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Preface

Random configurations of points in space, also known as point processes, have
been studied in mathematics, statistics and physics for many decades. In mathe-
matics and statistics, the emphasis has been on the Poisson process, which can be
thought of as a limit of picking points independently and uniformly in a large region.
Taking a different perspective, a finite collection of points in the plane can always
be considered as the roots of a polynomial; in this coordinate system, taking the co-
efficients of the polynomial to be independent is natural. Limits of these random
polynomials and their zeros are a core subject of this book; the other class consists
of processes with joint intensities of determinantal form. The intersection of the two
classes receives special attention, in Chapter 5 for instance. Zeros of random poly-
nomials and determinantal processes have been studied primarily in mathematical
physics. In this book we adopt a probabilistic perspective, exploiting independence
whenever possible.

The book is designed for graduate students in probability, analysis, and mathe-
matical physics, and exercises are included. No familiarity with physics is assumed,
but we do assume that the reader is comfortable with complex analysis as in Ahlfors’
text (1) and with graduate probability as in Durrett (19) or Billingsley (6). Possible
ways to read the book are indicated graphically below, followed by an overview of the
various chapters.

The book is organized as follows:

Chapter 1 starts off with a quick look at how zeros of a random polynomial differ
from independently picked points, and the ubiquitous Vandermonde factor makes its
first appearance in the book. Following that, we give definitions of basic notions such
as point processes and their joint intensities.

Chapter 2 provides an introduction to the theory of Gaussian analytic functions
(GAF's) and gives a formula for the first intensity of zeros. We introduce three im-
portant classes of geometric GAF's: planar, hyperbolic and spherical GAF's, whose
zero sets are invariant in distribution under isometries preserving the underlying
geometric space. Further we show that the intensity of zeros of a GAF determines
the distribution of the GAF (Calabi’s rigidity).

Chapter 3 We prove a formula due to Hammersley for computing the joint intensi-
ties of zeros for an arbitrary GAF.

Chapter 4 introduces determinantal processes which are used to model fermions in
quantum mechanics and also arise naturally in many other settings. We show that
general determinantal processes may be realized as mixtures of “determinantal pro-
jection processes”, and use this result to give simple proofs of existence and central
limit theorems. We also present similar results for permanental processes, which
are used to model bosons in quantum mechanics.

vii
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Chapter 5 gives a deeper analysis of the hyperbolic GAF. Despite the many similar-
ities between determinantal processes and zeros of GAF's, this function provides the
only known link between the two fields. For a certain value of the parameter, the
zero set of the hyperbolic GAF is indeed a determinantal process and this discovery
allows one to say a great deal about its distribution. In particular, we give a simple
description of the distribution of the moduli of zeros and obtain sharp asymptotics
for the “hole probability" that a disk of radius r contains no zeros. We also obtain a
law of large numbers and reconstruction result for the hyperbolic GAF's, the proofs
of these do not rely on the determinantal property.

Chapter 6 studies a number of examples of determinantal point processes that arise
naturally in combinatorics and probability. This includes the classical Ginibre and
circular unitary ensembles from random matrix theory, as well as examples arising
from non-intersecting random walks and random spanning trees. We give proofs
that these point processes are determinantal.

Chapter 7 turns to the topic of large deviations. First we prove a very general
result due to Offord which may be applied to an arbitrary GAF. Next we present
more specialized techniques developed by Sodin and Tsirelson which can be used to
determine very precisely, the asymptotic decay of the hole probability for the zero set
of the planar GAF. The computation is more difficult in this setting, since this zero
set is not a determinantal process.

Chapter 8 touches on two advanced topics, dynamical Gaussian analytic functions
and allocation of area to zeros.

In the section on dynamics, we present a method by which the zero set of the
hyperbolic GAF can be made into a time-homogeneous Markov process. This con-
struction provides valuable insight into the nature of the repulsion between zeros,
and we give an SDE description for the evolution of a single zero. This description
can be generalized to simultaneously describe the evolution of all the zeros.

In the section on allocation, we introduce the reader to a beautiful scheme dis-
covered by Sodin and Tsirelson for allocating Lebesgue measure to the zero set of the
planar GAF. The allocation is obtained by constructing a random potential as a func-
tion of the planar GAF and then allowing points in the plane to flow along the gra-
dient curves of the potential in the direction of decay. This procedure partitions the
plane into basins of constant area, and we reproduce an argument due to Nazarov,
Sodin and Volberg that the diameter of a typical basin has super-exponentially de-
caying tails.

The inter-dependence of the chapters is shown in Figure 1 schematically.

Acknowledgements

We are especially grateful to Fedor Nazarov, Misha Sodin, Boris Tsirelson and Alexan-
der Volberg for allowing us to reproduce their work here. Ron Peled, Misha Sodin,
Tonci Antunovic and Subhroshekhar Ghosh gave us numerous comments and cor-
rections to an earlier draft of the book. Many thanks also to Alexander Holroyd for
creating the nice stable allocation pictures appearing in chapter 8. The second au-
thor would like to thank Microsoft research, SAMSI, and University of Toronto and
U.C. Berkeley where significant portions of the book were written. In addition, we



PREFACE ix

Chapter 2 ——— Chapter 3 —_ ) Chapter 7

Chapter 1 \

Chapter 4 ————» Chapter 5

Chapter 8
Chapter 6

FIGURE 1. Dependence among chapters.

thank the following people for their comments, discussions and suggestions: Persi
Diaconis, Yogeshwaran Dhandapani, Jian Ding, Ning Weiyang, Steve Evans, Rus-
sell Lyons, Alice Guionnet, Ofer Zeitouni, Tomoyuki Shirai, Balazs Szegedy.






CHAPTER 1

Introduction

1.1. Random polynomials and their zeros

The primary objects of study in this book are point processes, which are random
variables taking values in the space of discrete subsets of a metric space, where,
by a discrete set we mean a countable set with no accumulation points. Precise
definitions of relevant notions will be given later. Many physical phenomena can
be modeled by random discrete sets. For example, the arrival times of people in a
queue, the arrangement of stars in a galaxy, energy levels of heavy nuclei of atoms
etc. This calls upon probabilists to find point processes that can be mathematically
analysed in some detail, as well as capture various qualitative properties of naturally
occurring random point sets.

The single most important such process, known as the Poisson process has
been widely studied and applied. The Poisson process is characterized by indepen-
dence of the process when restricted to disjoint subsets of the underlying space. More
precisely, for any collection of mutually disjoint measurable subsets of the underly-
ing space, the numbers of points of a Poisson process that fall in these subsets are
stochastically independent. The number of points that fall in A has Poisson distri-
bution with a certain mean u(A) depending on A. Then, it is easy to see then that u
must be a measure, and it is called the intensity measure of the Poisson process. This
assumption of independence is acceptable in some examples, but naturally, not all.
For instance if one looks at outbreaks of a rare disease in a province, then knowing
that there is a case in a particular location makes it more likely that there are more
such cases in a neighbourhood of that location. On the other hand, if one looks at the
distribution of like-charged particles confined by an external field (physicists call it
a “one component plasma”), then the opposite is true. Knowing that a particular lo-
cation holds a particle makes it unlikely for there to be any others close to it. These
two examples indicate two ways of breaking the independence assumption, induc-
ing more clumping (“positively correlated”) as in the first example or less clumping
(“negatively correlated”) as in the second.

A natural question is, are there probabilistic mechanisms to generate such clump-
ing or anti-clumping behaviour? A simple recipe that gives rise to positively corre-
lated point processes is well-known to statisticians: First sample X(-), a continuous
random function on the underlying space that takes values in R, , and then, sample a
Poisson process whose intensity measure has density X(-) with respect to a fixed ref-
erence measure v on the underlying space. These kinds of processes are now called
Cox processes, and it is clear why they exhibit clumping - more points fall where X
is large, and if X is large at one location in space, it is large in a neighbourhood. We
shall encounter a particular subclass of Cox processes, known as permanental pro-
cesses, in Chapter 4, only to compare their properties with determinantal processes,
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FIGURE 1. Samples of translation invariant point processes in the
plane: Poisson (left), determinantal (center) and permanental for
K(z,w) = %ezw—%(|z|2+\w\2). Determinantal processes exhibit repul-
sion, while permanental processes exhibit clumping.

one of two important classes of point processes having negative correlations that we
study in this book.

This brings us to the next natural question and that is of central importance
to this book. Are there interesting point processes that have less clumping than
Poisson processes? As we shall see, one natural way of getting such a process without
putting in the anti-clumping property by hand, is to extract zero sets of random
polynomials or analytic functions, for instance, zeros of random polynomials with
stochastically independent coefficients. On the other hand it is also possible to build
anti-clumping into the very definition. A particularly nice class of such processes,
known as determinantal point processes, is another important object of study in this
book.

We study these point processes only in the plane and give some examples on the
line, that is, we restrict ourselves to random analytic functions in one variable. One
can get point processes in R2" by considering the joint zeros of n random analytic
functions on C”*, but we do not consider them in this book. Determinantal processes
have no dimensional barrier, but it should be admitted that most of the determi-
nantal processes studied have been in one and two dimensions. In contrast to Cox
processes that we described earlier, determinantal point processes seem mathemat-
ically more interesting to study because, for one, they are apparently not just built
out of Poisson processes’.

Next we turn to the reason why these processes (zeros of random polynomials
and determinantal processes) have less clustering of points than Poisson processes.
Determinantal processes have this anti-clustering or repulsion built into their defi-
nition (chapter 4, definition 4.2.1), and below we give an explanation as to why zeros
of random polynomials tend to repel in general. Before going into this, we invite
the reader to look at Figure 1. All the three samples shown are portions of certain
translation invariant point processes in the plane, with the same average number of
points per unit area. Nevertheless, they visibly differ from each other qualitatively,
in terms of the clustering they exhibit.

1«po not listen to the prophets of doom who preach that every point process will eventually be found
out to be a Poisson process in disguise!” - Gian-Carlo Rota.
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Now we “explain” the repulsion of points in point processes arising from zeros of
random analytic functions (Of course, any point process in the plane is the zero set of
a random analytic function, and hence one may wonder if we are making an empty
or false claim. However, when we use the term random analytic function, we tacitly
mean that we have somehow specified the distribution of coefficients, and that there
is a certain amount of independence therein). Consider a polynomial

(1.1.1) p)=z2"+a,_12" 1 +...+a1z +ao.

We let the coefficients be random variables and see how the (now random) roots
of the polynomial are distributed. This is just a matter of change of variables, from
coefficients to the roots, and the Jacobian determinant of this transformation is given
by the following well known fact (see the book (2) p. 411-412, for instance).

n

LEMMA 1.1.1. Let p(z) = [] (z—2zp) have coefficients ap, 0<k<n-1lasin (1.1.1).
k=1
Then the transformation T :C"* — C" defined by
T(Z1’° .. 5277,) = (an—]." .. ’aO)’

has Jacobian determinant [] |z; — zjlz.
i<j
PRrROOF. Note that we are looking for the real Jacobian determinant, which is
equal to
0T (zy,...,
|det( (21 zn)) |2‘
0(z1,...,2n)
To see this in the simplest case of one complex variable, observe that if f =u +iv:
C — C, its Jacobian determinant is

Uy Uy
Uy Uy

det

>

which is equal to |f'|?, provided f is complex analytic. See Exercise 1.1.2 for the
relationship between real and complex Jacobian determinants in general.
Let us write
Tok)=anp =D Y 2.z,
1<ii<...ip<n
T, (k) and all its partial derivatives are polynomials in zjs. Moreover, by the sym-

metry of Ty (k) in the z;s, it follows that if z; = z; for some i # j, then the ith and

jth columns of 667(12211—2) are equal, and hence the determinant vanishes. There-

aTaZ(-k)) 4 is divisible by [](z; —z;). As the degree of
J J1<j,k<n i<j

n
isequalto Y} (k—-1)= %n(n —1), it must be that
k=1

fore, the polynomial det(

© 0zj J1<jk<n

=Cp [[Gi-z)).

61 Z1y..+5%2
1 ( ( ’ > n))
i<j

0(z1,...,2n)

To find the constant C,, we compute the coefficient of the monomial sz:_lon both

sides. On the right hand side the coefficient is easily seen to be D,, := (-1)"~D2C, .

On the left, we begin by observing that T,(k) = -z, T, -1(k — 1)+ T, _1(k), whence

6Tn(k) aTn,fl(k -1 6Tn71(k)
=—2Zn +

1.1.2
( ) 0z; 0z; 0z;

- 6jnTn—1(k -1).
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The first row in the Jacobian matrix of T has all entries equal to —1. Further, the
entries in the last column (when j = n) are just —T,_1(k — 1), in particular, indepen-
dent of z,,. Thus when we expand det(%ﬁ@) by the first row, to get z;f_l we must

take the (1,n) entry in the first row and in every other row we must use the first
summand in (1.1.2) to get a factor of z,,. Therefore

L oT,(k
D, = coefficient of sz Lin det( n ))
J=1 2j 1<k,j<n
n=l . oT,—1(k-1
= (=1)" coefficient of [] 2’ Lin det (—ﬁ)
j=1 J aZJ ngsn
1<j<n-1
= -Dj_4.
Thus C,, = (=1)"C,—1 = (=1)"*D2 hecause C; = —1. Therefore the real Jacobian
determinant of T'is [] |z; —z;/2. O
i<j

The following relationship between complex and real Jacobians was used in the
proof of the lemma.

EXERCISE 1.1.2. Let (T,...,T,): C* — C" be complex analytic in each argu-

ment. Let A;j = aRgT_i(z) and B;j = ORS—;"(Z) where z; = xj+iy;. Then the real Jacobian
determinant of (ReT,...,ReT,,ImTy,...,ImT},) at (x1,...,%X,,Y1,.--,¥n), IS
A B
det B A

which is equal to |det(A — iB)|?, the absolute square of the complex Jacobian deter-
minant.

We may state Lemma 1.1.1 in the reverse direction. But first a remark that will
be relevant throughout the book.

REMARK 1.1.3. Let z3, 1 <k < n be the zeros of a polynomial. Then z;s do not
come with any natural order, and usually we do not care to order them. In that
case we identify the set {z;} with the measure }.6,,. However sometimes we might
also arrange the zeros as a vector (2y,...,25,) where 7 is any permutation. If we
randomly pick 7 with equal probability to be one of the n! permutations, we say that
the zeros are in exchangeable random order or uniform random order. We do this
when we want to present joint probability densities of zeros of a random polynomial.
Needless to say, the same applies to eigenvalues of matrices or any other (finite)
collection of unlabeled points.

Endow the coefficients of a monic polynomial with product Lebesgue measure.
The induced measure on the vector of zeros of the polynomial (taken in exchangeable
random order) is

n
(H |z _Zj|2) [1dmp.
i<j k=1
Here dm denotes the Lebesgue measure on the complex plane.

One can get a probabilistic version of this by choosing the coefficients from
Lebesgue measure on a domain in C"*. Then the roots will be distributed with density

proportional to [] |z; —z jl2 for (z1,...,2z,) in a certain symmetric domain of C”.
i<j
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A similar phenomenon occurs in random matrix theory. We just informally state
the result here and refer the reader to (6.3.5) in chapter 6 for a precise statement
and proof.

FACT 1.1.4. Let (a; )i j<n be a matrix with complex entries and let z1,...,2,
be the eigenvalues of the matrix. Then it is possible to choose a set of auxiliary
variables which we just denote u (so that u has 2n(n — 1) real parameters) so that
the transformation T'(z,u) = (a; ;) is essentially one-to-one and onto and has Jacobian
determinant

fa@[]lzi -2,
i<j

for some function f.

REMARK 1.1.5. Unlike in Lemma 1.1.1, to make a change of variables from the
entries of the matrix, we needed auxiliary variables in addition to eigenvalues. If
we impose product Lebesgue measure on a; ;s, the measure induced on (z1,...,2,,u)
is a product of a measure on the eigenvalues and a measure on u. However, the
measures are infinite and hence it does not quite make sense to talk of "integrating
out the auxiliary variables" to obtain

n
(1.1.3) [T12: — 2,1 [ dm(z)
i<j k=1
as the "induced measure on the eigenvalues". We can however make sense of similar
statements as explained below.

Lemma 1.1.1 and Fact 1.1.4 give a technical intuition as to why zeros of random
analytic functions as well as eigenvalues of random matrices often exhibit repulsion.
To make genuine probability statements however, we would have to endow the coef-
ficients (or entries) with a probability distribution and use the Jacobian determinant
to compute the distribution of zeros (or eigenvalues). In very special cases, one can
get an explicit and useful answer, often of the kind

(1.1.4)
n n n
H |z —sz2 He‘wzk) l_[ dm(zp) = exp { - Z V(zp)— Z loglz; — zjl } H dm(zp).
i<j k k=1 k=1 i£] k=1

This density may be regarded as a one component plasma with external potential
V and at a particular temperature (see Remark 1.1.6 below). Alternately one may
regard it as a “determinantal point process”. However it should be pointed out that in
most cases, the distribution of zeros (or eigenvalues) is not exactly of this form, and
then it is not to be hoped that one can get any explicit and tractable expression of the
density. Nevertheless the property of repulsion is generally valid at short distances.
Figure 2 shows a determinantal process and a process of zeros of a random analytic
function both having the same intensity (the average number of points per unit area).

REMARK 1.1.6. Let us make precise the notion of a one component plasma of n
particles with unit charge in the plane with potential V and temperature f~1. This
is just the probability density (with respect to Lebesgue measure on C") proportional
to

exp{—é l Z V(zp) - Z loglzj —zp|
2 k=1 J#k

} H dm(zp).
k=1
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This expression fits the statistical mechanical paradigm, namely it is of the form
exp{—PBH(x)}, where H has the interpretation of the energy of a configuration and
1/6 has the physical interpretation of temperature. In our setting we have

n
(1.1.5) H(z1,...,2,)= Y V(z;)= Y loglzj—zl.
k=1 Jk

If we consider n unit negative charges placed in an external potential V at locations
z1,...,25, then the first term gives the total potential energy due the external field
and the second term the energy due to repulsion between the charges. According
to Coulomb’s law, in three dimensional space the electrical potential due to a point
charge is proportional to the inverse distance from the charge. Since we are in two
dimensions, the appropriate potential is log|z — w|, which is the Green’s function for
the Laplacian on R2. However in the density (1.1.4) that (sometimes) comes from
random matrices, the temperature parameter is set equal to the particular value
B = 2, which correspond to determinantal processes. Surprisingly, this particular
case is much easier to analyse as compared to other values of !

We study here two kinds of processes (determinantal and zero sets), focusing
particularly on specific examples that are invariant under a large group of transfor-
mations of the underlying space (translation-invariance in the plane, for instance).
Moreover there are certain very special cases of random analytic functions, whose
zero sets turn out to be determinantal and we study them in some detail. Finally,
apart from these questions of exact distributional calculations, we also present re-
sults on large deviations, central limit theorems and also (in a specific case) the
stochastic geometry of the zeros. In the rest of the chapter we define some basic
notions needed throughout, and give a more detailed overview of the contents of the
book.

1.2. Basic notions and definitions

Now we give precise definitions of the basic concepts that will be used through-
out the book. Let A be a locally compact Polish space (i.e., a topological space that
can be topologized by a complete and separable metric). Let u be a Radon measure
on A (recall that a Radon measure is a Borel measure which is finite on compact
sets). For all examples of interest it suffices to keep the following two cases in mind.

« A is an open subset of R? and p is the d-dimensional Lebesgue measure
restricted to A.

¢ A is a finite or countable set and p assigns unit mass to each element of A
(the counting measure on A).

Our point processes (to be defined) will have points in A and p will be a reference
measure with respect to which we shall express the probability densities and other
similar quantities. So far we informally defined a point process to be a random
discrete subset of A. However the standard setting in probability theory is to have
a sample space that is a complete separable metric space and the set of all discrete
subsets of A is not such a space, in general. However, a discrete subset of A may
be identified with the counting measure on the subset (the Borel measure on A that
assigns unit mass to each element of the subset), and therefore we may define a point
process as a random variable taking values in the space .#(A) of sigma-finite Borel
measures on A. This latter space is well-known to be a complete separable metric
space (see (67), for example).
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A point process & on A is a random integer-valued positive Radon measure
on A. If & almost surely assigns at most measure 1 to singletons, it is a simple
point process; in this case & can be identified with a random discrete subset of A,
and Z (D) represents the number of points of this set that fall in D.

How does one describe the distribution of a point process? Given any m =1, any
Borel sets Dq,...,D,, of A, and open intervals I1,...,I,, <[0,00), we define a subset
of 4 (A) consisting of all measures 6 such that 0(Dy) € I, for each £ < m. These
are called cylinder sets and they generate the sigma field on .#(A). Therefore, the
distribution of a point process & is determined by the probabilities of cylinder sets,
i.e., by the numbers P[Z (D}) = np,1 < k < m] for Borel subsets D1,...,D,, of A.

Conversely, one may define a point process by consistently assigning probabili-
ties to cylinder sets. Consistency means that

Z PlZX(Dy)=np,1<k<m]
0<n,<oco
should be the same as P[Z (D) =np,1 <k <m - 1]. (Of course, the usual properties
of finite additivity should hold as should the fact that these numbers are between
zero and one!). For example the Poisson process may be defined in this manner.

EXAMPLE 1.2.1. For m =1 and mutually disjoint Borel subsets Dy, 1 <k <m, of
A, let

m D ne
p((D1,n1),...,(Dm,nm) =[] ¢~ HOW™
k=1 np!

The right hand side is to be interpreted as zero if at least one of the Dys has infinite
p-measure. Then Kolmogorov’s existence theorem asserts that there exists a point
process & such that

Pl (Dp)=np,1<k<m]l=p(D1,n1),...,[Dm,nm)).

This is exactly what we informally defined as the Poisson process with intensity
measure (.

Nevertheless, specifying the joint distributions of the counts (D), D c A may
not be the simplest or the most useful way to define or to think about the distribution
of a point process. Alternately, the distribution of a point process can be described by
its joint intensities (also known as correlation functions). We give the definition
for simple point processes only, but see remark 1.2.3 for trick to extend the same to
general point processes.

DEFINITION 1.2.2. Let & be a simple point process. The joint intensities of a
point process & w.r.t. u are functions (if any exist) pj, : A* — [0,00) for £ = 1, such
that for any family of mutually disjoint subsets D1,...,D of A,

k
(1.2.1) E|[[xWD)

= f Pr(x1,. ., xp)dp(x1)...dulxg).
i=1

I1; D;
In addition, we shall require that pz(x1,...,xz) vanish if x; = x; for some i # j.

As joint intensities are used extensively throughout the book, we spend the rest
of the section clarifying various points about their definition.

The first intensity is the easiest to understand - we just define the measure
u1(D) :=E[Z(D)], we call it the first intensity measure of Z'. If it happens to be
absolutely continuous to the given measure p, then the Radon Nikodym derivative
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p1 is called the first intensity function. From definition 1.2.2 it may appear that the
k-point intensity measure i, is the first intensity measure of Z®* (the k-fold prod-
uct measure on A¥) and that the k-point intensity function is the Radon Nikodym
derivative of y; with respect to u®* in cases when py, is absolutely continuous to u®k.
However, this is incorrect, because (1.2.1) is valid only for pairwise disjoint D;s. For
general subsets of A*, for example, D1 x ... x D, with overlapping D;s, the situation
is more complicated as we explain now.

REMARK 1.2.3. Restricting attention to simple point processes, p; is not the
intensity measure of & k, but that of & "k, the set of ordered k-tuples of distinct
points of &. First note that (1.2.1) by itself does not say anything about pz on the
diagonals, that is, for (x1,...,x;) with x; = x; for some i # j. That is why we added
to the definition, the requirement that p; vanish on the diagonal. Then, as we shall
explain, equation (1.2.1) implies that for any Borel set B < A* we have

(1.2.2) E#Bnx"*) =fPk(xl,...,xk)d,u(xl)...d,u(xk).
B

When B = I'[ka" for a mutually disjoint family of subsets D1,...,D, of A, and & =
Y.7_1 ki, the left hand side becomes

(1.2.3) E []‘[ (%]ipi))k,-z :
i=1 i

For a general point process &, observe that it can be identified with a simple point
process X * on A x{1,2,3,...} such that Z*(D x {1,2,3,...}) = Z(D) for Borel D c A.
This way, one can deduce many facts about non-simple point processes from those
for simple ones.

But why are (1.2.2) and (1.2.3) valid for a simple point process? It suffices to
prove the latter. To make the idea transparent, we shall assume that A is a countable
set and that p is the counting measure and leave the general case to the reader (con-
sult (53; 54; 68) for details). For simplicity, we restrict to r =1 and k1 =2 in (1.2.3))
and again leave the general case to the reader. We begin by computing E [2Z'(D )2].

(Z %({x}))2

xeD

E[Z(D)?] E

E|) Z{x)

xeD

+ Y ELZ (D Z (yD]
x£y
E[Z D)+ f p2(a, y)d px)d p(y).
DxD
Here we used two facts. Firstly, Z'({x}) is 0 or 1 (and 0 for all but finitely many

x € D) and secondly, from (1.2.1), for x # y we get E[Z ({xhDZ ({yD] = p2(x,y) while
p2(x,x) =0 for all x. Thus

(1.2.4) EIZOXZD)-D1= [ pala)dut)dp)
DxD
as claimed.

Do joint intensities determine the distribution of a point process? The following
remark says yes, under certain restrictions.
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REMARK 1.2.4. Suppose that Z' (D) has exponential tails for all compact D c A.
In other words, for every compact D, there is a constant ¢ > 0 such that P[LZ (D) >
kEl<e°* for all k = 1. We claim that under this assumption, the joint intensities
(provided they exist) determine the law of &'.

This is because exponential tails for (D) for any compact D ensures that
for any compact D1,...,Dp, the random vector (X'(D1),...,%Z(Dp)) has a conver-
gent Laplace transform in a neighbourhood of 0. That is, for some ¢ > 0 and any
$1,...,Sp € (—€,€), we have

(1.2.5) Elexp{s1Z(D1)+...+5,Z (D)} < co.

The Laplace transform determines the law of a random variable and is in turn deter-
mined by the moments, whence the conclusion. For these basic facts about moments
and Laplace transform consult Billingsley’s book (6).

Joint intensities are akin to densities: Assume that & is simple. Then, the joint
intensity functions may be interpreted as follows.

o If A is finite and p is the counting measure on A, i.e., the measure that as-
signs unit mass to each element of A, then for distinct x1,...,xz, the quan-
tity pr(x1,...,x) is just the probability that x1,...,x, € X.

e If Aisopenin R? and u is the Lebesgue measure, then for distinct x1,...,xz,
and € > 0 small enough so that the balls B.(x;) are mutually disjoint, by
definition 1.2.2, we get

k k
f P,y [[dm(y) = ElH%(Be(xj))
LL |

Jj= J=1
M%_; Be(x))

k
(1.2.6) = ) P(ZBx)=nj,j<k)[]n;
(nj) j=1
nj=1
In many examples the last sum is dominated by the term ny =...=np =1.
For instance, if we assume that for any compact K, the power series
2tz
(127) Z max{pn1+."+nk(t1,...,tn1+m’nk): tl EK}—
n1!...nk!

(n;):j<k

converges for z; in a neighbourhood of 0, then it follows that for n; = 1, by
(1.2.2) and (1.2.3) that if Bc(x;) c K for j <k, then

k .
E lH (%(Be(xm)
Jj=1 '

P(ZB.x)=n;,j<k) < -
J
1
= - pn1+...+nk(y11---:yn1+...+nk)l_[dm(yj)
n1!...nk! j
Be(x1)™1 x...xBe(xz)k
< max{pn1+...+nk(tlv . -,tn1+...,nk) : ti EK} ﬁ m(Be)nj,

n1!...nk! j=1

Under our assumption 1.2.7, it follows that the term P (2 (Be(x;)) =1, j <k)
dominates the sum in (1.2.6). Further, as p; is locally integrable, a.e.
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(x1,...,x2) is a Lebesgue point and for such points we get
P(Z has a point in B.(x;) for each j <k)
m(Be)* .
If a continuous version of p;, exists, then (1.2.8) holds for every x1,...,x; € A.

(1.2.8) pr(,-..,xp) = lim
€—>

The following exercise demonstrates that for simple point processes with a deter-
ministic finite total number of points, the joint intensities are determined by the top
correlation (meaning k-point intensity for the largest % for which it is not identically
zero). This fails if the number of points is random or infinite.

EXERCISE 1.2.5. (1) Let Xq,...,X,, be exchangeable real valued random
variables with joint density p(x1,...,x,) with respect to Lebesgue measure
on R". Let & =Y 6x, be the point process on R that assigns unit mass to
each X;. Then show that the joint intensities of & are given by

n!
(1.2.9) or(x1,..., %) = ——— f px1,...x)dxp41...dxy.
(n-k)!
Rk
(2) Construct two simple point process on A ={1,2,3} that have the same two-
point intensities but not the same one-point intensities.

Moments of linear statistics: Joint intensities will be used extensively throughout
the book. Therefore we give yet another way to understand them, this time in terms
of linear statistics. If & is a point process on A, and ¢ : A — R is a measurable
function, then the random variable

(1.2.10) ()= f 0dZ = Y p@%(a))
i acl

is called a linear statistic. If ¢ = 1p for some D c A, then X (¢) is just Z'(D).

Knowing the joint distributions of & (¢) for a sufficiently rich class of test func-
tions ¢, one can recover the distribution of the point process. For instance, the class
of all indicator functions of compact subsets of A is rich enough, as explained ear-
lier. Another example is the class of compactly supported continuous functions on A.
Joint intensities determine the moments of linear statistics corresponding to indica-
tor functions, as made clear in definition 1.2.2 and remark 1.2.4. Now we show how
moments of any linear statistics can be expressed in terms of joint intensities. This
is done below, but we state it so as to make it into an alternative definition of joint
intensities. This is really a more detailed explanation of remark 1.2.3.

Let & be a point process on A and let C.(A) be the space of compactly supported
continuous functions on A. As always, we have a Radon measure p on A.

(1) Define T1(¢) = E [Z(¢)]. Then, T} is a positive linear functional on C.(A).
By Riesz’s representation theorem, there exists a unique positive regular
Borel measure pj such that

(1.2.11) Tl((p):f(pdul.

The measure y; is called the first intensity measure of &

If it happens that pj is absolutely continuous to u, then we write du; =
p1dp and call p; the first intensity function of & (with respect to the mea-
sure p). We leave it to the reader to check that this coincides with p; in
definition 1.2.2.
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(2) Define a positive bilinear functional on C.(A)xC(A) by To(¢, ) =E [Z (9)Z (y)]
which induces a positive linear functional on C.(A2). Hence, there is a
unique positive regular Borel measure fiz on A? such that

Tolg.)= [ oW diste, ).
However, in general fia should not be expected to be absolutely continuous
to p® p. This is because the random measure & ® & has atoms on the
diagonal {(x,x): x € A}. In fact,

(1.2.12)  E[Z@OZW)]=E[Z(@W]+E| Y @@yl Z{hXyh]|.

(x,y)eN2

Both terms define positive bilinear functionals on C.(A) x C.(A) and are
represented by two measures [l and pg that are supported on the diagonal
D :={(x,x):x € A} and A2\D, respectively. Naturally, fig = g + flo.
The measure flg is singular with respect to u® i and is in fact the same

as the first intensity measure p1, under the natural identification of D with
A. The second measure ug is called the two point intensity measure
of & and if it so happens that us is absolutely continuous to u® u, then
its Radon-Nikodym derivative pa(x,y) is the called the two point intensity
function. The reader may check that this coincides with the earlier defini-
tion. For an example where the second intensity measure is not absolutely
continuous to u® u, look at the point process & =4 +0g+1 on R, where a
has N(0,1) distribution.

(3) Continuing, for any 2 = 1 we define a positive multilinear functional on
C.(A)* by

k

[TZw

i=1

(1.2.13) Tv(y1,...,u;) =E

which induces a linear functional on C.(A)®* and hence, is represented by
a unique positive regular Borel measure fi;, on A*. We write fi; as i + i,
where [I;, is supported on the diagonal Dj, = {(x1,...,xz) : x; = x; for some i #
Jj} and py, is supported on the complement of the diagonal in A*. We call y,
the k£ point intensity measure and if it happens to be absolutely contin-
uous to u®*, then we refer to its Radon Nikodym derivative as the k-point
intensity function. This agrees with our earlier definition.

1.3. Hints and solutions

Exercise 1.1.2 Consider

—f; i ] Multiply the second row by i and add to the first

A-iB B+iA
to get B é -X . Then multiply the first column by —i and add to the second to get
A—-iB 0 . . .
_B A+iB | Since both these operations do not change the determinant, we see that

the original matrix has determinant equal to det(A —iB)det(A +iB) = |det(A — iB)|2.
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FIGURE 2. Samples of a translation invariant determinantal pro-
cess (left) and zeros of a Gaussian analytic function. Determinantal
processes exhibit repulsion at all distances, and the zeros repel at

short distances only. However, the distinction is not evident in the
pictures.



CHAPTER 2

Gaussian Analytic Functions

2.1. Complex Gaussian distribution

Throughout this book, we shall encounter complex Gaussian random variables.
As conventions vary, we begin by establishing our terminology. By N(u,o2), we

mean the distribution of the real-valued random variable with probability density
_(ac—;z)2
e 22 . Here peR and 02 >0 are the mean and variance respectively.

oV2ln
A standard complex Gaussian is a complex-valued random variable with

probability density %e"z'z w.r.t the Lebesgue measure on the complex plane. Equiva-
lently, one may define it as X +:iY, where X and Y areii.d. N(0,1) random variables.

Let ap, 1 <k <n be i.i.d. standard complex Gaussians. Then we say that a :=
(@1,...,a,)" is a standard complex Gaussian vector. Then if B is a (complex) m x n
matrix, Ba+ y is said to be an m-dimensional complex Gaussian vector with mean u
(an m x 1 vector) and covariance X = BB* (an m x m matrix). We denote its distribu-
tion by N (u,X).

EXERCISE 2.1.1. i. Let U be an n xn unitary matrix, i.e. UU* =14, (here
U* is the conjugate transpose of U), and a an n-dimensional standard com-
plex Gaussian vector. Show that Ua is also an n-dimensional standard
complex Gaussian vector.

ii. Show that the mean and covariance of a complex Gaussian random vector
determines its distribution.

REMARK 2.1.2. Although a complex Gaussian can be defined as one having
i.i.d. N(O, %) real and imaginary parts, we advocate thinking of it as a single entity,
if not to think of a real Gaussian as merely the real part of a complex Gaussian! In-
deed, one encounters the complex Gaussian variable in basic probability courses, for
instance in computing the normalizing constant for the density ¢=*2 on the line (by
computing the normalizing constant for a complex Gaussian and then taking square
roots); and also in generating a random normal on the computer (by generating a
complex Gaussian and taking its real part). The complex Gaussian is sometimes
easier to work with because it can be represented as a pair of independent random
variables in two co-ordinate systems, Cartesian as well as polar (as explained below
in more detail). At a higher level, in the theory of random analytic functions and ran-
dom matrix theory, it is again true that many more exact computations are possible
when we use complex Gaussian coefficients (or entries) than when real Gaussians
are used.

Here are some other basic properties of complex Gaussian random variables.

13
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e If a has N (u,Z) distribution, then for every j,k < n (not necessarily dis-

tinct), we have
E|[(ar - e, - )] = 0 and E | (a; - ey — 1)) = Zj -

If a is a standard complex Gaussian, then la|? and \Z_I are independent, and
have exponential distribution with mean 1 and uniform distribution on the
circle {z : |z| = 1}, respectively.

Suppose a and b are m and n-dimensional random vectors such that

a U 211 Z12

b v Zo1 Zgg |)’
where the mean vector and covariance matrices are partitioned in the ob-
vious way. Then X1; and Zg2 are Hermitian, while Z;Z = 291. Assume that

211 is non-singular. Then the distribution of a is N{:”(u,le) and the condi-
tional distribution of b given a is

NI (v+Zo1Z1i(@a— ), Zeo — 221271 Z12).

>

e

EXERCISE 2.1.3. Prove this.

Weak limits of complex Gaussians are complex Gaussians. More precisely,

EXERCISE 2.1.4. If a, has N¢c(un,Z,) distribution and a, 4, a, then
{un} and {X£,} must converge, say to ¢ and X, and a must have N¢(y,X)
distribution.

Conversely, if {u,} and {Z,} converge to p and X, then a, converges
weakly to N¢(u,X) distribution.
The moments of products of complex Gaussians can by computed in terms
of the covariance matrix by the Wick or the Feynman diagram formula.
First we recall the notion of “permanent” of a matrix, well-known to combi-
natorists but less ubiquitous in mathematics than its more famous sibling,
the determinant.

DEFINITION 2.1.5. For an n x n matrix M, its permanent, denoted
per(M) is defined by

n

per(M) = Z Myy, .
€Sy k=1

The sum is over all permutations of {1,2,...,n}.

REMARK 2.1.6. The analogy with the determinant is clear - the signs
of the permutations have been omitted in the definition. But note that
this makes a huge difference in that per(A~1MA) is not in general equal to
per(M). This means that the permanent is a basis-dependent notion and
thus has no geometric meaning unlike the determinant. As such, it can be
expected to occur only in those contexts where the entries of the matrices
themselves are important, as often happens in combinatorics and also in
probability.

Now we return to computing moments of products of complex Gaus-
sians. The books of Janson (38) or Simon (77) have such formulas, also in
the real Gaussian case.
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LEMMA 2.1.7 (Wick formula). Let (a,b) = (a1,...,a,,b1,...b,)" have
Nc(0,2) distribution, where

211 Zi2 ]
= MO
[ 21 292
Then,
E[almangl...gn =per(21,2).
In particular

E[la1---anl?] = per(Z1,1).

PROOF. First we prove that

k
E[a1 .. -anbl . 'bn] = Z l_[ Eajb,,(j) = per(Eajbk)jk .
T j=1

where the sum is over all permutations 7 € S,,. Both sides are linear in each
a; and Ej, and we may assume that the a;, b; are complex linear combi-
nations of some finite i.i.d. standard complex Gaussian sequence {V;}. The
formula is proved by induction on the total number of nonzero coefficients
that appear in the expression of the a; and b; in terms of the V;. If the
number of nonzero coefficients is more than one for one of a; or b, then we
may write that variable as a sum and use induction and linearity. If it is
1or O for all aj, b, then the formula is straightforward to verify; in fact,
using independence it suffices to check that V =V, has EV'V" = n!1lgn=n}.
For n # m this follows from the fact that V has a rotationally symmetric
distribution. Otherwise, |[V|2" has the distribution of the nth power of a
rate 1 exponential random variable, so its expectation equals n!.

