoted by V and
1\, respectively.

(h) The rationals, the d-dimensional integer lattice, and n-dimensional
Euclidean space are denoted by Q, z«. and Rn, respectively. The nonnega-
tive rationals are denoted by Q+. -247



248 Appendix

(i) The centrallimit theorem is often abbreviated CLT.
(j) The restriction of the function f to the set A is written fiA.
(k) Weak convergence of prob ability measures is denoted by =?

(1)The product measure on {O, l}S with density p, where S is countable,
is denoted by vp.

(m) An equality preceded by a colon (:=) indicates that the right side
defines the left side.

A.2. Some measure theory

The main result that is used to construct prob ability spaces that support
random variables with prescribed finite-dimensional distributions is due to
Kolmogorov. Suppose that we would like the random variables X(t) indexed
by t E [0, CX)) to have certain finite-dimensional distributions. These of
course must be consistent, in the sense that if J.Ltl, ... ,tn is the prob ability
measure on Rn that is the desired distribution of (X(tl), ... ,X(tn)), then

J.Ltl, ... ,tn(A X R1) = Ptl, ... ,tn-l(A)

for all Borel sets A c Rn-I. Let n = R[O,=), endowed with the smallest
o-algebra such that the projection w ---t w(t) from n to R1 is measurable for
each t.

Theorem A.1 (Kolmogorov). Given a consistent family of probability mea-
sures J.Ltl, ... ,tn) there exists a unique probability measure J.L on n so that the
induced measure generated by the projection w ---t (W(tl), ... ,w(tn)) from n
to Rn is J.Ltl, ... ,tn for each choice of ti > 1 and tl, ... ,tn. [18, page 471]

Once we have such a J.L, we can define random variables X (t) on n by
X(t,w) = w(t). They have the desired joint distributions. Note that every
event in n is of the form

for some A c R= and some countable collection of ti 's, since such sets form
a rr-algebra with respect to which the projections w ---t w(t) are measurable.
This means that Kolmogorov's theorem for an uncountable collection of
random variables is no deeper than it is for a countable collection of random
variables.

Quite often, one needs to verify that probabilities or expectations satisfy
certain identities that are easy to check for special events or random vari-
ables. In order to extend these identities to more general events or random
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variables, one often uses the following results. The relevant definitions are:

Definition A.2. Suppose (0, F) is a measurable space.
(a) A collection of events P c F is a 1T-system if

A, B E Pimplies An B E P.

(b) A collection of events L c Fis a A-system if it satisfies the following
three properties:

(i) °E L,
(ii) A, BEL and A c B implies that B\A E L,

and

(iii) An E L and A~ t A implies that A E L.

Theorem A.3 (1T- A theorem). Suppose P is a 1T-system and L is a A-
system satisfying P c L. Then L contains the a-olqebra (J(P) generated by
P. [18, page 444]

Theorem A.4 (Monotone dass theorem). Suppose that P is a 1T-system
that contains 0, and that H is a vector space of random variables satisfying
the following properties:

(i) A E P implies lA EH.

(ii) x; EH, X bounded, and x; t X implies X EH.

Then H contains all bounded (J(P) -measurable random variables. [18, page
277]

A.3. Some analysis

Ametrie space (S, p) is said to be separable if it contains a countable dense
set. It is complete if every Cauchy sequence has a limit. It is locally compact
if for every x E S there is an E > 0 so that the closure of the open ball

{YES:p(X,Y)<E}

is compact. Typical examples with all three properties are the Euclidean
spaces Rn. A function h on a locally compact metric space is said to vanish
at infinity, written

lim h(x) = 0,
x-+oo

if for every E > 0 there is a compact set K c S so that Ih(x)1 < E for all
x tj:. K. Every continuous function that vanishes at infinity is uniformly
continuous.

A set A c S is said to be nowhere dense if (A)C is dense.
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Theorem A.5 (Baire category theorem). A complete metric space is not
the union of countably many nowhere dense sets. [41, page 139]

If S is a linear space, the metric is often given in terms of a norm:
p(x, y) = Ilx - yll, and in this case, the space is said to be normed. A
Banach space is a complete normed linear space. Its dual S* is the Banach
space of all bounded linear functions on S. The topology on S determined by
the norm is called the strong topology. ,The weak topology is the weakest
topology that makes all elements of S* continuous. These topologies are
generally not the same. However, the following statement is true, and its
corollary is used in Chapter 3. The proof of the theorem is an application
of the Hahn- Banach theorem.

