Institut für Angewandte Mathematik SS 2017

Patrik Ferrari, Eva Kopfer & Angelo Profeta

6. Übungsblatt "Einführung in die Statistik"

Abgabe: Mittwoch 14.6.2017 in der Vorlesung

1. (Zusammenhang zwischen Konfidenzbereich und Tests)

[5 Pkt]

Sei $(\mathcal{X}, \mathcal{F}, P_{\vartheta} : \vartheta \in \Theta)$ ein statistisches Modell. Zeigen Sie:

- a) Ist $C: \mathcal{X} \to \mathcal{P}(\Theta)$ ein Konfidenzbereich zum Irrtumsniveau α und $\vartheta_0 \in \Theta$ beliebig gewählt, so ist $\{x \in \mathcal{X} \mid \vartheta_0 \not\in C(x)\}$ der Ablehnungsbereich eines Tests von $H_0: \vartheta = \vartheta_0$ gegen $H_1: \vartheta \neq \vartheta_0$ zum Niveau α .
- b) Ist umgekehrt für jedes $\vartheta_0 \in \Theta$ ein nichtrandomisierter Test für $H_0: \vartheta = \theta_0$ gegen $H_1: \theta \neq \theta_0$ zum Niveau α gegeben, so lässt sich daraus ein Konfidenzbereich zum Irrtumsniveau α gewinnen.

2. (Tests) [5 Pkt]

Jemand behauptet, mittels übernatürlicher Fähigkeiten die Farbe der verdeckten obersten Karte eines gut durchmischten Skatblatts auf lange Sicht in mindestens 1/3 aller Fälle richtig vorhersagen zu können. Nehmen wir an, Sie bezweifeln das und verdächtigen, dass die Person einfach rät. Vereinbaren Sie für $\alpha=0.05,0.01,0.001$ jeweils einen Test, so dass eine Fehlentscheidung sowohl in der von Ihnen unterstellten als auch in der vom Gegenüber behaupteten Situation höchstens mit Wahrscheinlichkeit α gefällt wird.

3. (Beste Tests) [5 Pkt]

Geben Sie in den beiden folgenden Fällen einen besten Test für H_0 : $P = P_0$ gegen $H_1: P = P_1$ zum Niveau $\alpha \in (0, 1/2)$ an:

- a) $P_0 = \mathcal{U}_{(0,2)}$ und $P_1 = \mathcal{U}_{(1,3)}$.
- b) $P_0 = \mathcal{U}_{(0,2)}$ und P_1 hat die Dichtefunktion $\varrho_1(x) = x \mathbb{1}_{(0,1)}(x) + \frac{1}{2} \mathbb{1}_{[1,2)}(x)$.

4. (Bayes-Tests) [5 Pkt]

Sei φ ein Test von P_0 gegen P_1 in einem Alternativ-Standardmodell $(\mathcal{X}, \mathcal{F}, P_0, P_1)$. Weiter seien $\alpha_0, \alpha_1 > 0$. Zeigen Sie, dass φ genau dann die gewichteten Fehler 1. und 2. Art $\alpha_0 E_0[\varphi] + \alpha_1(1 - E_1[\varphi])$ minimiert, wenn φ ein Neyman-Pearson Test zum Schwellenwert $c = \alpha_0/\alpha_1$ ist. φ heißt dann ein *Bayes-Test* zur Vorbewertung (α_0, α_1) .