The second statement follows immediately from the first, applied to the
vector (a,a). O

Ifa,,n=1areiid. Nc(0,1), then

1
lim sup la,|~ =1, almost surely.
n—oo

In fact, equation (2.1.3) is valid for any i.i.d. sequence of complex valued
random variables a,, such that

E[max{loglail,0}] < oo, provided Pla; =0] < 1.

We leave the proof as a simple exercise for the reader not already familiar
with it. We shall need this fact later, to compute the radii of convergence of
random power series with independent coefficients.

2.2. Gaussian analytic functions

Endow the space of analytic functions on a region A < C with the topology of
uniform convergence on compact sets. This makes it a complete separable metric
space which is the standard setting for doing probability theory (To see completeness,
if {f,} is a Cauchy sequence, then f,, converges uniformly on compact sets to some
continuous function . Then Morera’s theorem assures that that f must be analytic
because its contour integral vanishes on any closed contour in A, since [ f = rllL% S

Y

and the latter vanishes for every n by analyticity of f},).
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DEFINITION 2.2.1. Let f be a random variable on a probability space taking
values in the space of analytic functions on a region A c C. We say f is a Gaussian
analytic function (GAF) on A if (f(z1),...,f(z,)) has a mean zero complex Gaussian
distribution for every n = 1 and every z1,...,2, € A.

It is easy to see the following properties of GAFs

o {f%)} are jointly Gaussian, i.e., the joint distribution of f and finitely many
derivatives of f at finitely many points,

{fk)(z]-):OskSn,lsjsm},

has a (mean zero) complex Gaussian distribution. (Hint: Weak limits of
Gaussians are Gaussians and derivatives are limits of difference coeffi-
cients).

e Foranyn =1andany z1,...,2, € A, the C*-valued random vector (f(z1),...,f(z,))
has a complex Gaussian distribution with mean zero and covariance matrix
(K(zi,z))) i j<n- By Exercise 2.1.1 it follows that the covariance kernel K de-
termines all the finite dimensional marginals of f. Since f is almost surely
continuous, it follows that the distribution of f is determined by K.

¢ Analytic extensions of GAFs are GAF's.

EXERCISE 2.2.2. In other words, if f is a random analytic function on
A and is Gaussian when restricted to a domain D c A, then f is a GAF on
the whole of A.

The following lemma gives a general recipe to construct Gaussian analytic functions.

LEMMA 2.2.3. Let v, be holomorphic functions on A. Assume that ), Iwn(z)l2
converges uniformly on compact sets in A. Let a, be i.i.d. random variables with
zero mean and unit variance. Then, almost surely, Y , a,¥,(2) converges uniformly
on compact subsets of A and hence defines a random analytic function.

In particular, if a, has standard complex Gaussian distribution, then f(z) :=

Y nanWn(2) is a GAF with covariance kernel K(z,w) =Y., w,(2)y,(w).

If (¢,,) is any square summable sequence of complex numbers, and a,s are i.i.d.
with zero mean and unit variance, then Y c,a, converges almost surely, because by
Kolmogorov’s inequality

P

k
sup| Z cjaj|2t
k=N  j=N

= t—ZZ|Cj|
Jj=N
- 0 as N — oo.

Thus, for fixed z, the series of partial sums for f(z) converge almost surely. However,
it is not clear that the series converges for all z simultaneously, even for a single
sample point. The idea of the proof is to regard } a,v, as a Hilbert space valued
series and prove a version of Kolmogorov’s inequality for such series. This part is
taken from chapter 3 of Kahane’s book (42). That gives convergence in the Hilbert
space, and by Cauchy’s formulas we may deduce uniform convergence on compacta.

n
PROOF. Let K be any compact subset of A. Regard the sequence X, = Y ayy
k=1

as taking values in L2(K) (with respect to Lebesgue measure). Let | - I2 denote the
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norm in L2(K). It is easy to check that for any & < n we have

n
(2.2.1) E[IX, 12 |aj,j<k] = 1Xe1%+ Y llyl2
J=k+1

Define the stopping time 7 =inf{n : || X, || > €}. Then,

n
E[IX.1?] = Y E[IXnl?1,2]
k=1
L 2
= Y E[1,ElX,la;,j <kl
k=1
n
> Y E[1,IX:1?]  by(@22.1)
k=1
> €2P[TSI’L].
Thus
(2.2.2) P [sup|X;l=e <—ZZ||1//]||2
Jjsn

We have just proved Kolmogorov’s inequality for Hilbert space valued random vari-
ables. Apply this to the sequence {Xx., — Xy}, to get

1 o0

2
sup | Xnin—Xnllze| <5 > llyjl
n=1 €% j=N+1

(2.2.3) P| sup X, —X,ll=2¢

m,n=N

<P

which converges to zero as N — co. Thus
P[3IN such that Vn, | Xyin —Xnl<€l=1

In other words, almost surely X, is a Cauchy sequence in L?(K).

To show uniform convergence on compact subsets, consider any disk D(zy,4R)
contained in A. Since X, is an analytic function on A for each n, Cauchy’s formula
says

_ 1 [ X©
(2.2.4) Xn(z)—2m,c (-2

d¢

where C,(¢) = zg +re’t, 0 < ¢t < 27 and |z — 29| < r. For any z € D(zg,R), average
equation (2.2.4) over r € (2R,3R) to deduce that

3R 27

ffX(ZO+re iedgrdr
27iR zo+ret? —z

l f X OpaOdm(Q)
27 4

where A denotes the annulus around zg of radii 2R and 3R and ¢,() is defined by
the equality. The observation that we shall need is that the collection {¢;},ep(z,r) is
uniformly bounded in L2(A).

We proved that almost surely {X,} is a Cauchy sequence in L2(K) where K :=
D(z20,4R). Therefore there exists X € L2(K) such that X, — X in L%(K). Therefore
the integral above converges to % / 4 X ()dm(() uniformly over z € D(zo,R).
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Thus we conclude that X, — X uniformly on compact sets in A and that X is an
analytic function on A.

If a,s are complex Gaussian, it is clear that X, is a GAF for each n. Since
limits of Gaussians are Gaussians, we see that X is also a GAF. The formula for the
covariance E[f(z)f(w)] is obvious. U

2.3. Isometry-invariant zero sets

As explained in Chapter 1, our interest is in the zero set of a random analytic
function. Unless one’s intention is to model a particular physical phenomenon by
a point process, there is one criterion that makes some point processes more in-
teresting than others, namely, invariance under a large group of transformations
(invariance of a measure means that its distribution does not change under the ac-
tion of a group, i.e., symmetry). There are three particular two dimensional domains
(up to conformal equivalence) on which the group of conformal automorphisms act
transitively (There are two others that we do not consider here, the cylinder or the
punctured plane, and the two dimensional torus). We introduce these domains now.

e The Complex Plane C: The group of transformations
(2.3.1) prp(2) =2z + B, zeC

where |A| =1 and § € C, is nothing but the Euclidean motion group. These
transformations preserve the Euclidean metric ds? = dx? + dy? and the
Lebesgue measure dm(z) = dxdy on the plane.

« The Sphere S?: The group of rotations act transitively on the two-dimensional
sphere. Moreover the sphere inherits a complex structure from the complex
plane by stereographic projection which identifies the sphere with the ex-
tended complex plane. In this book we shall always refer to C U {oo} as the
sphere. The rotations of the sphere become linear fractional transforma-
tions mapping C U {oo} to itself bijectively. That is, they are given by

2.3.2) pape)= 2P 2€CU{oo)
—Bz+a
where a,f € C and la|?+| ,B|2 =1. These transformations preserve the spher-

2 2
= % and the spherical measure (1d+’|7;(|22))2 . Tt is called the
spherical metric because it is the push forward of the usual metric (inher-
ited from R3) on the sphere onto CU {oo} under the stereographic projection,

and the measure is the push forward of the spherical area measure.

ical metric ds?

EXERCISE 2.3.1. (i) Show that the transformations ¢, g in (2.3.2) pre-
serve the spherical metric and the spherical measure.
(ii)) Show that the radius and area of the disk D(0,r) in the spherical metric

7[1‘2

and spherical measure are arctan(r) an 15

respectively.

¢ The Hyperbolic Plane D: The group of transformations

+
(2.3.3) Qa,p(2) = c_xz E, zeD
Bz+a

where @, € C and |a|? — |B|2 = 1, is the group of linear fractional transfor-
mations mapping the unit disk D = {z : |z| < 1} to itself bijectively. These
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2 2
transformations preserve the hyperbolic metric ds? = % and the hy-
perbolic area measure (l‘i_"';(l‘z))z (this normalization differs from the usual

one, with curvature —1, by a factor of 4, but it makes the analogy with the
other two cases more formally similar). This is one of the many models for
the hyperbolic geometry of Bolyai, Gauss and Lobachevsky (see (13) or (34)
for an introduction to hyperbolic geometry).

EXERCISE 2.3.2. (i) Show that the transformations ¢, g in (2.3.3) pre-
serve the hyperbolic metric and the hyperbolic measure.

(i1)) Show that the radius and area of the disk D(0,r), r < 1 in the hyper-
bolic metric and hyperbolic measure are arctanh(r) and ar? respec-

) 1-r2’
tively.

Note that in each case, the group of transformations acts transitively on the cor-
responding space, i.e., for every z,w in the domain, there is a transformation ¢ such
that ¢(2) = w. This means that in these spaces every point is just like every other
point. Now we introduce three families of GAFs whose relation to these symmetric
spaces will be made clear in Proposition 2.3.4.

In each case, the domain of the random analytic function can be found using
Lemma 2.2.3 or directly from equation (2.1.3).

¢ The Complex Plane C: Define for L > 0,

oo \/17
(2.3.4) f(z) = n—2".
‘ ngoa Vn! ‘

For every L > 0, this is a random analytic function in the entire plane with
covariance kernel exp{Lzw}.

e The Sphere $2: Define for LeN={1,2,3,...},

L VL@L-D)..@-n+D
(2.3.5) fz)=) a 2",
n;O " Vn!

For every L € N, this is a random analytic function on the complex plane
with covariance kernel (1+ zw)~. Since it is a polynomial, we may also
think of it as an analytic function on $2 = C U {oo} with a pole at co.

¢ The Hyperbolic Plane D: Define for L > 0,

X VLIL+D..L+n-1)
(2.3.6) f(z) = n ",
z n;oa = z

For every L > 0, this is a random analytic function in the unit disk D = {z :
|z| < 1} with covariance kernel (1 —zw) L. When L is not an integer, the
question of what branch of the fractional power to take, is resolved by the
requirement that K(z,z) be positive.

It is natural to ask whether the unit disk is the natural domain for the
hyperbolic GAF or if it has an analytic continuation to a larger region. To
see that almost surely it does not extend to any larger open set, consider
an open disk D intersecting D but not contained in D, and let Cp be the
event that there exists an analytic continuation of f to D uD. Note that
Cp is a tail event, and therefore by Kolmogorov’s zero-one law, if it has
positive probability then it occurs almost surely. If P(Cp) = 1 for some D,
then by the rotational symmetry of complex Gaussian distribution, we see
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(2.3.7)

(2.3.8)

(2.3.9)
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that P(Ciop) = 1 for any 0 € [0,27]. Choose finitely many rotations of D so
that their union contains the unit circle. With probability 1, f extends to
all of these rotates of D, whence we get an extension of f to a disk of radius
strictly greater than 1. But the radius of convergence is 1 a.s. Therefore
P(Cp) =0 for any D, which establishes our claim.

Another argument is pointed out in the notes. However, these argu-
ments used the rotational invariance of complex Gaussian distribution very
strongly. One may adapt an argument given in Billingsley (6), p. 292 to
give a more robust proof that works for any symmetric distribution of the

coefficients (that is, —a d a).

LEMMA 2.3.3. Let a, be i.i.d. random variables with a symmetric dis-
tribution in the complex plane. Assume that conditions (2.1.4) hold. Then
v = . .
> 0ln Wz" does not extend analytically to any domain larger

than the unit disk.

PROOF. Assuming (2.1.4), Borel-Cantelli lemmas show that the radius
of convergence is at most 1. We need to consider only the case when it is
equal to 1. As before, suppose that P(Cp) = 1 for some disk D intersecting
the unit disk but not contained in it. Fix & large enough so that an arc of
the unit circle of length 27” is contained in D and set

. a, ifn#0 modk
@n = -a, ifn=0 modk

Let

VLIL+1)...(L+n-1) n
Jnl ‘

and define Cp in the obvious way. Since f dg it follows that P(Cp) = P(Cp).
Now suppose both these events have probability one so that the function
def - & VLL+1)...L+kn-1) 4,
gz) = f(z)—1(z)=2) ap z
nZ=:0 " V(kn)!
may be analytically extended to D uD almost surely. Replacing z by ze
leaves g(z) unchanged, hence g can be extended to DU (u,D/) where D, =
e2milk D) In particular, g can be analytically extended to (1 +¢)D for some
€ > 0 which is impossible since g has radius of convergence equal to one. We
conclude that Cp has probability zero. ([l

f(z) = Z anp
n=0

2milk

Next we prove that the zero sets of the above analytic functions are isometry-
invariant.

PROPOSITION 2.3.4. The zero sets of the GAF f in equations (2.3.4), (2.3.5) and
(2.3.6) are invariant (in distribution) under the transformations defined in equations
(2.3.1), (2.3.2) and (2.3.3) respectively. This holds for every allowed value of the pa-
rameter L, namely L > 0 for the plane and the disk and L €N for the sphere.

PROOF. For definiteness, let us consider the case of the plane. Fix L > 0. Then

00 \/L_n
f(z) = n—=2z",
z r;oa = 2z
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is a centered(mean zero) complex Gaussian process, and as such, its distribution is
characterized by its covariance kernel exp{Lzw}. Now consider the function obtained
by translating f by an isometry in (2.3.1), i.e., fix [A| =1 and € C, and set

g(z)=f(Az + p).
g is also a centered complex Gaussian process with covariance kernel

Kg(z,w) = KgAz+p,Aw+p)
esz+Lz;LB+LwﬁI+L| B2 ]

If we set _
h(z) = f(z)eLPH3LIAF

then it is again a centered complex Gaussian process. Its covariance kernel Ky (z,w)
is easily checked to be equal to Kg(z,w). This implies that

(2.3.10) £z + B) 2 f(z)eLeAB+3LIB,

where the equality in distribution is for the whole processes (functions), not just for
a fixed z. Since the exponential function on the right hand side has no zeros, it
follows that the zeros of f(1z + ) and the zeros of f(z) have the same distribution.
This proves that the zero set is translationally invariant in distribution.

The proofin the other two cases is exactly the same. If fis one of the GAF's under
consideration, and ¢ is an isometry of the corresponding domain, then by computing
the covariance kernels one can easily prove that

(2.3.11) £(p()) £ €)M, ),

where, A(g,z) is a deterministic nowhere vanishing analytic function of z. That
immediately implies the desired invariance of the zero set of f.

The function A(gp, z) is given explicitly by (we are using the expression for ¢ from
equations (2.3.1), (2.3.2) and (2.3.3) respectively).

eL#B+3LIB®  domain = C.
Alp,2) = (p’(z)% domain = $2.
(P'(Z)_% domain = D.

It is important to notice the following two facts or else the above statements do not
make sense.

(1) In the case of the sphere, by explicit computation we can see that ¢'(z)
is (—Bz + @) 2. Therefore one may raise ¢’ to half-integer powers and get
(single-valued) analytic functions.

(2) In the case of the disk, again by explicit computation we can see that ¢'(z)
is (Ez +a)~2, but since L is any positive number, to raise ¢’ to the power L/2
we should notice that ¢'(z) does not vanish for z in the unit disk (because
la|? - I,BI2 =1). And hence, a holomorphic branch of log¢’ may be chosen
and thus we may define ¢’ to the power L/2.

O

We shall see later (remark 2.4.5) that the first intensity of zero sets for these canon-
ical GAFs is not zero. Translation invariance implies that the expected number
of zeros of the planar and hyperbolic GAF's is almost surely infinite. However, mere
translation invariance leaves open the possibility that with positive probability there
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are no zeros at alll We rule out this ridiculous possibility by showing that the zero
set is in fact ergodic. We briefly recall the definition of ergodicity.

DEFINITION 2.3.5. Let (Q2,%,P) be a probability space and let G be a group of
measure preserving transformations of Q to itself, that is, Por~! = P for every 7 € G.
An invariant event is a set A € & such that 7(A) = A for every 7 € G. The action of
G is said to be ergodic if every invariant set has probability equal to zero or one. In
this case we may also say that P is ergodic under the transformations G.

EXAMPLE 2.3.6. Let P be the distribution of the zero set of the planar GAF f.
Then by Proposition 2.3.4 we know that the Euclidean motion group acts in a mea-
sure preserving manner. The event that f has infinitely many zeros is an invariant
set. Another example is the event that

1
(2.3.12) lim —2{Number of zeros of fin [—a,a]Q} =c
a—oo 4q

where c is a fixed constant. In Proposition 2.3.7 below, we shall see that the action
of the translation group (and hence the whole motion group) is ergodic and hence
all these invariant events have probability zero or one. We shall see later that the
expected number of zeros is positive, which shows that the number of zeros is almost
surely infinite. Similarly, the event in (2.3.12) has probability 1 for ¢ = 1/7 and zero
for any other c.

PROPOSITION 2.3.7. The zero sets of the GAF f in equations (2.3.4), and (2.3.6)
are ergodic under the action of the corresponding isometry groups.

PROOF. We show the details in the planar case (A = C) with L = 1. The proof is
virtually identical in the hyperbolic case. For € C, let f5(2) = f(z + ﬁ)e‘zﬂ_%‘ﬁlz. We

saw in the proof of Proposition 2.3.4 that fg 4t We compute
E [fﬁ(z)i‘(U))] - e—zﬁ—%|ﬁ|2+zw+ﬁw.
As 8 — oo this goes to 0 uniformly for z,w in any compact set. By Cauchy’s formula,
the coefficients of the power series expansion of fg around 0 are given by
1 £5(0) ¢
27i (n+1 ’
(6}

where C(¢) = e, 0 < ¢ < 27. Therefore, for any n, the first n coefficients in the power
series of f and the first n coefficients in the power series of f3 become uncorrelated
and hence (by joint Gaussianity) independent, as  — oo.

Now let A be any invariant event. Then we can find an event A, that depends
only on the first n power series coefficients and satisfies PIAAA,]<e¢. Then,

|E[14(®14(Ep)] ~E[14,O14,Ep)] | < 2¢.
Further, by the asymptotic independence of the coefficients of f and fg, as f — oo,
E[14,(®14,Ep)] — E[14, O] E[14,Ep)] = (E[14,0)])°.
Thus we get
(2.3.13) limsup |E[14(014(£p)] - (E[14 DD | = 4e.

p—o0
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This is true for any ¢ > 0 and further, by the invariance of A, we have 14(f)14(fg) =
14 (f). Therefore

(2.3.14) E[14(6)] = (E[14(f)])2

showing that the probability of A is zero or one. Since the zeros of f5 are just trans-
lates of the zeros f, any invariant event that is a function of the zero set must have
probability zero or one. In other words, the zero set is ergodic under translations. []

REMARK 2.3.8. Itis natural to ask whether these are the only GAF's with isometry-
invariant zero sets on these domains. The answer is essentially yes, but we need to
know a little more in general about zeros of GAFs before we can justify that claim.

2.4. Distribution of zeros - The first intensity

In this section, we show how to compute the first intensity or the one-point cor-
relation function (see definition 1.2.2). The setting is that we have a GAF f and the
point process under consideration is the counting measure on f {0} with multiplici-
ties where f is a GAF. The following lemma from (68) shows that in great generality
almost surely each zero has multiplicity equal to 1.

LEMMA 2.4.1. Let fbe a nonzero GAF in a domain A. Then f has no nondetermin-
istic zeros of multiplicity greater than 1. Furthermore, for any fixed complex number
w # 0, f—w has no zeros of multiplicity greater than 1 (there can be no deterministic
zeros for w # 0 since f has zero mean).

PROOF. To prove the first statement in the theorem, we must show that almost
surely, there is no z such that f(z) = f(z) = 0. Fix zg € A such that K(zq,z¢) # 0.
Then h(z) :=f(z) - Ilé(zz(;io(f)f(zo) is a GAF that is independent of f(zg). For z such that
K(z,20) # 0, we can also write

f(z)  h(2) N f(z0)
K(z,z9) Kl(z,z9) K(z0,20)
Thus if z is a multiple zero of f, then either K(z,z9) =0 or z is also a multiple zero of
the right hand side of (2.4.1). Since K(-,z¢) is an analytic function, its zeros constitute
a deterministic countable set. Therefore, f has no multiple zeros in that set unless it
has a deterministic one. Thus we only need to consider the complement of this set.

Now restrict to the reduced domain A’ got by removing from A all z for which
K(z,z9) = 0. Condition on h. The double zeros of f in A’ are those z for which the
right hand side of (2.4.1) as well as its derivative vanish. In other words, we must
have

(2.4.1)

(2.4.2) ( h(z) ) —0and f(zg) _ h(z)

K(z,20) K(z0,20)  Kl(z,20)

!
Let S be the set of z such that ( Kl(‘z(zz)o)) = 0. Almost surely, S is a countable set. Then

the second event in (2.4.2) occurs if and only if

fz0) E{_ h&)'ZGS}
K(zp,2¢) K(z,z0) ' .

The probability of this event is zero because the set on the right is countable and the
conditional distribution of f(z() given h(:) is not degenerate.

The same proof works with f replaced by f— w because the mean 0 nature of £
did not really play a role. [
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We give three different ways to find a formula for the first intensity of n¢, the
counting measure (with multiplicities) on £ 1{0}, when f is a Gaussian analytic func-
tion. Part of the outcome will be that the first intensity does exist, except at the
deterministic zeros (if any) of f. The expressions that we obtain in the end can be
easily seen to be equivalent.

2.4.1. First intensity by Green’s formula. The first step is to note that for
any analytic function f (not random), we have

1
(2.4.3) dng(z) = —Alogl|f(2).
2

Here the Laplacian A on the right hand side should be interpreted in the distri-
butional sense. In other words, the meaning of (2.4.3) is just that for any smooth
function ¢ compactly supported in A,

(2.4.4) f(p(z)dnf(z) = fA(p(z)%loglf(z)ldm(z).
A A

To see this, write f(z) = g(2)[1,(z—ar)™*, where a;, are zeros of f (with multiplicities

mp,) that are in the support of ¢ and g is an analytic function with no zeros in the

support of ¢. Since ¢ is compactly supported, there are only finitely many aj. Thus

log|f(2) =loglg(z)| +)_myloglz — apl.
k

Now, Aloglg| is identically zero on the support of ¢ because log|g| is, locally, the
real part of an analytic function (of any continuous branch of log(g)). Moreover,
% loglz — ar| = G(ap,2), the Green’s function for the Laplacian in the plane implying
that

1
[ 805 toglz - s = o).
2m
A
Therefore (2.4.4) follows.
Now for a random analytic function f, we get

(2.4.5) E

1
f Ap(z)— log|f(z)|dm(z)
4 27

qu(z)dnf(z)] = E
A

(2.4.6)

1
fA(P(Z)%E[loglf(z)I]dm(z)
A
by Fubini’s theorem. To justify applying Fubini’s theorem, note that

1
E| [ 1801 [logIfi2) | dm(z)
A
Now for a fixed z € A, f(z) is a complex Gaussian with mean zero and variance K(z, z).

Therefore, if a denotes a standard complex Gaussian, then

E[|loglf(2)! |] E[|loglal|] + [log VK (2,2) |

1 1
= 5 [ Mogrear+ 2 flogke,) |
0

1
=/|Aw(z)lﬁE[|loglf(z)| || dm(2).
A

IA

= C+% |logK(z,2) |
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for a finite constant C. Observe that |logK(z,z)| is locally integrable everywhere
in z. The only potential problem is at points z¢ for which K(zg,z¢) = 0. But then,
in a neighbourhood of zp we may write K(z,z) = |z —209|?PL(z,z) where L(zg,z¢) is
not zero. Thus logK(z,z) grows as log|z — zg| as z — zg, whence it is integrable in a
neighbourhood of zy. Thus

E

dm(z)]
< oo

f 1Ap(2)| |logI£(2)] |
s 2n

This justifies the use of Fubini’s theorem in (2.4.6) and we get

1
@.4.7) E f P)dng(2)| = f 0(2)5- AE[log f(2)1dm(z).
A A
Again using the fact that —\/m is a standard complex Gaussian, we deduce that
1
Elloglf(z)]] = E[logle|]+ §logK(z,z)
= —g +log\/K(z,2)
where

(9]
Y= —flog(r)e_rdr.
0

is in fact the negative of Euler’s constant, but for our purpose we need only observe
that it does not depend on z. Thus by comparing (2.4.7) which is valid for all C%
functions, with (1.2.11) we deduce that the first intensity of £ 1{0} with respect to
Lebesgue measure is given by

1
(2.4.8) p1(z) = EAlogK(z,z).

This is sometimes known as the Edelman-Kostlan formula. There is no problem
with differentiating log K(z,z) which is real analytic. Exceptions are points where
K(z,z) vanish, and at such points the first intensity function does not exist and the
first intensity measure has an atom (f has a deterministic zero).

2.4.2. First intensity by linearization. This is a more probabilistic approach.
Let z € A. We want to estimate the probability that f(w) = 0 for some w € D(z,¢€), up
to order ¢2. Expand f as a power series around z:

(w—2)?
2!

f(w) = f(z) + f (2)(w — 2) + £'(2)

The idea is that up to an event of probability o(¢?), f and its linear approximant,

gw) :=1(z) + (w - 2)f (2),
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have the same number of zeros in D(z,¢). Assuming this, it follows from (1.2.8) that

. P[fhas a zero in D(z,¢)]
lim 5
e—0 €
P g has a zero in D(z,¢)]
2

p1(2)

= lim
e—0 €

P[22 ¢ D(O,0)

= 1.
P me?

= Probability density of f/(( )) at 0.
If a,b are complex-valued random variables then, by an elementary change of vari-
ables, we see that the density of a/b at 0 is equal to y,(0)E [Ibl2 |a =0], where y, is
the density of a at 0 (assuming the density a and the second moment of b given a =0
do exist).

When f is Gaussian, (f(z),f(2)) is jointly complex Gaussian with mean zero and

covariance

K(z,2) K(Z 2)
LK(z,2) LLK(z,2)

a
0z 0z
Here we use the standard notation
0 1(0 _6) 0 1(6 ,6)
-_— == d—_:— —+1—.
0z 2 0z 2\0x Oy

— ——

0x Oy
The density of f(z) at 0 is m Moreover, f'(z) |f(2):0 has

o d F)
NC( '3z g5 &2) - Iﬁ(a—

distribution. Thus we can write the first 1nten51ty as

KG,2)| 52K C.2))

0z 6zK(2 2)- K(z z) d K(Z z)azK(z Z)
nK(z,z)

This is equivalent to the Edelman Kostlan formula (2.4.8) as can be seen by differ-
entiating logK(z,z) (since A =42 s 02)

Now we justify replacing f by its linearization g. Without loss of generality, we
can assume that z = 0 and expand f as a power series. The following lemma is from
Peres and Virag (68).

p1(z) =

LEMMA 2.4.2. Let f(z)=ag+ai1z+... be a GAF. Assume that a is not constant.
Let A, denote the event that the number of zeros of fin the disk D(0,¢) differs from the
number of zeros of g(z) :=ag+ a1z in the same disk. Then for any 8 > 0, there exists
¢ >0 so that for all € >0 we have

PlA,] < ce?720,

PROOF. By Rouché’s theorem, if |g| > |f—g| on dD(0,¢), then f and g have the
same number of zeros in D(0,¢).

We bound the maximum of |f— g| by Lemma 2.4.4. For this we observe that for
small enough ¢,

(2.4.9) |II|132XE[|f(z)—g(z)|2] <Cet
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since f— g has a double root at 0. Thus Lemma 2.4.4 gives a constant y such that
(2.4.10) P |\ max{|f(z) _g(z)l :2e€D(0,¢)} > 62—5 . Coe,yeﬂﬁ

Now let © be the annulus D(0, |a1l€) +D(O,e2’5) (the Minkowski sum of the two
sets), and consider the following events:
Do = {lagl <267,

E={lail<e™)

= {min{|g(2)| : 2 € AD(0,¢)} < > % = {—ag € O}.

Note that P[E] < c9¢e® and that ENnF < Dy. Given Dy, the distribution of ag (recall
our assumption that ag is not a constant) is approximately uniform on D(0, 2¢179) (in
particular, its conditional density is O(¢2°~2)). Since P[E] tends to one as € — 0, this
implies that

P[F1<P[F NE|DolP[Dol+PLE®] < caccse’ 20 + coed < cge® 20,

>

In the first term, the factor of € comes from the area of © (as a fraction of the area
of Dg) and the factor of €272 from the probability of Do. Together with (2.4.10), this
gives the desired result. ([l

REMARK 2.4.3. In the proof we used Lemma 2.4.4 to bound the maximum mod-
ulus of a Gaussian analytic function on a disk. In the literature there are deep
and powerful theorems about the maximum of a general Gaussian process which
we could have used instead. For instance, Borell’s isoperimetric inequality (see
Pollard (69); the inequality was also shown independently by Tsirelson-Ibragimov-
Sudakov (86)) implies that for any collection of mean-zero (real) Gaussian variables
with maximal standard deviation o, the maximum M of the collection satisfies

(2.4.11) P[M > median(M) + bo] < Ply > b],

where y is standard normal. We could have arrived at (2.4.10) by an application of
(2.4.11) separately to the real and imaginary parts of @ (note that the median is
just a finite quantity). However we preferred to use Lemma 2.4.4 as it is elementary
and also exhibits some new tools for working with Gaussian analytic functions. One
idea in the proof below comes from the paper of Nazarov, Sodin and Volberg (59), see
Lemma 2.1 therein.

LEMMA 2.4.4. Let f be a Gaussian analytic function in a neighbourhood of the

unit disk with covariance kernel K. Then for r < ;, we have
(2.4.12) P |max|f(z)| > ¢| < 2¢ /8%
lz|<r

where a%r =max{K(z,z):|z| <2r}.

PROOF. Let y(¢) = 2re’?, 0 < t < 27. By Cauchy’s integral formula, for |z| < r,

o) < flf(y(t))l
By

dt
t R
y(@®)| ()|2n

IA

2af |f(2re”)|
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where f(z) = f(z)/ v K(z,z) and we have written just o for og,.

21
N o dt t
P |max|f(z)|>t| =< P flf(Zre’t)|—>—
lzl<r 2 20
0
(7 i)
N . t
< o tBg expy — flf(2relt)|—
2 27
0
1 7 d
o . t
< o t87R exp _[lf(2rezt)|2_
2 21
0

by Cauchy-Schwarz inequality. Now use the convexity of the exponential function to
get

T dt
fexp { 3 |f(2reit)|2} o
0

Since If'(w)I? has exponential distribution with mean 1 for any w, the expectation of
exp{%lf(2re‘t)|2} is 2. Thus we arrive at

202
< et/SO'E

P [maxlf(z)l >t
lz|<r

P|max|fz)|>t| < 278"

|lz|<r

O

2.4.3. First intensity by integral geometry. This is a geometric approach
to get the first intensity. We shall sketch the idea briefly. Interested readers are
recommended to read the beautiful paper (22) for more along these lines.

Let f be a GAF with covariance kernel K. Since K is Hermitian and positive def-
inite, we can write K(z,w) = Y. ¥, (2)v¥,,(w), where v, are analytic functions on some

n

domain in the plane. Then we see that f(z) =Y a,w,(2), where a,, are i.i.d. standard

complex Gaussians. (What we just said may l;le seen as a converse to Lemma 2.2.3).
First suppose that f(z) = Z anWn(z), where N < oco. In the end let N — oo to

get the general case. This is poss1b1e by Rouche’s theorem, for if the series fy(z) =

Z a,Yn(2) converges uniformly on compact sets to f(z) = Y7 ; @, ¥, (2), then for any
n=1
compact set, the number of zeros of f and fx are equal, with high probability, for

large N.

When N is finite, we may think of f(z) as the inner product of ¢(z) = (w1(2),...,wnN(2))
with (ai,...,an). As z varies over A, w(z) defines a complex curve in cN. Also
(ai,...,an) has a spherically invariant distribution. Thus asking for the number of
zeros of f is equivalent to:

N
Choose a point uniformly at random on the unit sphere {(z1,...,25): Y 2112 =1}

in CV and ask for the number of times (counted with multiplicities) the hyper plane
orthogonal to the chosen point intersects the fixed curve .
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FIGURE 1. The Buffon needle problem.

Turning the problem around, fix z and let w vary over D(z,¢). Then the hyper-
plane orthogonal to w(w) sweeps out a certain portion of the unit sphere. The ex-
pected number of zeroes of f in D(z,¢) is precisely the area of the region swept out
(again counting multiplicities).

Now as w varies over D(z,e), w(w) varies over a disk of radius approximately

lw'(2)l€ on the image of the curve w. However what matters to us is the projection of
Ly () y(2)| 2) 2

this disk orthogonal to the radial vector ¥(z), and this has area (Ilw ")) - ly ()12

However this disk is located at a distance [|w(2)| from the origin.

When a particle P moves a distance 6 on a geodesic of the sphere of radius r,
the hyper-plane P orthogonal to P, rotates by an angle of g. When § = 7, the entire
sphere is swept out by P+ exactly once. Putting these together, we find that the
probability of having a zero in D(z,¢) is

: z_M)
(1 @12 - 25 \

nllw(2)|2
and this gives p(z). Since K(z,w) = w(z)-y(w), this is the same as what we got earlier.

>

REMARK 2.4.5. As a simple application of (2.4.8), one can check that the zero
sets of the GAF's described in equations (2.3.4), (2.3.5) and (2.3.6) have first inten-

sities equal to IE‘, w.r.t, the Lebesgue measure dm(z) on the plane, the Spherical
dm(z) dm(z)

(1+]2[2)? (1-12[2)2
disk D, respectively.

on $% = CU{oo} and the Hyperbolic measure on the unit

measure

EXERCISE 2.4.6. Follow the steps outlined below to give a geometric solution to
the classical Buffon needle problem: Consider a family of parallel lines in the plane
with adjacent lines separated by a distance d. Drop a needle of length ¢ “at random”
on the plane. What is the probability that the needle crosses one of the lines? See
figure 1.

i. Show that the probability of a crossing is ¢/ for some constant ¢, provided
that ¢ <d.

ii. If a circle of circumference ¢ is dropped on the plane, deduce that the ex-
pected number of intersections of the circle with the family of parallel lines
is again c¢. Use this to compute c.

2.5. Intensity of zeros determines the GAF

In this section we present the result of Sodin (78) that two GAF's on A having the
same intensity p1(z)dm(z) are essentially equal. In particular we get the remarkable
conclusion that the distribution of the zero set £71{0} is completely determined by its
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first intensity! We first prove a standard fact from complex analysis that will be used
in the proof of Theorem 2.5.2.

LEMMA 2.5.1. Let K(z,w) be analytic in z and anti-analytic in w (i.e., analytic
inw) for z,w)e AxA. If K(z,2)=0Vz €A, then K(z,w)=0Vz,w e A.

PROOF. It is enough to prove that K vanishes in a neighbourhood of (z,z) for
every z € A. Without loss of generality take z = 0. Then around (0,0) we can expand

KasK(z,w)= Y amp2"w". Then K(z,2)= Y am,2"z". Let z=x+1iy. Note
m,n=1 m,n=1

that

6m+n
0zmaz"

Returning to K(z,z) = ) ak,gzkEZ, this gives (since we have assumed that K(z,z)
k(=1

k=t
zz \2:025(m,n),(k,z)m!n!.

is identically zero)

am+n
0 = gk |
= mlnlay,,.
Thus K(z,w) vanishes identically in A x A. ([l

Sodin (78) discovered the following result and related it to Calabi’s rigidity the-
orem in complex geometry.

THEOREM 2.5.2 (Calabi’s rigidity). Suppose f and g are two GAFs in a region
A such that the first intensity measures of £ 1{0} and g~ 1{0} are equal. Then there
exists a nonrandom analytic function ¢ on A that does not vanish anywhere, such

that £2 ¢g. In particular £1{0} g g 1{o}.

PROOF. For a z € O, we have K¢(z,z) = 0 if and only if z is almost surely a zero
of f (and the corresponding orders of vanishing of K¢ and f at z match). Since fand g
are assumed to have the same first intensity of zeros, the set of deterministic zeros
of f must coincide and have the same order of vanishing for f and g. By omitting all
such zeros from A, we assume that K¢(z,2) and Kg(z,2) do not vanish anywhere in A.
It suffices to prove the theorem for this reduced domain, for suppose that f = ¢g on
A —D where D is the discrete set that we have omitted, where ¢ is a non-vanishing
analytic function on A—D. Since at each point z of D, the functions f and g vanish to
the same order, we see that ¢ is bounded in a neighbourhood of z and thus ¢ extends
as an analytic function to all of A. Again because f and g have the same order of
vanishing at points of D, it is clear that ¢ cannot vanish anywhere.

Hence we assume that K¢(z,z) and Kg(z,2) are non-vanishing on A. By (2.4.8),
the hypotheses imply that logK¢(z,2) —logKg(z,2) is harmonic in A. Therefore we
can write

(2.5.1) Ki(z,2) = e“®Ky(2,2)

where u is a harmonic function in A.

If A is simply connected, we can find an analytic function ¥ on A with 2Re(y) =
u. Set ¢ = e¥. Then the above equation says that the two functions K¢(z,w) and
(p(z)WKg(z,w) are equal on the diagonal. As both of these are analytic in z and

anti-analytic in w, Lemma 2.5.1 shows that they are identically equal. Hence f d pg.
As ¢ does not vanish this shows that £~1{0} and g~1{0} have the same distribution.
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If A is not simply connected, fix a zg € A and an r > 0 such that D(zg,r) c A.
Then there exists a non-vanishing analytic function ¢ on D(z¢,r) such that

(2.5.2) Ke(z,w) = p(2)p(w)Kg(z,w)

for every z,w € D(zp,r). Then fix w € D(z¢,r) such that ¢(w) # 0, and note that

% is an analytic function on A —{z : Kg(z,w) = 0} and is equal to ¢ on D(zq,r).