Theorem A.6. A linear subset of a Banach space is weakly closed if and
only if it is strongly closed. [41, page 201]

Corollary A.7. I] L is a linear subset of a Banach space and L; and Lw
are the strong and weak closures of L respectivelu, then L; = Lw·

Proof. Since the weak topology is weaker than the streng topology (i.e.,
has fewer closed sets), L; C Lw. By Theorem A.6, L; is weakly closed, so
Lw C t.; 0

In Chaper 3, the calculus for Banach space-valued functions plays an
important role. There are analogues of both the Riemann and Lebesgue
integral for Banach space-valued functions. The analogue of the Lebesgue
integral is known as the Bochner integral. For the purposes of this book,
the analogue of the Riemann integral for continuous functions suffices. For
a treatment of this integral, see Chapter 5 of [29]. Here are the basic facts.
The proofs are essentially the same as the ones for real-valued functions.

For a continuous function h : [a, b] ---+ S, where S is a Banach space,
define the modulus of continuity by

8h(E) = sup Ilh(s) - h(t)ll·
Is-tl:::;€

The function h is differentiable at t E (a, b) if

h' (t) := lim h(~) - h(t)
s-vt s - t

exists strongly. It is continuously differentiable if the derivative is continu-
ous.



A.3. Some analysis 251

For a partition 7r = {a = to < tl < ... < t.; = b} of [a, b] and intermedi-
ate points Si E [ti, ti+l], define the Riemann sum by

n-l
R(h,7r) = I:h(Si) (ti+l - ti)'

i=O

The mesh of 7r is defined by 17r1= maxi (ti+l - ti)'

Theorem A.8. Suppose h : [a, b] -t S is continuous. Then the following
statements hold:

(a) h is uniformly cotitinuous, i. e.,

lim <5h ( E) = O.E~O

(b) Given two partitions 7rl and 7r2 and corresponding sets of intermedi-
ate points, if 7r2 is a refinement of 7rl, then

(c) The following limit exists:

(b h(t) dt:= lim R(h,7r)".Ja 17rI~O

(d) 11J: h(t) dtll < J: IIh(t) 11dt.
(e) The function

t -+ l his) ds

is continuously differentiable, and

:tl his) ds = h(t).

Theorem A.9. If h : [a, b] -t V is continuously differentiable, thent h'{t) dt = h{b) - h{a).

Improper integrals are defined in the natural way:

(= h(t) dt = lim (b h(t) dt,Ja b~=Ja
provided the limit exists strongly. A sufficient condition for this is that h
be continuous on [a, 00) and

10= IIh(t) 11dt < 00.

E =
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A.4. The Poisson distribution

A nonnegative integer-valued random variable ~ is said to be Poisson dis-
tributed with parameter A > 0 if

Ak
P(~=k)=e-AkT' k=0,1,2, ....

The Poisson distribution has a number of very special properties. Here are
some of the most important:

(a) If 6, ... ,~m are independent Poisson distributed random variables
with parameters Al, ... , Am, and mo = 0 < ml < ... < tn; = m, then

i=l i=ml-l +1
are independent Poisson distributed random variables.

(b) If 6, ... ,~m are independent Poisson distributed random variables
with parameters Al,·.·, Am and ~ = l:i ~i,then conditionally on ~ = k,
6,···, ~m have a multinomial distribution with parameters k and pj , ... ,Pm,
where Pi = Ai! l:jAj.

(c) If ~ is Poissori distributed with parameter A and conditionally on
~ = k, 6, ... ,~m have a multinomial distribution with parameters k and
PI, ... , Pm, then unconditionally, 6, ... ,~m are independent Poisson dis-
tributed random variables with parameters m>, ... ,PmA. They are called
thinnings of ~.