Taking the union over w € D(zg,r) of all these analytic functions we get an analytic
extension of ¢ to the whole of

(2.5.3) Mz :Kg(z,w)=0 Yw € D(zg,r) s.t. pw) # O}

But if Kg(2,w) = 0 for all w in an open set, then Kg(2,2) = 0. By assumption this does
not happen. Thus ¢ extends to the whole of A and the relationship

Ki(z,w) = p(2)p(w)K g(z,w)
persists. Thus ¢g and f have the same covariance kernel and by Gaussianity we get

£ ¢g and ¢ is analytic on A. By inverting the roles of f and g, we see that 1/¢p must
also be analytic on A, which means that ¢ cannot vanish anywhere. O

REMARK 2.5.3. Alternately, for the non-simply connected case, one could use
the uniformization theorem to argue as follows. If A is a region of C, let = be
the covering map from D or C to A. Recall the definition of u from (2.5.1). Let
K;,K;,u* be pull backs of K¢ and Kz and u to D. Then as before we can write
K¢(z,w) = ¢*(2)p" (w)Kz(z,w) for a non-vanishing analytic function ¢* on D. If
n(z1) = n(z2), then ¢*(z1) = ¢*(22) (Fix w and note that K;(z1,w) = K¢ (22,w) and
Kg(z1,w) = Kg(z2,w)). Thus ¢ = ¢*n~ ! is well defined, does not vanish on A and
satisfies, K¢(z,w) = ¢p(2)p(w)Kg(z,w).

An immediate consequence is

COROLLARY 2.5.4. The random power series described in equations (2.3.4), (2.3.5)
and (2.3.6) are the only GAFs, up to multiplication by deterministic nowhere vanish-
ing analytic functions, whose zeros are isometry-invariant under the respective group
of isometries.

Unfortunately, Theorem 2.5.2 is not constructive in that it does not tell us how
to determine the k-point intensities of the zero set of a GAF if we know the first in-
tensity. However, in the next section we shall see that it is possible to write general,
although often intractable, formulas for the joint intensities of a GAF.

2.6. Notes

¢ The study of zeros of random polynomials goes back to Mark Kac (41) (but see also
Paley and Wiener (66) which preceded Kac). He obtained the density of real zeros of
various models of random polynomials, for example ag +a1x+...+a,x", where ay,
are i.i.d. standard (real) Gaussians. These results can be obtained by the geometric
proof presented here due to Edelman and Kostlan. See (22) for details. Following
his papers, there was a significant amount of work done on this subject. Apart from
zeros, there are many other interesting questions about random powers series as
can be seen in the book of Kahane (42).

e The recent resurgence of interest in complex zeros is at least partly due to the
work of many physicists such as Bogomolny, Bohigas and Leboeuf (7),(8), Han-
nay (30) and others. Apart from the Probabilistic perspective of these notes, there
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are other frameworks in which these objects are studied. For instance see Shiffman,
Zelditch (74) (and references therein) who study random sections of line bundles.
The planar GAF models were introduced (in parts) by Bogomolny, Bohigas and
Leboeuf (7) and (8), Kostlan (49), Shub and Smale (76). Some of them are natu-
ral generalizations to complex coefficients of random polynomials studied by Mark
Kac. A special case in the unit disk (L = 2) was found by Diaconis and Evans (18)
as the limit of the logarithmic derivative of characteristic polynomials of random
unitary matrices.

Subhroshekhar Ghosh pointed to us another proof that the hyperbolic GAF does
not extend to any domain larger than the unit disk. If it did, the covariance kernel
would be an extension of (1—ZE)_L and would remain analytic in z and anti-analytic
in w. This is clearly impossible, as (1 - 1212)~L does not extend continuously to any
point on the boundary of the unit disk.

Theorem 2.5.2 is from Sodin (78), who found the result and related it to Calabi’s
rigidity theorem from differential geometry. A constructive way of recovering higher
intensities from the first one is not known, and would be very desirable to have.

2.7. Hints and solutions

Exercise 2.1.1

(2.7.1)

(2.7.2)

(2.7.3)

(2.7.4)

i

ii.

Note that X has density

L a2
(2m)d/2
where |-| denotes the Euclidean norm. By the transformation formula, the density
of AXis f (A_lx)l det(A_l)I2 (note that we use the real Jacobian here). The deter-
minant is 1 and unitary matrices preserve the Euclidean norm, hence the density
of X is invariant under A.
It suffices to consider the case EX = EY = 0. By definition there are standard
Gaussian random vectors X and Y and matrices A and B with X = AX and Y = BY.
By adding columns of zeros to A or B, if necessary, we can assume that X and Y
are both k-vectors, for some %, and A, B are both d x & matrices. Let o and % be
the vector subspaces of ck generated by the row vectors of A and B, respectively.
Suppose, WLOG, that the first £ < d row vectors of A form a basis of «/. Define the
linear map L : of — %A by

L(A)=B;fori=1,...,¢.

f(21,...,2d)=

Here A; is the i*h row vector of A, and B ; is the i row vector of B. Our aim is to
show that L is an orthogonal isomorphism and then use the previous proposition.
Let us first show that L is an isomorphism. The covariance assumption implies
AA* =BB*. Suppose there is a vector v{Aj +---+vyA, which maps to 0 under L.
Then the vector

v=(vq,...,07,0,...,0)
satisfies vB = 0. Hence
VA2 =vAA*v* =vBB*v* =0,
so vA =0. Thus L is injective and dim«/ < dim %. Interchanging the roles of A and
B shows that L is an isomorphism. The entry (i,j) of AA* = BB* is the inner
product of A; and A; as well as B; and B}, so the mapping L preserves inner
products. Thus it can be extended on the orthocomplement of </ to give a unitary
map L : ct —c* (ora unitary % x k matrix). Then X = AX and Y = BY = AL*Y.

From part i. we know that L*Y is standard complex normal, hence X and Y have
the same distribution.
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Exercise 2.2.2 If z€ D and D(z,r) c A, then f has a power series expansion in D(z,r).
By virtue of it being Gaussian in D, the coefficients of the power series have a jointly complex
Gaussian distribution and hence f is Gaussian on the whole of D(z,r). In general, for any
w € A\D, we can find a sequence of disks D(z1,r1),...,D(z,,rn) contained in A such that
D(z1,r1) =D, D(z5,rn) 2w and such that z; € D(z;_1,r;). Inductively, we apply our earlier
observation about concentric disks to conclude that f is Gaussian near zg,...,z; and hence
near w.

Exercise 2.4.6

i. Consider the needle as a union of shorter needles, use linearity of expectations.
Each of the shorter needles will give the same expected number of intersections,
provided that it is not too far from the center of mass of the original needle. And
lastly, for ¢ < d, the number of intersections is at most one, hence we get the proba-
bility of intersection.

ii. The same argument used in i. shows that if a polygonal path of length ¢ is dropped
uniformly between the two lines, the expected number of intersections is ¢/. Circles
can be approximated arbitrarily well by polygonal paths, so the same is true for
circles. A circle of diameter d has exactly two intersection, which yields ¢ = %

Exercise 2.3.1
i. Direct calculation shows that for ¢ as in (2.3.2), we have
¢ (2)] 1
1+lp@)I12  1+22

This shows that the metric and area are preserved by ¢.

r
ii. Theradius of D(0,r)is given by [ rlﬂdt and the areais givenby [ dm(z).
0 D(O,r

Straightforward calculations show that these integrals are equal to arctan(r) and

1
) (1+]2[2)?

1”+—rrzz, respectively.
Exercise 2.3.2
i. This time we check easily that for ¢ as in (2.3.3), we have
'@ 1
1-lp@)2  1-[z12
This shows that the hyperbolic metric and area are preserved by ¢.

-
ii. The radius of D(0,r)is given by [ 1_—1ﬂdt and the areais givenby [ mdm(z).
0 D(,r)

Straightforward calculations show that these integrals are equal arctanh(r) and
2

r

1-r2°

respectively.






CHAPTER 3

Joint Intensities

In chapter 2 we derived expressions for the first intensity of the zero set of a gen-
eral Gaussian analytic function. In this chapter, in section 3.1 we find the joint inten-
sities of zero sets. These are special cases of what are known as Kac-Rice formulas,
and can be used to obtain explicit answers for low order intensities. In section 3.5, we
find a different expressions for the two-point intensity of zeros and specialize them
to the canonical Gaussian analytic functions of section 2.3. However our aim will
not be to find the two-point intensities exactly, but to evaluate them asymptotically.
This will lead us to surprising facts about the fluctuations of smooth linear statistics
of zero sets. We shall also state asymptotic normality results on linear statistics due
to Sodin and Tsirelson.

3.1. Introduction - Random polynomials

The goal of this section is to prove the k-point intensity formula for random
analytic zeros which can be heuristically written as

(3.1.1) plxt,...,x1) = E[If (x1) - £ (ap)I?; fx1), ..., flaz) = 0]
in the strong and precise sense given in (3.1.2) below. For a random analytic function

f, let up, = pg denote the expectation of the k-fold product of counting measure of the
zero set. It is the measure satisfying

f(l’dﬂk = Ez(p(zla'-"zk)
z¢
for test functions ¢. As discussed in text following definition 1.2.2, off the diagonals
(z; = zj for some i # j) yp agrees with the k-point intensity measure.

THEOREM 3.1.1. Let f be a random polynomial with a.s. bounded degree. Then
we have the following weak* limit
5.12) = lim B [1£/(x1)- - £ (xp)PL(f(x1), ..., £(xp) € Be)]
€—0 Vol(B,)*
In particular, the limit exists. Note that if the density in (3.1.2) converges uniformly
on compact subsets of C* to some function 0, then uy, has density p.

dxy---dxp.

In Section 3.3 we will extend this theorem to random analytic functions satis-
fying a simple moment condition 3.3.1. We shall show that this moment condition
implies exponential tails for the number of zeros in any bounded set; this is proved
in Section 3.2. The Gaussian analytic function case is proved in Section 3.4.

Our strategy is as follows. First of all, we can always think of the joint intensity
of zeros of f as the off-diagonal single intensity of the zeros of (f,...,f).

It would be nice to first prove a deterministic version of formula (3.1.1), and
take expectations. But such version would involve point mass measures and would

35
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be difficult to analyze. So we introduce two extra sources of averaging: first, instead
of zeros, we consider near-zero values (or, more generally, values in a bounded set B).
Second, we integrate a smooth test function over the locations where F' takes these
values.

After this averaging, we now have tractable deterministic version of (3.1.1),
namely Lemma 3.1.2 below. It is a non-bijective change-of-variables formula (also
called co-area formula) which we have not been able to find in the literature.

LEMMA 3.1.2 (Change of variables). Let F :C* — C* be a function with continu-
ous derivative. For any continuous function ¢ with compact support and any bounded
B c C* we have

Y. pdy= [ pwIF @FaE@) .
Bx€F’1(y) Ck

here |F'(x)| is the absolute value of the Jacobian determinant of F.

PROOF. We may assume that ¢ = 0. Let S be the set of critical points of F, let
K be the compact support of ¢, and let S’ be an open neighborhood of SNK. For
each point x € K \ S by the inverse mapping theorem there is a neighborhood of x so
that F is one-to-one. Using a finite subcover by such neighborhoods of K \'S’ and the
usual change-of-variable formula for bijections, we get

(3.1.3) f Y edy= f @) F'(x)*15(F (x)) dx,
B Ch\S'

xeF~1(y)\S’

Now we can let S’ \, S N K, then by the monotone convergence theorem applied to
both sides we can replace S’ by S in (3.1.3). We can then drop “\S” on the right hand
side because the integrand vanishes on S. We can drop it on the left hand side as
well because of Sard’s Theorem ((35) p. 682), which states that for a differentiable
function F the image F(S) of the set of critical points S has measure 0. U

The following deterministic lemma shows that in the case when F = (f,...,f) and
f is an analytic function, then some of the averaging from the formula of Lemma
3.1.2 can be removed. For such F and a test function ¢ : C* — R use the shorthand

PlF i l= Y o= Y k.

xeF~1(y) zeros x of F—y
Let B, denote the open disk of radius € about 0.
LEMMA 3.1.3. Let f be an analytic function (f# 0) on a domain D, and let Z be

the multi-set of its zeros. For any continuous function ¢ with compact support in D*
we have

1
F_l d - geeey .
Vol(BF) j;r;g PlF(»)ldy z&ék 0(21,...,21)

PROOF. Let K be the union of the projection of supp(¢) in all coordinate direc-
tions. Let # denote the finite set (this time without multiplicity) of zeros of f in
K.

Consider a zero w € # with multiplicity m(w). Then there exists e(w) > 0 so that
f restricted to a neighborhood of w has an inverse f;l that has exactly m-values on
Bw) \ {0}, see Ahlfors (1) p. 133. Moreover, each value of f,;,l(z) converges to w as
z—0.
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When € < miny e(w), then for z € B, \ {0} the function f1(z) has exactly m(w)
values for every w € # and they are close to the corresponding zero w. More precisely,
adding ¢ to the picture we have

sup (P[F_l(y)]—Z(p(zl,...,zk) -0
YEBNODE 7
as € — 0. The claim follows. O

Our proof of Theorem 3.1.1 works in the following, more general setting. It
includes the case of polynomials with a.s. bounded degree.

LEMMA 3.1.4. Theorem 3.1.1 holds for random analytic functions satisfying the

following condition. For every compact set K, the random variables

1 k
(314) (\W_Be) B, nf+z(K)dZ)

are uniformly integrable as € — 0.

PROOF. Let ¢ : C¥ — R be a continuous test function with compact support. By
Lemma 3.1.2 with the notation F =(f,...,f) we have

1 1
(3.1.5) f OIF' ()21 g1 (F(x)) dx = ———— [F~(y)]dy.
Vol(BF) Jor ¥ Bt VolBFy Jg ¥ Y
If we replace ¢ by sup|p| on the right, the expression becomes
1 k
(3.1.6) sup|o| VolBo) Js, ng,.(supp )dz|

which is uniformly integrable by assumption. Now take expectations of (3.1.5), let
€ — 0 and use uniform integrability. The right hand side, by the bounded convergence
theorem and Lemma 3.1.3 converges to

3.1.7) E Z (p(zl,...,zk):f(pdpk.
zeZk
The left hand side, by the Fubini argument, becomes
E[|F'(x)|?1(F(x) € B*
f(l)(x) [IF'(x)]*1( ;:x) O] da
Vol(Bg)
E[If (x1)- - ()| ?1(f(x1), ..., faz) € Be)]
= | px) dx

Vol(B,)*

completing the proof. (Il

3.2. Exponential tail of the number of zeros

In order to extend Hammersley’s formula (Theorem 3.1.1) beyond polynomials
we need to control the moments of the number of zeros in a compact set. For this,
we will use the following tail bound which is interesting in itself. It is a variant of
Offord’s estimate for GAF's.

THEOREM 3.2.1. Let f(z) be a random analytic function on a domain D. Suppose
that there exists b,0 > 0 so that

Elf(z)|i5<b for all zeD.
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Then in any compact K < D the number n¢(K) of zeros has exponential tail: there are
¢,a > 0 depending on b,6,K only so that for all A >0 we have

P(A < ng(K)) < ce™ ™,
The theorem hinges on the following lemma.

LEMMA 3.2.2. Let X be a nonnegative random variable satisfying E(X%) < b for
some § > 0. Then for any event A with p = P(A) we have

E(log® X;A) < (1+1log" b—logp)p/s.

PROOF. It is convenient to use the standard representation X = G~1(U) where
U is a uniform [0, 1] random variable and G~ is the “inverse” of G(x) = P(X = x) in
the following sense:

G~ (y) = supfx : G(x) = y}.

We will use the fact that this inverse satisfies G(G™1(y)) = y, and so G(X) = U.
By Markov’s inequality x°G(x) < EX? < b, and therefore

dlog* x <log* b —logG(x).

Let ¢(X)=P[A|X]. We have G(X) = U, and therefore
Elg(X)5log* X1 < E[g(X)(og*b-logG(X))]

plog® b —E[r(U)log G(X)]
< plog*b—E[r(U)logU],

A

A

where r(u) = ¢(G™1(x)) is a function with values in [0,1] and total integral p over
[0,1]. Thus the last term can be written as

1 p
—f r(u)logudus—f logudu = p(1-1logp),
0 0

where the inequality follows by rearranging the values of r within the given con-
straints so that large values of r correspond to large values of —log. The claim fol-
lows. ([l

PROOF. [Proof of Theorem 3.2.1] Let ¢ be a non-negative smooth function with
compact support in D so that ¢ =1 on K. Then [|A¢ll;1 < oo, and by (2.4.4) we have

1
nf(K)Sf w(z)dnf(z):—f Ap(2)log|f(z)| dm(z).
D 27 Jp

We now take expectation of both sides on the event A = {n¢(K) > A}, and let p = P(A).
Using Markov’s inequality and a Fubini argument we get

IA

1
Ap E[n¢(K);Al < %fDIAw(Z)IE(IIOng(Z)II;A)dm(Z)

IA

1
—A¢llL, supE(logf(2)][;A)
2n zeD

Lemma 3.2.2 with X = |f(z)|*! provides the bound
E(|log|f(2)||;A) < 2(1 +log* b —logp)p/6
and therefore

P(A <neK))=p <e(dv1)exp(—A6n/|Apl;1). O
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3.3. Joint intensities for random analytic functions

The exponential tail estimate of the previous section allows us to extend Theo-
rem 3.1.1 to random analytic functions with bounded moments. More precisely, we
have the following theorem.

THEOREM 3.3.1 (Hammersley’s formula for analytic functions). Let f be a ran-
dom analytic function in a domain D satisfying £# 0 a.s. and

3.3.1) Elf(z)li‘s <b for some b,6 >0and all zeD.
Then we have the following weak* limit
E [If (1) £ ()2 1(£(x1), ... £xz,) € Be)|
dx1 .
Vol(B.)*

In particular, the limit exists. Note that if the density in (3.3.2) converges uniformly
on compact subsets of C* to some function p, then uy has density p.

(3.3.2) Ur = lil'% --dxp,.
€—

In applications, we apply the theorem to restrictions of f to compact subsets of D,
since condition (3.3.1) is usually satisfied only locally. As a first step in the proof of
Theorem 3.3.1, we show that the moment condition (3.3.1) is inherited by randomly
shifted versions of f, that is, functions of the form z — f(z)+ecU where U ~ uniform(D).
Clearly, it suffices to prove this pointwise.

LEMMA 3.3.2. Let Z be a complex random variable, let U ~ uniform(D) be inde-
pendent, and let 6 € R. There exists cs5 > 0 so that for all e €[0,1]:

E|Z +eUl° < c5(1+E|Z]%).

PROOF. For § = 0 the claim follows from the inequality |Z +eUl® < 2%(12)° +
leU°).

Now let § <0, and set n = -6 > 0. If 3¢ < |Z +€U|, then the triangle inequality
gives 2¢ < |Z|, and so |Z +eU| > |Z|/2. Thus

|Z+eUI™M1(Z +€eU| > 3¢e) < |Z/2|7",

so we have
1Z+eU|™"<|Z+eU|""1(Z +€eU| < 3¢e)+1Z/2|7".

After taking expectations we get

EIZ+eU|™T < f 2| "P(Z +eU e dz)+E|Z/2|7".
Bse

Given Z, the conditional probability that Z + eU € dz is 1(z + Z € eD)/(we?). So the
first term can be written as

-ng -nd
PZez+eD) D2 < P(z<s0[ Z_%
Bse e Bse ne
= ¢, P(Z] < 4e)(4e)
< EIZ7,

the last inequality is Markov’s. We conclude E|Z +eU|™" < c;IEIZ |77, as required. [

PROOF. [Proof of Theorem 3.3.1] Let U be an independent uniform(D) random
variable, and let conditional expectation given f mean that we are integrating over
U.
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By Lemma 3.1.4 it suffices to prove that

1 k ,
(Vol(Be) fB ”f+z(K>d2) =E[ng.cy(K)|f]

is uniformly integrable as ¢ — 0.
By Lemma 3.3.2, {f(z) + €U : € < 1,z € D} uniformly satisfy the moment condition
of Theorem 3.2.1, which then gives

(3.3.3) P(ngrep(K) > 1) < ce™

for some positive constants c¢,a which do not depend on €. By Jensen’s inequality for
conditional expectations, we have

E [Elne. oK) <E

nereu(K )Zk] <c,

where ¢’ can be chosen not to depend on ¢ because of (3.3.3). To finish, note that if
X, is a collection of random variables, and for some ¢ >0, @ > 1 we have E|X,|% < ¢
for all €, then the X, are uniformly integrable. ([l

3.4. Joint intensities - The Gaussian case

For Gaussian analytic functions on compact sets with strictly positive definite
covariance kernel the conditions of the general joint intensity Theorem 3.3.1 hold
trivially.

The following exercise together with the last sentence in the statement of Theo-
rem 3.3.1 gives a sufficient condition for Gaussian analytic functions to have k-point
intensity functions (as opposed to merely k-point intensity measures).

EXERCISE 3.4.1. Assume that det[(K(z;,2/))1<i j<t] does not vanish anywhere
on a compact set L c C*. Show that

1mE[|t”(x1)---f*(xk)lzl(f(xl),...,f(xk)eBe)] _
e~0 Vol(B, )t
E[If (x1)-- £ ()12 | fx1), ..., flag) = 0]
7 det [(K(2i,2,)1<i j<k ]

uniformly on L.

COROLLARY 3.4.2 (Density formula for Gaussian analytic functions). Let f be a
Gaussian analytic function on A with covariance kernel K. For k = 1, if detK(z;,2;); j<p
does not vanish anywhere on A, then the k-point intensity function py exists and is
given by

E[If(z1)---f(zp)? |f(21)= ... =1(z) =0]
3.4.1 yeeesZR) = .
(3.4.1) Pr(21,--.,2E) 7k detK (21,2 )1 yon
Equivalently,
per (C—BA™!B*)
(3.4.2) pk(zl,...,zk):

det(rA) ’
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where A,B,C are k x k matrices defined by

AG.) = E[fzke))
BiQ.) = E[fGoic))
Cli.j) = E[fef)).

(Recall Definition 2.1.5 of per.)

PROOF. [Proof of Corollary 3.4.2] Exercise 3.4.1 yields (3.4.1). Exercise 2.1.3
tells us that conditional on the event {f(z;) = 0,1 < i < &}, the distribution of (f(z1),...,f(z3))
is again complex Gaussian with zero mean and covariance C — BA™1B*. Apply Wick
formula (Lemma 2.1.7) to obtain (3.4.2). (]

3.4.1. Short-range repulsion. In chapter 1 we revealed that one of our moti-
vations for studying zeros of random analytic functions is that they seem to model
point processes with repulsion between points. Indeed, in Lemma 1.1.1 we saw that
for a monic polynomial, the Jacobian determinant of the transformation from coef-
ficients to roots is equal to [[|z; — z j|2, which clearly shows that under some fairly
general assumptions on the distribution of coefficients of a random polynomial, the
zeros must exhibit repulsive behaviour. However the phenomenon of short-range
negative correlations of zeros is so ubiquitous and important that we would like to
give another simple explanation.

Since for a Poisson process (or a finite collection of independent points) on the
plane we have

Plthere are two points in D(z,¢)] = 6‘4,

by local repulsion of a point process we mean that this probability is o(e*) (typically
0(€%)). For point processes on the real line, the analogous quantity is o(e?) (typically
O(e?)). The following exercise shows that this is indeed true for a wide class of
random smooth real-valued functions on R.

EXERCISE 3.4.3. Let f:R — R be a random smooth function. Fix x € R.
(i) Let g(y) = a + by + cy?, where a = f(x),b = f/(x),c = %f”(x). Show under fairly
general conditions on f that

P[f has at least two zeros in (x —€,x +€)] = P[g has two zeros in (—¢,¢)] + 0(c®).

For definiteness, we count zeros with multiplicity.

(i1) The graph of g is a parabola whose shape is determined by ¢, whose “tip” has
the horizontal location equal to ¢ := —% and vertical location equal to n:=a — %.
Condition on c. For g to have two zeros in (—¢,¢), we must have ¢ € (—¢,¢) and || <

lcle2. Deduce that
P[g has two zeros in (=¢,€)] = €2 y(4,5)(0,0E [¢?| a = b = 0],

where y (4 p) is the density of (a,b) (which we assume to exist at (0,0)).

(As in the integral-geometric proof of Buffon’s needle problem 2.4.6, we can see
this pictorially as follows. Imagine the parabola to be fixed in the plane and the
origin of the coordinate axes to be random. Then the event under consideration is
that the origin should fall in a 2¢ x lc|e2 rectangle centered at the tip, and that is the
source of the €3 factor).

(iii) Work out some sufficient conditions so that this probability is indeed O(e?).
Adapt the proof to the case when f: C — C.
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3.5. Fluctuation behaviour of the zeros

Let f be one of the GAF's described in equations (2.3.4), (2.3.5) and (2.3.6) on
one of the three domains, which we denote by A. Fix a function ¢ : A — R. Assume
@ € C%(M). We define

Zi)= ), o).
zef 10}

Then we know that E[Z;.(¢)] = £ [¢(z)AlogK[(z,2)dm(z). Now we list a few re-
A

sults about the fluctuation behaviour of Zz (¢).

Extending a result of Forrester and Honner (23) who dealt with the planar case
only, Sodin and Tsirelson (80) showed that for all the three canonical models, for
peC ?(A),

Ky 1
(8.5.1) Var [Z(p)] = AL PIF 2oy + o(7), as L — oo.

Here « is a numerical constant that is the same for all the three models while m* and
A* are the invariant measure and invariant laplacian on A, normalized as follows

L dm(z) A=C, A A=C,
dm*()= ) Grgrpdme) A=S% AT={A+lzPPA A=SY
srapprdmz) A=D, (1-1z»?A A=D.

The most remarkable feature of (3.5.1) is that the variance decreases to zero as L in-
creases! The dependence on the second derivative of ¢ is also novel. These reinforce
our intuition of the zero set as rigid and lattice-like. Given the decrease in variance,
it is surprising that asymptotic normality holds.

Asymptotic Normality [Sodin and Tsirelson] For each of the three models, for
@eC%(N), as L — oo,

d *
VL(Zr(@) - E[Zu@)]) “ N (018" 012, ),
where « is a constant that is the same for all the three geometries.
Sodin and Tsirelson do not use the asymptotics of the variance in proving asymp-
totic normality. For details consult (80). Here we content ourselves with a derivation
of the variance of Zz,(¢p) for ¢ € C2(A). Write (from Edelman-Kostlan formula)

. . dm(2)
ZL(p)-E[ZL(p)] = f Ap(2)log [1(2)] ’;ﬂz ,
A
where f(z) = \/% We usually omit the subscript L on the GAF f for simplicity

of notation. Then we get (justify the exchange of expectation and integral using
Fubini’s theorem as in (2.4.6))

dm(z) dm(w)
2 on

(3.5.2) Var [ZL(¢)] = f Ap(2)Apw)E [log|£(2)| log |f(w)]
A2
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For any z,w fixed, (f'(z),f'(w)) has a joint complex Gaussian distribution with mean

zero and marginal variances equal to 1 and E[fL(z)i'L(w)] =0(z,w)’ where

e A=C7

Ki(z,w) 1+zw A=5§2

0(z,w) = =\ VitV T
\/Kl(Z,Z)\/Kl(LU,w) mm A=D.

1-zw

zw-31z12- L lwl?

It is also easy to see that |le is a random function invariant under the isometries of
A.
It is more convenient to write (3.5.2) in terms of the invariant measure and the
invariant Laplacian as
(3.5.3) Var [ZL(p)] = f A*p(2)A* p(w)E [log [f(2) | log [fw)l] dm* (2)dm* (w).
AZ
Observe that E [loglf'(z)l] is a constant and hence integrating it against A*¢ yields
zero. Therefore we can rewrite (3.5.3) as
(3.5.4) Var [Z1(p)] = /A*qo(z)A*w(w)pL(z,w)dm*(z)dm*(w),
A2
where pr,(z,w) = Cov (longL(z)I,loglf'L(w)l). From Lemma 3.5.2, we have in particu-
lar that pz(z,w) = 0 and that
1 1

(3.5.5) 110wl < pr(z,w) < S 160G, w1
Now, write the right hand side of (3.5.4) as a sum of three integrals (Az, to be chosen
appropriately later)

1) I;:= fl{pL(Z,w)SAL}A*(p(z)A*(p(w)pL(z,w)dm*(z)dm*(w).

(2) In:= [, Guy>a ) (A @(2) = A" pw))A* p(w)pr(z, w)dm™* (2)dm™ (w).

3) I3:= [ L, cuw>a (A @) 2pL(z,w)dm* (2)dm* (w).
It is evident that

(3.5.6) 111 < ALIA @117 1 ey

To bound the second integral, first note that by uniform continuity of A*¢, for all z,w,
we have [A*p(z) - A*pw)| < €(16(z,w)|?) where () \, 0 as ¢ /' 1. From the bounds
(3.5.5)

35.7) 1121 = O ¢[@AD) [ 1pyc00a12,00dm” @)

The third integral may be evaluated exactly as follows.
(3.5.8) I3 = ||A*(p||%2(m*)‘[ l{pL(Z,0)>AL}pL(z,O)dm*(z).

Again we used the invariance of p;, under isometries of A. Choose Af, = L~2. Then,
by (3.5.6), we see that I; = O(L~2). Further, A%I/L — 1, whence € ((2A1)"F) — 0 and
thus by (3.5.7) and (3.5.8) we get Is = 0(1)I3. Thus we conclude that

Var(Zz(9)) = Is(1+o(1)) + O(L72).

and the remaining task is to compute

fl{pL(z,0)>AL}PL(z,O)dm*(Z).
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Invoking Lemma 3.5.2 again, we write
(oo}

pL(z,00= Y 10(z,0)2™(4m?) L.
m=1

We show the details in the planar case when 16(z,0)|% = e~ 12 ‘2. The other two cases
are dealt with in an almost identical manner. From (3.5.5),

2logL —log4 2logL —log2
{IzlzsM}c{pL(z,0)>L_2}c{lzl25M}

Lm Lm
and hence,
clogL
|f1{PL(Z 0>4.}PL(Z,0)dm” (2) - fl floiz< ZlogL}pL(Z ,0dm™(2) | < —5—5 o2
Thus,
x 1
Iz = ) 4—mzfl{\z‘ungL}e_L’"'z'zdm*(z) +O(L72)
m=1 - L
- (2logL)/L
-y = f e Mty + O(L72)
m=1 %M 0
— Z 4Lm3(1 e 2mlogL) + O(L 2)
m=1

_ T -2
= 4L((S) + O(L™).

Combine this with (3.5.8) to see that

((3)

Var [Z1(p)] = =A% ¢[75,,., + oL ™).

REMARK 3.5.1. Remember that m* has a non-standard normalization, for in-
stance in the planar case, written in terms of the usual Lebesgue measure, the vari-
ance is

m{(3)
16 L
It remains to prove the following lemma.

LEMMA 3.5.2. If (a,b) is complex Gaussian with Elaa] = E[bb] = 1 and E[ab] = 6,
then

A" Ql7s,, + oL ).

00 |6|2m
Cov(loglal,log|b))= ) o

m=1
PROOF. It is well known that the Laguerre polynomials
ex n
n! dxn
for n = 0, form an orthonormal basis for L2(R,,e *dx). To see this, integrate by parts
to obtain,

L,(x):=

(x"e™)

(=x)* d" L (x) -

n! dx"

dx.

an(x)Lm(x)e_xdx =

R+
Thus if n > m, we get zero, since L,, is clearly a polynomial of degree m. If n = m,
then % is n! times the leading coefficient of L,,. From the definition of L, the

(1)

leading coefficient is , when we see that {L,} is an orthonormal basis. (Further
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details can be found in (2) or any other book on special functions and orthogonal
polynomials).

Now, logx is in LP(Ry,e *dx) for any p > 0, and therefore we can write the
expansion

(e ¢}
logx = Z CnLn(x),
n=0
in the L? sense. The coefficients can be explicitly computed as follows. Co can be
computed in terms of Euler’s constant y, but will be irrelevant to us. For n =1,

X ex n
C, = flog(x)— x"e e “dx
J nld
(o0}
n! J dx®

x"e ¥dx

(-1 f(—l)"-l(n ~1)!

1

n

If a is a standard complex Gaussian, then la|? has density e *dx on R,. Thus,
we can write (with C,, = —%, forn=1)

[e) Cn 9 [e) Cn 9
logla| = Z 7Ln(|a| ), log|b| = Z 7Ln(|b| ).
n=0 n=0

These expansions are valid in L2 of the probability space on which a,b are defined.

From this we firstly deduce that E[log|a|]l = 5. Hence

c,C

(3.5.9) Cov(loglal,loglb)= ) o
(n,m)#(0,0)

w(lal®)L, (161)] .

To compute E [L,(la %)L, (b IZ)] , we use the following explicit expression for Laguerre
polynomials, that follows easily from the definition (alternately, it suffices to prove
that the polynomials given here are orthonormal).

n ( l)kn' k
zé: Vk!( _.k)l
Therefore
2 2 (D nlm! 2k 1120
E [L,(IaP)Ln(b)] = ZO{;)(k‘)z(n oo Bl b1

Now from the Lemma 2.1.7, we get

knt (B\2(0\2

Ella®*5*1=Y ( ) ( ) (r)?(k = )€ = PO
r=0\" r

To get this from Lemma 2.1.7, consider the Gaussian vector (a,...a,b,...b), with &

many “a”’s and ¢ many “b”s. Then group the permutations in the expansion of the

permanent, according to the number of 1 <i <% such that 7; =% + 1. A permutation

with r such indices i gives the term 102",
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Thus we get
n m kAl k+¢ 2r
(=1)*"“n!m!0|
E[L,(a®)L,(b%)] =
[En(lal)Lm(1515) ,;2020,20 (n—E)(m — Ok — (¢ —r)i(r!)2
niml02r & » (—1)F*t

= L ooe 2

it (=R (m - Ok —r)(¢ —r)!
nlml0* (1-1)"7" (1-1)™"
= ()2 n-r (m-r) "
Thus the only term that does not vanish is the one with m = r = n. Thus we have
E[L,(1al)Ln(161%)] = 10178 5,m.
Thus from (3.5.9), and using C,, = —% for n = 1, it follows that

™

Cov(loglal,log|b])= ) o
v(log|al, = .
& & n=1 4712




CHAPTER 4

Determinantal Point Processes

4.1. Motivation

In this chapter we move away from zeros of random analytic functions and study
a different class of point processes known as determinantal point processes.
These arise surprisingly often, in random matrix theory, combinatorics and physics,
as our representative list of examples in section 4.3 will show. Many examples were
already known before Macchi introduced the general notion in 1975. To motivate
the definition, we remind the reader that in quantum mechanics, a physical quan-
tity, say the position of an electron, is represented by a complex valued function
(the wave function) v such that [ |1//|2 =1. Then le2 gives the probability density
function of the position. Now consider n individual wave functions v1,...,%, on A
. The most obvious way to construct an n-particle wave function out of the ;s is to
consider \

(Y1®...0W)x1,...,20) = [ [ wilxi),
i=1

which is tantamount to making the individual positions be independent random vari-
ables. This does not capture the physical reality, for electrons repel, and moreover
the particles are indistinguishable. For this reason, physicists symmetrize or anti-
symmetrize the wave-function 1 ®...®y,, either of which leads to a symmetrization
of the probability density. We shall consider anti-symmetrization here. Symmetriz-
ing ¥1®...9Y¥, would lead to permanental point processes, which are studied in
section 4.9.

For particles with repulsion (“fermions”), one should anti-symmetrize and this
yields the wave function

1
— () n(z)—_dt (x;)): -
T I s [Ty = Qe

If {y;} is orthonormal, then the absolute square of this wave function is a probability

density, for, integrating H W, (x;) against H Yo, (x;) gives zero unless 7 = ¢. Thus
we get the probablhty den51ty on A"

— 1
—' det (y;(x;)) det (y;(x;)) = — det (K(x;,x;)),

i,j<n’

where K(x,y) = Z ¥i(x)y;(y). Note that the probability density vanishes whenever

x; = x; for some l 75 Jj which indicates that the points tend to “repel”.

There is one more step required. If we want to define analogous point processes
with infinitely many points, or even to effectively study local properties of the finite
ones, we need to have the joint intensities (definition 1.2.2). Here a fortuitous sim-
plification occurs which is at the very heart of the virtues of a determinantal point

47
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process. It is that one can explicitly integrate out some of the variables and get
the joint intensities! We leave this as an exercise, whose purpose is to motivate the
definition that follows. Read the proof of Lemma 4.5.1 for a solution to this exercise.

EXERCISE 4.1.1. (1) Let v, 1 <k <n, be an orthonormal set of functions
n
in L2(A, p). Set K(x,y)= ¥ Wi ()P, (y). From the identity [K(x,y)K(y,z)du(y) =
k=1 A

K(x,z), show that for 1 < m< n,

fdet (K(xi,xj))i’jsm du(xy,) = —m+1)det [K(xi,xj))i’jsm_l .

A

(2) Consider a random vector in A" with density %det(K(xi,xj)) ijen: Erase
the labels and regard it as a point process on A with n points. Deduce that
the joint intensities of this point process are given by

4.1.1) Pk(xla--ka):det(K(xi’xj))i,jsk‘

4.2. Definitions

We now proceed with the formal definitions. Let A be a locally compact Polish
space and j, a Radon measure on A (see section 1.2 for definitions). Let K(x,y) : A2 —
C be a measurable function.

DEFINITION 4.2.1. A point process & on A is said to be a determinantal pro-
cess with kernel K if it is simple and its joint intensities with respect to the measure
u satisfy

(4.2.1) Pr(x1,...,x) =det (K(xi’xj))lsi,jsk’
for every £ =1 and x1,...,x; € A.

Note that no claim is made about the existence or uniqueness of a determinan-
tal point process for a given kernel K. The existence issue will be addressed in
section 4.5, and the uniqueness question is resolved in Lemma 4.2.6. We make a few
preliminary observations that restrict the kernels K that we may allow.

(1) Definition 4.2.1 says that the first intensity (with respect to ) is K(x,x). If u
has no atoms, then u® p{(x,x) : x € A} is zero. Thus for a general measurable
function K, which is only defined almost everywhere on A2, it does not even
make sense to speak of the function K(x,x). Similarly, for £-point intensity
to make sense at (x1,...,xz), we shall need K(x;,x;) to be well defined for
every pair (x;,x;), and it is not always true that the set of such (x1,...,xz)
has positive u®* measure in A*.

(2) According to definition 1.2.2, the rth joint intensity must be locally inte-
grable on A* with respect to u®* (locally integrable means that the integral
is finite on compact subsets of A*). Thus for definition 4.2.1 to make sense,
we must have det(K(x;,x;)); j<z to be locally integrable on Ak,

(3) Joint intensities are non-negative. Thus, determinant of (K(x;,x;)); j<n
must not be negative.

(4) Suppose Z is determinantal with kernel K with respect to the background
measure p. If & : A — C is such that 1/A is locally in L%(u), then we may
define the kernel K, (x,y) = h(x)h(y)K(x,y) and dup(x) = mdp(x). It is
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easy to see that & is determinantal also with kernel K; with respect to the
measure yj, because

k k
det (Kn(xi,x))); i<, [1 dpn(a)) = det (KGxi,x))); o [T dpt;).
Jj=1 Jj=1

Thus we have some freedom in changing the measure and the kernel to-
gether . In all our examples we may take u to be the Lebesgue measure
(when A is a subset of R%) or the counting measure (when A is finite or
countable). However we shall sometimes choose u to be something natu-
rally associated to the underlying space (eg., Gaussian measure when A is
the complex plane),

Naturally, the first two problems do not arise if K is continuous. However, it is
natural to work under a much less restrictive assumption on the kernel and that is
what we explore next.

4.2.1. Integral kernels. Consider a kernel K that is locally square integrable
on A2. This means that for any compact D c A, we have

(4.2.2) f IK(x, 9)/2d px)d ply) < oo,

D2
Then, we may use K as an integral kernel to define an associated integral operator
as

(4.2.3) Jf(x)sz(x,y)f(y)dy(y) for a.e. x€ A
A

for functions f € L2(A, ) that vanish p-a.e. outside a compact subset of A. For a
compact set D, the restriction of Z to D is the bounded linear operator #p on
L2(D, ) defined by

4.2.4) HZpfx)= fK(x,y)f(y)d,u(y) for a.e. x€D.
A

By Cauchy-Schwarz inequality, the operator norm of .#p is bounded by the square
root of the integral in (4.2.2), which shows boundedness. In fact, £#p is a compact
operator, because it can be approximated in operator norm by operators with finite
dimensional range (to see this, approximate K by simple functions). Readers not
familiar with the notion of compact operators may consult the book (72). In particu-
lar, see exercise 13 of chapter 4 and Theorem 4.25 therein. The fact we need about
compact operators is this:

The spectrum is discrete, 0 is the only possible accumulation point and every non-
zero eigenvalue has finite multiplicity.

We now make one additional assumption that K is Hermitian, that is,

(4.2.5) K(x,y) = K(y,x) for every x,y € A.

Equivalently, we may say that £p is a self-adjoint operator for any D (compact
subset of A). The spectral theorem for self-adjoint operators, together with the com-
pactness of £p, yields the following fact.

L%(D, p) has an orthonormal basis {(pJD } of eigenfunctions of £p. The correspond-

ing eigenvalues {/15.’ } have finite multiplicity (except possibly the zero eigenvalue)
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and the only possible accumulation point of the eigenvalues is 0. We say that £p is
of trace class if

(4.2.6) YAl < o0,
J

If #p is of trace class for every compact subset D, then we say that £ is locally
of trace class. The following lemma relates the kernel to the eigenfunctions and
eigenvalues.

LEMMA 4.2.2. Let K be a Hermitian kernel in L>(A?,u® ). Assume that the
associated integral operator & is of trace class. Then, there exists A1 < A with
H(ANA1) =0 such that the following hold.

(1) The series

(4.2.7) 2 A ()P ()
J

converges absolutely for x,y € Aj.

(2) For each x € A1, the series in (4.2.7) converges in L%(A) as a function of y.
The same is true with x and y interchanged. In addition, the series converges
in L2(A x A) as a function of (x,y).

(8) The resulting sum in (4.2.7) is equal to K(x, y) for a.e. (x,y)€ A2.

(4) Redefine K by the series (4.2.7). Then the function

k
(4.2.8) (X1,...,%) — HK(xj,xj+1), wherek+1=1,
j=1

is well-defined a.s. on N* with respect to u®*. Moreover the resulting func-
tion is integrable on A*.

PROOF. (1) By assumption of trace class,

f(ZMjnwj(x)F)du(x) = YAl
S \7 7
is finite. This shows that the series Zlftjllt,oj(x)l2 converges in L2(A) and

also that it converges pointwise for every x € A; for some A; < A with
H(ANA1) = 0. By Cauchy-Schwarz inequality,

(4.2.9) | > Ajp @)@ (y) |” < ( > |/1j||(Pj(x)|2) ( > |/1j||<Pj(y)I2).
Jj=N Jj=N J=N

Hence, if x,y € A1, then the series

(4.2.10) 2 40P ()
J

converges absolutely.
(2) For fixed x € A1, we see from (4.2.9) that

J

| Y M@, [Pduty) < (ijuwj(x»z)Zw
JjzN j=N
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which implies that 3 1;¢;(x)¢;(y) is Cauchy in L%(A). Obviously we may
interchange the roles of x and y. Further, again using (4.2.9) we get

2
f | 2 20,0800 Pdumdue) < | [ X 14lle 0 dut)
A =N Aij

This proves that as a function of (x, y), the series is Cauchy in L2(A?).
(3) Let f € L%(A,p). Write f in terms of the orthonormal basis {¢ i} to get for
any x € Aq,

K f(x)

3 ( f f(y)@(y)du(y)) ;)
J A

|

A

fnduly)

Y40 (0P,()
J

where the interchange of integral and sum is justified by the L2(A) conver-
gence of the series y — 3 19 (x)@;(y) for each x € A;. But then } A;¢;(x)p;(y)
must be a kernel for the integral operator £ that also has kernel K. This
implies that we must have

(4.2.11) YA i()@ (y) = Kx,y)
J

for u® u-a.e. (x,y)

(4) Note that the redefinition changes K only on a set of u® u measure zero. By
part (1) it follows that K(x1,x2)...K(x,x1) is well-defined for any x1,...,x; €
A1, hence a.e. in A®. Integrability follows from (here % + 1 should be inter-
preted as 1)

k k k
f H 1K G, x4 )1 (). .. dplxg) < Z H (A, Hf‘l’ji(xi)aji,l(xi)dﬂ(xi)
A i=1 J1segri=1 i=1A
k
= Z H 14, 1.

Jiiski=1

The last line used Cauchy-Schwarz inequality. This sum is just (3|1 jl)k
and hence is finite.
O

Now we return to determinantal processes.

ASSUMPTION 4.2.3. We assume henceforth that the kernel K € A% — C is locally
square integrable and that the the associated integral operator .# is Hermitian,
non-negative definite and locally of trace class. In the notations that we have been
using, this is equivalent to saying that

o Kx,y)=K(y,x) a.s.(ue W),

o det(K(x;,x));i j<k = 0 a.s.(u®"),

o for any compact D c A, we have AJD =0 for every j and /1? < oo.
J
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By Lemma 4.2.2, we redefine K on a set of measure zero so that

(4.2.12) K, ) =Y A7 07 @37 ()
7

for all x,y € D1, where u(D\D1) = 0. The series converges in all the senses stated in
the lemma.

REMARK 4.2.4. A word about our assumptions on K. There is no loss of gener-
ality in assuming that the kernel is locally in L2, for, the two-point intensity must
be locally integrable on A%2. Non-negativity of the determinants of K is similarly
forced upon us. However the Hermitian assumption is not essential and indeed,
there are interesting examples of determinantal processes with non-Hermitian ker-
nels (particularly those that involve “time” or “dynamics”, see (39) for some exam-
ples). Nevertheless, most of the general properties that we prove do not hold true for
non-Hermitian kernels and we do not consider them in this book.

A particularly important case is when %) itself is a bounded operator with all
non-zero eigenvalues equal to 1. In this case we say that K is a projection kernel,
since £ turns out to be the projection operator onto the closed span of its eigen-
functions. If the latter space is finite dimensional, we also say that K is a finite
dimensional or finite rank projection kernel.

REMARK 4.2.5. It is evident that if & is a determinantal point process on A,
then for any D < A, the point process & N D is also determinantal, its kernel being
just the restriction of the original kernel to D x D. If the kernel (more precisely, the
associated operator) on A is locally of trace class, then the corresponding kernel on
D is of trace class. The reader should keep this in mind as most of our theorems will
be stated under the apparently less general assumption of a trace class kernel, but
remain valid for Z N D for determinantal processes with a locally trace class kernel.

Now consider a determinantal point process with kernel K (with respect to a
Radon measure p) that satisfies assumption 4.2.3 (from now on, this will be tac-
itly assumed). By virtue of Lemma 4.2.2, the first three issues raised after defini-
tion 4.2.1 are taken care of. In other words, for such kernels, det(K(x;,x;)); j<x is
well-defined for u-a.e. x1,...,x3, is non-negative and is locally integrable on Ak Al
these are essential if they are to be joint intensities of a point process.

This in itself does not imply the existence of a point process with these joint
intensities, of course. In fact Theorem 4.5.5 will show that not all kernels are kernels
of determinantal processes. We show uniqueness (of determinantal point process
for a given kernel) now. We must do this because, in general, specifying the joint
intensity functions for a point process is not enough to specify the distribution of
the process. However, as we noted in chapter remark 1.2.4, the joint intensities do
determine the law of the point process if the number of points in any compact set
has finite exponential moments. This we verify for determinantal processes in the
following lemma.

LEMMA 4.2.6. Assume that a point process & with joint intensities as in (4.2.1)
does exist. Then for any compact D c A, there exist constants c¢(D),C(D) such that

(4.2.13) P2 (D) > k] < C(D)e ¢ D*,
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Therefore, for a given kernel K, there exists at most one point process whose joint
intensities are given by

(4.2.14) pr(x1, ..., xp) = det (K(xi,x))); iy -

PROOF. We shall use Hadamard’s inequality which states that for any % x &
matrix A =[v;...vg],

k k
(4.2.15) det(A*A) = [T lvill® = [](A*A); ;.
i=1 i=1

In our case, for y-a.e. x1,...,x3, the matrix (K(xi,xj))i’jsk is a non-negative definite

matrix, whence it is of the form A*A. By (1.2.3), for any compact Borel set D c A,
we must have

E

X (D
( }(‘3 ))k'] = fdet(K(xi’xj))lsi,jskdu(xl)"'du(xk)
Dk

IA

k

f T K, x)dpten). .. dpte)
=1

Dk

k
([[ [K(x,x)d,u(x)) .

Set x(D) = [K(x,x)d u(x) (finite because D is compact) and deduce that for s >0
D

(%(D))] o
k=0 k

k ok
< Z k(D)*s
k=0 k!
eSK(D).

E[1+9*®] = YE

This shows that

A

PIZD)>k] = (1+9)*E[1+57 D)

< C(D)e—C(D)k

with C(D) = e and ¢(D) = log(1 + s).
In particular, the distribution of Z'(D) is determined by its moments, which are
in turn determined by the joint intensities. Since this is valid for every compact D,
and A is locally compact, it follows that the distribution of & is uniquely determined.
|

A

4.3. Examples of determinantal processes

In this section we give a slew of examples of determinantal point processes.
Proving that any of these processes is determinantal is not trivial, and there is no
single method that works for all examples. In view of this, we only list the examples
here, and proceed to the general theory. Only for the first example do we give a proof
in this chapter. Other proofs, where we do give them, are postponed to chapter 6.
In Theorem 4.5.5 we shall see necessary and sufficient conditions on a Hermitian
integral kernel for it to define a determinatal process. The point here is not to give
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a list of kernels satisfying those conditions, but instead, to show how a motley col-
lection of point processes that arise naturally in probability theory turn out to be
determinantal.

4.3.1. Non-intersecting random walks. Karlin and McGregor (43) provide
the first result we know related to determinantal processes. The following theorem
has the fundamental calculation, but does not say what is a determinantal process
here. That we describe as a corollary to the theorem.

THEOREM 4.3.1 (Karlin and McGregor (1959)). Consider n i.i.d. Markov chains
on Z started from i1 < iz <...< i, where all the i;s are even. Let P; j(s,s +1t) be
the t-step transition probabilities between times s and s+t for each of the chains. The
chains are not assumed to be time homogeneous.® Suppose that the one-step transition
probabilities satisfy P; ; . 1(t,t+1)+P; ;_1(t,t+1) =1 for all t. Then the probability that
at time t, the Markov chains are at ji1 < jo <...< jp, and that no two of the chains
intersect up to time t, is

P,-l,jl(o,t) Pil,jn(O,t)
(4.3.1) det
p;, ;,(0,t) ... Py, ;(0,%)
REMARK 4.3.2. Observe that if the Markov chains in Theorem 4.3.1 are simple

t

symmetric random walks, then P; ;(0,¢) = % (j_i”) if j—i+tiseven and P; ;(0,£)=0
2

otherwise. In this case, scaling the matrix in (4.3.1) by a factor of 2! we obtain an

expression for the number of non-intersecting paths between i; <ig <--- <1i, and
J1 <J2 <--+ < jn. This observation and further extensions are described by Gessel
and Viennot in (28).

The Karlin-McGregor formula does express a certain nonintersection probability
as a determinant. But where is a determinantal process in all this? The following
corollary describes one special case of a far more general theorem in Johansson’s
paper (40). Below, the Markov chains are time homogeneous, and we use the notation
P;(x,y) and P, ,(0,%) interchangeably.

COROLLARY 4.3.3. Let X, 1 < p <n be independent time-homogeneous Markov
chains with one-step transition probabilities {P; ;} satisfying P;;.1+P;; 1 =1 We
shall assume that the random walk is reversible with respect to the measure mw on Z,
so that m(x)P(x,y) = n(y)P(y,x) for all x,y € Z and t € Z.. Condition on the event
that for each p < n, the chain X, is at location x, at times 0 and 2t, and that no
two of the chains intersect in the duration from 0 to 2t. Then the configuration of
the particles midway, {X,(¢): 1 < p < n}, is a determinantal point process on Z with
kernel

n
Kw,v)=)_ vy ;(v)
=1
with respect to the background measure 7w on Z. Here, y; : Z — R are defined by

n 1 1
wi(r)= kzl (a2 )j’k — 5 Pin)

1A time homogeneous Markov chain is one for which the transition probability P[X;,1 =j | X; = i]

does not depend on .
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with A = 50 Pa(xj,xp).

REMARK 4.3.4. K isindeed a Hermitian projection kernel since ; are orthonor-
mal in L2(xr). To see this, use reversibility and Markov property to see that

Pt(x,r)Pt(y,r) _i _M
reZ W 7'[(7') ﬂ(r) - ”(y) ;;Zpt(x’ r)Pt(r,y) = n(y)

which shows that A is the Gram matrix (in L2(r)) of the functions Pt(xp,-)n(-)’l,
p =n. Therefore, y; are orthonormal.

Now we give Karlin and McGregor’s original proof of Theorem 4.3.1. A second
proof is outlined in the exercise at the end of this section.

Proof of Theorem 4.3.1. Let us define for i = (i1,...,ip) and ]z U1,---5Jn),

(4.3.2) I'(i,],t) = {Paths 7(s) : y1(0) = i}, and y(¢) = j Yk € [n]}
where [n]={1,2,...,n}, so that
n t—1
(4.3.3) Py) = H l_[ Pm(s),}'k(sﬂ)(s,s +1).
k=1s=0

Given 7 € I(,J,t), write coin(y) to denote the number of times the trajectories vy,
coincide:

(4.3.4) coin(y) =#{(a,B,8):0<s<t, a # P, and ya(s) =yp(s)}.

Now given a permutation o € S,,, let us write U(f) =), - -->Jo(n)) and introduce the
notation

r.(,7,t) = {ye TG,o(),0): coin(y) > 0, sign(o) = 1}.
T_G,j,t) = {FelG,o(),t) :signo)=—-1}.
To(i,j,t) = (7eTG,0()),0):coin(¥)=0}.

Observe that if coin(¥) is zero, then o is the identity permutation. Thus the determi-
nant of interest can be decomposed as follows:

Pil,jl(o,t) Pil,jn(O’t)
det = ) sign(o) ) P
P; i,0,8) ... P; ; (0,8 €Sy Yer@,o(),t)
= Y PH+ Y PH- Y PO.
FeToG, 7,0 FeT,G,7.0 Fer_G,7,t)

We will construct a bijective and measure-preserving mapping ® between .G, f, t)
and 1"_({,], t). Lety e F+(Z,j, t). By construction, at least two of the particles whose
trajectories are defined by ¥ must be coincident at some time. Let ¢’ be the first such
time, and in case multiple pairs of particles are coincident at ¢/, choose the smallest
coincident pair (k,¢) according to the dictionary order. Now imagine switching the
labels of particles £ and ¢ at time ¢, and define ®(¥) to be the resulting set of tra-
jectories. By construction, it is clear that ® maps .G, f, t) bijectively onto F_(f,f, t)
and P(®(¥)) = P(¥). Hence

(4.3.5) Y PM- ) PHM=0

yer (@,7,t) yer_(,7,0)
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and we deduce that

p; i;0,8) ... P;;,(0,2)
det = Y P,
P,-n,jl(O,t) Pin,jn(o,t) FeTo(,/,t)

as claimed. (I
Now we derive the corollary.

Proof of Corollary 4.3.3. Fix integers u; <ug <...<u, and consider the con-
ditioned Markov chains as in the statement of the corollary. The event that {X,(¢):
1< p=n}={up:p=n}is the same as the event {X,(¢) = u, : p < n}, because of the
non-crossing condition. By applying Theorem 4.3.1 three times (from time 0 to time
t, from time ¢ to 2¢ and from time 0 to 2¢), the probability distribution of the time-¢
locations is given by

det (P(xp,uq)) det (Py(up,xq))

P[X,(t)=u, Vp| = P PAER
X » VP det (Pas(xp,x4))
det(ﬂ(u )Pt(xp,uq)) = det(ﬂ(x )Pt(up,xq))p gsn
= =— [[ n(ug)
det(n(x )Pzt(xp,xq)) g=1
det iy PeCepug)) _ det(zisPueguy))
= = [] n(uy).
det(”(x Pai(p, %)) g-1
Let B, A be the n x n matrices with B, ; = n(u o Pilxp,ug) and Ap g = ﬂ(x ey P2t(xp,xq)

(this A is the same as in the statement of the corollary). Then the above equation
may be written succinctly as

det (BtA_lB) [17@y
g=1

P[X,(t)=up Vp|

det((A—%B)t (A—%B)) [ ntug).

g=1

Observe that (A_%B)r,q is precisely what we defined as v,(u4). This shows that

n

P [XP(t) =Up Vp] = det((wr(up))p,rSn (wr(uq))r,qsn) H n(uq)

n

det (K(up, uq))p,an [17@y.

This shows that the top intensities are that of a determinantal point process. As
demonstrated in remark 4.3.4, K is a Hermitian projection kernel on L2(7). There-
fore, by exercise 4.1.1, we can integrate out variables one by one and show that
k-point intensities for £ < n are also determinantal. Since there are only n points,
for £ > n the joint intensities must be zero, as indeed they are because K is a kernel
of rank n. O

An alternate proof of the Karlin-McGregor formula (Theorem 4.3.1) is outlined in the
exercise that follows. We learned this proof from S.R.S. Varadhan (personal commu-
nication).
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EXERCISE 4.3.5. Let X, 1< p =<n, beii.d. Markov chains on Z with transition
probabilities satisfying P; ;+1(s,s + 1)+ P; ;_1(s,s +1) = 1. Let X,(0) =i,, where i1 <
...<lip. Also fix integers j1 <...<j,. Then

(1) Fix a permutation o € S,,. For s <t, define

n
(4.3.6) M(s):= l_[ P[X,(8) = jo(p) |Xp(s)].
p=1
Then M? is a martingale with respect to the filtration generated by %; :=

{Xp(w):u<s,1<p=<n}. Hence M:= ¥ sgn(c)M’ is also a martingale.
og€eS,

(2) Let 7 =inf{s : X,(s) = X4(s) for some p # q}. Apply the optional stopping
theorem to the martingale M(-) and the stopping time 7 A ¢ to deduce the
Karlin-McGregor formula.

4.3.2. Uniform spanning trees. Let G be a finite undirected connected graph
and let E be the set of oriented edges (an undirected edge connecting vertices x,y
in G appears in E with both orientations xy and yx). A spanning tree of G is a
subgraph that is connected, has no cycles and contains every vertex of G . Let T be
chosen uniformly at random from the set of spanning trees of G. For each directed
edge e =vw, let X¢ : E — R be the function defined as X¢ :=1,,, — 1,,, denote the unit
flow along e. Consider the measure on E that gives mass 1/2 to each oriented edge
and let £2(E) be the Hilbert space with inner products taken with respect to this
measure. Thus X° has unit norm. Define the following subspaces of ¢2(E). For each
vertex v, we call Y, X' the “star at the vertex v”. Similarly, for each oriented cycle
e1,...,en, we refer to Z;‘zlxei also as a cycle.

H = {f:E-R:f(w)=-f(wv)VYv,w}=span{X®}.
* = span{z X% . v is a vertex).
w
n
O = span{z 1% :e1,...,en is an oriented cycle}.
i=1

Any oriented cycle enters each vertex of G exactly as many times as it leaves the
vertex. This shows that % L <. On the other hand, suppose f € H is orthogonal
to % as well as ¢. From orthogonality with <, one can define a new function F
on the vertex set of G by integrating f along oriented paths starting from a fixed
vertex. Thus if u,v are adjacent vertices in the graph, then F(u) - F(v) = f(vu).
Orthogonality with % shows that F' is discrete harmonic, i.e., at any vertex v, it has
the mean value property

1
(4.3.7) F(U) = m Z F(u)

u~v

where the sum is over all vertices adjacent to v. Therefore, F' is constant and hence
f must be identically zero. In fact, it is easy to see that H= s e .

For e € E, define I° := ZX°, where £ denotes orthogonal projection onto
%. Now, for each undirected edge in G, choose one of the two possible oriented
representatives in £. Which orientation we choose does not matter, but once made,
the choices will stay fixed throughout. Then for each pair of undirected edges e, f in
G, define K(e, f) := (I¢,I7), where on the right, we use the chosen orientations. Note
that if we had chosen the opposite orientation for an edge e, then K(e, f) changes sign
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for each f # e. This does not change the determinants that occur in (4.3.8) because,
both a row and column change sign.

The following result was proved by Burton and Pemantle (11), who represented
K(e, f) as the current flowing through f when a unit of current is sent from the tail
to the head of e. The Hilbert space formulation above, as well as the proof of the
Burton-Pemantle theorem presented in chapter 6 are from the paper of Benjamini,
Lyons, Peres and Schramm (5).

THEOREM 4.3.6 (Burton and Pemantle). The set of edges in the uniform span-
ning tree T forms a determinantal process with kernel K with respect to counting

measure on the set of unoriented edges. That is, for any (unoriented) edges e1,...,ep
of G, we have
(4.3.8) P[el,...,ekET]:det([K(ei,ej))i,jgk.

4.3.3. Uniform perfect matching of a planar graph. Let R = {(m,n):1<
m < M,1<n < N} be a rectangular region in the lattice Z2. A perfect matching of
R is a subgraph of R such that each vertex of R is incident to exactly one edge in the
subgraph. In other words, a perfect matching divides the vertices of R into pairs in
such a way that each pair of vertices is connected by an edge in the graph. Assume
that M N is even, so that perfect matchings do exist.

Colour the vertices of R in white and black in a chess board fashion. Then define
a matrix K with complex entries whose rows and columns are labeled by vertices of
R as follows.

1 if y is horizontally adjacent to x.
K(x,y):={ 1 if yis vertically adjacent to x.
0 in all other cases.

K is a modification of the adjacency matrix of R and is known as the Kastelyn
matrix.

From the set of all perfect matchings of R, pick one uniformly at random and
denote it by 22. We state without proof the following theorem of Richard Kenyon (46).

THEOREM 4.3.7 (Kenyon). Let (w1,b1),...,(wy,by) be distinct edges of the graph
R, where w; are white vertices and b; are black. Then

Plw;, b)) e P, 1<i<kl=|det(K'w;,b))); iy |-

Kenyon proved this in greater generality for planar bipartite graphs. Note the
absolute value on the determinant, the matrix K is not positive definite. More accu-
rately what we have here is a “Pfaffian process”, a close relative of the determinantal
process. The interested reader may consult the survey (47) for more on the subject
of perfect matchings.

4.3.4. Gaussian unitary ensemble. The most well known example of a deter-
minantal point process is the Gaussian unitary ensemble, introduced by Wigner
in his statistical approach to energy levels in heavy nuclei. Mehta’s wonderful book (56)
is the standard reference for this and most other random matrix examples that we
shall see later.

THEOREM 4.3.8 (Wigner). Let A be an n x n matrix with i.i.d. standard com-

plex Gaussian entries and set H = A+—\/‘23*. Then, the set of eigenvalues of H form a
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determinantal point process on R with kernel

n-1

Kn(x,y) = ) Hp(x)Hp(y).
k=0

with respect to the Gaussian measure dpu(x) = %ﬂe‘xz/de on R. Here Hy(-) are Her-
mite polynomials, obtained by applying Gram-Schmidt orthogonalization procedure
to {1,x,x2,...} in L2(R, p). In particular, fHkﬁ[dp =0p,¢. Equivalently, the vector of
eigenvalues (put in a uniformly chosen random order) has joint density

1 1&
RS-
(2”)% 11! k=1 i<j

j=1

with respect to Lebesgue measure on R™.

The associated operator .# is easily seen to be the projection from L2(R, 1) onto
span{H} : 0 <k < n—1}. We will not go into the proof of Wigner’s result but direct the
interested reader to chapter 3 of (56) or chapter 1 of (25).

4.3.5. Sine kernel process. Now we define a translation invariant determi-
nantal point process on the real line that arises as the limit of very many interesting
point processes. For example, the Gaussian unitary ensembles, when scaled appro-
priately, converge to this point process.

The sine kernel process is the determinantal point process on R with the kernel

) = S

This kernel is not square integrable on R%, but only on compact subsets thereof. Thus
the associated operator £ is not of trace class but locally of trace class. What is £ ?
Clearly, it is a convolution operator because, K(x,y) depends only on x — y, and hence
i§ more simply represented in the Fourier domain. We define the Fourier transform
f by .

Aoy —itx 1 2

f@® mmff(x)e dx, for f € L*(R)nL“(R),

and by extension to all of L2. It is well-known that f — f is a unitary transformation

o
of L?(R). Returning to the sine kernel, write K(x, y) as % [ @4 dy to see that
=7

A

1 A
f K(x, 9)f (7)dy f o f Mgy | F(ydy

R R -

\/%_l Fwe**du

(1[—71,7[]/?) (=x).

Fourier inversion formula says that f(—x) = f(x). Thus the integral operator %
is the operator in L? described as follows: Apply Fourier transform, multiply by
the indicator function of [-m,7], then apply the inverse Fourier transform. Since
Fourier transform is a unitary transformation, another way to put it is that % is the
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projector onto the space of functions in L2(R) whose Fourier transform is supported
in [—m,7].

4.3.6. Circular Unitary Ensemble. Let % (n) denote the group of n xn unitary
matrices. There is a unique Borel probability measure on %(n) that is invariant
under left multiplication by unitary matrices. This measure is also invariant under
right multiplication by unitary matrices, as well as under inversion. This measure is
called Haar measure. See Theorem 5.14 of the book (72) for a proof of the existence
and uniqueness of Haar measure on compact topological groups (which %(n) is, of
course).

Dyson (20) introduced the circular unitary ensemble which is the set of eigen-
values of a random unitary matrix sampled from the Haar measure on %(n). The
measure induced on eigenvalues was, however, known from Weyl.

THEOREM 4.3.9 (Weyl, Dyson). With U as above, let {e!% :1 < j < n} be the set
of its eigenvalues. The counting measure of eigenvalues is a the determinantal point
process on ST with kernel

L 1l
K(e,e?) = o Y eikb-ike,
T k=0

with respect to Lebesgue measure on S* (with total measure 2m). Equivalently, the
vector of eigenvalues (in uniform random order) has density

1 l—[ |ei0i — ik 2
n!@n)" ;
: Jj<k

with respect to Lebesgue measure on (S1)".

The associated operator to K is the projection operator from L%(S1) onto the
subspace spanned by {e?*? :0<k <n—1}.

4.3.7. Ginibre ensemble. Ginibre (29) introduced three ensembles of matrices
with i.i.d. Gaussian entries without imposing a Hermitian condition. In the three
cases, the Gaussians were real, complex or quaternion. Here we consider the com-
plex case. This example is an important one, as the eigenvalues are in the complex
plane and are similar to, yet different from zeros of Gaussian analytic functions.

THEOREM 4.3.10 (Ginibre (1965)). Let M be an n x n matrix with i.i.d. standard
complex Gaussian entries. Then the eigenvalues of M form a determinantal point
process on the complex plane with kernel

_ n—1 (Zw)k
(4.3.9) [K,L(z,w)—kX:=0 2l

with respect to the background measure %e"z‘zdm(z). Equivalently, the vector of
eigenvalues (in uniform random order) has density

1 ~ 5 Izl 9
4.3.10 o k1 s
( ) ﬂ”HZZlk!e [11zi -zl

i<j

with respect to Lebesgue measure on C".
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The projection operator associated to the kernel projects from L2(C, i) onto the
span of {zF : 0 <k <n—1}. As n — oo, this converges to the projection onto the space
of all entire functions in L2(u). The kernel is

(4.3.11) K(z,w) = e,

and the associated determinantal point process is invariant in distribution under
isometries of the plane. Hence it will be instructive to compare the properties of this
determinantal process with the corresponding properties of the zeros of the planar
Gaussian analytic function (2.3.4).

4.3.8. Spherical Ensemble. In this section we discuss a random matrix en-
semble introduced in (51). The determinantal process it gives rise to, and related
point processes were studied earlier by Caillol (12) and by Forrester, Jancovici and
Madore (24), without this connection to random matrices.

THEOREM 4.3.11 (Krishnapur). Let A,B be independent n x n random matrices
with i.i.d. standard complex Gaussian entries. Then the eigenvalues of A™1B form a
determinantal point process on the complex plane with kernel

(4.3.12) K(z,w) = (1 +zw)" !

with respect to the background measure de(z). Equivalently, one may say
that the vector of eigenvalues (in uniform order) has density

1 n\yn % (n-1| 2 1 9
4.3.13 — = _ =2
( ) n! (7[) klzll( k )kljl (1+ |z 1271 i<j|2l i

with respect to Lebesgue measure on C".

REMARK 4.3.12. These eigenvalues are best thought of as points on the two
dimensional sphere S?, using stereographic projection from the plane. A simple
calculation shows that the density of the vector of points (w.r.t. the n-fold product of
the area measure on the sphere) is simply

Const. [ I1P; - P;|12

R3°
i<j

where || - [lgs is the Euclidean norm on R3. From this it is evident that the point
process is invariant in distribution under isometries of the sphere. Note also the
similarity of this density to that of the circular unitary ensemble.

4.3.9. Truncated unitary matrices. Let U be a matrix drawn from the Haar
distribution on % (N + m). Partition U as

A C*¥

(4.3.14) U= B D

where A has size N x N. Zyczkowski and Sommers (88) found the exact distribution
of eigenvalues of A. Incidentally, permuting the rows or columns of U does not
change its distribution, by the invariance of Haar measure. Therefore, any N x N
submatrix of U - not necessarily a principal submatrix - has the same eigenvalue
distribution as A.
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THEOREM 4.3.13 (Zyczkowski and Sommers(2000)). The eigenvalues of A form
a determinantal point process on D with kernel

N-1(m+1)...(m+k)

(4.3.15) K(z,w) = Z

(zw)*
k=0 k!

with respect to the background measure du(z) = %(1 — 1z dm(z) on D.
Equivalently, we may say that the vector of eigenvalues (in uniform random or-
der) has density

1 N-1(m +k
(4.3.16) N'( )U (m )H(l l212)™™ 1H|zl—zj

i<j
with respect to Lebesgue measure on DV

4.3.10. Zero set of a hyperbolic GAF. Recall the hyperbolic GAFs from (2.3.6).
When L = 1, we have the i.i.d. power series f(z) := Y77 @, 2" where a,, arei.i.d. stan-
dard complex normals. This defines a random analytic function in the unit disk
almost surely. Peres and Virag (68) discovered the following result which is of cen-
tral importance to us, as it connects the two topics in the title of this book. We give a
proof in chapter 5.

THEOREM 4.3.14 (Peres and Virag). The zero set of f1 is a determinantal process
in the disk with the Bergman kernel

1
(1 - zw)>?

with respect to Lebesgue measure in the unit disk.

(4.3.17) K(z,w) 1 Y (k+ D),
T k=0

The Bergman kernel of a domain A c C is the projection kernel from L2(A, 7~ 1dm)
onto the subspace of holomorphic functions. For the unit disk this is easily seen to
be given by (4.3.17).

4.3.11. Singular points of matrix-valued GAFs. When m =1 in (4.3.15), we
get precisely the truncation of the Bergman kernel of (4.3.17) to the first N sum-
mands (it was just whimsical that the factor of 771 was absorbed into the kernel in
one case and into the background measure in the other). We may also let N — oo in
(4.3.15) for any real number m > 0 to get the kernels

1

a- zw)m+1

for z,w € D. In view of example 4.3.10 which is the case L =1 in (2.3.6), one might
expect that the zero set of the canonical hyperbolic GAF for any L > 0 in (2.3.6),
is determinantal with kernel K,, with respect to du,(2) = %(1 — 121" 1dm(z) on
D where we must take m = L so as to match the first intensity. This is false, for
except the case L = 1, none of the GAF's in (2.3.6) have a determinantal zero set,
as we shall see in chapter 5. The correct generalization of Theorem 4.3.14 is the
following result from ((? )), which however makes sense only for integer values of
m. The determinantal processes featured here were studied earlier by Jancovici and
Tellez (37) but without the connection to zeros of analytic functions.

Km(z,w) =

THEOREM 4.3.15 (Krishnapur). Let G, k =0, be i.i.d. m x m matrices, each with
i.i.d. standard complex Gaussian entries. Then for each m = 1, the singular points
of Go+2G1+22Gs + ..., that is to say, the zeros of det (Go +2G1+22G9 +.. .), form
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a determinantal point process on the unit disk, with kernel K,, with respect to the
measure [y,.

The kernels here are projection kernels onto the subspace of holomorphic func-
tions in L2(D, ty,).

4.4. How to generate determinantal processes

As we shall see in Theorem 4.5.3, the most general determinantal processes with
Hermitian kernels (we do not consider non-Hermitian kernels in this book) are mix-
tures of determinantal projection processes. Mixture means a convex combination of
measures. Projection determinantal processes are determinantal processes whose
kernel Kz defines a projection operator £z to a subspace H c L2(A,y) or, equiva-
lently, Kz (x,y) = ¥ @i (x)@,(y) where {¢.} is any orthonormal basis for H.

LEMMA 4.4.1. Suppose & is a determinantal projection process on A, with kernel
Kx,y) = X7 _; 0r(x)@),(y) where {¢}, : 1<k <n} is a finite orthonormal set in L2(A).
Then the number of points in X is equal to n, almost surely.

PROOF. The conditions imply that the matrix

(K, %)) < jep, = (95@)) =i (@(x))) i

isk
Jjsn
has rank at most n for any £ = 1. From (1.2.3), we see that E [(‘%,(QA)) =0 for k& >n.

This shows that Z'(A) < n almost surely. However, the first intensity p1(x) = K(x,x),
which imples that

E[2(A)] = f K(x, ) dpu(x)
A
-y f lop ()2 d ()
k=1
A
= n.
Therefore Z'(A) = n, almost surely. O

Despite the fact that determinantal processes arise naturally and many important
statistics can be computed, the standard definition 4.2.1 is lacking in direct prob-
abilistic intuition. Below we present an algorithm that is somewhat more natural
from a probabilist’s point of view, and can also be used for modelling determinantal
processes.
In the discrete case (i.e., if y is an atomic measure), the projection operator £z
can be applied to the delta function at a point, where,
1 o
S if y=x.
“4.1) 0x(y):= { Hé)) otherwise.
Then, £#6,(-) = K(-,x). In the general case we define £, := K(-,x). Neverthe-
less, in greater generality than the discrete setting, #7756, does have an independent
meaning as the “closest thing to d, in the Hilbert space H”. For, if the evaluation
f — f(x) is a bounded linear functional on H, then this functional is represented by
inner product with £z 6,. In physics, £ 0, is often called a coherent state.
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Since KK is a projection kernel, we have the reproducing property [ K(x, y)K(y,2z)du(y) =
K(x,2), which implies that K(x,x) = IIJKH(‘SxIIZ. Now, let || - || denote the norm 0fL2(p).
The intensity measure of the process is given by

(4.4.2) () = p1()d () = | K56 12 d ().

When p is supported on countably many points, we have || £z8,| = dist(5, H')
(where L denotes orthogonal complement), giving a natural interpretation of the
intensity pj.

Note that pg(A) = dim(H), so ug/dim(H) is a probability measure on A. We
construct the determinantal process as follows. Start with n = dim(H), and H,, = H.

ALGORITHM 4.4.2.

e If n=0, stop.

¢ Pick a random point X, from the probability measure % HH,, -

o Let H,_1 c H, be the orthogonal complement of the function £y, 0x, in
H,. In the discrete case (or if evaluations, f — f(x), are bounded linear
functionals for all x € A), then H,_1 = {f € H, : f(X,) = 0}. Note that
dim(H,_1)=n-1a.s.

e Decrease n by 1 and iterate.

PROPOSITION 4.4.3. The points (X1,...,X,) constructed by Algorithm 4.4.2 are
distributed as a uniform random ordering of the points in a determinantal process &
with kernel K.

PRrROOF. Construct the random vector (X1,...,X},) using the algorithm. We want
to find its density at (x1,...,x,) € A" (where x; are distinct).

Let yj = Zuby;. Projecting to H; is equivalent to first projecting to H and then
to H;, and it is easy to check that ZHj6xj = HH, Y- Thus, by (4.4.2), the density of
the random vector (X1,...,X},) equals

n 12
P, x0) =[] M
j=1 J

Note that H; = Hn (wj+1,...,1//n>L, and therefore V = H;‘zl II,],’ijjII is exactly
the repeated “base times height” formula for the volume of the parallelepiped deter-
mined by the vectors y1,...,¥, in the finite-dimensional vector space H c L2(A). It
is well-known that V2 equals the determinant of the Gram matrix whose i, entry
is given by the scalar product of y;,y;. But fwiwjdu = K(x;,x;) by definition of
IHéxj. Thus, we get

1
pn(x].’ e ,xn) = ; det(K(xl’x]))
The set {X71,...,X,}, viewed as a point process, has the n-point joint intensity

(4.4.3) Z Pn(Xny, .., xXq,)=nlpp(x1,...,x5),

neS,
which agrees with that of the determinantal process &. By Lemma 4.4.1 the claim
follows. O

EXAMPLE 4.4.4 (Uniform spanning trees). We continue the discussion of Exam-
ple 4.3.2. Let G,+1 be an undirected graph on n + 1 vertices. For every edge e, the
effective resistance of e is the current that flows through e, when a total of one unit
of current is sent from the tail of e to the tip of e. It is given by R(e) = (I¢,1¢). To use
our algorithm to choose a uniform spanning tree, proceed as follows:
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e If n=0, stop.

e Take X, to be a random edge, chosen so that P(X,, =e;) = %R(ei).

e Construct G, from G, .1 by contracting the edge X,, (which means that we
identify the end points), and update the effective resistances {R(e)}.

e Decrease n by one and iterate.