A.5. Random series and laws of large numbers

An important tool in analysis of sums of independent random variables is
the Borel-Cantelli lemma. Given a sequence of events An, define

{An i.o.} = nU Ak·
n k?n

Lemma A.10 (Borel-Cantelli). Suppose An is a sequence of events.
(a) Ifl:nP(An) < 00, then P(An i.o.) = O. [18, page 46]
(b) If the events are pairwise independent and l:n P(An) 00, then

P(An i.o.) = 1. [18, page 50]

This is but one example of a result that says that the probability of a
certain type of event must be zero or one. Here are two others.

Definition A.11. If 6,6, ... are random variables, the tail o-algebra is
00

T = n o-(~k, k > n).
n=l
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Theorem A.12 (Kolmogorov 0 -llaw). 1f 6,6, ... are independent ran-
dom variables, then P(A) = 0 or 1 for every A E T. [18, page 61]

Definition A.13. If 6,6, ... are random variables, the exchangeable (J"-

algebra E consists of those events defined in terms of this sequence that are
not changed when finitely many of the ~i 's are permuted.

Theorem A.14 (Hewitt-Savage 0 - 1 law). 1f 6,6, ... are independent
and identically distributed random variables, then P(A) = 0 or 1 for every
A E E. [18, page 172]

One consequence of Theorem A.12 is that aseries of independent random
variables either converges a.s. or diverges a.s. The following theorem is useful
in showing that such aseries conyerges a.s.

Theorem A.15 (Levy), 1f 6,6, ... are independent random variables,
then I:k ~k converges a.s. if and only if it converges in probability. [23,
page 201]

Here is an example of its usefulness. Convergence in L2 is easy to check
directly, and implies convergence in probability; a.s. convergence is harder
to check.

Corollary A.16. 1f 6,6, ... are independent random variables with mean
o and I:n E~~ < 00, then I:n ~n converges a.s.

Laws of large numbers are often obtained as consequences of convergence
of random series. Here is the main statement.

Theorem A.17 (Strong law of large numbers). Suppose 6,6, ... are i.i.d.
random variables with a finite absolute first moment. Let Sn = 6 + ... + ~n
be their partial sums. Then

lim Sn = E6 a.s.
n-too n

[18, page 64]

A.6. The centrallimit theorem and related topics

Many theorems in prob ability theory are distributional, rather than point-
wise. The centrallimit theorem is, of course, the most important of these.

A.6.1. Weak convergence. Weak convergence is an important tool in
proving distributional limit theorems. The most natural setting for this
theory is a metric space. An excellent reference for this material is [3].
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Definition A.18. Suppose S is ametrie space.

(a) If /-lk and /-lare probability measures on the Borel sets of S, then /-lk
is said to converge weakly to /-l (written /-lk ::::}/-l) if

lim J f d/-lk = J f d/-lk-too
for all bounded continuous real-valued functions f on S.

(b) If Xl, X2, ... and X are S-valued random variables, then Xk con-
verges weakly, or in distribution, to X (written Xk ::::}X) if their distribu-
tions converge weakly, which means that .

lim Ef(Xk) = Ef(X)k-too
for all bounded continuous real-valued functions f on S.

Proposition A.19. Suppose that /-lk and /-l are probability measures on the
Borel sets of the metric space S. Then /-lk ::::}/-l if and only if

lim /-lk(A) = /-l(A)k-too .
[or every Borel set Ac' S such that /-l(BA) O. [Here BA denotes the
boundary of A.) [3, page 11]; [20, page 108]

The following two concepts play an important role is proving weak con-
vergence of probability measurcs.

Definition A.20. (a) A family TI of prob ability measures is said to be
relatively compact if every sequence in TI contains a weakly convergent sub-
sequence.

(b) A family TI of prob ability measures is said to be tight if for every
E > 0 there exists a compact K C S so that /-l(K) > 1 - E for every /-l E TI.

It turns out that these concepts are equivalent in commonly occurring
metric spaces:

Theorem A.21 (Prohorov). If S is complete and separable, then TI is rel-
atively compact if and only if it is tight. [3, page 37]; [20, page 104]

A property that makes weak convergence particularly useful, is the fact
that the weak convergence of one sequence implies the weak convergence of
many others.

Proposition A.22. Suppose Sand T are meiric spaces and Xk and X
are S -valued mndom variables. If cjJ: S --+ T is measurable and satisfies
P(X E A) = 1 [or some measurable set A on which cjJis continuous, then
cjJ(Xk) ::::}cjJ(X) uiheneuer Xi; ::::}X. [3, page 30]
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A.6.2. Characteristic functions. The main tool for proving central limit
theorems is the characteristic function.

Definition A.23. The characteristic function of a random vector ~ =
(6, ... ,~n) in Rn is the function

cp(t) = CP(t1, ... ,tn) = Eei(t,~) = E exp {it tj~j }.

J=l

Proposition A.24. I] the characteristic functions of two random vectors
aqree, then so do their distributions. [18, page 167]

Proposition A.25. 1f CPk is the characteristic function of the random vector
Xk, CPk ----t cP poiniunse, and cP is continuous at the oriqiti, then cP is the
characteristic function of a random vector X, and Xk =? X. [11, page 161]

Theorem A.26 (The Cramer-Wold device). For random vectors Xk and
X in Rn, Xk =? X if and only if (t, Xk) =? (t, X) for every t E Rn. [18,
page 168]

A.6.3. The central limit problem. The main case of the central limit
problem is given by the theorem below. Mare generally, one considers arbi-
trary normalizing sequences andj'or tri angular arrays of random variables,
rather than sequences.

Theorem A.27 (Centrallimit theorem). Suppose 6,6, are i.i.d. ran-
dom vectors with finite second momenis, and let Sn = 6 + + ~n be their
partial sums. Then

Sn --;nnm =? N(O, ~),

where m = E~i and ~ is the covariance matrix of ~i. [18, page 168]

The following result follows from the central limit theorem and the Kol-
mogorov 0 - 1law, Theorem A.12.

Corollary A.28. I] 6, 6, ... are i.i.d. random variables with mean 0 and
finite uariance, and Sn = 6 + ... + ~n are their partial sums, then

1· Sn d n . f Sn
im sup r,;:; = +00 an im m r,;:; = -00.
n-too V n n-too V n

Stable laws play an important role in the treatment of the general cen-
tral limit problem. They are exactly the possible distributional limits of
sequences of the form

Sn - an
bn

where Sn is the nth partial sum of a sequence of i.i.d. random variables, and
bn > 0 and an are normalizing sequences. Here is the definition:
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Definition A.29. A prob ability measure u on Rl is said to be stable if for
every al, a2 > 0 there exist a > 0 and b so that a16+ a26 and a~ + b have
the same distribution, where 6,6, and ~ are independent random variables
with distribution u.

The class of stable laws is known explieitly. Here is a the deseription of
the most general stable eharacteristie function.

Theorem A.30. A function cjJ(t) is the characteristic function of a stable
distribution if and only if it is of the form

<p(t) = exp {ht - clW (1+ iß 1:1w(t, a)) },
uihere-» E Rl, C > 0, 0 < a < 2, IßI < I, and

{
tan ?Ta if a #- 1;

w(t o) - 2
, - ~ log Itl if a = 1.

[18, page 153]

The parameter a is called the index of the stable law. The stable law is
said to be one sided if ß = ±1, and symmetrie if ß = "Y = O. If a = 2, the
stable law is normal; if a = 1, ß = 0, it is Cauehy.

A seeond tool that is used in proving convergenee in distribution is the
method of moments. Here is the main statement.

Theorem A.31. Suppose the sequence ~n satisfies the following:

Ck = lim E~~
n-+oo

exists and is finite for k = 1,2, . . .. Then there exists a random variable ~
with moments given by E~k = Ck. I], in addition, the distribution of ~ is
uniquely determined by its mometiis, then ~n =? ~. [18, page 105]

Most potential limiting distributions, such as the Poisson, normal, and
absolute value of anormal, as well as all distributions with bounded support,
are uniquely determined by their moments.