For sampling uniform spanning trees, more efficient algorithms are known, but
for general determinantal processes, the above procedure is the most efficient we are
aware of. In fact, recently Scardicchio, Zachary and Torquato (73) have implemented
this algorithm with various additional tricks and found it to be quite efficient in
practice.

4.5. Existence and basic properties

In this section we present necessary and sufficient conditions for the existence of
a determinantal point process with a specified Hermitian kernel and then study the
basic properties of such processes. Here is a brief guide to the theorems presented in
this section.

We start with the Lemma 4.5.1 which shows that when K is a finite dimensional
projection kernel, then a determinantal process with kernel K does exist. In fact,
Proposition 4.4.3 already showed this, but we give another proof. Then, in Theo-
rem 4.5.3 we show that a determinantal point process with a trace-class kernel is
a mixture of projection determinantal processes. In the process, we also prove the
existence of a determinantal point process for kernels that are dominated by a fi-
nite dimensional projection. These are put together in Theorem 4.5.5 to show that a
necessary and sufficient condition for a locally trace-class operator to define a deter-
minantal point process is that its spectrum must be contained in [0, 1].

LEMMA 4.5.1. Suppose {¢r}_, is an orthonormal set in L2(A). Then there exists
a determinantal process with kernel K(x,y) = ZZ=1 PR ()P ().

PROOF. For any x1,...,x, we have (K(x;,x;)) =A A*, where A; }, = pp(x;).

1<i,j<n
Therefore, det (IK(x;,x;)) is non-negative. Moreover,

fndet(K(xi,xj))i’jdu(xl)...du(xn) = fAndet(q)j(xi))i’jdet(@i(xj))i,jdu(xl)...du(xn)

n n
Y sgn( 1) [ oam@r)@rgyr) [ dute).
A" 7.7€S, k=1 k=1

In the sum, if 7(k) # 1(k), then fA Py XR) Py (xr)dxp, = 0, and when (k) = 7(k), this
integral is 1. Thus, only the terms with 7 = 7 contribute. We get

fn det([K.(xi,xj))lsi’an du(x1)...dux,) =n!,

which along with the non-negativity of det (K(x;,;));_; <n Shows that % det (K(x;,x;))
is a probability density on A™. If we look at the resulting random variable as a set
of unlabelled points in A, we get the desired n-point joint intensity p,. Lower joint

intensities are obtained by integrating over some of the x;s:

1<i,j<n

1
4.5.1) 0r(X1,...,X) = ——— f pn(xl,...,xn)l_[d,u(xj).
(n_k)! i ]>k
AP
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We caution that (4.5.1) is valid only for a point process that has n points almost
surely. In general, there is no way to get lower joint intensities from higher ones.

We now show how to get p,,—_1. The others can be got in exactly the same manner,
or inductively. Set k# =n—1in (4.5.1) and expand p,(x1,...,x,) = det (K(x;,x;))
as we did before to get

1<i,j<n

o1&l X0 1) = f pulEn, s ) i)
A

n-1
> sgn(m)sgn(t) [ | @uee) )Py (xr) f P (%P () (xR ) ).
T k=1 <

If 7(n) # t(n), the integral vanishes. And if 7(n) = 7(n) = j, 7 and 7t map {1,...,n — 1}
to {1,2,...,n} — {j}. Preserving the ordering of both the latter set, 7 and 7 may be
regarded as permutations, say # and %, of the set {1,2,...,n — 1} in the obvious way.
Evidently, sgn(#)sgn(f) = sgn(m)sgn(t), because n(n) = 7(n). This gives us

n
Pn-1(X1,...,Xp-1) = det((pk(xi))lsisnfl,kyéjdet(ak(xi))kf.j,lsiSnfl‘
Jj=1

We must show that this quantity is equal to det ([K(xi,x j)) For this note that

i,j<sn-1"
([K‘(xi’xj))i,jsn—l = (‘Pk(xi))1si5n—1,k5n (ak(xi))ksn,isrz—l’

and apply the Cauchy-Binet formula. Recall that for matrices A,B of orders m x n
and n x m respectively, where n = m, the Cauchy-Binet formula says

(4.5.2) det(AB)= Y det(Ali1,...,imD)det(Bli1,...,im}),

1<iy,..., im<n

where we let Aliq,...,i,,] stand for the matrix formed by taking the columns num-
bered i4,...,i,, and B{iy,...i,,} for the matrix formed by the corresponding rows of
B. This completes the proof. g

Note that the last step of the proof, where we applied Cauchy-Binet formula, is es-
sentially the solution to exercise 4.1.1.

EXERCISE 4.5.2. The Janossy density of a point process & is defined to be
P(X has exactly k& points, one in each of B(z},¢))

453)  File1,....z) =lim -
Hlu(B(Zj,E))
j=

(There is a definition by integrals, analogous to that for joint intensities, but we

restrict ourselves to the above definition).

. d . d .
Given S c [n] <f {1,...,n} write A8 <f [Tjes Aj. Let & be a point process con-

taining no more than n < oo points with Janossy densities

a- /1)["]

(4.5.4) Fr(z1,...,28) = Zs

det(l(z;,2)1<i j<k)

for 1 <% <n where L(z,w) = X_, lf—gjwj(z)aj(w) and Zj, = Ygcinyisi=x A5 - DS,

Suppose that Z;, is also the probability that & contains exactly & points. Check that
& is a determinantal process with kernel K(z,w) = Z;’zl Ajp (@) j(w).
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Now we state the main theorems. The most common application of the following
theorem is to describe the behavior of a determinantal process already restricted to
a subset.

THEOREM 4.5.3. Suppose & is a determinantal process with a Hermitian, non-
negative definite, trace-class kernel K. Write

K(x,y) = Z A pr ()P, (y),
k=1

where {@p} is an orthonormal set of eigenfunctions of the integral operator K& with
eigenvalues A €[0,1]. (Here n = oo is allowed). Let I, 1 <k < n be independent
random variables with I}, ~ Bernoulli(A). Set

Kr(,y) = ) Lpr(®)e,().
k=1

K1 is a random analogue of the kernel K. Let Xt be the determinantal process with
kernel Ky (i.e., first choose the I}’s and then independently sample a discrete set that
is determinantal with kernel K;). Then

(4.5.5) oy

In particular, the total number of points in the process & has the distribution of a
sum of independent Bernoulli(A;) random variables.

REMARK 4.5.4. In many examples the kernel K defines a projection operator,
i.e, A =1 for all 2. Then I, =1 for all &, almost surely, and the theorem is trivial.
Nevertheless, the theorem has interesting consequences when applied to the restric-
tion of the process & to D for any compact subset D c A, as already mentioned in
remark 4.2.5.

Proof of Theorem 4.5.3. First assume that % is a finite-dimensional opera-

tor:
n
K,y = Y Aepr ()@, ()
k=1

for some finite n. We show that the processes on the left and right side of (4.5.5) have
the same joint intensities. By Lemma 4.2.6, this implies that these processes have
the same distribution.

Note that the process X7 exists by Lemma 4.5.1. For m > n, the m-point joint
intensities of both & and &7 are clearly zero. Now consider m <n and x1,...,%,, € A.
We claim that:

(4.5.6) E det (1< (xi,x)))
To prove (4.5.6), note that

(4.5.7) (K1 (i, %)) 1 j<m =A B,

where A is the m x n matrix with A;; = I ¢,(x;) and B is the n x m matrix with

Bp,j = ¢p(x))-
For A,B of orders m x n and n x m recall that the Cauchy-Binet formula says

det(AB) = > det(Aliq,...,ip])detBliy,...,im}),

1<ii,...im<n

lsi,jSm] =det (K(xi’xj))lsi,jsm'

where Ali1,...,i,] stand for the matrix formed by taking the columns numbered
i1,...,im and B{iq,...i,,} for the matrix formed by the corresponding rows of B.
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Apply this to A, B defined above and take expectations. Observe that B{iq,...i,}
is non-random and

Eldet(Ali1,...,im])]=det(Cli1,...,im])

where C is the m xn matrix C; j, = Ap@r(x;). Since the determinant involves products
of entries, independence of I;s is being used crucially. Now, applying the Cauchy-
Binet formula in the reverse direction to C and B, we obtain (4.5.6) and hence also
(4.5.5). Given {I3}z>1, Lemma 4.5.1 shows that the process X7 is well defined and
Lemma 4.4.1 shows that Z7 has Y, I, points, almost surely. Therefore,

ZWNLEY 1.
k

So far we assumed that the operator £ determined by the kernel K is finite
dimensional. Now suppose £ is a general trace class operator. Then >, 1 < co
and hence, almost surely, } ; I}, < co. By Lemma 4.5.1 again, Z7 exists and (4.5.7) is
valid by the same reasoning. Taking expectations and observing that the summands
in the Cauchy-Binet formula (for the matrices A and B at hand) are non-negative,
we obtain

E [ det (K1(x,%)) 12 jm | = X det(Clin i) detBli.sin)),

A Im

where C is the same as before. To conclude that the right hand side is det (K(x;,x;))

1<i,jsm’
we first apply the Cauchy-Binet formula to the finite approximation (Kn(x;,x)),_; i<mo

where Ky (x,y) = Zg:l A @r(x)9,(y). Use Lemma 4.2.2 to see for p-a.e. x,y € A that
Kn(x,y) converges to K(x,y) as N — co. Hence, for u-a.e. x1,...,4, € A, we have

1<ij=m>

E [det (Kl(xi’xj))lgi,jSm] =det ([K(xi,xj))

as was required to show. (In short, the proof for the infinite case is exactly the same
as before, only we cautiously avoided applying Cauchy-Binet formula to the product
of two infinite rectangular matrices).

O

Now we give a probabilistic proof of the following criterion for a Hermitian integral
kernel to define a determinantal process.

THEOREM 4.5.5 (Macchi (55), Soshnikov (83)). Let K determine a self-adjoint in-
tegral operator X on L2(A) that is locally trace class. Then K defines a determinantal
process on A\ if and only if the spectrum of X is contained in [0,1].

PROOF. If A is compact and %" is of trace class, then £ has point spectrum and
we may write

(4.5.8) Kx,y) =Y Ak ()@ (y)
k

where {¢;} is an orthonormal set in L2(A, i) and Az =0 and Y A}, < oo.

In general, it suffices to construct the point process restricted to an arbitrary
compact subset of A with kernel, the restriction of K to the compact subset. What is
more, the spectrum of % is contained in [0, 1] if, and only if, the eigenvalues of %
restricted to any compact set are in [0,1]. Thus we may assume that A is compact,
that % is of trace class and that (4.5.8) holds.
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Sufficiency: If % is a projection operator, this is precisely Lemma 4.5.1. If the
eigenvalues are {1}, with 1; <1, then as in the proof of Theorem 4.5.3, we construct
the process Z7. The proof there shows that &7 is determinantal with kernel K.

Necessity: Suppose that & is determinantal with kernel K. Since the joint
intensities of & are non-negative, K must be non-negative definite. Now suppose
that the largest eigenvalue of £ is A > 1. Let &7 be the process obtained by first
sampling & and then independently deleting each point of & with probability 1— %
Computing the joint intensities shows that &7 is determinantal with kernel %K.

Now & has finitely many points (we assumed that % is trace class) and 1 > 1.
Hence, P[271(A) =0]> 0. However, %[K has all eigenvalues in [0, 1], with at least one
eigenvalue equal to 1, whence by Theorem 4.5.3, P[Z1(A)=1] = 1, a contradiction.

O

EXAMPLE 4.5.6 (Non-measurability of the Bernoullis). A natural question that
arises from Theorem 4.5.3 is whether, given a realization of the determinantal pro-
cess &, we can determine the values of the I;’s. This is not always possible, i.e., the
I,’s are not measurable w.r.t. the process & in general.

Consider the graph G with vertices {a,b,c,d} and edges e1 = (a,b),e2 = (b,c),es =
(c,d),eq4 =(d,a),e5 = (a,c). By the Burton-Pemantle Theorem (11) (see Example 4.3.2),
the edge-set of a uniformly chosen spanning tree of G is a determinantal process. In
this case, the kernel restricted to the set D ={e1,e9,e3} is turns out to be

1 5 -3 -1
(K(ej,eNi<i j<3 = 3 -3 5 -1
-1 -1 -1

This matrix has eigenvalues %, %ﬁ,ﬂl‘—g. But G has eight spanning trees, and
hence, all measurable events have probabilities that are multiples of %, it follows

that the Bernoullis cannot be measurable.

Theorem 4.5.3 gives us the distribution of the number of points Z (D) in any
subset of A. Given several regions D1,...,D,, can we find the joint distribution of
X (D1),...,Z(D,)? It seems that a simple probabilistic description of the joint distri-
bution exists only in the special case when D;’s are related as follows.

DEFINITION 4.5.7. Let K be a standard integral kernel and % the associated
integral operator acting on L2(A). We say that the subsets D1,...,D, of A are simul-
taneously observable if the following happens. Let D = u;D;.

There is an orthogonal basis {¢;} of L?(D) consisting of eigenfunctions of .%p
such that for each i <r, the set {¢|p,} of the restricted functions is an orthogonal
basis of L2(D;) consisting of eigenfunctions of % D;-

The motivation for this terminology comes from quantum mechanics, where two
physical quantities can be simultaneously measured if the corresponding operators
commute. Commuting is the same as having common eigenfunctions, of course.

EXAMPLE 4.5.8. Consider the infinite Ginibre process described under exam-
ple 4.3.7 which is determinatal on the complex plane with kernel
00 (Zw)k

(4.5.9) K(z,w) = Z 21
k=0
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with respect to du(z) = a1 exp{—lzlz} dm(z). Thenif S ={z:r < |z| <R} is an annulus
centered at zero, then

k 2k
1
f[K(z,w)wkdu(w) = f%;e_lwpdm(w)
s S )
R2
k
_ 2|kt
= k!_[t e ‘dt,
r2

which shows that {z* : £ = 0} is an orthogonal basis of eigenfunctions of #g. Thus,
if D; are arbitrary annuli centered at the origin, then they satisfy the conditions of
definition 4.5.7. The interesting examples we know are all of this kind, based on the
orthogonality of {z*} on any annulus centered at the origin. We shall say more about
these processes in section 4.7.

PROPOSITION 4.5.9. Under the assumptions of Theorem 4.5.3, let D;c A, 1<i <
r be mutually disjoint and simultaneously observable. Let e; be the standard basis
vectors in R”. Denote by ¢y, the common eigenfunctions of K on the D;’s and by Ay ;
the corresponding eigenvalues. Then Ay := Y ; Ay ; are the eigenvalues of #yp, and
hence A, <1. Then

(4.5.10) XDV, ZONEY (ExtseesErr)

k
where &), = (ér,15-.-,¢k,r) are independent for different values of k, with Pl =e;) =
Api for 1<i<rand P(gk =0)=1-Ap. In words, (X (D1),...,2(D,)) has the same
distribution as the vector of counts in r cells, if we pick n balls and assign the Eth

ball to the it cell with probability Ay ; (there may be a positive probability of not
assigning it to any of the cells).

PROOF. At first we make the following assumptions.
(1) UiDi =A.
(2) K defines a finite dimensional projection operator. That is, K(x,y) = ¥, _; ¢r ()@, (y)
for x,y € A, and {¢}} is an orthonormal set in L%(A) and n < co.

By our assumption, {¢;|p,} is an orthogonal (but not orthonormal) basis of L%(D;) of
eigenfunctions of %p,, for 1 <i <r. Thus for x,y € D;, we may write

Pr (), (y)
(4.5.11) K, y) =Y Ay e
oY ; Mo lexlPdp

Comparing with the expansion of K on A, we see that A ; = fDi lor|2d p.
We write
(4.5.12)
K(xq,21) ... Kleg,xp) ) ( p1(x1) ... @nlx1) ) ( @1(x1) .o @y(xn) )

K(xn,x1) ... Klxy,x,) 01(xn) ... @nlxy) @ (x1) ... @,(x,)
In particular,

(4.5.13)  det(K(xi,x)));o; o, = ( )" sgn(o) H(pgi(xi))( > sgn(T)HETi(xi)).
i=1 i=1

geS, 7€8,
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Now if k; are non-negative integers with ) ; k; = n, note that
{XD;))=k;foralll<i<r}={XWD;)=Fk;foralll<i<r},

since by Lemma 4.4.1, a determinantal process whose kernel defines a rank-n pro-
jection operator has exactly n points, almost surely. Thus, we have

%(Di))

»
PZ(D;)=k;foralll<i<r] = E[H( N
i=1 i

1
= 7 [ det([K(xk,x/))lsk’gSndu(xl)...du(xn)

kil k, )
;‘:lDil
1 n
= 0 [ Y sgn(o)sgn(r) [ | V0 @Xm)Py () dp(x1). .. dulxy).
Mtk )& £
=Dyt

Any term with o # 7 vanishes upon integrating. Indeed, if o(m) # t(m) for some m,
then

f Vo X, () dploxm) =0
D jom)

where j(m) is the index for which
k1 +...+kj(m)_1 <m<k +...+kj(m).

Therefore,

n

o (2 D) 1
E[H( ki )] = araax Il | leo,@Pds

0 m=1
D jomy

n

1
mz [1 A, jom)-

F 0 om=1

Now consider (4.5.10) and set M; = Y ;¢ for 1<si<r. We want P[M;=Fk;, j<r|.
This problem is the same as putting n balls into r cells, where the probability for
the j* ball to fall in cell i is A j,i- To have k; balls in cell i for each i, we first take
a permutation ¢ of {1,2,...,n} and then put the Jf,}; ball into cell j(m) if k1 +...+
kjomy-1 <m <ki+...+kjm). However, this counts each assignment of balls [];_, ;!
times. This implies that

1 n
PMi=ki,...My=k;] = ————=3 [] Aop,jom:
kil k5 1L
Thus,
(4.5.14) (X(Dy),..., 2D EM;,..., M),

which is precisely what we wanted to show. It remains to deal with the two assump-
tions that we made at the beginning.

First, if the kernel does not define a projection, apply Theorem 4.5.3 to write
% as a mixture of determinantal projection processes. Since the eigenfunctions of
these projection kernels are a subset of eigenfunctions of the original kernel, D; are
simultaneously observable for each projection kernel that appears in the mixture
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also. Applying (4.5.14) to each component in the mixture we obtain the theorem. Ap-
plying the theorem for these projection determinantal processes, we get the theorem
for the original determinantal processes.

Second, if U;D; # A, we could restrict the point process to U;D; to obtain a de-
terminantal process whose kernel may or may not be a projection. The theorem thus
follows. ([l

4.6. Central limit theorems

As an application of Theorem 4.5.3 we can derive the following central limit
theorem for determinantal processes due to Costin and Lebowitz (15) in case of the
sine kernel, and due to Soshnikov (84) for general determinantal processes.

THEOREM 4.6.1. Let %, be a sequence of determinantal processes on A, with
kernels K,. Let D, be a Borel subset of A, such that X,(D,) is finite almost surely
and such that Var(%,,(D,)) — co as n — oo.

Then

(4.6.1) Zn@Dn) EIZn D)l 4 o 1y,
Var (Z,(Dy))

PrROOF. By Theorem 4.5.3, &,,(D,) has the same distribution as a sum of inde-
pendent Bernoullis with parameters being the eigenvalues of the integral operators
associated with K, restricted to D,. A straightforward application of Lindeberg-
Feller CLT for triangular arrays gives the result. [l

REMARK 4.6.2. Earlier proofs of results of the kind of Theorem 4.6.1 ((15), (84))
used the moment generating function for particle counts. Indeed, one standard way
to prove central limit theorems (including the Lindeberg-Feller theorem) uses gen-
erating functions. The advantage of this proof is that the reason for the validity
of the CLT is more transparent and a repetition of well known computations are
avoided. Moreover, by applying the classical theory of sums of independent vari-
ables, local limit theorems, large deviation principles and extreme value asymptotics
follow without any extra effort.

4.7. Radially symmetric processes on the complex plane

Proposition 4.5.9 implies that when a determinantal process with kernel K has
the form K(z,w) = ¥, cx(zw)*, with respect to a radially symmetric measure y, then
the set of absolute values of the points of the process, has the same distribution as a
set of independent random variables. More precisely, we have

THEOREM 4.7.1. Let & be a determinantal process with kernel K with respect to
a radially symmetric measure pon C. Assume p(C) < oco. Write K(z,w) =Y 3 Ap a% (zw)*,
where ajz*, 0 <k <n —1 are the normalized eigenfunctions for K. The following con-
struction describes the distribution of {z2: ze &)

o Let Z be picked from the probability distribution %, and let Qo =Z|.

e For 1<k <n-1let @ be an independent size-biased version of Qp_1 (i.e.,
2
Q@ has density fr(q) = ;;—kq with respect to the law of Qp—1).
k-1
o Consider the point process in which each point Qp, 0 <k <n—1, is included
with probability Ay, independently of everything else.
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When p has density ¢(|z]), then Qp has density
(4.7.1) a2 gt ().

Theorem 4.7.1 (and its higher dimensional analogues) is the only kind of exam-
ple that we know for interesting simultaneously observable counts.

PROOF. Let v be the measure of the squared modulus of a point picked from pu.
In particular, if y has density ¢(|z|), then we have dv(q) = n¢(,/q)dq.

For 1 <i <r, let D; be mutually disjoint open annuli centered at 0 with inner
and outer radii r; and R; respectively. Since the functions z* are orthogonal on any
annulus centered at zero, it follows that the D;’s are simultaneously observable. To
compute the eigenvalues, we integrate these functions against the restricted kernel,
clearly, all terms but one cancel, and we get that for z € D;

Zkﬂk,i = fﬂtka%(zw)kwkd,u(w), and so
D;
Ari = Akaif|w|2kdp(w)
D;
R2
= Apa? f q"dv(g).

r?
i

As r;,R; change, the last expression remains proportional to the probability that the
k times size-biased random variable @}, falls in (r?,R?). When we set (r;,R;) = (0,00),
the result is A, because arw® has norm 1. Thus the constant of proportionality
equals Az. The theorem now follows from Proposition 4.5.9. ([l

EXAMPLE 4.7.2 (Ginibre ensemble revisited). Recall that the n'" Ginibre en-
semble described in Example 4.3.7 is the determinantal process G; on C with ker-
nel K,(z,w) = Zz;é Aka%(zw)k with respect to the complex Gaussian measure du =
%e‘mzdm(z), where a2k =1/k!, and A;, = 1. The modulus-squared of a complex Gauss-

ianis a Gamma(l, 1) random variable, and its 2-times size-biased version has Gamma(k+
1,1) distribution (see (4.7.1)). Theorem 4.7.1 immediately yields the following result.

THEOREM 4.7.3 (Kostlan (50)). The set of absolute values of the points of G, has
the same distribution as {Y1,...,Y,} where Y; are independent and YL.2 ~ Gamma(i, 1).

All of the above holds for n = co also (see example 4.5.8), in which case we have a
determinantal process with kernel e** with respect to dy = %e"zl2dm(z). This case
is also of interest as G, is a translation invariant process in the plane.

EXAMPLE 4.7.4 (Zero set of a Gaussian analytic function). Recall from exam-
ple 4.3.10 that the zero set of fi(z) := Z‘,’lozoanz” is a determinantal process in the
disk with the Bergman kernel

K(z,w) ! ! f(ku)( w)*
W)= ———5 = — zrw) -,

n(l-zw)? 75
with respect to Lebesgue measure in the unit disk. This fact will be proved in chap-
ter 5. Theorem 4.7.1 applies to this example, with a% =(k+1)/m and A = 1 (to make K
trace class, we first have to restrict it to the disk of radius r < 1 and let » — 1). From
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(4.7.1) we immediately see that @; has Beta(k + 1,1) distribution. Equivalently, we
get the following.

THEOREM 4.7.5 (Peres and Virag (68)). The set of absolute values of the points
in the zero set of f1 has the same distribution as {U11/2,U21/4,U31/6,...} where U; are
i.i.d. uniform[0, 1] random variables.

We can of course consider the determinantal process with the truncated Bergman

-1
kernel K, (z,w) = %nz (k +1)(zw)*. The set of absolute values of this process has the
k=0
same distribution as {U;/ 2k :1<k<n)

4.8. High powers of complex polynomial processes

Rains (70) showed that sufficiently high powers of eigenvalues of a random uni-
tary matrix are independent.

THEOREM 4.8.1 (Rains (70)). Let {z1,...,2,} be the set of eigenvalues of a ran-
dom unitary matrix chosen according to Haar measure on 2 (n). Then for every k = n,
{z’le yeun ,zﬁ} has the same distribution as a set of n points chosen independently accord-
ing to uniform measure on the unit circle in the complex plane.

In the following propostition, we point out that this theorem holds whenever the
angular distribution of the points is a trigonometric polynomial.

PROPOSITION 4.8.2. Let (z1,...,2,) € (S1)®" have density P(z1,...,2n,21,..-,2n)
with respect to uniform measure on (S1)®", where P is a polynomial of degree d or
less in each variable. Then for every k > d the vector (z’le, ... ,zf‘;) has the distribution
of n points chosen independently according to uniform measure on S1.

PROOF. Fix k > d and consider any joint moment of (z]f, ... ,zﬁ),

n n
kmi= ke kmi— ke; = =
E H(zimlzi l) = n(zi'nlzik I)P(Z]_,...,Zn,Z]_,...,Zn)dA,
i=1

i=1

(Sl)®n

where A denotes the uniform measure on (S1)®”. If m; # ¢; for some i then the
integral vanishes. To see this, note that the average of a monomial over (S1)®” is
either 1 or 0 depending on whether the exponent of every z; matches that of z;.
Suppose without loss of generality that m; > ¢;. Thus, if P is written as a sum of
monomials, in each term, we have an excess of z’le which cannot be matched by an
equal power of z; because P has degree less than % as a polynomial in z;.

We conclude that the joint moments are zero unless m; = ¢; for all i. If m; = ¢;
for all i, then the expectation equals 1. Thus, the joint moments of (z’f,...,zﬁ) are
the same as those of n i.i.d. points chosen uniformly on the unit circle. This proves
the proposition. (I

More generally, by conditioning on the absolute values we get the following.

COROLLARY 4.8.3. Let (1,...,{; be complex random variables with distribution
given by
P(Zl, e ,Zn,zl, e ,En)d,ul(zl) .- ~d,un(zn),
where P is a polynomial of degree d or less in each variable, and the measures U;
are radially symmetric. Then for every k > d, the angles arg((}f),...,arg((ﬁ) are in-
dependent, have uniform distribution on [0,27], and are independent of the moduli

¢l 1Cnlh
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Corollary 4.8.3 applies to powers of points of determinantal processes with ker-
nels of the form K(z,w) = ZZ:O ci(zw)* with respect to a radially symmetric measure
1 on the complex plane. Combining this observation with our earlier results on the
independence of the absolute values of the points, we get the following result.

THEOREM 4.8.4. Let & =1{z1,...,2,} be a determinantal process on the complex
plane with kernel K(z,w) = Z?;& cr(zw)! (satisfying #{k = 0: ¢}, # 0} = n) with respect
to a radially symmetric measure yu. Then for every ¢ = d, the set {z{,...,sz} is dis-
tributed as a set of independent random variables with radially symmetric distribu-
tion.

4.9. Permanental processes

In this section we introduce permanental point processes, to show the anal-
ogy and to contrast their properties with determinantal processes. Permanental pro-
cesses are positively correlated, meaning that they have even more clumps and va-
cant regions than Poisson processes, see figure 1. In physics, they correspond bosons
as opposed to determinantal processes that correspond to fermions.

DEFINITION 4.9.1. A point process & on A is said to be a permanental pro-
cess with kernel K if its joint intensities satisfy:

(4.9.1) pr(x1,...,xz) = per (K(xi’xj))lsi,jsk’
for every k=1 and x1,...,x; € A.

We continue to make our standard assumptions on the kernel K (Assumption
4.2.3). While analogous theorems to those for determinantal processes hold, as
we shall show, probabilistically permanental processes are much simpler. Indeed,
Proposition 4.9.2 characterizes all permanental point processes in terms of Poisson
processes, an analogous probabilistic characterization of determinantal processes
seems not to exist.

PROPOSITION 4.9.2. Let F be a mean zero complex Gaussian process on A. Given
F, let & be a Poisson process in A with intensity |[F|?. Then % is a permanental

process with kernel K(x,y)=E [F(x)ﬁ(y)].

PROOF. Given F, the joint intensities of & are pp(x1,...,x5) = HlelF(xi)|2.
Hence it follows that the unconditional joint intensities of & are pp(x1,...,x%) =
E [Hf=1 |F(x;)1?]. Now apply the Wick formula Lemma 2.1.7. O

COROLLARY 4.9.3. If K determines a self-adjoint non-negative definite locally
trace-class integral operator %, then there exists a permanental process with kernel
K.

PROOF. Proposition 4.9.2 shows existence. Uniqueness is proved analogously to
Theorem 4.2.6. We just sketch the changes to be made in that proof, . For a Hermit-
ian positive definite matrix M, we have |M;, jI2 =M;;M; ; for any i,j. Therefore

n n
per(M)SZH IMk’,,hlsn! Mk,k-
o k=1 k=1
Use this in place of inequality (4.2.15) for the determinant to deduce that for any

compact set D
[e.°]

El(1+5)*P]= Y x(D)*s*
k=0
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where k(D) = fD K(x,x)d p(x). Thus the series converges for |s| < x(D)"! and the mo-
ments of Z'(D) determine the distribution of Z'(D). This is exactly what we needed
to show that the joint intensities determine the distribution of &'. [l

PROOF. Let {¢;} be an orthonormal set of eigenfunctions for # with eigenval-
ues A, and write K(x,y) = X7_; A,z (x)9,(y), we allow n = co. Let a;, be indepen-
dent standard complex Gaussian random variables and define F(z) = L _, \/)L_k arpr(2).
Then F is a complex Gaussian process on A with covariance kernel K, and we use
Proposition 4.9.2 to construct the required permanental process. (Il

Next we give the analogue of Theorem 4.5.3 for permanental processes. It is
much simpler to prove thanks to Proposition 4.9.2. As always, densities on A’ are
expressed with respect to the background measure p®’.

THEOREM 4.9.4. (Hough et al. (33)) Suppose X is a permanental process in
N with a Hermitian, non-negative definite, trace-class kernel K. Write K(x,y) =
Y1 M), (y), where ¢y, are orthonormal eigenfunctions of & with eigenvalues
Ar (n = oo is allowed). Let d = (aq,...,a,), where a; are non-negative integers such
that ¢ =¢(@)=aq+---+a, <ooand let Z% be the random vector in N’ with density:

1 {oiz) @it
1 lper| ,
...an!

(4.9.2) pg(Zl,...,Z[)Zg' '
o {onz1) -+ @ulzp)}ay

where the notation {(pi(zl)---(pi(Zg)} a; indicates that the row @i(z1)---i(z¢) is re-
peated a; times. Let % be Ehe point process determined by Z%, i.e., ZUD) is the
number of j < ¢ such that Z;?‘ €D. Let y1,...,Yn be independent geometric random

variables with P(yp =s) = (%)s (Tlﬂ)’ for s=0,1,2,.... Then

%ig{?,

where ¥ = (y1,...,Yn)- In particular, Z (A\) has the distribution of a sum of indepen-
1

dent Geometric random variables with parameters T

REMARK 4.9.5. The density given in (4.9.2) has physical significance. Inter-
preting the functions ¢ as eigenstates of a one-particle Hamiltonian, (4.9.2) gives
the distribution for ¢ non-interacting bosons in a common potential given that a; of
them lie in the eigenstate ¢;. This density is the exact analogue of the density for
the determinantal projection process with kernel whose eigenfunctions are (y;):

1 (Pil(zl) (Pil(zf)
(4.9.3) p(z1,...,2¢) = — |det
2!
9i,(z1) - @i, (z0)
Physically, (4.9.3) gives the distribution for ¢ non-interacting fermions in a common
potential given that one fermion lies in each of the eigenstates ¢;,,...,¢;,. The fact

that (4.9.3) vanishes if a row is repeated illustrates Pauli’s exclusion principle, which
states that multiple fermions cannot occupy the same eigenstate. See (27) for more
details.

We shall make use of the following fact in proving Theorem 4.9.4.

FACT 4.9.6. Let & be a Poisson process on A with intensity measure v. Assume
that v(A) < oo and v is absolutely continuous with respect to u (the reference measure
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of A). Let Y be the random vector of length % (A) obtained from a uniform random
ordering of the points of &. For k£ = 1, the law of Y on the event that Z(A) =k is a
sub-probability measure on A* with density

dv
e_V(A) —(z;)

1
(4.9.4) gr(z1,...,21) = —
i= ld

k!

with respect to u*.

Proof of Theorem 4.9.4. We use Proposition 4.9.2 to construct & as a Poisson
process with intensity |F|?> where F(z) = Y1 \/)L_kak(pk(z) and a; are independent
standard complex Gaussian random variables. Note that E(Z'(A)) =E f A |F(2)12d w(z)
ZZ:I Ap <00, hence & contains a finite number of points a.s. Let X be the random
vector obtained from a uniform random ordering of the points of &. If we first con-
dition on F, then by Fact 4.9.6 the joint density of the random vector X on the event
{Z' (M) = ¢} is given by

. f\F(x)|2du(x)
e,z =5 [e [TIFe)?|,

i=1

which is a sub-probability measure with total weight P[Z'(A) = ¢|F]. Integrating
over the distribution of F we get that on the event {Z'(A) = ¢} the density of X is

. 1 f\F(x)Izdu(x) 9
Jez1,...,20) = EE[ HI (z)
1 *Zlmlam‘ 4 2
(4.9.5) = EE e m |H Z\//lmam(pm(zi) | ,
: i=1\m

which is also a sub-probability measure with total weight P[Z'(A) = ¢]. We now
expand the product inside the expectation (4.9.5) as a sum indexed by ordered set
partitions (S1,...,S,) and (Ty,...,T,) of {1,2,...,¢}. The set partitions corresponding
to a summand ¢ are constructed by letting S be the set of indices i for which g
contains the term mak(pk(zi) and T}, be the set of indices i for which ¢ contains
the term mﬁk@z(zi). The summand corresponding to the partitions (S),(T}) is
thus:

E

- am? _ _
" DAnlen (Hallfkakml)(n I A',fk'/2<pk(zi)) (1—[ 0 A;Tkvz(pk(zl_)) ,
k

k ieSy k i€Ty,

which clearly vanishes unless |Sy| = |T| for every k. Also note that for a standard
complex normal random variable a,

a!
(1 + /1)‘“’1 :

Therefore by fixing an ordered partition of the integer ¢ with n parts (some of the
parts may be zero) and then summing over all ordered set partitions (S3),(T%) with
those sizes, we find that

(4.9.7)

. 1
Je(z1,...,2¢0) = 7 >
(a1,...an)ya;=¢

(4.9.6) E [e—Ma'2|a|2a] -

i

i 1(1”)“ H) (S )\ 1S l=tm

l_[ H orz) [°.
Z1ie8,
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Now it is easy to see that

{pi(z1) -+ (Pl(Z[)}all

> II1I1 (Pk(zi):(ﬁ %)per

(S;):IS;|=a; k=1i€S;, i=1 @i-

{(pn(zl) (Pn(zé)} an
Recall that the geometric random variables y; in the statement of the theorem have

the distributions P[y; = a] = (Hiﬁ Therefore we obtain
4.9.8
e (21) z0) ?
. " Plyi =) {1z - gt
Jje(z1,...,20) = Z —T T per .
(@) R 020 g o {pnz)) -+ @nlzo}an

Now we integrate (4.9.8) over all the variables z;. Write the absolute square of the
permanent on the right as

{p1z1) -+ @1} aa {p1z1) -+ 1)} aa
per per
{pn(z1) -+ @no}ay {pn(z1) -+ @no}ay
and expand these two factors over permutations 7 and o of {1,2,...,k}. Letting I;
Jj-1 J
denote the interval of integers {1+ ). a,,..., Y a,} we get a sum of terms of the form
r=1 r=1

n n

H H @;(z;) l_[ H @z |-
J=lien=1(I;) J=lieoc~1(;)

By orthogonality of ¢;s, this term vanishes upon integration unless i )= o~ i)

for every 1 < j < n. For a given 7, there are H;‘ﬂ a;! choices of o that satisfy this. For

each such o, we get 1 upon integration over z;s. Summing over all ¢! choices for 7,

we get

fjldl/:P[%(A):é]: )y ﬁP[Yi=ai]=P il“rz:f‘,

I (a1yean):Xa;j=Ci=1

which proves the claim about the number of points in A. Thus by (4.9.8) & is a

mixture of the processes & a(D), with weights given by H?ZIP [y,- = a,-], where a =

(ai,...,a,) with a; being non-negative integers. This is what we wanted to prove. []
The analogue of Proposition 4.5.9 is also true.

THEOREM 4.9.7. (Hough et al. (33)) Under the assumptions of Theorem 4.9.4,
suppose D1,...,D, are simultaneously observable as in definition 4.5.7. Denote by ¢y,

the common eigenfunctions of K on the D;’s and by A, ; the corresponding eigenvalues.
Then

(4.9.9) (XD, ZXDNES Mts M)
k

where (Nk 1,--.,Nk,r) are independent for different values of k, for each k, the sum 1y, =
YNk, has a geometric distribution with mean Ay, 1=} ; Ay ; and given YNy ; =N,
A A
(M1 sMer) ¢ Muitinomial nk;ﬁ,..., kr .
’ k3 A,k A,k
As before, we remark that this result is applicable to the restriction & n D, for
any Borel set D c A.
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PROOF. Suppose D1,...,D, are simultaneously observable as in the statement of
the theorem. Use Proposition 4.9.2 to write the restriction of & to U7_; D; as a Pois-
son process with intensity |F(x)|2 where F is a Gaussian process with covariance ker-
nel K. Explicitly, F(z) =Y, ap, \/E(pk(z) for z € U]_,D;, where a;, are i.i.d. standard
complex Gaussians, i.e., the real and imaginary parts of a; are i.i.d. N(0, %). Then
given {ap}, we know that Z'(D;), 1 <i <r are independent Poisson(fDi IF(x)Ide(x)).
Writing fDi |F(x)2du(x) =Y, Ak,i lar|?, we see that conditionally given {a}}, the vari-
ables X (D;) for 1 < i <r have the same distribution as > ;(n.1,...,Mz,), where
{ﬂk,i}lsisr are chosen by sampling 7, according to Poisson(A|ap 12) distribution and
then assigning 1, points to the cells D; multinomially with probabilities %‘

Integrating over the randomness in {aj}, we see that
e%klakp/l;enlaklzm _ /l;en
(LAt

P(nkzm)zE[

m!

where we have used (4.9.6) to deduce the second equality. Hence 7; has a Geo-

metric distribution with mean 1., and given 71, the vector (le,l,u-ﬂlk,r) is still

Multinomial(r; %1, . /1/{2, ). This completes the proof. O

4.10. Notes

o The algorithm 4.4.3 was introduced in the survey paper (33). It was implemented
in practice by Scardicchio, Zachary and Torquato in (73) who provide various en-
hancements to the algorithm for efficient implementation.

e One way to generalize the concept of determinantal and permanental processes is
to consider point processes with joint intensities given by

n
(4.10.1) Pn(x1,. ., %) = deta(K(x;, %)) def Y @O [ Ky, x0)),
neS, i=1

where v(r) is the number of cycles in the permutation 7.