A.6.4. The moment problem. The classical moment problem asks for
eonditions on a sequence of numbers that guarantee that it is the sequenee
of moments for some distribution. The cleanest solution to this problem is
for distributions on [0,1]. Suppose 0 ::; ~ ::; 1, and put Cn = E~n. Then for
nonnegative integers m, n,
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It turns out that this condition on the sequence Ck is both necessary and
sufficient for the existence of a distribution on [0, 1] with these moments.

Theorem A.32. The sequence Ck is the sequence of moments of a distri-
bution on [0,1] if and only if Co = I, and the sequence satisfies

t (~)(-l)k
Ck+m > 0 .

k=Q .

for every m, n > 0.

Proof. One direction was proved above. For the other direction, consider
random variables ~n with distributions given by

p(en = ~) = (]) I: (n /) (-l)kCk+j, j = O,l"n
k=Q

(A.1)

These probabilities are nonnegative by assumption. We will see shortly that
they sum to 1. Take l > 0, and compute as follows for n > l, using the
identity

and making the change of variables m = k + j in the sum:

E(nfn) = tm (])I: (n k j) (-l)kCk+J
i=! k=Q

=(7) t (:~~)cm~(-l)k(mk l) (7) Cl
m=l k=Q

Setting l = ° in this identity shows that the probabilities in (A.1) sum to
1. Then dividing both sides of the identity by nl and passing to the limit
shows that .

lim E~~ = Cl, l > 0.
n-too

Therefore ~n =? ~ for some random ~ satisfying E~l
Theorem A.31.

Cl for l > ° by
o

An irnportant application of this result is the following characterization
of infinite exchangeable sequences of Bernoulli random variables. A sequence
of randorn variables is said to be exchangeable if the joint distributions are
invariant under permutations of finitely many indexes. For Bernoulli random
variables ~n, this means that

P(~nl = 1, ... ,~nk = 1) = P(6 = 1, , ~k = 1)

for any k > 1 and any choice of indexes nl < n2 < < nk.
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Theorem A.33 (De Finetti). 1f ~n is an infinite exchangeable sequence of
Bernoulli random variables, then there is a random variable 0 < ~ < 1 so
that

P(6 = 1, ... , ~k ~ 1) = E~k
for k = 1,2, ....

Proof. Let

cm,n = P(6 = 1, ... ,~m = 1,~m+l = 0, ... ,~m+n = 0).

Then
Cm n = Cm+l n + Cm n+l·, , ,

By induction on n, using the identity

we then see that

Cm,n =t(~)(-1)k
Ck+m,O

k=O
By Theorem A.32, there is a random variable 0 < ~< 1 so that E~k = Ck,O,
k>l. 0

An alternate statement of Theorem A.33 is the following. If S is count-
ably infinite, then every exchangeable probability measure J.L on {O,l}S can
be expressed as a mixture

'"= 10' vp"((dp),

where l/p is the homogeneous product measure with density p and I is a
prob ability measure on [0, 1]. (The measure I is the distribution of the
random variable ~ appearing in the statement of Theorem A.33.)

A.7. Discrete time martingales

A filtration is an increasing sequence {Fn} of rr-algebras. A sequence X;
of random variables is said to be adapted to the filtration if Xn is Fn-

measurable for each n.
Given an integrable random variable X and (I-algebra Q, the conditional

expectation E(X I Q) is the a.s. unique random variable that has the fol-
lowing two properties:

(a) E(X I Q) is Q measurable.

(b) E[E(X I Q), A] = E(X, A) for every A E Q.
Conditional expectations satisfy a number of inequalities. Perhaps the

most useful is the following:
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Proposition A.34 (Jensen's inequality). 1f fjJis a convex function and both
X and fjJ(X) are integrable, then

. fjJ(E(X! Q)) < E( fjJ(X) ! Q) a.s.

[18, page 223]

The following property is often useful. The idea behind it is that when
conditioning on Q, any Q measurable random variable can be treated as a
constant.

Proposition A.35. Suppose that f(x, y) is a bounded measurable function,
X is Q measurable, and Y is independent of Q. Then

E(f(X, Y) ! Q) = g(X) a.s.,

where g(x) = Ef(x, Y).

Definition A.36. Given a filtration {Fn}, a sequence of integrable adapted
random variables {Mn} is said to be a martingale if

E(Mn+1 ! Fn) = Mn for each n.

It is said to be a submartingale if

E(Mn+1 ! Fn) > Mn for each ti,

and a supermartingale if

E(Mn+1 ! Fn) < Mn for each.n.

An application of Jensen's inequality gives the following result, which is
useful in constructing submartingales from martingales.

Proposition A.37. 1f {Mn} is a martingale and fjJis a convex function for
which fjJ(Mn) is integrable for each n, then {fjJ(Mn)} is a submartingale.

The two main substantive results for martingales are the stopping time
theorem and the convergence theorem. In order to state them, we need two
definitions:

(a) A random variable T with values in {O, 1, ... ,(X)} is said to be a :
stopping time if {w : T(W) = n} E Fn for each 0 < n < 00.

(b) A family {XaJ of random variables is said to be uniformly integrable
if

lim supE(!Xa!, !Xa! > N) = O.
Ni-vco a

The following is a useful sufficient condition for uniform integrability.

Proposition A.38. 1f sUPa EX~ < 00, then {Xa} is uniformly integrable.

j
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Proof. Use
EX2

E(IXal, IXal > N) < Na. 0

Proposition A.39. 1f EIXI < (0) then the collection {Xg := E(X I 9)})
where 9 runs over all a-olqebras, is uniformly integrable.

Proof. Without loss .of generality, assume that X > O. Since {Xg > N} E

9,
E(Xg, Xg > N) = E(X, Xg > N).

Now use
P(Xg > N) < EXg = EX.

- - N N

Theorem A.40 (Stopping time theorem). Suppose M = {Mn,n > O} is a
subttuirtinqale, and CJ,< T are two finite stopping times. 1f either T is a.s.
bounded or M is uniformly inieqrable, then

o

[18, page 270]

Closely related is the following:

Theorem A.41 (Wald's identity). I] 6,6, ... are i.i.d. random variables
with EI61 <(0) Sn = 6 + ... + ~n) and T is a stopping time relative to the
filtration Fn = CJ(6, ... ,~n) that satisfies ET < (0) then EISTI< 00 and
EST = E6ET. [18, page 178] ,

The stopping time theorem can be used to prove the next two important
inequalities.

Theorem A.42 (Doob's inequality). 1f {Mk, 0 < k < n} is a nonnegative
submartitujole, then

)"P( max Mk' > )..)< EMn, x > 0,
O~k~n '

and as a cotisequence,

[18, pages 247-248]

Given areal sequence {xo, ... ,xn} and a < b, the number of upcrossings
from below a to above b is the maximum value of k so that there exist indexes
o < j1 < J2 < ... < j2k < n satisfying Xji < a for odd i and Xji > b for
even i. The martingale convergence theorem is proved using the bound on
upcrossings given next.



A.8. Discrete time Markov chains 261

Theorem A.43 (Upcrossing inequality). I] M = {Mk,O < k < n} 2S a
submartingale, then

EM+ + laiE#{ upcrossings by M from below a to above b} < bn_ a .

[18, page 232]

Theorem A.44 (Convergence theorem). 1f Mo, MI, ... is a submartingale
that satisfies sup., EIMnl < 00, then limn-too Mn exists and is finite a.s. I],
in addition, the submartingale is uniformly integrable, then the convergence
also occurs in LI. [18, page 233] ,

When applied to the martingale Mn = E(X I Fn) for some integrable
random variable X, we have the following statement:

Corollary A.45. 1f X is integrable, then E(X I Fn) converges a.s. and in
LI to E(X I F), where F is the smallest a-clqebra containing all the Fn 'so

Occasionally, reversed martingales will be needed. The difference in the
definition is that now the Fn 's are decreasing rather than increasing, and
the martingale property becomes

E(Mn I Fn+l) = Mn+l for each n.
The convergence theorem is even simpler in this case:

Theorem A.46. Every reversed martingale converges a.s. and in LI. [18,
page 263]

A.8. Discrete time Markovchains

A discrete time Markov chain on a countable set S is determined by a matrix
p(x, y) indexed by x, y E S that satisfies

p(x, y) > 0 and I:p(x, y) = l.
y

These are the one-step transition probabilities. The k-step transition prob-
abilities pk(X,y) are defined recursively by pI(X,y) = p(x,y) and