Such point processes are called a-determinantal processes in Shirai and Taka-
hashi (75). The values @ = —1 and a = +1 correspond to determinantal and perma-
nental processes, respectively. It is easy to check that the proof of Theorem 4.5.3
can be modified to get:

PROPOSITION 4.10.1. Suppose there exists a point process & on N\ with joint
intensities given by (4.10.1), where K is a Hermitian, non-negative definite, trace
class kernel. Write

n
(4.10.2) K(x,3)= ) Ap@r@)@r(y),
k=1

where {¢} is an orthonormal set of eigenfunctions for the integral operator X with
eigenvalues Ay,. Then Z(A) is:
— a sum of independent Binomial(—é,—a/lk) random variables, if —% s a posi-
tive integer.
— a sum of independent Negative Binomial( %, m) random variables, if a > 0.

In fact, if —é is a positive integer, this process is just a union of —% i.i.d. copies
of the determinantal process with kernel —alK. Similarly, if % is a positive inte-

ger, this process is a union of é i.i.d. copies of the permanental process with kernel
alk. More generally, the union of m i.i.d. copies of the process corresponding to
a and kernel K gives a process distributed according to am and kernel %K. If
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K is real, and defines a bounded, non-negative definite, symmetric, locally trace
class integral operator £ on A, and the measure p on A is non-atomic, then %-
determinantal processes also exist (75). For a > 0, little is known about the ex-
istence of a-determinantal processes beyond these examples. Shirai and Taka-
hashi (75) conjecture the following:

CONJECTURE 4.10.2. IfK is a (real) kernel defining a self-adjoint, non-negative
integral operator on L%(\) and 0 < a < 2, then the a-determinantal process with
kernel K exists. However, if a > 2, then there exists such a kernel K for which there is
no corresponding a-determinantal process.

We verify this conjecture for @ > 4. Let A be a discrete space consisting of three
points, and consider the 3 x 3 matrix

2 -1 -1
K= -1 2 -1
-1 -1 2

It is easy to check that the eigenvalues of I are 3,3,0 and
deta(K(i,j))lsiJ‘Sg =24 -a)a+1),

which is negative for @ > 4. Since point processes must have non-negative joint
intensities, we conclude that no a-determinantal processes with this kernel can
exist for a > 4.

4.11. Hints and solutions

Exercise 4.3.5 The first part is obvious. For the second, applying the optional sampling
theorem as suggested in the exercise, we get

4.11.1) M(0) = E[M(1)11<;1+ E[M()175¢].
Note that M(s) = det (PXp(s),jq)p

q=

. In particular, M(7)1;<; = 0 because if 7 < ¢, then at time

n

7 two rows of the matrix are equal. Also, M(0) = det (P - is the right hand side of
n

(t))p ,
the Karlin-McGregor formula. On the other hand, M(¢)1;>; is i:)recisely the indicator of the
event that the random walks X, arrive at locations j, respectively at time ¢, and that no two
walks meet up to and including time ¢. Thus E[M(#)1;>¢] is the probability of the event asked
for in the Karlin-McGregor formula. This completes the proof.

Exercise 4.5.2 Given S c [n], write Kg(z,w) = Zjes (pj(z)aj(w). By assumption & has
conditional joint intensity functions

ip’jq

a-ptel
k(1,2 || K =k) = Z—kdet([L(Zi,zjhsi,jsk)
1 ¢
(4.11.2) = - A5 - det(Kg(z,2)1<i j<k).
k Scln):|S|=k

Since equation (4.11.2) gives the joint intensity for a point process containing % points a.s.,
we may integrate to obtain lower order joint intensity functions as in equation (4.5.1). Since
each term det(Kg(z;,2;)1<; j<) gives the joint intensity function for a determinantal process
containing exactly % points, we see immediately that for ¢ < &:

1
pe(z1,...,20 1|1 Z|=k) = 7 S-S det(Kg(z;,2)1<i,j<¢)
k Sc[nl:|S|=k
1 q Jc
= Z det(Kg(zi,2)1<4,j<¢) Z )ls(l—)l)s .
k Sc[n]:|S|=¢ Scln)

$o8:1S|=k
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Considering now the probability that & contains £ points, we compute the unconditional joint
intensity functions as follows:

(4.11.3) py(z1,...,2¢) = 0(21,...,20 1| X =OP(X|=0)

>
k=C
2

(4.11.4) = Y det(Kg(zizisijce) Y, ASA-Y.
k=0Sc[n]:|S|=¢ _ Sclnl
So8S:IS|=k

An easy inductive argument gives

(4.11.5) A=Y Sa-p%.
Sg[n]
S=8

Combining equations (4.11.3) and (4.11.5) we deduce

(4.11.6) pe(21,...,2¢) = Z det(Kg(zi,2)1<4,j<¢)
Sc[nl:|S|=¢
(4.11.7) = det(K(zj,2))1<i,j<0)

as claimed.






CHAPTER 5

The Hyperbolic GAF

In chapter 4 we presented many eigenvalue ensembles in random matrix the-
ory that happened to be determinantal point processes. In this chapter we return to
Gaussian analytic functions and show that zeros of the i.i.d. power series (L =1 in
5.1.1) form a determinantal process. Curiously enough, this is the only non-trivial
example of a Gaussian analytic functions whose zero set is known to be determinan-
tal! In particular, among the canonical models of zeros of Gaussian analytic functions
introduced in chapter 2, all of which were treated on equal footing so far, the case
A =D, L =1, is alone rather special. In this chapter we only consider the hyperbolic
Gaussian analytic functions, and hence simply write f7, for fp 1.

5.1. A determinantal formula

Let a, be i.i.d. standard complex Gaussian random variables. Recall the hyper-
bolic Gaussian analytic function

X VLIL+D...L+n-1)
(5.1.1) fr.(z) = n "
L(z ;;oa - z

that converge on the unit disk and have zero sets invariant in distribution under
isometries of the hyperbolic plane.

THEOREM 5.1.1 (Peres and Virag). The joint intensity of zeros for the i.i.d. Gauss-
ian power series f1(z) in the unit disk exists, and satisfies
1

(512) pn(zl,...,zn):n_"det m

i.j

In view of this theorem, it is natural to ask whether the other canonical models
of Gaussian analytic functions introduced in section 2.3 also have determinantal
zero sets. The answer is no, because one can check that pa(z,w) > p1(2)p1(w) for the
zero sets of these Gaussian analytic functions for sufficiently distant pairs of points
z,w. Since a determinantal point process (with a hermitian kernel) has negative
correlations (meaning pa(z,w) < p1(2)p1(w), Vz,w), it follows that these zero sets are
not determinantal. Figure 1 shows a picture of the two-point intensity for (5.1.1) for
several values of L. Only in the case L = 1 is the relative intensity, 2200y, ded

p1(0)p1(r)
by 1 (By invariance, it is sufficient to consider z =0 and w =r > 0).

02(0,r)

EXERCISE 5.1.2. Show that for general L, the quantity GG

is equal to

(notation:s = 1—r2):
(5.1.3)
1+ (L2 _9L _2) (sL " 32+2L) +(L+1)2 (szL +s2+L) _9]2 (81+L +31+2L) 4 g2+3L

(-5t

83
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0.2 0.4 0.6 0.8 1

FIGURE 1. Relative intensity at z = 0 and z = r as a function of r
for L=1,3,4,1 1 and for L =1,4,9,16,25.

In the case L = 1 it simplifies to r2(2 - r2).

For every distance r, the correlation is minimal when L =1 (see Figure 1). For all
values of L different than 1, for small distance zeros are negatively correlated, while
for large distances the correlation is positive. Since the points in a determinantal
process are always negatively correlated (which is clear from the determinantal form
of the pairwise joint intensity) it follows that none of the zero sets Z;, for L # 1 can
be determinantal processes.

The fact that the zero set of f is determinantal, allows us to apply all the ma-
chinery developed in Chapter 4 to this point process making certain computations
especially easy. In particular, we apply Theorem 4.7.1 to determine the joint distri-
bution of the moduli of the zeros and also the asymptotics of the “hole probability"
that the disk D(0,r) contains no zeros as r 1 1.

5.1.1. Proof of determinantal formula. We now give the proof of Theorem
5.1.1, which relies on the i.i.d. nature of the coefficients of f = fp, M6bius invariance,
Hammersley’s formula and an old identity relating permanents and determinants
due to Borchardt (1855). Hammersley’s formula (3.4.1) provides us with an explicit
expression for the joint intensity of the zero set Zp 1, namely,

E(If 1) £ )2 | f21), .., £z0) = 0]
" det(A) )

where A is the covariance matrix A j, = Ef(z j)f(Tk) =(1-z jEk)_l. The difficulty in ap-
plying this formula lies in understanding the conditional distribution of f given that
f(z1) = --- =f(z;) = 0. However, note that the conditional distribution of f(z) given
that £f(0) = 0 is especially easy to understand. Conditioning £f(0) = 0 simply stipulates
that a¢ = 0, and since the coefficients aj, are i.i.d., the conditional distribution of f(z)

(5.1.4) Pn(21,...,2,) =
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given £(0) = 0 is the same as the unconditional distribution of zf(z). Amazingly, this
simple observation generalizes, as explained in the following proposition:

PROPOSITION 5.1.3. Let f=1, and z1,...,z, € D. The distribution of the random
function

(5.1.5) T, (2)---T,,(2)f(2),
where
z-p
(5.1.6) Tp(z) = ——=
1-8z
denotes a Mdobius transformation fixing the unit disk, is the same as the conditional
distribution of f(z) given f(z1)=...=1(z,) =0.

PROOF. We have already remarked that the assertion is clear when n =1 and
21 = 0. More generally, for z; = 8, we claim that the random function £f=74-(fo Tj)

has the same distribution as f, where

1—1812)V2

(5.1.7) 18(2) = &
1-8z

satisfies T%(Z) = T;j(z). Indeed, we verify this assertion by computing:

E|ffw)| = E|rp@feTp@rswieTow)|
= 1p(2)7pw) (1- Tp)Tpw)) '
1
C 1-zw
= Ed)fw)).

Now, since T'3(5) = 0, from the formula
~ oo k
f2)=15(2) )_ ar(Tp(2))
k=0

it is clear that the distribution of T'g -f is identical to the conditional distribution of f
given f(8) = 0, whence the same must hold for f in place of f.

The proposition for n > 1 follows by induction: to go from n to n +1, we must con-
dition (f|f(z1) =... =f(z,) = 0) on f(z,,+1) = 0. By the assumed identity for n points,
this is equivalent to conditioning (T, --- T, -f)(z) on f(z,.+1) = 0. It remains to ob-
serve that conditioning is a linear operator that commutes with multiplication by
the deterministic functions T,,. Indeed, for two jointly complex Gaussian random
vectors X,Y, the distribution of Y given X = 0 is the same as the distribution of Y
with each entry projected to the orthocomplement (in L? of the underlying probabil-
ity space) of the subspace spanned by the components X; of X. Hence, applying the

equality of distributions (f(z)|f(z,+1) =0) d T,,.,(2)f(z) completes the proof. [l

This result makes it easy to compute the joint distribution of f(z;) given that
f(z1) = --- = f(z,,) = 0, which is needed to apply Hammersley’s formula. For fixed
21,...,2n €D set

(5.1.8) Y(z2)= l_[ sz(z).
j=1
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and observed that since T';,(z;) = 0 and T;k(zk) =1/(1-2zzp):

nooq
(5.1.9) Y@ =T, Gp) [] Topen) =[] —=- [] zj-2»)

itk =1 1-22e

for each & <n. Now from Proposition 5.1.3 we have:

COROLLARY 5.1.4. Let f=fp and z1,...,z, € D. The conditional joint distribution
of the random variables (f’(zk) k= 1,...,n) given that f(z1) = ... =1(z,) =0, is the
same as the unconditional joint distribution of [Y’(zk M(zp) :k=1,.. .,n).

PROOF. The conditional distribution of f given that f(z;) = 0 for 1 < j < n, is the
same as the unconditional distribution of Y -f. Since Y(z;) = 0, the derivative of
Y(2)f(z) at z = z, equals Y'(z)f(zp). O

It follows from Corollary 5.1.4 that

(6110)  E(If )£ o) |£z1), .. fzn) = 0) = E(fz0)-+£z0)?) [T1Y o).
k

and hence Hammersley’s formula (3.4.1) now gives

E(If(z1)---f(z,)1%) [T [Y'(z3)1?

.11 =
® ) pz1;.520) atdet A

where we recall that A is the covariance matrix A j, = E(f(z,)f(z;)) =(1-2 jEk)_l. By
Wick’s formula 2.1.7 we know that per(A) = E(/f(z1)---f(z,)?), and hence

_ per(A) [T, 1Y'(z;)1?
(5.1.12) p(21,...,2p) = T detA

From the Cauchy determinant formula we obtain:

1 _
(5.1.13) det(A)=]] — [](zj—21)Gj - Z).
kj * T Ri%k k<)
Comparing this to (5.1.9), we see that

n

(5.1.14) det(A) = [T 1Y'(zp)I.
k=1

To complete the proof we need to apply Borchardt’s identity:

PROPOSITION 5.1.5 (Borchardt’s identity). Let x;,y;, 1 <i < n, be complex num-
bers such that x;y; # 1 for any i,j. Then

1 1
(5.1.15) per( ) det( ) =det (—2) .
1=2i%j); jen 1=%:y5); jen A=2y)%); j<p

We shall give a proof of this classical result in the next subsection. Borchardt’s
identity implies:

(5.1.16) per(A)det(A) = det(M)
where M, =(1 —zjik)_2. Now combining (5.1.12), (5.1.14) and (5.1.16) we deduce
(5.1.17) 0(21,...,2,) =7 " det(M)

which proves Theorem 5.1.1.
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5.1.2. Borchardt’s identity. In this section we shall prove Borchardt’s Iden-
tity (Proposition 5.1.5) dating back to 1855 (9). First, we prove an identity due to
Carlitz and Levine (14) that gives Borchardt’s identity as a special case. The proof
we present is the original proof of Carlitz and Levine.

Notation: In this section, if A is a matrix with entries a;; and m is any integer,

then A denotes the matrix whose entries are a;'J‘..

THEOREM 5.1.6 (Carlitz and Levine). Let A be an n x n matrix with non-zero
entries, such that the matrix ATV = (ai_jl) has rank 2. Then

(5.1.18) per(A)det(A) = det (A(Z)) .

Assuming this result, we easily obtain Borchardt’s Identity.

Proof of Proposition 5.1.5. First assume that x; # 0 Vi. Then set a;; = ﬁ
x; j

for i,j < n. Clearly AT has rank 2. Thus (5.1.18) holds. Dividing both sides of the
n
resulting equation by [] x; gives (5.1.15). By continuity, this is valid even if some of

1=
the x;s are equal to zero. [l

Proof of Theorem 5.1.6. Let A,B be arbitrary matrices and consider per(A)det(B).
Expanding the permanent and the determinant over the permutation group %,, we
get

per(A)det() = Y. Y sgn(o)[] arn,bro,
k=1

neS o€y, =

n
= Zngn(aﬂ) ]_[ @k, Oko(ny)
T O k=1

n
= Y sgn(0)) sgn(m) [ @kn, brory)-
o b4 k=1

Now for a fixed o let B, be the matrix obtained by permuting the columns of B
according to the permutation 0. More precisely, (By);; = bis;. Let * denote the
Hadamard product, i.e., (A * B);j =a;;b;;. Then

n

det(A *B,) = ngn(n) @hny Oko(ny)
3 k=1
is precisely the inner summand in the earlier expression for per(A)det(B). Thus we
get

(5.1.19) per(A)det(B) = ngn(a)det(A * B),

which is a formula due to Muir (see the book by Minc (57)).

When B = A, the summand on the right hand side of (5.1.19) corresponding to
the identity permutation is precisely the term on the right hand side of (5.1.18)

We shall prove that under the assumptions of the theorem, when B = A, each
term in (5.1.19) corresponding to a non-identity permutation separately vanishes.
To see this, note that if o #Zidentity, then it has a cycle of length at least two. If it has
a cycle of length exactly 2, say (1) = 0~ 1(1) = 2, then the first and second columns of
A * A, are identical and thus det(A * A;)=0.

Now suppose that o has a cycle of length greater than or equal to 3. Without
loss of generality, assume that o contains the cycle (1,2...,k). Then we claim that
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the matrix formed by the first £ columns of A * A, has rank at most & — 1, which
obviously implies that det(A «A;) = 0. To see this claim, note that the matrix formed
by the first £ columns of A x A is

a11¢12 Q12013 ... 0G1r011
a21a22 Q22023 ... 0O2r021
An1@n2 QAp2@n3 ... Qpkpldnpl
. L th . .
Factoring out [] a;; from the i*" row does not affect the rank. The resulting matrix

Jj=1
C has entries
-1
cij= [l ai,
r#j,j+1
where % + 1 is to be interpreted as 1.

Now by the assumptions on the rank of A, we can assume without loss of
generality that the column space of the matrix formed by the first % columns of AV
is spanned by the pth and qth columns. In symbols,

-1

— a7} .
a;; =aja;, +pja

-1
iq’

for some constants a;, 8, 1 <j<k. Thus

o -1 -1
cij = 1_[ (a,aip +,Braiq)
rjj+1

1S3 (k—2-m)

. -m _—(k-2-m
Z Yim@ip Q4 ,
m=0

where y; ,, are constants. This means that the columns of C are spanned by the £ -1
vectors v,,, 0 <m <k -2, where v;,,, = ai_pma;;k_z_m). This completes the proof of the

theorem. U

5.1.3. The number of zeros in a disk. Using results from Chapter 4, the de-
terminant formula for the joint intensity of Zp ; allows us to determine the distribu-
tion of the number of zeros of f1 in a disk, and identify the law of the set of absolute
values of the zeros.

COROLLARY 5.1.7. : (i) The number N, = |Zp,1 N B,(0)| of zeros of fp in
the disk of Euclidean radius r about 0, satisfies
[e.e]
(5.1.20) E1+9)N = [ +r%s)
k=1

for all real s. Thus N, has the same distribution as ¥} | X}, where {X}} is
a sequence of independent {0,1}-valued random variables with P(X, =1) =
2k
re®,
: (ii) Moreover, the set of moduli {|z| : f1(z) = 0} has the same law as the set
{U;/(zk)}, where U1,Us,... are i.i.d. random variables uniform in [0, 1].

PROOF. Writing the Bergman kernel as K(z,w) = ZZ":lk(zw)k_l, we see that
this corollary is an immediate consequence of Theorem 4.7.1, where a% =k and pis
the uniform measure in the unit disk. [
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From Corollary 5.1.7 we readily obtain the asymptotics of the hole probability
P(N, = 0). Furthermore, the infinite product in (5.1.20) occurs in one of Euler’s
partition identities, see (5.1.22), and this connection yields part (ii) of the next corol-
lary. Observe that the normalization of hyperbolic area below differs from the one in
chapter 2 by a factor of 4. This agrees with the usual convention, as remarked in the
paragraph following (2.3.3).

COROLLARY 5.1.8. : (i) Let h = 4nr?/(1—r?), the hyperbolic area of B,(0).
As r11, we have

—7Th+o(h)) _ (—n2+0(1))
2a ) "Plea-n )
: (i) The binomial moments of N, equal

N, FRGe+1)
k

P(N,=0)= exp(

- A=-r2)A=r%)---(1-r2k)’

: (iii) The ratio (N, — u,)o, converges in law to standard normal as r 1 1,
where
2 2

r
ur=EN, = 2 ando%zVarer =

PROOF. (i) Corollary 5.1.7 implies that P(N, = 0) = [[;2,(1 - r2k) and the asymp-
totics for the right hand side are classical, see Newman (61), p. 19. For the reader’s
convenience we indicate the argument. Let L =logP(N, =0) = X377 log(1-r%*) which
we compare to the integral

oo

f log(1-e™)dx.
—2logr

o0
(5.1.21) 1=flog(1—r2k)dk =
J —2logr

We have I +log(1-r?) <L <1I, so L =1 +o(h). Since —log(1—e %) =Y, <~ the
-1 _ 12+0) _ A
2logr — 1-r T 4m

integral in (5.1.21) converges to —72/6. But +o(h), and we get

2
L=-21200) - _1h 4 5(h), as claimed.

(ii) Let ¢ = 2. Theorem 5.1.7 implies that:

EY Nelge — Bto
k=0 k

= [la+q*s.
k=0
One of Euler’s partition identities (see Pak (65), section 2.3.4) gives
00 0o (kgl) k
(5.1.22) (L+gte)=) — T2
k=1 im0 (1—q)---(1—g*)

and the claim follows.

(iii) This result is obtained by applying Lindeberg’s triangular array central limit
theorem to the representation of IV, as the sum of independent random variables, as
given in Corollary 5.1.7(1). [
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5.2. Law of large numbers

Our next result is a law of large numbers for the zero set Z;,. For L = 1, one could
of course readily use Corollary 5.1.7 to prove the following proposition, although the
conclusion would only be of convergence in probability and not almost surely. We
give a more general argument which is valid for any L > 0.

PROPOSITION 5.2.1. Let L >0, and suppose that {Ap}n>0 is an increasing family
of Borel sets in D, parameterized by hyperbolic area h = A(Ap). Then the number

N(h)=1|Z1, N Ap| of zeros of f1, in A}, satisfies
. N&h) L
lim —=— a.s

h—oo h 4n

We will use the following lemma in the proof.

LEMMA 5.2.2. Let p be a Borel measure on a metric space S, and assume that
all balls of the same radius have the same measure. Let v :[0,00) — [0,00) be a non-
increasing function. Let A c S be a Borel set, and let B = Br(x) be a ball centered at
x €S with WA) = u(Br(x)). Then forall ye S

fu/(dist(y,z))d,u(z)Sfu/(dist(x,z))dp(z).
A B

PROOF. It suffices to check this claim for indicator functions ¥(s) = 1i5<. In
this case, the inequality reduces to

WA NB(y)) = wW(BRr(x)NB,(x)),

which is clearly true both for » <R and for r > R. ([l

Proof of Proposition 5.2.1. Write A = Aj. The density of zeros with respect
to hyperbolic measure is L/47 (recall the difference by a factor of 4 in normalization
of hyperbolic measure). Hence we get

EN(h)=[p1(z)dm(z)= £h
s 4n

Let Q(z,w) = pa(z,w)/(p1(2)p1(w)). Then by formula (5.1.3) we have
QO,w)-1=CA-|wr.

we denote the right hand side by v(0,w) and extend v to D? so that it only depends
on hyperbolic distance.

E(N(RWN(h) -1))-(EN(R)? = ff(pz(z,w)—p1(z)p1(w))dm(w)dm(z)
A A

f f @z, w) - 1) pr(w) dm(w) p1(2)dm(2)
A A

IA

ffI/J(z,w)pl(w)dm(w)pl(z)dm(z)
A A

Let Br(0) be a ball with hyperbolic area & = 47R%/(1 - R?). Note that p;(w)dm(w)
is constant times the hyperbolic area element, so we may use Lemma 5.2.2 to bound
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the inner integral by

f w(0,) p1(w) dm(w)

R
cf(l - r2)L(1 -r>)2rdr
Bgr(0) 0

1
= gst_zds
S

with S =1-R2. Thus we get
1
L L
(5.2.1)  Var N(h) = EN(h) + EN(R)(N(h) - 1)) - (EN(h))* < ’i—” - % f st 2ds.
S

For L > 1 this is integrable, so Var N(h) < O(h). For L <1 we can bound the right
hand side of (5.2.1) by O(ASL~1) = O(h2~L). Thus in both cases, as well as when L = 1
(see Corollary 5.1.8(iii)), we have

Var N(h) < c(EN(h))* P
with =L A1>0. For n> 1/8, we find that
_ N(&"-EN(R")
kT TTEN®D

satisfies EYk2 =O0(k™"P), whence EY;, Yk2 <00, 80 Y — 0 a.s. Now, given A satisfying
(B —1)" < h < k" monotonicity implies that

N(k")  EN(k7) N(h) ~ NWk-1)") EN(k-1)")

(5.2.2) > >

EN(ETEN(k-1)7) EN(h) EN((k-1)7) EN(&)
Since the left and right hand sides of equation 5.2.2 converge to 1 a.s., we deduce
that évl\(/](l;l) converges to 1 a.s. as well, and the result follows. ([l

5.3. Reconstruction from the zero set

Next we show that with probability one we can recover |f7,| from its zero set,
Z1,. The following theorem gives a recipe for reconstructing |f7,(0)|, almost surely.
Translation invariance then implies that |f7,| can be reconstructed from Z; on a
dense subset of C a.s., and hence by continuity Z;, determines |f7,| with probability
one. Note that this result holds for arbitrary L > 0, and does not depend on the
determinantal formula which only holds for L = 1.

THEOREM 5.3.1. : (1) Let L > 0. Consider the random function fr,, and
order its zero set Zj, in increasing absolute value, as {zk}zozl. Then
(e}
(5.3.1) If2,(0) = cr, [] %P lz1]  a.s.
k=1

L-y=yDy2[ ~L12 4 ¥ =lim,, (Zzzl % —1ogn) is Euler’s constant.

where ¢y, =e
: (i) More generally, given { €D, let {Cx};2; be Z1, ordered in increasing hy-

perbolic distance from (. Then

(5.3.2) (0] = ep,(1—[¢12) L2 ﬁ eL/(Zk)‘ =l |
k=1 1-0Ck
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Thus the analytic function f1,(z) is determined by its zero set, up to multiplication
by a constant of modulus 1.

The main step in the proof of Theorem 5.3.1 is the following.
PROPOSITION 5.3.2. Let ¢} =e"2772. We have

fL0) = cf lim 1 -rH 2 [] |2 as.
r—1 z€Zy,
lz|<r

We first need a simple lemma.

LEMMA 5.3.3. If X, Y are jointly complex Gaussian with variance 1, then for
some absolute constant ¢ we have

(5.3.3) )00v@og X1, 1og|Y|)’ < c(E(X?)).
PROOF. Since |[E(XXY)| < 1, lemma 3.5.2, implies that:
_ % 1 _
(5.3.4) )00v@og|X| , 1og|Y|)’ < |E(XY)|mZ:14—mZ < ¢(|E(XY)|

O

Proof of Proposition 5.3.2. Assume that f = f; has no zeros at 0 or on the
circle of radius r. Then Jensen’s formula (Ahlfors (1), Section 5.3.1) gives

2n
1 .
log (0) = %f10g|f(rem)| da+ Z ]ogﬂ’
0

zeZ,|z|<r r

where Z = Z1.. Let [f(re'®)|% = U%Y, where
o? = Varf(re'®) = (1-r?)L
and Y is an exponential random variable with mean 1. We have
logo? +ElogY _ —Llog(1- r?)—y
2 B 2 ’
where the second equality follows from the integral formula for Euler’s constant

Elog|f(re'®)| =

Y= —fe_xlogxdx.
0

Introduce the notation
Llog(1-r2)+y
2
so that the distribution of g,(a) does not depend on r and «a, and Eg,(a) =0. Let

gr() =log|f(e'r)| +

1 2n
L,= —fgr(a)da.
2 J

We first prove that L, — 0 a.s. over a suitable deterministic sequence r, { 1. We

compute:
1 2n 2m
Var L, =E( ffgr(a)gr(ﬁ)dﬁda).
00

(2m)?
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Since the above is absolutely integrable, we can exchange integral and expected
value to get

2m 21w

Varl, = s f f E(g@g () dpda= f E(g ()2, (0)da.

where the second equality follows from rotational invariance. By Lemma 5.3.3, we
have

E(fre )| | 1-,2 1
E(gr(@gr0) s e g — = g 1 r2eia
Let e = 1—r2 < 1/2. Then for a € [0, 7] we can bound
€ lal <e
|1—r2ei“|2{ 2rsing 2§ e<a<m/2
1 n2<a<m,
which gives
c' L<1
cZeLvar Lr _f 11— r2e“"|L f oL TS { E:L,llo—gLel i i i

By Chebyshev’s inequality and the Borel-Cantelli lemma, this shows that, as r — 1

over the sequence r, = 1—n~1VWD+9) we have a.s. L, —0and
|zl Llog(1-r?)+
Y loge - STV 1ogif0),
z€Z,|z|<r r 2

or, exponentiating:
(5.3.5) e 721 -2y ]‘[@ — [£(0).

ZEZLr

|z|<r

Since the product is monotone decreasing and the ratio (1 - r%)/(l - r% +1) converges
to 1, it follows that the limit is the same over every sequence r,, — 1 a.s.

Finally, by the law of large numbers (Proposition 5.2.1), the number of zeros N,
in the ball of Euclidean radius r satisfies

2
(5.3.6) N, = 1’;—[’:2(1+0(1)) = L1+_—°r(21) as.,
whence
rVr = exp(N, logr) = e 1270 g4,
Multiplying this with (5.3.5) yields the claim. (I
Proof of Theorem 5.3.1. (i) By the law of large numbers for N, (see also (5.3.6)),
(5.3.7) Z 1 =y+1logN, +0(1) =y +logL —log(1 - r?)+o(1).
lzplsr

Multiplying by L/2 and exponentiating, we get that
(538) H eL/(Zk) - e}’L/QLL/Q(l _ r2)—L/2(1 + 0(1))

lzplsr

In conjunction with Proposition 5.3.2, this yields (5.3.1).
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(ii) Let £=f; and
Ty = 225
1

—{z

By (5.4.5), f has the same law as
(5.3.9) F= (T2 .(£oT).
Now T"(() = (1—=|¢|®)~1. Therefore

BOI= 1103 L2180) = cp, [T X2l as,
k=1
where {z;} are the zeros of f in increasing modulus. If T'({z) = z; then {{;} are the
zeros of f in increasing hyperbolic distance from {. We conclude that

BOI =L@ -1 L2 ] ®PI1T(p)  as.
k=1
[l

5.3.1. Reconstruction under conditioning. For our study of the dynamics
of zeros in Chapter 8, section 8.1.1, we will need a reconstruction formula for |f; (0)|
when we condition that 0 € Z;,. The method is to show that if we condition f;, so
that 0 € Zy, then the distribution of f7,(z)/z is mutually absolutely continuous to
the unconditional distribution of f7,. It is important to note that the distribution
of f;, given that its value is zero at 0 is different from the conditional distribution
of f;, given that its zero set has a point at 0. In particular, in the second case the
conditional distribution of the coefficient a; is not Gaussian. The reason for this is
that the two ways of conditioning are defined by the limits as € — 0 of two different
conditional distributions. In the first case, we condition on |fp(0)| < e. In the second,
we condition on fp having a zero in the disk B.(0) of radius € about 0; the latter
conditioning affects the distribution of a;.

We wish to approximate f7, by its linearization near the origin. The first part of
the following lemma, valid for general GAF's, is the same as Lemma 2.4.2 but the
second part is a slight extension of it.

LEMMA 5.3.4. Let f(z) =ag+a1z+... be a Gaussian analytic function. Assume
that aq is nonconstant. Let A, denote the event that the number of zeros of £f(z) in the
disk B, about 0, differs from the number of zeros of h(z) =ag+ai1z in B..

(1) For all 6 > 0 there is ¢ > 0 (depending continuously on the mean and covariance
functions of f) so that for all € > 0 we have

P(A,) < ce® 20,

(ii) P(Ac | a1,a9,...) < Ce3, where C may depend on (a1,as,...) but is finite almost
surely.

PROOF. The first statement is precisely Lemma 2.4.2. To prove the second we
refer the reader back to the notations used in the proof of that lemma.
The argument used to bound P(¥') in Lemma 2.4.2 also yields that

P(ngaige h(2)| < 2lasle? [{a;}jz1) < ere’.

An application of Rouché’s Theorem concludes the proof. [
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LEMMA 5.3.5. Denote by Q. the event that the power series f1, defined in (5.1.1)
has a zeroin B¢(0). As € — 0, the conditional distribution of the coefficients ai,as,as,...
given Q¢, converges to a product law where a1 is rotationally symmetric, |ai| has den-

2
r

sity 2r3e™"", and a9,as,... are standard complex Gaussian.

PROOF. Let ag, a; bei.i.d. standard complex normal random variables, and L >
0. Consider first the limiting distribution, as € — 0, of a; given that the equation
ao+a1vLz =0 has a root Z in B(0). The limiting distribution must be rotationally
symmetric, so it suffices to compute its radial part. If S = |ag|? and T = |a1|?, set
U =L|Z|?> = S/T. The joint density of (S,T) is e *~¢, so the joint density of (U,T)
is e™“*"t¢. Thus as € — 0, the conditional density of T given U < Le? converges to
the conditional density given U = 0, that is te™¢. This means that the conditional
distribution of a1 is not normal, rather, its radial part has density 2rde" 2.

We can now prove the lemma. The conditional density of the coefficients a1,as,...
given Q., with respect to their original product law, is given by the ratio P(Q. |
ai,as,...)/P(Q.). By Lemma 5.3.4, the limit of this ratio is not affected if we replace
fr, by its linearization ag + a1 vLz. This yields the statement of the lemma. O

Kakutani’s absolute continuity criterion (see Williams (87), Theorem 14.17) ap-
plied to the coefficients gives the following

LEMMA 5.3.6. The distributions of the random functions f1,(z) and (f1,(z) —ag)/z
are mutually absolutely continuous.

By Lemma 5.3.5, conditioning on 0 € Z;, amounts to setting ag = 0 and changing

the distribution of @; in an absolutely continuous manner. Thus, by Lemma 5.3.6,
given 0 € Zy, the distribution of the random function g(z) = f7,(z)/z is absolutely con-
tinuous with respect to the distribution of the unconditioned f7,(z). Hence we may
apply Theorem 5.3.1 to g(z) and get that given 0 € Zj,, if we order the other zeros of
fr, in increasing absolute value as {Z‘k}zozl, then

o0
(5.3.10) 5,0 =g =cr, [] e ®Plz]  as.

k=1

5.4. Notes

5.4.1. Extensions of the determinantal formula. It is natural to ask if the results
in this chapter can be extended to random functions on more general domains. The answer
is affirmative. We begin by explaining how the Szeg6é and Bergman kernels are defined for
general domains and then describe the the random analytic function which replaces the i.i.d.
power series of (5.1.1). Let D be a bounded planar domain with a C° smooth boundary (the
regularity assumption can be weakened). Consider the set of complex analytic functions in
D which extend continuously to the boundary dD. The classical Hardy space H 2(D) is given
by the L2-closure of this set with respect to length measure on 0D. Every element of H 2(D)
can be identified with a unique analytic function in D via the Cauchy integral (see Bell (4),
Section 6).

Consider an orthonormal basis {y,};, >0 for H 2(D); e.g. in the unit disk, take Yyp(2)=

2"

v2m

for n = 0. The Szeg6 kernel Sp is given by the expression

(5.4.1) Splz,w)= Y. wn@Ynw)
n=0

is the Szegd kernel in D. It does not depend on the choice of orthonormal basis and is positive
definite (i.e. for points zj€ D the matrix (SD(zj,zk ))j,k is positive definite). Now let T: A — D
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be a conformal homeomorphism between two bounded domains with C° smooth boundary.
The derivative T’ of the conformal map has a well-defined square root, see (4) p. 43. If {yn},>0
is an orthonormal basis for H2(D), then {VT" - (i, o T)}p=0 forms an orthonormal basis for
H2(A). Hence, the Szegd kernels satisfy the transformation rule

(5.4.2) Salz,w) =T )3T (w)V2S (T (2), T(w)).

When D is a simply connected domain, it follows from (5.4.2) that Sp does not vanish in the
interior of D, so for arbitrary a > 0 powers S% are defined.

To define the Bergman kernel, let {n,},>0 be an orthonormal basis of the subspace of
complex analytic functions in L2%(D) with respect to Lebesgue area measure. The Bergman
kernel is defined to be

(] —
Kp (z,w) = Z nn(z)nn(w)
n=0
and is independent of the basis chosen, see Nehari (60), formula (132).
Now use i.i.d. complex Gaussians {a},>0 to define the random analytic function

(e8]
(5.4.3) fD,l(z) =V2n Z anyn(2).

n=0
(cf. (6) in Shiffman and Zelditch (74)). The factor of v2x is included just to simplify formulas
in the case where D is the unit disk. The covariance function of fp ; is given by 27Sp(z,w),
and one can prove the following corollary to Theorem 5.1.1

COROLLARY 5.4.1. Let D be a simply connected bounded planar domain, with a C*®
smooth boundary. The joint intensity of zeros for the Gaussian analytic function fp is given by
the determinant of the Bergman kernel

pn(z1,...,2n) = det[KD(Zi,Zj)]i,j-

Note that for simply connected domains as in the corollary, the Bergman and Szegé ker-
nels satisfy Kp(z,w) = 4nSD(z,w)2, see Bell (4), Theorem 23.1.

5.4.2. The Szeg6 random functions. Recall the one-parameter family of Gaussian an-
alytic functions f7, defined in (5.1.1), whose zero sets are invariant in distribution under con-
formal maps preserving the unit disk (M6bius transformations). Using the binomial expan-
sion we compute the covariance structure

S

E(t, ()L )

2 (_nL )(—zw)" =(1-zw) 7" = [27Sp(z, )"

n=0

(5.4.4)

The random function fp 1 defined in 5.4.3 provides a generalization of fp 1 to more general
domains. The following proposition explains that appropriate generalizations for other values
of L also exist.

PROPOSITION 5.4.2. Let D be a bounded planar domain with a C*® boundary and let
L > 0. Suppose that either (i) D is simply connected or (ii) L is an integer. Then there is a
mean zero Gaussian analytic function fp 1, in D with covariance structure

E(fD,L(Z)fD,L(w)) =[27Sp(z,w)lF for z,weD.

The zero set Zp 1, of fp 1, has a conformally invariant distribution: if A is another bounded
domain with a smooth boundary, and T : A — D is a conformal homeomorphism, then T(Zp 1,)
has the same distribution as Zp 1. Moreover, the following two random functions have the
same distribution:

(5.4.5) £ L ET M2 (fp 1 o T)(2).
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We call the Gaussian analytic function fp j, described in the proposition the Szegé ran-
dom function with parameter L in D.

PROOF. Case (i): D is simply connected. Let ¥ : D — D be a conformal map onto D, and let
{an} be i.i.d. standard complex Gaussians. We claim that

3

0 [_

(5.4.6) f(z) = V()12 Z( L) an¥(2)"
n=0\"

is a suitable candidate for fp 7,. Indeed, repeating the calculation in (5.4.4), we find that
E(fo)fw)) = [V @I2(01-we)Pw)*

= [¥@P )2 [27Sp(P(2), Yw))IE .

The last expression equals [27Sp (2, w)I- by the transformation formula (5.4.2). Thus we may
define fp ;, by the right hand side of (5.4.6). If T: A — D is a conformal homeomorphism,
then WoT is a conformal map from A to D, so (5.4.6) and the chain rule give the equality in
law (5.4.5). Since T’ does not have zeros in A, multiplying fp 1. oT by a power of T' does not
change its zero set in A, and it follows that T(Z, 1) and Zp j, have the same distribution.

Case (ii): L is an integer. Let {¢,},>0 be an orthonormal basis for H 2(D). Use i.i.d. complex
Gaussians {an,,...n; : 11,...,n[ = 0} to define the random analytic function

(5.4.7) fpr@=C0" Y an o ¥n (@)W (@)
ni,..,nr=0

see Sodin (78) for convergence. A direct calculation shows that fD, L, thus defined, satisfies

E(tp L 1@) =@ ¥y @Wny @)+ Wny (Vg (o) = (218 p (2, )1
ni,..,nr=0
The transformation formula (5.4.2) implies that the two sides of (5.4.5) have the same co-
variance structure, [27S A(z,w)]L. This establishes (5.4.5) and completes the proof of the
proposition. O

5.4.3. The analytic extension of white noise. Here we show that up to the constant
term, the power series f1 has the same distribution as the analytic extension of white noise
on the unit circle. Let B(-) be a standard real Brownian motion, and let

2 .
u(z) = fo Poi(z,e'))dB(?).

The integral with respect to B can be interpreted either as a stochastic integral, or as a

Riemann-Stieltjes integral, using integration by parts and the smoothness of the Poisson ker-

nel. Recall that the Poisson kernel

1+zw) 1 2
) Ton © ( 1-zw

1 1
Poi(z,w) = —Re( —1):2ReS|D(z,w)——
2w 2w

1-zw

has the kernel property
2m . .
Poi(z,w):[ Poi(z, e')Poi(e*t,w)dt.
0

(This follows from the Poisson formula for harmonic functions, see Ahlfors (1), Section 6.3).
The white noise dB has the property that if f1, fo are smooth functions on an interval and f? =

[ fi(©)dB(t) then E[f‘{fg] = [ f1(®)f2()d¢t. By this and the kernel property we get E(u(z)u(w)) =
Poi(z,w). Therefore if b is a standard real Gaussian independent of B(-), then

(5.4.8) i(z)= \/gu(z)+g



98 5. THE HYPERBOLIC GAF

has covariance structure Eli(2)i(w)] = nRe Sp(z,w). Now if v, v/ are mean 0 complex Gaus-
sians, then ReEvv/ = 2E(RevRev'); thus

(5.4.9) E(fD(z)fD(w)) =Y )" =1-zm) L
n=0

implies that @ has the same distribution as Refy.

Remark. Similarly, since fp o is the derivative of Zomozlamzm/ vm, the zero set Zp g can be
interpreted as the set of saddle points of the random harmonic function

(e 0]
u(z)= Z Re(amz™)/vVm
m=1
in D. More generally, in any domain D, the zero set Zp o can be interpreted as the set of

saddle points of the Gaussian free field (with free boundary conditions) restricted to harmonic
functions.

5.5. Hints and solutions

Exercise 5.1.2 Computing

- 1
Ef7 (2)f] = —
L(fp 1 (w) 1L
- Lw
Efy @ W) = 0y
- L2zw+L
Bfy o) = oy

and applying (3.4.2) we see that
per(C —BA~1B*)

5.5.1 0,r)=
( ) p2(0,7) detiid)
where
1 1
(5.5.2) A = ( - )
0 Lr
(5.5.3) B = ( 0 LI‘S_(L+1) )
L L
(5.5.4) c = ( L (L2r2+L)s~ T+ )
Also, by (2.4.8) we have that
L 1
ne= e

so p1(0) =Lz !and p1(r) :L(nsz)_l.



CHAPTER 6

A Determinantal Zoo

In chapter 4 we saw the general theory of determinantal point processes and in
chapter 5 we saw one prime example of a determinantal process that was also the
zero set of a Gaussian analytic function. In this chapter we delve more deeply into
examples. Of particular interest to us is the example of matrix-analytic functions,
introduced in section 4.3.11, to be proved in section 6.7. This example lies at the
intersection of determinantal processes and zeros of random analytic functions and is
a natural generalization of the i.i.d. power series. However the proof we give is quite
different from the one in chapter 5 and makes use of random matrix ensembles of the
earlier sections of this chapter. In particular, it gives a new proof of Theorem 5.1.1.

How does one check if a given point process is determinantal or not? If it happens
that pa(x,y) > p1(x)p1(y) for even a single pair of points x,y € A, then the process is
definitely not determinantal (caution: this applies only if we restrict ourselves to
Hermitian kernels, as we do). One can often calculate the first two joint intensi-
ties, at least numerically, and hence, this is a valuable check that can rule out false
guesses. In chapter 5, this criterion showed us that zero sets of many Gaussian an-
alytic functions are not determinantal (see Figure 1). But when it comes to checking
that a point process is indeed determinantal, there is no single method, nor is it a
trivial exercise (usually). All the examples considered in this chapter were stated
in section 4.3, but not all examples listed there will be given proofs. In each section
of this chapter, we use the notations of the corresponding subsection in chapter 4,
section 4.3 without further comment.

6.1. Uniform spanning trees

We outline the proof of Burton-Pemantle theorem as given in BLPS (5).
Sketch of proof: In proving (4.3.8), we assume that {eq,..., e} does not contain any
cycle. For, if it did, the left hand side is obviously zero, by definition of tree, and the
right hand side vanishes because the matrix under consideration is a Gram matrix
with entries (I¢,1%/) and because for any cycle eq,...,e,, the sum €17 +... +¢. I
is zero where the ¢; = +1 are orientations chosen so that e1eq,...,€.¢e, is a directed
cycle.

Again, because the right hand side of (4.3.8) is a Gram determinant, its value is
the squared volume of the parallelepiped spanned by its determining vectors. Thus

2

’

k
6.1.1) det(K(es,e) o jop = [ Hpilei
i=1

99
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where Z; is the linear span of I¢1,...,I%-! and Pé_ is the projection onto Zl.L. The left
hand side of (4.3.8) can also be written as a product

k
HlP[eieT|ej€Tforj<i]
i=

Pley,...,ep €T]

k

[1Ple; € T
i=1
where T'; is the uniform spanning tree on a new graph got by identifying every pair
of vertices connected by eq,...,e;—1 and denoted G/{eq,...,e;—1}. Comparison with
(6.1.1) shows that to establish (4.3.8), it suffices to prove

L re; 2
(6.1.2) Ple; € T,1= P4 1°

This leads us to examine the effect of contracting edges in G, in terms of the inner
product space H. Fix a finite set F' of edges, and let hy denote the subspace of H
spanned by the stars of G/F, and let h<{> denote the space of cycles (including loops) of
G/F. 1t is easy to see that h$ =+ (XF>, where (XF) is the linear span of xf . feF}.
Consequently, h$ > $ and h < %. Let Z := P*(XF Y, which is the linear span of
{I" . f € F}. Since hs c % and hy is the orthogonal complement of h¢, we have
P4hé$ =y nhd. Consequently,

*nh¢=Pyhd=Pyo+Pytfy=2,
and we obtain the orthogonal decomposition
H=h%eZe{,

where w=heZ and h$ = Z.

Let e be an edge that does not form a cycle together with edges in F'. Set hI°:=
P4 X¢; this is the analogue of I° in the network G/F. The above decomposition tells
us that

hI® =Py X®=PzPyX° =PyI°.
From (6.1.2), all that is left to prove is that for any graph G,
PleeTl=|I°|%.

(Then we apply it to G/{e1,...,e;_1} for each i). This is exactly (4.3.8) with £ =1 and
was proved by Kirchoff (48) in 1847. We omit the proof and direct the interested
reader to Thomassen (85) for a short combinatorial argument (see the notes).

6.2. Circular unitary ensemble

We give the proof of Theorem 4.3.9 in three steps. In the first, we write the Haar

measure on %(n) in a workable explicit form. In the second step, we represent a
unitary matrix in terms of its eigenvalues and auxiliary variables. Finally, in the
third step, we compute the Jacobian determinant of this change of variables and
integrate out the auxiliary variables to get the distribution of eigenvalues.
Haar measure on % (n): The Haar measure on %(n) is the unique Borel probability
measure on % (n) that is invariant under left and right multiplication by unitary
matrices. Our first task is to write this measure more explicitly. On % (n), we have
the following n? smooth functions

u; j({U)=U,;,
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where U, ; is the (i,j) entry of the matrix U. Define the matrix-valued one form
Q(U)=U*dU. This just means that we define n? one-forms on %(n), by

Q; ;(U)= kilﬁk,i(U)duk,j(U),
and put them together in a matrix. The matrix notation is for convenience. One
property of Q) is that it is skew-Hermitian, that is Q; ; = —Q; ;. Another property is
its invariance, in the following sense.
For a fixed W € %(n), consider the left-translation map Lw : % (n) — %%(n) de-
fined as Lw(U) = WU. The pullback of Q under Ly is
Ly, QU) QWU)
= (WU)*d(WU)
= U*W*WdU
= Q).

Thus Q is a left-invariant, Hermitian matrix-valued one-form on %/(n) (called the
“left Maurer-Cartan” form of % (n)). Analogously, the form UdU* is right-invariant.
Now we define the n2-form on %(n)

w = (/\Qi,i) N (/\(Qi’j /\Qi’j)) .
i 1<Jj

To prevent ambiguity, let us fix the order in the first wedge product as i =1,2,...,n
and in the second as (i, ) =(1,2),(1,3),...,(1,n),(2,3),...,(n — 1,n). This is not impor-
tant, as a change in order may only change the overall sign. Now, w is left-invariant,
i.e., L0 = w, since ( has the same property. Also, the dimension of %(n) is n? and
w is clearly not zero. Thus for each U, up to scalar multiplication, w(U) is the unique
n2-form in the tangent space to %(n) at U. Therefore integration against w is the
unique (up to constant) left-invariant bounded linear functional on the space of con-
tinuous functions on % (n). It is important to note that w is not zero! See remark 6.2.1
below. That is, for any continuous function f : %(n) — % (n) and W € %(n), we have
o(f oLw) = w(f), where LwU = WU. We may scale w by a constant x so that it is
positive (in other words, if f =0, then «x [ fw = 0) and so that x @ = 1. To see that
it can be made positive, note that for any S < %(n), and any W € %(n), we have
Jsw= qu(S)w, whence w is everywhere positive or everywhere negative.

Then we can define the left-Haar measure of %(n) as the measure p such that
for any continuous function f : %(n) — R,

FUdu) =« f FUO).
U (n) U(n)

It is a fact that the left-Haar measure is also right-invariant for any compact group
(see the first paragraph of 4.3.6 and the reference therein). Hence, y is a bi-invariant
probability measure and w is bi-invariant. In effect, we have constructed the Haar
measure on %(n).

REMARK 6.2.1. Naturally, one must check that w is not zero. By invariance,
it suffices to check this at the identity, that is, w(I) # 0. Indeed, the exponential
map X — e%X, from the Lie algebra of skew Hermitian matrices su(n) to the unitary
group %(n), is a diffeomorphism of some neighbourhood of 0 in su(n) onto some
neighbourhood of the identity in %(n). On the Lie algebra side, X; ;,i <n and the
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real and imaginary parts of X; ;, i < j, form a co-ordinate system and hence @ =
NidX;; Ni<j(dX; j AdX ;) is not zero. And w(]) is easily see to be nothing but the
push forward of @ under the exponential map.

Choosing eigenvectors and eigenvalues: Now let U be a unitary matrix. By the
spectral theorem for normal matrices, we may write

U=VAV*®

where A = diagonal(14,...,1,) is the diagonal matrix of eigenvalues of U, and V is a
unitary matrix whose jt column is an eigenvector of U with eigenvalue 1;. To have
a unique representation of U in terms of its eigenvalues and eigenvectors, we must
impose extra constraints.

Eigenvalues are uniquely defined only as a set. To define A uniquely, we order
the eigenvalues so that 1; = e'% with 0 < ay < agy...<a, <2r. (We may omit the
lower-dimensional sub-manifold of matrices with two or more equal eigenvalues or
having eigenvalue equal to 1). Once A is fixed, V is determined up to right multi-
plication by a diagonal unitary matrix © = diagonal(ei®1, ..., e%%) where 6 ; €R. We
impose the conditions V;; = 0, which then determine V uniquely. Then A and V are
smooth functions of U, outside of the submanifold of matrices that we omitted.
Eigenvalue density: Write U = VAV*, where A = A(U) and V = V(U) are chosen
as above. Then

aUu

V(AdAV* +(dV)AV* + VAD(V™)

VAAV* +(dV)AV* —=VAV*dVV*,

where we used the fact that dV* =-V*(dV)V* (because VV* =I). Thus
(6.2.1) VU (dU)V =A"dA+A*V*dVA-V*(dV).

From the alternating property dxAdy = —dyAdx, werecall thatifdy; =37, a;rpdxp,
for 1< j<n, then

(6.2.2) dyll\dyz.../\dynzdet(aj,k)

jk<ndx1/\dx2.../\dxn.

We apply this to both sides of (6.2.1). For brevity, call the matrix-valued one-forms
on the left and right of (6.2.1) as L and M, respectively. Then, by (6.2.2),

(6.2.3) (ALi,i)A(/\(Li,j /\Lj,i)) =w(l)

i<j
because, for V € %(n), the linear transformation X — V*XV on the space of matrices
is also unitary. Next, rewrite the right hand side of (6.2.1) as
i Fioh
Mj = ld—%{r ia * 1 J iy
’ (et —1)V*dV);, ifj#Ek.
Equality (6.2.1) asserts that L = M, and hence by (6.2.3) it follows that

(6.2.4) oU)=1i" (/\daj) A (/\ le"% gl — 1|2(V*dV)j,k ANV*dV) i |.
J J<k

Recalling that xw is what defines the Haar measure, we see that we have decomposed

the Haar measure into a product of two measures, one on A and the other on V.

Integrating out the V part gives the eigenvalue density as proportional to

. . n
(6.2.5) [T1e% —e' 2 \ da;.
j<k j=1
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Since ei% are orthogonal in L%(S1), by writing the density as the determinant of
BB* where, B = (e” as)r . and expanding the determinanants as usual, we get the
normalizing factor. The kernel is also read off from BB*.

REMARK 6.2.2. From 6.2.4, we see that the measure on V is given by the n(n—1)-
form
(6.2.6) NV*dV); i A(V*dV); ).

i<j

Had there been an extra factor of A;(V*dV); ;, this would have been the Haar mea-
sure on %(n). But constraints such as V; ; > 0, that we imposed to define V uniquely,
prevent this. We may avoid this irksomeness by stating Theorem 4.3.9 in the re-
verse direction: If V is sampled from Haar distribution on %(n) and A is sampled
according to density (6.2.5) independently of V, then the matrix U = VAV * has Haar
distribution on % (n).

6.3. Non-normal matrices, Schur decomposition and a change of measure

For unitary and Hermitian matrix models, to find the law of eigenvalues, we
always take auxiliary variables to be the eigenvectors of the matrix. This is because
the eigenvectors may be normalized to form an orthonormal basis, or what is the
same, the matrix can be diagonalized by a unitary matrix. The GUE and CUE are
examples of this.

However, the case of non-normal matrix models (means A and A* do not com-
mute) is completely different. This applies to the examples of sections 4.3.7, 4.3.8
and 4.3.9. The eigenvectors do not form an orthonormal basis, but only a linear ba-
sis (almost surely, in all our examples). This complicates the relationship between
the entries of the matrix and the eigenvalues. In fact it is remarkable that the eigen-
value density for these three models can be found explicitly. We are not aware of any
other non-normal random matrix models that have been solved exactly.

A non-normal matrix is not unitarily equivalent to a diagonal matrix, but can
be diagonalized by a non-unitary matrix (Ginibre’s approach) or triangularized by a
unitary matrix (Dyson’s approach). We take the latter route, which is considerably
simpler than the former. In this section we deduce a fundamental Jacobian determi-
nant formula for the change of variables from a matrix to its triangular form. In the
next three sections to follow, we shall apply this formula to three non-normal matrix
models. The deduction of the Jacobian determinant is due to Dyson and appears in
the appendices of Mehta’s book (56). However, there seems to be a slight problem
with the proof given there, which we have corrected below (see the notes at the end
of the chapter for a discussion of this point).

Schur decomposition: Any matrix M € g¢(n,C) can be written as

(6.3.1) M=V(Z+T)V*,

where V is unitary, T is strictly upper triangular and Z is diagonal. The decomposi-
tion is not unique for the following reasons.

Firstly, Z = diagonal(z1,...,z,) has the eigenvalues of M along its diagonal, and
hence is determined only up to a permutation. Use the lexicographic order on com-
plex numbers (u +iv <u'+iv' if u <u' or if u = ' and v < v’) to arrange the eigen-
values in increasing order. Thus, z; <z9 <... < z,. But we shall omit all matrices
with two or more equal eigenvalues (a lower dimensional set and hence also of zero
Lebesgue measure), and then strict inequalities hold.
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Once Z is fixed, V, T may be replaced by VO,0* T'® where O = diagonal(e’:,. .., e'n)
is any diagonal unitary matrix. If the eigenvalues are distinct, this is the only source
of non-uniqueness. We restore uniqueness of the decomposition by requiring that
Vi,i =>0.

From (6.3.1) we get

dM @VYZ+TYV*+V(dZ+dT)V*+V(Z+T)d(V*)

dVYZ+TYV*+V(dZ+dT)VV* -V(Z+TV*(dV)V*
VI[(V*AVNZ+T)—(Z+T)V*dV)+dZ+dT|V*.
It will be convenient to introduce the notations A :=V*(dM)V,Q:=V*dV and S =
Z +T so that dS =dZ +dT. Thus A =(4;;) and Q = (w; j) are n x n matrices of

one-forms. Moreover, QQ is skew-Hermitian as we saw in section 6.2. Then the above
equation may be written succintly as

(6.3.2) A=QS-SQ+dS.

Integration of a function of M with respect to Lebesgue measure is the same as

integrating against the 2n2-form

/\(dMi,j N dMi,j).

i.j
Actually, there should be a factor of on®jn , but to make life less painful for ourselves
and our readers, we shall omit constants at will in all Jacobian determinant compu-
tations to follow. Where probability measures are involved, these constants can be
reclaimed at the end by finding normalization constants.

We want to write the Lebesgue measure on M in terms of Z,V,T. For this we
must find the Jacobian determinant for the change of variables from {dM; ;,dM; ;}
todz;,1<i=n,dT;j,i<j,and Q. Since for any fixed unitary matrix W, the trans-
formation M — WMW?* is unitary on g¢(n,C), we have

(6.3.3) NAM; ;AdM; j)= NAij AA; ).
i ij

Thus we only need to find the Jacobian determinant for change of variables from A
to Q,dS (and their conjugates). We write equation (6.3.2) in the following manner.

j n
> Skjwir— ) Sirwr;+dS;;
k=1 k=1

Aij

Jj-1 n
(Sj,j—Si,,-)wi,j+ kzlsk’jwi’k _k Z ISi’kwa if ¢ >]J.
= =i+

J n
dSi,j+Si,j(wi,i—wj,j)+ Z SkJ-a)i,k— Z Si,kwk,j if 7 =J.

k=1 k=i+1

k#i k#j

Now arrange {A; j,A; j} in the order
M1 A1, A A, An-1,1,An-1,1 - An—1,0, An-15- -, A1,1,A1,1 -, AL s A1 e

Return to the transformation rules given above for 1;; in terms of Q,dS. The
expressions inside square brackets involve only one-forms that have already ap-
peared before (in the given ordering of one-forms). Here it is necessary to recall
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that w; j = —w; ;. Therefore, upon taking wedge products, we arrive at (for brevity
we write || for w A D)

(6.3.4) NI j1% = (l_[ |2 _Zj|2) Nlwij P A ldzi? N\1dtij+t; j(w;; —w; ).
i.j i

i>j i>j i<j
Here we have reverted to Z and T in place of S. We make the following claim.
CLAIM 6.3.1. For any k <n, we have wp ; N;>; Iwi,j|2 =0.

PROOF. Let 4 ={V :V*V =1,V;; = 0} be the set of unitary matrices with non-
negative diagonal entries. If we omit all V that have at least one zero entry on
the diagonal, . is a smooth manifold of dimension n% —n. This is because %(n)
is a manifold of dimension n? and .# is a sub-manifold thereof, got by imposing
n constraints. (Alternately, just observe that {V;; : j > k} parameterize .#. This
is because given {V;; : j > k}, using orthonormality of the columns of V, we may
inductively solve for V1 1,{V12,Va2},...,{V1n,..., Vs n} in that order).

Since the dimension of .# is only n? —n whereas Wpk Ni>j Iwi,jlz isan (n?2-n+1)-
form, it must be zero. O

From the claim, thanks to (6.3.4) and (6.3.3), we arrive at the following Jacobian de-
terminant formula, which we shall also refer to as Ginibre’s measure decomposition.

(6.3.5) NAM; jndM; ;)= (H |2 —z,-|2) N lwij® Nldzil* A ldt; j1*.

ij i>j i>j i i<j
This Jacobian determinant formula will be of vital importance to us in the three
examples to follow.

REMARK 6.3.2. In place of V;; = 0, we may impose constraints of the form
arg V; ; = a;, for some fixed a;s and arrive at the same formula (6.3.5).
6.4. Ginibre ensemble

Proof of Theorem 4.3.10. Ifthe entries of M arei.i.d. standard complex Gauss-
ian, the joint density is proportional to

e—tI’(M*M) /\(dMi,j A dﬂi,j).

i,
Now use the Schur decomposition of M as V(Z +T)V*, with V; ; = 0 and observe that
tr(M*M) = tr[(Z+T)(Z+T))]
= t(Z*Z)+tx(T*T)

because Z*T and T*Z have zeros on the diagonal. From the Jacobian determinant
formula (6.3.5), we see that the probability density of Z,V,T is proportional to

e_tr(Z*Z) H |z; —Zj|2/\(dzi A dEi)) (e_tr(T*T) /\(dTi’j A dTi,j)) (/\ wj j /\Ei’j)
i<j i i<j i>j

where w; j :=(V*dV); ;. Thus Z,T,V are independent, and integrating over V,T,

we conclude that the density of Z with respect to Lebesgue measure on C" is propor-

tional to

n
H ez H |z —zj|2.
k=1

i<j
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The normalization constant is found in the usual manner, by orthogonalizing {z*}

with respect to e_|z|2dm(z). ([l

6.5. Spherical ensemble
Proof of Theorem 4.3.11. (A,B) has density

o exp{~trAA* —trBB"} \IdA; ;1> \IdB; ;I*.
L,J L,J

Hence with M = A~1B, the joint density of (M,A) is
1

2
nZn

|det(A)|*" exp {~trA*(I + MM*)A} \IdA; jI> \IdM; ;1.
i i

Now, for any fixed positive definite matrix X, a standard Gaussian integral compu-
tation shows that
|det(A)2" exp{—trA*SA} \IdA; ;2 = 7" Cyldet(Z)|"2".
i
gl(n,0)

n
In fact one may show that C,, = [] (k+n—D! 11t we shall not need this. Thus, the
k=1

G-I >
density of M is found to be

C, 1 ,
— T e I\ dMi 17
]'[nz det(I+MM*)2nl/’>| L,Jl

Let M = V(Z+T)V*, with V;; = 0, be the Schur decomposition (6.3.1) of M. By
Ginibre’s measure decomposition (6.3.5), we get the measure of Z,V,T to be

Cﬂ 2 1 2 V 2 2
(6.5.1) — | |lz; — 25l |dT; ;| lw! | ldz;|”.
nnz,-l:[j Y det(I+(Z+T)(Z+T)*)2"i/<\j o ,/>\J bl /,\ '

As usual ¥ = V*dV. The density does not depend on V, and hence, to get the
density of eigenvalues of M, all we need is to compute the integral over T'. Unlike in
the Ginibre ensemble, here T' and Z not independent. Define

! .2
Tn

i<j

I(n,p) =

where 9, is the space of n x n strictly upper triangular matrices. We compute I(n, p)
recursively. Write S, = Z + T so that

I+8,-1S;_;+uu” zZp,u

I+S8,8" =
nSn zpu® 1+ |z,/2

where u=[T1,,...Th-1,])". We want to integrate over u first. For this, observe that

|2a 1 " *)

det( +8,5;) P
n

(1+2, ) det (1 +8,-18)_; +uu’ -

1
2 * — _uu*
(1+12p] )det(l"'sn*lsn—l_ T+, 2 )

u*(1+sn_1s;;_1)—1u)

2 *
(1+1znl )det(I+Sn_1Sn1)(1— T
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where in the last line we made the following observation. For any A, «, and ue C",
the matrix A"luu* has rank one, and hence its only eigenvalues is its trace, which
is u* A~ lu. Therefore,

det(A +uu®) = det(A)det(I + A luu*) = det(A) (1 +u* A ).

Hence
Ni<n 1dT; 5|2 3 1 f Aldu;|?
. det(I+SnS;§)p (1+|2"|2)pdet(l+S"*1S;—1)pcn,1 (1 1+|z ‘211 (I+Sn IS* 1) 1 )
B C(n,p)
(1+ |2,/ 1det (I +8,-1S: )
where the last line results from making the change of variables v = m([ +
Sp-1S ;_1)_%u. Again, one may compute that
d
C(n,p)= —/\ll il —Beta(p n+l,n-1)

A+v*v)? 2
q:n—l

but we shall not need it. Thus we get the recursion
C(n,p)

(1+]z,|2)p~n1

What we need is I(n,2n), which by the recursion gives
n 1

I(n,2n)=C,, ]_[

el (1+|2k|2)n+1’

I(n,p)= In-1,p-1).

Using this result back in (6.5.1), we see that the density of eigenvalues of M is

n
C//
H1 1+ |2k|2)n+1 H lei =21

To compute the constant, note that

z(n—l) P
ke 0s<k<n-1

is an orthonormal set in L2(C). The projection operator on the Hilbert space gener-
ated by these functions defines a determinantal process whose kernel is as given in
(4.3.12). Writing out the density of this determinantal process shows that it has the
same form as the eigenvalue density that we have determined. Hence the constants
must match and we obtain C/,. O

6.6. Truncated unitary matrices

We give a proof of Theorem 4.3.13 for the case m = 1. The general case follows
the same ideas but the notations are somewhat more complicated (see notes).
Consider an (n + 1) x (n + 1) complex matrix

X ¢
b* a
and assume that M and X are non-singular and that the eigenvalues of X are all
distinct. Our first step will be to transform Lebesgue measure on the entires of

M =
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M into co-ordinates involving eigenvalues of X and some auxiliary variables. The
situation in Theorem 4.3.13 is that we want to find the measure on eigenvalues of
X, but when M is chosen from the submanifold % (n + 1) of g¢(n + 1,C). Therefore,
some further work will be required to use the Jacobian determinant from Lebesgue
measure on M to the latter case when M has Haar measure on % (n +1).

We shall need the following decompositions of M.

(1)

(2)

3)

Polar decomposition: M = UPV2 where U is unitary and P12 is the pos-
itive definite square root of a positive definite matrix P. The decomposition
is unique, the only choice being P = M*M and U = P~12M.

Schur decomposition of X: Write M = WY W* where

V 0 Z+T v

0 1 u* a

W=

| v-

>

where V is unitary with V; ; = 0, T is strictly upper triangular, Z = diag(z1, ..
is the diagonal matrix of eigenvalues of X, and u=V*b, v=V*¢. Since z;
are distinct, if we fix their order in some manner, then this decomposition
is unique (see 6.3.1).

Modified Schur decomposition: Use the notations in the previous two
decompositions. As our final goal is to take M to be unitary, we want to
find a new set of co-ordinates for M with the property that the submanifold
% (n +1) is represented in a simple way in these co-ordinates. An obvious
choice is to use P, since % (n + 1) is the same as {P = I}. Obviously we want
Z to be part of our co-ordinates. Thus we have (n+1)? degrees of freedom in
P and 2n degrees of freedom in Z and need co-ordinates for n? + 1 further
degrees of freedom (the total being 2(n + 1)> for M). The matrix V will
furnish n2 —n of them and the angular parts of u and a will provide the
remaining n + 1. We now delve into the details.

Write uj, = rpe’®, 1<k <n and a = re?. Set @ = W*PW, so that
Y'Y =Q. Let o, and 2, be the submatrices consisting of the first %
rows and columns of Y and @ respectively. Let u;, = [u1...u3]’ and v =
[v1...v3]° denote the vectors consisting of the first £ co-ordinates of u and v

-:Zn)

respectively. In particularu, =uand v, =v. Alsolet t, =[T1;,Top... Tk_lyk]t

and q = [Q1,Q2 .- Qr-1x]° for k=2,
Then from the off-diagonal equations of Y *Y =@, we get

A 1 +Up1Up =Qpeq forlsk<n-1, A V+au=qn41.

The matrices <, are upper triangular their diagonal entries are z;s which
are all assumed non-zero. Therefore, we can inductively solve for to,...,t,
and v in terms of @,Z,u and a. Thus we get

(6.6.1) trer = ol (@re1 — Tre1wr),
(6.6.2) v = o " Hqns1—aun).
From the diagonal equations of Y*Y =@, we get
ri=Qui-lz1%,  ri+ltel? =Qur—lzrl, for2<k<n,  rP+IvI®=Qni1ni1.

As equations (6.6.1) show, t;,1 depends onlyon z;, j<k,and u;, j<k+1,
and @, it is possible to successively solve for ri,...,r, and r in terms of
Q,Z,0 and ap, 1 <k <n. This is done as follows.
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The first equation r% =Q11- |21/ can be solved uniquely for r1 > 0,
provided Q11 = |z1/2. Substitute from (6.6.1) for t;.,; in the equation for
re ., to get

2 2 — -1 —
Qr+1h+1— 12841l roop+@ee1 = Upr1up) () o) (Qra1 — Ups1Uz)

= 2, {(L+u) (o o) g} — 271 Rele " lu) (o o) Lape}
(6.6.3) +a), 1 (A ) gt
An identical consideration applies to the equation for r and we get

(6.6.4)
r2{l+u* (o of,) Tl - 2r Rele 0u* (o) ) L Ana1} = Quat o1 — s 1 () L tna1.

A quadratic ax? + bx + ¢ with a > 0 and b,c real, has a unique positive
solution if and only if ¢ < 0. Thus, the constraints under which we can solve
for positive numbers r; and r, uniquely in terms of @,Z and ap, 1<k <n,
are (interpret q; = 0,9 =0)

(6.6.5) |Zk|2 <Qk,k _qz(dk*,ldk—l)_lqk’ q;+1($2¢,;kdn)_1qn+l <Qn+1,n+1~

Thus we may take our independent variables to be Z,V,P,0 and ay, k <n,
subject to the constraints (6.6.5). Then we decompose M as WY W*, where
we now regard T',v,r and r;, k < n as functions of Z,V,P,0 and ays, got
from equations (6.6.1)-(6.6.4). Clearly this decomposition is also unique,
because Schur decomposition is.

The following lemmas express the Lebesgue measure in terms of the variables in
polar decomposition and modified Schur decompositions, respectively.
LEMMA 6.6.1. Let UPY2 be the polar decomposition of M. Then

AldM; ;> = f(P) \dP; ; \o?;
i.j i.j LJ

where f is some smooth function of P while dP = (dP; ;) and oY =U*dU are Hermit-
ian and skew Hermitian, respectively.

LEMMA 6.6.2. Let WYW?*, with T,v,r and rp, k < n being functions of Z,V ,P,0
and ayp, k <n, be the modified Schur decomposition of M. Then

(6.6.6)
(L_l;[j lz; — Zj|2) 1e65 Aildzil® Ni jdP;j Nizj w}fj Arday \dO
2
N i |
b kl:ll | det(sy,)|2 (1 +w () )y, — i Re{e—lakﬂuz(dk*ggk)—lqkﬂ})

where the notations are as defined earlier, and oV =V*dV. Here 16.6.5) denotes the
indicator function of the constraints stated in the display (6.6.5) on Z and @, where
Q isrelated to P by @ =W*PW.

Assuming the validity of these lemmas, we now deduce Theorem 4.3.13. First
we state an elementary fact that we leave for the reader to verify.

FACT 6.6.3. Let M be a manifold and suppose that {x; : i <k}uU{y;:j < ¢} and
{x; :i =k}U{zj:j < ¢} are two sets of co-ordinates on M. Let x = (x1,...x;) and
similarly define y and z. If the volume form on M is given in the two co-ordinate
systems by f(x,y) A; dx; Ajdy; and by g(x,2z) A; dx; Aj dz; respectively, then, on the
submanifold x = 0, the two ¢/-forms f(0,y) A;dy; and g(0,z) Ajdz; are equal.
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Proof of Theorem 4.3.13. The unitary group is the submanifold P = I of g¢(n,C).
Therefore, by Lemma 6.6.1, Lemma 6.6.2 and Fact 6.6.3, we may conclude that

I lz; - 21
1<
f(I)/\ng =n ’ 1(6.6.5)A|dzi|2 /\'w}fj/\dak Ado.
" kH1|det(=9¢k)|2 (1+u; (e ) Tuy,) i i) k

The denominator is much simpler than in (6.6.6) because, when P is the identity,
so is @, and hence qz,1 = 0 for each 1 <% < n. For the same reason, and because
Qr.x =1, the constraints (6.6.5) simplify to |22 <1, 1<k <n.

The denominator can be further simplified. Using Y *Y = @ = I which gives

oy, oy +upuy, =1, for k <n.
From this we see that
1 det (7, o), +upuy)
| det(s7)I2 det (T + (7))  up () Muy 1*)
| det(sty) (1 +w) (4, o) Fug)

where the last line employs the identity det(I + ww*) = 1 + w*w for any vector w.
This identity holds because w is an eigenvector of I + ww* with eigenvalue 1+w*w,
while vectors orthogonal to w are eigenvectors with eigenvalue 1. Thus we arrive at

/\ng = CH |z; —z]-|2/\|dzi|2 /\ng/\dak /\d@
i,j i i£] k

i<j
for some constant C. This gives the density of Z as proportional to [];<;lz; — 2 j|2, for
|z;1 <1, j <n. This is exactly what we wanted to prove. O

It remains to prove Lemma 6.6.1 and Lemma 6.6.2.

Proof of Lemma 6.6.1. The bijection M — (U,P) from GL(n,C) onto the space
{p.d. matrices} x % (n) is clearly smooth. Thus we must have

AIdM; ;1% = F, D) \dP; No?,
i i,j i,J

because dPi,j,w?j are 2n? independent one-forms on the 2n2-dimensional space
{p.d. matrices} x @l(n).

For any fixed unitary matrix Uy, the transformation M — UyM preserves the
Lebesgue measure while it transforms (U,P) to (UgU,P). From the invariance of
wY, it follows that f(P,UyU) = f(P,U) which in turn just means that f is a function
of P alone. O

Proof of Lemma 6.6.2. First consider the (unmodified) Schur decomposition
M =WYW?*, where the effect is to just change from X to V,Z,T, while b, ¢ undergo

unitary transformations to u, v respectively. Using Ginibre’s measure decomposition
(6.3.5) to make the change from X to V,Z,T, we get

(6.6.7)
NldM; ;* = [T1zi—z;* Aldzil” A ] ; \1dTi;* Nldvel* Ardrindag) \(rdrado).
i,J i<j i i#j i<j E k

Here we have expressed |duj|? and |da|? in polar co-ordinates. Recall equations
(6.6.1)-(6.6.4) that express T,v,r and rj,k < n as functions of Z,V and P. From
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(6.6.1) and (6.6.2), we get

k n
NdT; 1= /\sz r+1 + L], N\ dvi /\sz n+1 + L]
i=1 i=1

dt(af) dt(&f)

where [...] consists of many terms involving du;,dz;, as well as dT;; for j < k.
Therefore, when we take wedge product of these expressions and their conjugates
over k, all terms inside [...] containing any dT; ; or dT'; ; factors vanish, and we get

1
N IdT; ;12 /\Idv Pz AldQ; I +I...]
i<y T1 det(a)P? 1</

where [...] consists of many terms involving du;,dz;, their conjugates. Substitute
this into the right hand side of (6.6.7), and observe that all terms coming from [...]
give zero because du;,dz; and their conjugates already appear in (6.6.7). Thus
(6.6.8)

[T Iz _ZJ|
NldM; ;1? = ::J—/\Idzll2 N\ 1dQ; ;I /\wu/\(rkdrk Adap) \(rdr Ad0).
b H |det(p)|? ¢ i<Jj ik

Since € is Hermitian, we have written |dQ);, j|2 as d@; ;AdQ ;. We are being cavalier
about the signs that come from interchanging order of wedge products, but that can
be fixed at the end as we know that we are dealing with positive measures.

Next, apply (6.6.3) and (6.6.4) to write

A@radri) \rdr = — dQiiN...Nd@Qn+1,n+1 Tl
k

kl;ll (1 +ug (o oty) " tay — % Re{e‘i“kﬂuz(&fk*dk)_lqkﬂ})

Again the terms included in [...] yield zero when “wedged” with the other terms in
(6.6.8). Thus,

(6.6.9)
(H lz; _z]|2)/\z |dzl| /\t]dQlj/\tyéjw NApdap \dO
i<j
NIdM; ;1% = - .
] kljl | det(sf,)|2 (1 +uy (o) ) Tay, - % Re{e*iakﬂu;(dk*dk)*lqku})

This is almost the same as the statement of the lemma, except that we have d@ in
place of dP. However from P = WQW ™, and the definition of W we get
\% \4
w 0 w 0 "

0 0 1 ])W ’
As we have seen before, the map M — W*MW is unitary, which implies that AdP; ; =
ANW*dPW); ;, which by the above equation shows that A; ;Q;; = A; ;dP;; +[...],
where again the terms brushed under [...] are those that yield zero when substituted
into (6.6.9). Therefore

dP=W(dQ+

]PP

(H lz; _Zj|2)/\i IdZiIQAi,dei,j/\i;eijj Ardar \NdO

i<j

/\|dMi’j|2 =— A .
bJ kl:ll |det(<#},)|2 (1 +uZ(&¢:a¢k)‘1uk - % Re{e_mk“uz(vdk*-dk)_lqk+1})

O
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6.7. Singular points of matrix-valued GAFs

Now we use Theorem 4.3.13 to prove Theorem 4.3.15 . This gives an alternate
proof to Theorem 5.1.1, different from the one that was given in the chapter 5. The
proof given here is due to appear in the paper of Katsnelson, Kirstein and Krishna-
pur (45) and is simpler than the original one in (? ).