Pk+I(X,y) = I:Pk(X,Z)P(z,y)
z

for k > 1. These satisfy the Chapman- Kolmogorov equations

Pj+k(X, y) = I:Pj (x, Z)Pk(Z, y).
z

The corresponding chain with initial state Xo = Xo is the sequence of random
variables Xk with finite-dimensional distributions given by

P(Xo = XO,Xl = Xl, ... , Xn = z.,) = p(xo, XI)p(XI, X2) ... p(Xn-l, Xn).
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Probabilities and expectations for the chain with initial state x are denoted
by P" and EX respectively.

Definition A.47. The Markov chain is said to be irreducible if for every
x, y E S there is a k so that Pk(X, y) > O.

Definition A.48. Astate x E S is said to be recurrent if

PX(Xn = X far some n > 1) = 1.

Otherwise, it is said to be transient.

Proposition A.49. For an irreducible chain, either all states are recurrent,
or all states are transient.

Definition A.50. An irreducible Markov chain is said to be recurrent if all
states are recurrent, and transient if all states are transient .

. The Green function G(x, y) for a transient Markov chain is the expected
amount of time spent at y by the chain starting at x:

00 00

G(x, y) = EX L l{xk=y} = LPk(X, y).
k=ü k=ü

It is always finite.
Next come definitions that are relevant to the convergence theorem.

Definition A.51. (a) A measure 7r on S is stationary for the chain with
transition probabilities p(x, y) if

L 7r(x)p(x, y) = 7r(Y), Y E S.
X

A stationary measure satisfying Lx tt (x) = 1, it is called a stationary dis-
tribution.

(b) An irreducible Markov chain is positive recurrent if it has a (neces-
sarily unique) stationary distribution.

(c) An irreducible recurrent Markov chain that is not positive recurrent
is null recurrent.

Definition A.52. An irreducible Markov chain is aperiodic if the greatest
common divisor of {n > 1 : Pn (x, x) > O} is 1 for every (equivalently, for
some) x E S.

Theorem A.53. For an irreducible, aperiodic, positive recurrent chain,

lim Pn(x, y) = 7r(Y),
n-too

where 7r is the stationary distribution. [18, page 310]
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If S = Zd and p(x, y) = p(O, y - x), the eorresponding Markov ehain is
ealled a randorn walk. In this ease, the ehain starting at x ean be realized
as a surn of independent, identieally distributed randorn veetors,

n

x; = X + L~k,
k=1

where P(~k = y) = p(O, y). Here are sorne useful suffieient eonditions for
reeurrenee and transienee of randorn walks.

(A.2)

Theorem A.54. Consider an irreducible random walk Xn of the form (A.2)
and assume that the moments occurring below are well-defined.

(a) 1f d > 3, then x; is transient. [18, page 193]
(b) 1f E~k =I=- 0, then Xn is transient.
(c) I] d = 2, E~k = 0, and EI~kI2 < 00, then Xn is recurrent. [18, page

188]
(d) I] d = 1 and E~k = 0, then Xn is recurrent. [18, page 188]

A.9. The renewal theorem

Let Sn = 6 + ... + ~n be 'a strictly inereasing randorn walk on Z1. The
renewal sequenee u( k) associated with this randorn walk is defined by

(A.3) u(k) = P(Sn = k for sorne n > 0).

It satisfies the renewal equation

k

u(k) =LP(~ = j)u(k - j), k > 1.
j=1

Theorem A.55. Suppose that the possible values of the random walk are
not contained in a proper subgroup of Z1. Then

1
lirn u(k) = EI:'

k.-vco <"

where the limit is interpreted as ° if E~ = 00. [9, Chapter 10]

A.I0. Harmonie functions for discrete time Markov chains

A function cx on S is said to be harmonie for the Markov ehain with transition
probabilities p(x, y) if it satisfies the rnean value property

(A.4) Lp(x, y)cx(y) = cx(x)
y
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for all x. Typically, these arise in the following way: If CeS, the Markov
property implies that

(A.5) o:(x) = PX(Xn E C i.o.)

is harmonie.

Of course, constants are always harmonie. An important problem is to
determine whether all harmonie functions that are either bounded or positive
are constant. This is certainly not always the case. For example, if S is a
tree in which every vertex has exactly three neighbors, and p(x, y) = 1/3
whenever x and y are neighbors, it is easy to eonstruct many noneonstant
bounded harmonie functions explicitly. A simple example is of the form
(A.5) where C is "half" the tree, i.e., all vertices to one side of a particular
edge - say the one joining vertiees u tt. C and v E C. If d(x, y) is the length
of the shortest path joining x and y, then

{

12-d(x,u)
0: x - 3( ) - 1- !2-d(x,v)

ifx tt. C;

if x E C.

See Figure 4.

1
12 11

12

11
12

1
"3

2
"3

1
12

11
12

Figure 4: A noneonstant bounded harmonie function on the binary tree.

11
12

Here is one ease in whieh all positive harmonie functions are eonstant.

Theorem A.56. Suppose the ehain is irredueible and recurreni. Then every
positive harmonie junction is eonstant.

Proof. If 0: is positive and harmonie, then o:(Xn) is a positive martingale.
Therefore, by Theorem A.44, lim., o:(Xn) exists a.s. Sinee Xn visits every
state infinitely often, 0: is eonstant. 0

Corollary A.57. An irredueible random walk on Zd cannot be positive re-
curreni.

=
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Proof. If the random walk Xn is reeurrent, so is the random walk -Xn. A
stationary measure for one is a harmonie function for the other. 0

An important property of random walks is that all bounded harmonie
functions are eonstant. There are various proofs of this result. For a eoupling
proof, see Section 1 of Chapter II in [31]. Here we give a proof based on the
martingale eonvergenee theorem.

Theorem A.58. Suppose Xk is a random walk on Zd that is weakly irre-
dueible in the sense that for eaeh x, y E z-, there is a k > 0 so that

I] a is a bounded harmonie funetion for this random walk, then a is eonstant.

Proof. Suppose a is bounded and harmonie. Then h(Xn) is a bounded
martingale with respect to P" for any x:

The first equality uses the Markov property, while the seeond is just (A.4).
Therefore, by Theorem A.44,

(A.6)

exists a.s. (PX
) and in LI. This limit is exehangeable, so it is a eonstant,

possibly depending on x, by Theorem A.14. Sinee EXa(Xn) = a(x) for
every n, the limit in (A.6) is a(x). Writing this statement in the form

a(x) = lim a(x + 6 + ... + ~n) = lim a((x + 6) + 6 + ... + ~n),
n~oo n~oo

we see that

a(x) = a(x + 6) a.s.

Iterating this leads to

a(x) = a(x + 6 + ... + ~n) a.s.

for every n, Therefore a(x) = a(y) whenever Pn(x, y) > 0 for some n > 1,
so a is eonstant by the irredueibility assumption. 0

A.ll. Subadditive functions

Subadditive functions and proeesses arise in many probabilistie applieations.
The sub additive property is key in proving many limit theorems. Here is an
example.
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Theorem A.59. Suppose that f : [0,00) -+ R1 is right continuous at 0,
satisfies f(O) = 0, and is subadditive in the sense that f(8+t) < f(8) + f(t)
[or 8, t > O. Then

c = 1im f(t) = sup f(t) E (-00,00]
t..l-O t t>O t

exists.

Proof. Let
c = sup f(t).

t>O t
Fix 8 > 0 and for 0 < t < 8, choose an integer n > 0 and 0 < E < t so that
8 = nt + E. By subadditivity,

f (8) nt f (t ) f (E)-< -+-.
8 - nt + E t 8

Pass to the limit as t {. 0 along a sequence tk for wh ich

1· f(tk) 1·· f f(r)1m -- -+ Imm --.k-too tk r..l-O r
Since the corresponding E'S and n's tend to 0 and 00 respective1y, it follows
that

f (8) < lim inf f (r) .
8 - r..l-O r

Therefore
c < 1iminf j (r )

- dO T

as required. o

L
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