We split the proof into two lemmas, the first of which establishes the link be-
tween submatrices of Haar unitary matrices and Gaussian matrices and the second
which uses Theorem 4.3.13 and in which a central idea is a link between (determin-
istic) unitary matrices and analytic functions on the unit disk.

LEMMA 6.7.1. Let U be an N x N random unitary matrix sampled from the Haar
measure. Fix n = 1. After multiplication by VN, the first principal n x n sub-matrices
of UP, p = 1, converge in distribution to independent matrices with i.i.d. standard
complex Gaussian entries. In symbols,

d
VN (U jzn,[U%; jzns...) = (G1,Go,...)
where G; are independent n x n matrices with i.i.d. standard complex Gaussian en-

tries. That is, any finite number of random variables VN[UP Lij,p=1 1,j=<n,
converge in distribution to independent standard complex Gaussians.

LEMMA 6.7.2. Let U be any unitary matrix of size N + m. Write it in the block
form

| Amxm B
U= C VnxN

Then,
det(zI -V*)

det(I —zV)

Assuming the lemmas, we deduce Theorem 4.3.15.

Proof of Theorem 4.3.15. Let U be sampled from Haar measure on % (N +m)
and write it in block form as in Lemma 6.7.2. Define
det(zI -V™)
det(I-zV)
Since V* has the same law as V, by Theorem 4.3.13, the zeros of f5 are determinan-
tal with kernel

= (-1 det(U*)det (A +2B(I -2V)"1C).

fn(2) = (-1 det(U)

m N-l(m+1)...(m+k)

(zw)*
Hence, to prove Theorem 4.3.15, it suffices to show that
(6.7.1) N™2f5(2) 2 det (Go+2G1 +22Ga +...),

where the distributional convergence is not for a fixed z but in the space of functions
analytic in the unit disk, with respect to the topology of uniform convergence on
compact subsets. By Lemma 6.7.2, we see that

N™2fy(2) = det (\/]TI(A + 2B - zV)-lc))

det(VN(A +2BC+22BVC+2°BVC+..).
Now observe that A =[U]; j<m. Hence, by Lemma 6.7.1, it follows that

6.7.2) VNA L G,
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Further,
\/N[Uz]i,js;n =VNA?+VNBC.

By (6.7.2), we see that VNA?2 LA 0, and thus, an application of Lemma 6.7.1 implies
that
(VNA,VNBC) 2 (Go,Gr).

Inductively, we see that BVk(C = [Uk+2]i,j§m +Op(1/N). Here, by Op(1/N) we mean a
quantity which upon dividing by N~ remains tight. Thus Lemma 6.7.1 implies that

VN(A,BC,BVC,BV2C,..) % (Go,G1,G5..).

This convergence is meant in the sense that any finite set of the random variables
on the left converge in distribution to the corresponding ones on the right. Surely,
this implies that the coefficients in the power series expansion of N/2fy converge
in distribution to those of det(Go +zG1 + 22G2 +...). However, to say that the zeros
of N™2fy converge (in distribution) to those of det(Y G3z*), we need to show weak
convergence in the space of analytic functions on the unit disk with respect to the
topology of uniform convergence on compact sets. Since we already have convergence
of coefficients, this can be done by proving that sup,cx |IN mi2g\(2)| is tight, for any
compact K c D. We skip this boring issue and refer the reader to Lemma 14 in (? ).
This completes the proof. O
A word of explanation on the question of tightness in the last part of the proof. To see
that there is an issue here, consider the sequence of analytic functions g,(z) = ¢, 2".
All the coefficients of g, converge to 0 rapidly, but g, may converge uniformly on
compact sets in the whole plane (¢, = 2_”2) or only in a disk (¢, = 1) or merely at one
point (¢, = 2”2). Which of these happens can be decided by the asking on what sets
is the sequence g, uniformly bounded.

It remains to prove the two lemmas. In proving Lemma 6.7.1, we shall make
use of the following “Wick formula” for joint moments of entries of a unitary matrix
(compare with the Gaussian Wick formula of Lemma 2.1.7). We state a weaker form
that is sufficient for our purpose. In Nica and Speicher (62), page 381, one may find
a stronger result, as well as a proof.

RESULT 6.7.3. Let U =((u; ;)i j<n be chosen from Haar measure on %(N). Let
k <N and fix i(¥), j(¥),i'(¢),j'(¢) for 1< ¢ < k. Then

6.7.3) E

k k k
— -1
[Tuwiconjo I1 ui’(!),j’(/)] = Y WgWN,mo ) [ Lio=izpLicor=j@o
/=1 /=1 /=1

T,0€%
where Wg (called “Weingarten function”) has the property that as N — oo,
N*4+OWNN*1) if7=e (“identity”).

(6.7.4) WeV,7) = { O(N~*1) ifr#e.

Proof of Lemma 6.7.1. We want to show that \/]T/'(Uk)a,ﬁ, k=1l,1<a,p<n
converge (jointly) in distribution to independent standard complex Gaussians. To
use the method of moments consider two finite products of these random variables

m m/ , ,
(6.7.5) S = [[1W*)g, 5,7 and T =[[10*)g 517,
i=1 i=1

where m,m’,p;,p}, ki, k; 21and 1 < a;, B;,a;, B; < n are fixed. We want to find E[ST]
asymptotically as N — oo.
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The idea is simple-minded. We expand each (Uk)ayﬁ as a sum of products of
entries of U. Then we get a huge sum of products and we evaluate the expectation
of each product using Result 6.7.3. Among the summands that do not vanish, most
have the same contribution and the rest are negligible. We now delve into the details.

Let 22 (a, B) denote all “paths” y of length £ connecting a to . This just means
that y € [NJ¥*1, y(1) = a and y(k + 1) = B. Then we write

k

(6.7.6) Uhap= Y Tlwyoryg+n-
YePp(ap)j=1

Expanding each factor in the definition of S like this, we get

(6.7.7) S= Z H H H Uyl(i)yG+1-

v eg,k (@ ﬂ)l 1¢=1;=1
i<m,; [<p,

In words, we are summing over a packet of p; paths of length %2; from a; to f1, a
packet of po paths of length k9 from ag to Bg, etc. T may similarly be expanded as

m' P kj

(6.7.8) 7= Y I [111 Ut 1)

F/egb (a ﬁr)z 1¢=1;=1

z<m’ [<p

To evaluate E[ST1, for each pair of collections y = {yf }and T = {Ff }, we must find

m pi i m' p k/
(“1 fi T WD) 11T rnes
1

Fix a collection of packets y! € %, (a;, B;). For which collections I'Y € 22, (a!, ) does
(6.7.9) give a nonzero answer? For that to happen, the number of u; ;s and the

(6.7.9)

number of #; ;s inside the expectation must be the same (because e?’U LU for any
0 € R). Assume that this is the case.

It will be convenient to write y(i, ¢, j) in place of yf (/). From Result 6.7.3, to get
a nonzero answer in (6.7.9) we must have bijections

(G, 0,))ism,0<pi1<j<k} G0, ):ism/ 0<p)1<j<E}
(G, 0,))ism,0<pi,2<j<ki+1 (G, 0,):ism 0<p)2<j<kl+1)
such that
(y(i’[’j))isrn,[Spi,lstki = @G0, izm,e<p;, 1)k, -
(Y@ ls))izme=piozjerier = TOGLNDicm e<p, a<jchis -

And for each such pair of bijections 7,0, we get a contribution of Wg(N,no™1).

Let us call the collection of packets y typical, if all the paths yf are pairwise
disjoint (except possibly at the initial and final points) and also non self-intersecting
(again, if a; = B;, the paths in packet i intersect themselves, but only at the end
points).

If y is typical, then it is clear that for I" to yield a nonzero contribution, I' must
consist of exactly the same paths as y. This forces k; = k; and p; = p; and a; =
a;, B; = B; for every i. If this is so, then the only pairs of bijections (7,0) that yield a
non zero contribution are those for which
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e =0 (From the disjointness of the paths).
m

o 7 permutes each packet of paths among itself. In particular there are [] p;!
i=1
such permutations.

This shows that for a typical y, the expectation in (6.7.9) is equal to

m
(6.7.10) ( pi!) Wg(V,e).

=1
Here y =T means that the two sets of paths are the same. Now suppose y is atypical.
For any fixed vy, typical or atypical, the number of I' for which (6.7.9) is nonzero is
clearly bounded uniformly by m and p;,%;, i <m. In particular it is independent of

N. Therefore the expected value in (6.7.9) is bounded in absolute value by
(6.7.11) CsupWg(N,1).
T

Now for an atypical y, at least two of yf(j), l<i<m,1<¢<p;, 2<j<k; must
be equal (our definition of “typical” did not impose any condition on the initial and
final points of the paths, which are anyway fixed throughout). Thus, if we set r =
pi1tk1—1D)+...+ pm(ky —1), then it follows that the total number of atypical v is less
than r2N"~1. Since the total number of y is precisely N”, this also tells us that there
are at least N” —r2N" "1 typical y. Put these counts together with the contributions
of each typical and atypical path, as given in (6.7.10) and (6.7.11), respectively. Note
that we get nonzero contribution from typical paths only if S = T'. Also, the total
number of factors in S is r + ) p; (this is the “£” in Result 6.7.3). Hence

E[ST]

m
15-7N"(1 - O(UN)WgN, o) [ | pil +ON'™Y) sup Wg(N,7)
i=1 Teereri

1=

1s_pN-LPi (ﬁlpiz) (1 ) (%))

by virtue of the asymptotics of the Weingarten function, as given in Result 6.7.3.
The factor NXPi is precisely compensated for, once we scale (Uk)a, s by VN, as in
the statement of the lemma. Since the moments of standard complex Gaussian are
easily seen to be E[g”g?] = p!1,-,, we have shown that \/ZT/'(Uk)a,ﬁ, k=1, a,f<n,
converge to independent standard complex Gaussians. ([l

Proof of Lemma 6.7.2. Consider the matrix
-1
x=| 7 —(IiV) :
Then
det(z"'A)det(-(I -2V)-C(z"'A)'B) = det(-(I -zV))det(z"'A+BUI -2V)'C)
because both sides are equal to det(X). Factor out z to get
(6.7.12) det(A)det(—I +2(V —CA™1B)) = (-1)" det(I — zV)det(A + zB(I - zV)1C).
The left hand side may be written as
[det(A)det(V — CA™'B)] [det(z] - V)]

where V = (V- CA™'B)™! is the lower right N x N block of U1 (by well known
formulas for the inverse of a block matrix). Since U is unitary, it follows that V =V *.
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Further, the quantity inside the first bracket is just det(UJ). Using these inferences
in equation (6.7.12), we obtain
det(zI -V*)
det(I —zV)
as claimed. (Il

= (1N det(U*)det (A +2BUI -2V)'C)

6.8. Notes

e We omitted the proof of Ple € T'1= || I¢ 2. This was originally proved by Kirchoff (48)
in 1847. Thomassen proves it by showing that if e = xy, then
1
G ZE T 7L

I° =
no. spanning trees of G 7

where the sum is over all spanning trees of G and fi,...,f} is the unique path in
T from x to y. The Burton Pemantle theorem was proved for two edges by Brooks,
Smith, Stone and Tutte (10) and in general by Burton and Pemantle (11). The joint
distribution of the set of edges in T in terms of independent Bernoullis (as in Theo-
rem 4.5.3) was found by Bapat (3), but the determinantal nature was not realized.
The proof presented here is due to Benjamini, Lyons, Peres and Schramm (5), where
one may also find much more about uniform spanning trees and forests, including
the situation of an infinite underlying graph.

e The derivation of random matrix eigenvalue densities presented here using various
decompositions and wedge products may be found in Forrester (25) and Mehta (56).
We have cleaned up some proofs in places where they seemed insufficiently rigor-
ous (see below). The eigenvalue density of a Haar unitary matrix is well known in
representation theory and is called the Weyl integration formula for % (n). It was
introduced in the random matrix context by Dyson (21) in his "three-fold classifica-
tion".

o Ginibre’s original proof of Theorem 4.3.10 used the diagonalization of M as XAX -1
The proof given here based on Schur decomposition follows appendix 35 of Mehta (56)
who attributes the proof to Dyson. The mistake referred to in our proof is as follows.
In that proof they "impose the constraints, (V*dV) . = 0", justifying it by saying
that there are n more degrees of freedom in (V,Z,T) as compared to M, and hence,
n constraints may be imposed. The freedom of choice we have in Schur decomposi-
tion is that (V,T) may be replaced by (VO®,0*V ©), where G)j,j =% . This changes
(V*dV)jyj to (V*dV)j,j +id0;. It is not clear to us that this can be made to vanish.
However, as our proof shows, it suffices to have (V*dV) ;.7 be alinear combination of
(V*dV)y, 0, k # ¢, since upon taking wedge products, that will render the (V*dV); ;
terms irrelevant.

e Theorem 4.3.13 was proved in (88) and the same proof with more details is pre-
sented in Forrester’s book (25). We have supplied the same proof with additional ar-
guments, such as the use of polar decomposition in Lemma 6.6.1, to render the proof
rigorous. As explained in the text, we start with Lebesgue measure on g¢(n,C), so
as to make ready use of Ginibre’s measure decomposition (6.3.5). A possible alter-
nate approach would be to start with the Haar measure /\,-’j(U*dU)i,j on%(n+1),
and use Schur decomposition of X. Then we write U*dU in terms of V*dV, dZ
day, etc., in effect carrying out the proof of (6.3.5) in the current context where we
have only (n + 1)2 degrees of freedom, instead of 2(n + 1)2.

When we go to the general case of m = 2, the bulk of the proof remains un-
changed. However, b is now an m x n matrix, and if we write the jth column of b
as rjw; in spherical co-ordinates, then the measure on U does not quite come out
as a product form as it did for m = 1. There will be an extra step of integration over
wp,...,01, in that order, before we get the density of eigenvalues.
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o Theorem 4.3.15 was first proved in (? ). The original proof did use Lemma 6.7.1
and then constructed the functions fy. In taking the limit of N' m/ sz however, the
proof was much more complicated, working with the coefficients in the power series
expansion of fp;. The idea of using Lemma 6.7.2 in its place was pointed out by Kat-
snelson and Kirstein (personal communication, but see (44)) and simplies the proof
a great deal. It is due to appear in (45). The idea of associating to a unitary matrix
U (with blocks A,B,C,V), the rational function det(A + zB(I — zV)_lc), called the
characteristic function, was due to Livshits (see (44) and references therein) and is
extensively used in system theory.

e Lemma 6.7.1 may be read as follows. Let e;, i <m be any orthonormal set in cN.
Then the spectral measures y; ; defined by Uk ej,e;) = feikedui,j converge to in-
dependent complex white noises on the unit circle. The lemma was proved in (? ).
It is similar in spirit to well-known results on Gaussian approximation to traces of
powers of U (due to Diaconis and Shahshahani, and Evans) and to entries of U it-
self, in which the best known results are due to Tiefeng Jiang, who showed that the
top V7 x v/n submatrix of vVNU is approximately Gaussian. There is a long history
going back to Maxwell (see (17) and references therein).






CHAPTER 7

Large Deviations for Zeros

7.1. An Offord type estimate

In this chapter we study probabilities of various unlikely events of random ze-
ros. We begin with a large deviation estimate which is valid for arbitrary Gauss-
ian analytic functions and then describe more specialized results. This estimate
bounds the probability for a linear statistic of the zero set of a GAF to deviate
from its mean. This result is taken from Sodin (78) who extended the ideas of
Offord (64). Offord proved the same theorem for Nevanlinna’s integrated count-
ing function, N(f,w,r) := OVN’;(u)du, where N¢(u) is the number of zeros of f in
the disk of D(w,u). The Nevanlinna counting function is easily seen to be equal to
Jlog,(r/lz—wl)dns(z), where ny is the counting measure of zeros of f, and hence
for w,r fixed, N(f,w,r) is a linear statistic of the zeros of f. In this form, Sodin’s
extension amounts to replacing “log,” by arbitrary smooth functions. We present
this result in the case when f is Gaussian.

THEOREM 7.1.1. Let fbe a Gaussian analytic function on a domain A c C. Let n¢
denote the counting measure of the zero set of f and let u be the expectation of ng, i.e.,
wA)=E[ngA)]. Let p € C?(A) be a test function with compact support in A. Then,
for every 1 >0,

(711) P fw(dnf—du) > A 5367”/1/“A(P”L1 .

A

The following lemma is the key ingredient in Offord’s approach.

LEMMA 7.1.2. Let a be a complex Gaussian random variable with zero mean and
variance o2. Then, for any event E in the probability space, we have

1 P(E)
7.1.2 E[1gl -P(E)1 <PE)|2log ——+—]|.
(7.1.2) |E[1zloglal]- P(E)logo | < P( )[ 5@ T 2
ProOF. Upper bound: Replace a by a/o to assume without losing generality
that o = 1. From Jensen’s inequality E [log|a|? |E] <logE [lal? |E]. Rewrite this as

1 1 1
——E[1zlogla?] <log| —E[|a|?1 )51 —)
PE) [1£1oglal”] og(P(E) llal*1g] | <log P&/
the last inequality being valid because Ellal?1g] < 1. Thus E[1g loglal|]l< - %P(E)logP(E)
which is more than we need.
Lower bound: Next we prove the lower bound in (7.1.2). Let log™ x = —min{0,logx}.
Then,

\Y

Elloglallg] = -Ellog™ lallg]
= -Ellog™ lel1gnjai<pEy] —Ellog™ lal1En{a>PE)]-

119
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The second term may be bounded below by

(7.1.3) —-E[log™ lal1Enq>PE}] = —P(E)log(@) .

while for the first term we have

—Ellog™ lal1gnga<p@y] = —Ellog™ lally<px)]

1
ds
1|a|sP(E)fls>|a?]
0

-E

1
- f Plla| < min{P(E), s} %
0

~log(s)P[|al < min{P(E),s}] |}

1
+flog(s)%P[|a| <min{P(E), s}lds.
0

The first summand is zero. For the second, observe that P[la|<s]=1- e_sz, whence
P(E)
—Ellog” lallgnga<p@y] = f log(s)e " 2sds
0
L P(E)?
= 3 f log(t)e™tdt
0
1 P(E)?
> 3 f log(t)dt
0
1 1
= —PE)?log|— |- =PE)>.
(E) Og(P(E)) 5 (E)
Adding this with (7.1.3) gives
1 1 1
Elloglallz]l = -PE)?log|—— |- =P(E)?-P(E)] (—)
[oglal1g] (E) og(P(E)) 3 (E) (E)log PE)
1 1
> —2P(E)log|—|- =P(E)?
= ( )Og(P(E)) 5 (E)
as claimed. O

We are ready to prove Theorem 7.1.1.
PROOF. [Proof of Theorem 7.1.1] Fix A > 0, and define the events

A+={f<p(dnf—du)zl}, A—={f¢(dnf-dﬂ)5—7‘}-
A A

Using Lemma 7.1.2, we obtain upper bounds for the probabilities of A, and A_ and
thus the deviation inequality we are after. First, consider A, .

Since deterministic zeros of f do not contribute to the deviation at all, we ex-
clude all of them from the domain A without losing generality. Then the expected
measure of the zeros, y, is absolutely continuous with respect to Lebesgue measure
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and the first intensity (the Radon-Nikodym derivative of u with respect to Lebesgue
measure) is given by (2.4.8). Recall (2.4.4) to deduce that

1
f(p(z)(dnf(z)—d/,t(z))z %f(A(p)(z){loglf(z)l —10g\/K(z,z)} dm(z).
A A

As ¢ is compactly supported and twice differentiable,

(7.1.4) fE [ 180G | (|10g1f2)1 | + [10g VE(z,2) | )] dmiz) < co.
A

This would be valid even if f had some deterministic zeros, because the integrand
has only logarithmic singularities. But anyway, we have assumed that there are
no deterministic zeros, so the integrand is bounded almost surely. This justifies the
interchange of integral and expectation below.

AP[A,] = E

A

1
la, o f Agp(2) {logIf(2)] ~log vK(z,2)} dmiz)
A

= %fA(p(z)E [IA+ {10g|f(2)|—logw/K(z,z)}]dm(z)
A

1
o f Agp(2) (E[14, 1og|(2)]] - PLA ,Tlog VK (z,2)) dm(2)
A

Applying Lemma 7.1.2 to estimate the quantity inside the brackets, we get

1 P(A,)
AP[A,] = gflA(P(Z)IP[Ad (2|108P[A+]| + h )dm(Z)
A
1 1
= EP[AJr] 2|logP[A ]| + 3 IA@lL:.
This gives,
__ a1
PlA]<e "t %,
The same estimate holds for A_ and the theorem follows because Zei <3. O

7.2. Hole probabilities

One quantity of interest that is informative about the “rigidity” of a point pro-
cess in the plane is the decay of hole probability, i.e., the probability that a disk of
radius r contains no points, as r — oco. Before posing this question for zeros of Gauss-
ian analytic functions, we compute the hole probabilities for several other point pro-
cesses. Here below, n(r) will denote the number of points in the disk of radius r
centered at the origin. The center does not matter if the point process is translation
invariant.

¢ Poisson process in the plane with constant intensity A: By definition,
the number of points n(r) in a disk of radius r has Poisson distribution with
mean Azxr2. Therefore

(7.2.1) Pln(r) = 0] = e 2",
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¢ Perturbed lattice: Let aj ¢ be i.i.d. N¢(0,1) random variables, for (%, /) €
72. Then let & be the point process {(k,0)+ap,¢}. In this case, for the event
{n(r) = 0} to occur, we must have |(k,¢) +ay, ¢| > r for every &, /.
For k2+/¢2 < é, this implies that |a ¢ 12 > é. Since there are more than
#rQ such pairs (k,¢), (for any € > 0, this is true for large enough r), we
see that for some C;

Pln(r)=0]<e 1",

On the other hand, it is easy to see that that the event o« = {|(,¢) +ay ¢| >
r for every k2 + ¢2 > 2r2} has a positive probability at least C’ > 0, where
C'’ is independent of r (in fact we can let C’ go to 1 as r — 00). Moreover, if
2+ 0% <2r2, then Pl|(k,0) +ay ¢ > rl = Pllaj ¢| > 4r] = e 716" Therefore
Pln(r)=0] = P[] H Plag,|>4r]
k2+02<2r2

C/e—Czr4

\%

The interested reader may try to find the sharp constant in the exponent.

e Ginibre ensemble: For the infinite Ginibre ensemble, we saw the re-
sult of Kostlan in Theorem 4.7.3 that the set of absolute values of the
points has the same distribution as {R1,R9,...}, where R]% has distribution
Gammal(k,1) and all the R;s are independent. Therefore

Pln(r)=0]= [] PLR? > 1.
k=1

The moment generating function of R,% exists for 0 < 1 and yields
e—9r2E[eeR2]

= e (1-9)

IA

PIR? >r?%]

For %k < r2, the bound is optimized for 6 =1 — r%. This gives (we write as if

r? is an integer. This is hardly essential).

IA

Pln(r) = 0] ]_[ P[R? > r?

IA

1—2[ -(1- )rsz log(%)

1
7%rz(rz71)7r4(fx10g(x)dx)+0(r2 logr)
= e 0
o art(Lro(D)

o0
Next we want to get a lower bound for [] P[RZ >r?]. Recall that
k=1

P[Gamma(n,1) > A] = P[Poisson(1) < n].
Therefore,

PR} >r?] = P[Poisson(r®)<k—1]
9 r2(k—1)

(-1
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Use this inequality for % < r2 to obtain,

r? s o r? F2(k=1)
PIR; >r?] =
kl:[1 g 1:[1 (k D!
= exp{-r*+ Y klog(r?)—log(k!)}
k<r?
= exp{-r*+ Y klog(r®)- Y (% -k)log(k)}
k<r? k<r?
= exp{-r*+ Y (2 -R)log(r®) - Y (% —k)log(k)}
k<r? k<r?
k
= exp{-r*- Y *? —k)log( )}
k<r?
As before,
Y 1
Y «* —k)log(—2) = r4f(1—x)log(x)dx+0(r2 logr)
k<r? r 0
= —zr‘* +0(r%logr).
This yields
2
,
(7.2.2) [[PIRZ>rH=e 7T £ +0Clogr),
k=1
Since P[P01sson(/1) >Al— as A — 0, it follows that for large enough r, for

any % > r2, we have P[R2 > r?]= 4. Therefore, for large enough r, we have
2r? 9
(7.2.3) [1 PIRZ>r?]ze " 1o,
k=r2+1
For large enough r, with probability at least %, the event {Ri > r2, for every k >
2r?} occurs. To see this, recall that the large deviation principle (Cramer’s
bound) for exponential random variables with mean 1 gives

k
P[R? < 1= ek,
for a constant ¢ independent of k. Therefore for large r

Y PIRZ<r%] < =
k>2r2
Then,
(e o]
(7.2.4) [1 PIR:>r*12
k=2r2+1

From (7.2.2), (7.2.3) and (7.2.4) we get

[\

0 1.4 2
l_[ P[R]% > 7‘2] > e_Zr +0(r logr)'
k=1

Thus we have proved

PROPOSITION 7.2.1. For the Ginibre ensemble, 1 “1logPln(r)=0]— -7
as r — oo.
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7.2.1. Hole probability for the planar Gaussian analytic function. Com-
ing back to zeros of Gaussian analytic functions, Theorem 7.1.1 provides as an easy
corollary, an upper bound for the hole probability for any Gaussian analytic function
fon a domain A. As we shall see, this estimate is far from optimal in general.

Firstly apply Theorem 7.1.1 with A = [ @du, where p is the first intensity mea-
sure, to get

(7.2.5) P f(pdnf=0 s3exp{— n f(pdu}.
Al

A
Now let Dg < A be a disk of radius R, and let D,, r < R, be a concentric disk of a
smaller radius r. Without loss of generality, let the common center be 0.
Fix a smooth function A : R — [0, 1] that equals 1 on (o0, 0] and equals 0 on [1,00)

and 0 < A(x) <1 for x € (0,1). Then define a test-function ¢ : A — R by ¢(z)=h ( IIZ%I rr)

Clearly, ¢ vanishes outside D and equals 1 on D,. Furthermore, with |z| = ¢, we
have

0P (p(z)

(7.2.6) EYr:

)] S
~®-nHP ().

12) (). Thus,

For a radial function, it is easy to see that Ap(z) = (6722

|dt

2pt) gt
IA@lI1 o f‘ (,0() (P()

IA

1
onR
2nf|h’(t)|dt+ T f|h”(t)ldt
J R—ro

R+r
C
R-r’
for a constant C that depends only on 4. Then it follows from (7.2.5) that
COROLLARY 7.2.2.

P(ne(R)=0)<3exp|— , forany 0<r<R.

We now focus our attention on the planar GAF,

7.2.7 f)= 3 ap 2

2. 2)=) ap——

( ) (2) k;) k Nk

where aj, are i.i.d. ~ N¢(0,1), and consider the hole probability P(n¢(r) = 0). As a
consequence of Corollary 7.2.2 we get P(ng(r) = 0) < exp(—cr?). However, this is the
same asymptotic rate of decay that we obtained for the Poisson process in (7.2.1). As
a glance at Figure 1 suggests, the zeros should at least exhibit some local repulsion.
In fact, the local repulsion for the zeros is more like that of the Ginibre ensemble.
Hence we might expect the hole probability of the zeros to decay like exp{—cr?}, as
it does for the Ginibre case. The next result, due to Sodin and Tsirelson (81), shows
that this is indeed the case.

THEOREM 7.2.3 (Sodin and Tsirelson). There exist positive constants ¢ and C
such that for all r = 1, we have

exp(—Cr*) < P(ng(r) = 0) < exp(—cr?).
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FIGURE 1. The zero set of f (left) and a Poisson point process with
the same intensity.

In this section, by ¢ and C we denote various positive numerical constants whose
values can be different at each occurrence.

REMARK 7.2.4. Theorem 7.2.3 above shows that the hole probability for the
zeros of the planar GAF f decays exponentially in the square of the area of the hole,
just as for the perturbed lattice. This motivates a question as to whether the zeros
of f can in fact be thought of as a perturbed lattice? Obviously we do not expect the
zeros to be exactly distributed as the lattice with i.i.d. perturbations. One way to
make the question precise is whether there is a matching (this term will be precisely
defined in chapter 8) between the zeros of f and the lattice in such a manner that
the distance between matched pairs has small tails. Sodin and Tsirelson showed
that there is indeed a matching with sub-Gaussian tails that is also invariant under
translations by Z2. In chapter 8 we shall discuss this and the closely related question
of translation invariant transportation between Lebesgue measure and the counting
measure on zeros.

In addition to hole probability, one may ask for a large deviation estimate for n(r)
as r — oo. Sodin and Tsirelson proved such an estimate (without sharp constants). In
fact this deviation inequality is used in proving the upper bound on hole probability,
but it is also of independent interest.

THEOREM 7.2.5. For any 6 > 0, there exists c(6) > 0, r(8) > 0 such that for any
r=r(d),

ne(r)
2

(7.2.8) P ( | -1|= 5) < exp{—c(6)rt}.

In what follows, by c(6) we denote various positive constants which depend on
6 only and which may change from one occurrence to the next. A natural and very
interesting question here is that of finding sharp constants in the exponents in Theo-
rem 7.2.3 and Theorem 7.2.5. See the notes at the end of the chapter for a discussion
of some recent developments in this direction.

PROOF. [Theorem 7.2.3] The lower bound is considerably easier than the upper
bound. This because one can easily find conditions on the coefficients that are suffi-
cient to force the event under question (a hole of radius r) to occur but much harder
to find a necessary one.
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Lower bound There will be no zeros in D(0,r) if the constant coefficient a¢ domi-
nates the rest of the series for f on the disk of radius r, that is, if

(o) Zk
> e — Viz|<r.
laol |k§1akm| lzl<r

For the series on the right hand side, namely f(z) — a¢, to be small all over the disk
D(0,r), we shall impose some stringent conditions on the first few coefficients. The
later ones are easily taken care of by the rapidly decreasing factor z%/v/Z!. For, if
|z| <r, then

[P S
ap——| <= larl—=
k=m+1 \/F k=m+1 \/]?
k
00 2\ 2
< Y |ak|(%)
k=m+1

by the elementary inequality %! = k*e~*. Choose m = e(1+6)?r? where 6 > 0. Then
the factors in the series above are bounded by (1 +&)~*. Define the event

A:={lapl<k VEk>m}.

If the event A occurs then for sufficiently large » we have

o0 Zk 00 k 1
(7.2.9) 2 |< ey
|k:§’+1ak VEk! | k:;:+1 (1+6)k 2

Now consider

IA
3

P (fl |2)( ’Zk)
ap,—— a -
= VR e A P

2 I 9
r
e Z lag!”.
k=1

IA

Define the event

1
B::{Iak|2<e_r2— VlSkSm}.
dm

If B occurs, then it follows that

m 2k 1
(7.2.10) Z <o
L 1=2

We also define a third event C :={|ag| > 1}. If A,B,C all occur, then by (7.2.9) and
(7.2.10) we see that ng(r) = 0. Recall that |az|? are independent exponentials to
deduce that for r sufficiently large, we have (with m = e(1 + 6)%r2),

PA) = 1- Y ezl
k=m+1 2
PB) = (1-expl—e ™ 4m) " =e ™" 8m)™,

P(C) e L.
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In estimating P(B), we used the simple fact that 1 —e™* = £ for x € [0, 1]. Thus

v

P(ng(r)=0) = P(A)-PB)-P(C)

1
56_16_mr2(8m)_m

4
e or (1+0(1))

\%

for any a > e. This is the desired lower bound.

Upper bound The upper bound is much harder but is a direct corollary of Theo-
rem 7.2.5 which is proved next. Unlike in the lower bound we do not have a good
numerical value of the exponent here. ([l

7.2.2. Proof of Theorem 7.2.5. Recall Jensen’s formula (see (1), chapter 5, sec-
tion 3.2 or (71), section 15.16)

r 2n oo db
(7.2.11) log|f(0)| + ) log(—):f log |f(rei?)| —.
pus || 0 27

aIEa|<§?)

.
Observe that the summation on the left hand side may also be written as [ @dt.
0
Fix x =1+ 6 and observe that
[ n(2) 0)
f ant <n(r)logx < ant.

H r

Thus (7.2.11) leads to the following upper and lower bounds for n(r) in terms of the
logarithmic integral of f.

21
. . do
(7.2.12) n(r)logk < / (loglf(Kre‘G)l—loglf(rele)l)%.
0
21 do
(7.2.13) n(r)logk = f (loglf(reig)l—loglf(K_lreie)l)%.
0

Therefore the theorem immediately follows from Lemma 7.2.6 below. Indeed, to
deduce Theorem 7.2.5, apply this lemma to say that with probability at least 1 —

2y,.4
e€OIr" we have

21 27

1 . 1 1 4 1

(5 —62) x2r? < floglf(Kre’G)l < (5 +62) x2r2, (5 —62) r2< floglf(relg)l < (5 +62) r2.
0 0

Without losing generality we assume that § < 1 so that §— %2 <logx <§. Then, under
the above events, apply the upper bound (7.2.12) on n(r) to get

nr)y 1 (1 2) ) (1 2)}
=< - ~|=-8%|} <1+0C5.
3 <10gK{(2+5 K-\ 07| <14Co

Similarly from (7.2.13) we get n(r) = (1 - C8)r2. Thus the theorem follows.
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LEMMA 7.2.6. For any 6 > 0, there exists c(6) > 0,r(0) > 0 such that for any
r=r(d),

[ 27
9., 40 1 12
P floglf(re‘g)l— > (_ +5) 2 < eme@e
2 \2
L0

4
e—c(&)r .

IA

[ 27
i0,d0 (1 9
P floglf(re )|% < (5—6)r
L0
7.2.3. Proof of Lemma 7.2.6. Easier than the bounds for the logarithmic inte-
gral in Lemma 7.2.6 is the following analogous lemma for the maximum of log|f] in
a large disk. The lower and upper bounds for the maximum will be used in proving
the lower and upper bounds for the logarithmic integral, respectively.

LEMMA 7.2.7. Let f be the planar Gaussian analytic function and let M(r,f) =
max, <, [f(z)|. Given any § >0, there exists c(d) > 0, r(0) > 0 such that for any r = r(d),

_ 5r2
e c(d)e )

P

IA

1
logM(r,f) = G+ &5r?

P e—c(ﬁ)r4

IA

1
logM(r,f) < (5 —&)r?

PrOOF. Upper bound: For any z with |z| =r, we have for any m,

¥ o T+ ¥ il
if(z)] < lapl —= + lagl —
k<m k' k>m k'
1
2 1, rk
< | X |ak|2) e+ ) lagl—.
(ksm k>m VE!
Now set m = 4er?. Suppose the following events occur.
252
3 f <
(7.2.14) arl<{ ¢, or k<m
22 for k> m.

Then it follows that (use the inequality %! > £*e~* in the second summand)

2 1 k
Ve eam 1 Y 272

max{|f(z)|:]z| =r} <=
k>m
1 2
< @rexp{(§+?6 r2}+1

e (Lea)re).

Thus if (7.2.14) occurs, then log M(r,f) < (% +6)r? as desired. Now the probability of
the events in (7.2.14) is

P[(7.2.14)]

er2
(l—exp{—e%‘w})4 I1 (l—e_zk)

k>m

= 1- exp{—e5r2}

\Y

for sufficiently large r. This proves the upper bound.
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Lower bound: Suppose now that
1
(7.2.15) log M(r,f) < (5 - 5)r2.

Recall the Cauchy integral formula

2n

f(k)(o):k'ff(reie) d9

rkeikt 27

We use this and Stirling’s formula to show that the coefficients a; must be unusually
small, which again happens with very low probability.

1£)(0)]
VE!
VoD

rk

lag

IA

CEY4 exp (glogk - g + (% —5)7‘2 - klogr).

Observe that the exponent equals
k r? r2
5((1 ~26) - ~log -~ 1).

We note that (1 - 26)’k—2 —logé —1< -8 when r?/k is close enough to 1. Whence, for
1-er2<k<r?

lag| < Crl4 exp(— 162—6)

The probability of this event is < exp{—c(6)k}. Since a;, are independent, multiplying
these probabilities, we see that

exp(-c®) Y k)=exp(-c1(®)r?)
(1-e)r2<k<r?
is an upper bound for the probability that event (7.2.15) occurs. ([l

Now we return to the proof of Lemma 7.2.6 which is the last thing needed to
complete the proof of Theorem 7.2.5 and hence of Theorem 7.2.3 also.

PROOF. [Proof of Lemma 7.2.6]
Upper bound: We use the trivial bound

27
0. do
(7.2.16) f loglf(rele)lz— <logM(r,f).
T
0
From Lemma 7.2.7, we get

P < exp{—c(6)e5r2}

27

o do 1
f log [f(re'?)|=— > (= + 6)r?
, 27 2

which is what we aimed to prove.
Lower bound:
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LEMMA 7.2.8. Given 6 > 0 there exists r(6) >0, c(6) > 0 such that if r = r(0), then
for any zo with %r <|zgl=r,

1
P |3a € 2o + 67D with log|f@)] > (5 - 36)|20|2 >1—e O

PROOF. The random potential log|f(z)| — %Izl2 is shift-invariant in distribution
(a direct consequence of (2.3.10). In proving the lower bound for the potential in
Lemma 7.2.7, in fact we proved the following

P(maxloglf(z)l ~Lz2 < —6r2) < exp{—c(5)ri).
zerD

Apply the same to the function z — log|f(zg + z)| — %Izo +2z|% on 6rD. We get
IP( max log|f(zo +2)| - 120 + 212 < —5(67‘)2) < expl{—c(8)rl}
zebrD

for a different c(§). Since |zg| = r/2, if |z| < dr, then we get %Izo +z12 > %Izol2(l —26)2
whence, outside an exceptional set of probability at most exp{—c(5§)r*}, there is some
a € zo + 67D such that log|f(a)| = (5 — 38)|zo[%. O

Now, set x = 1— 61/4, take N =[27671], and consider N disks with centers at
equally spaced points on the circle of radius xr. That is, we take the centers to
be z; = xre?/N and the disks to be zj+6r;D, for j < N. Lemma 7.2.8 implies
that outside an exceptional set of probability N exp(—c(8)r?) = exp(—c1(6)r?), we can
choose N points a; € z; + 6rD such that

logIf(a,)| = (% ~35)lz; 12> (% - CsM4)r2,

Let P(z,a) be the Poisson kernel for the disk rD, |z| =7, |a| <7. We set P;(2) = P(z,a;).
For any analytic function f, the function log|f| is subharmonic, and hence if D(0,r) is
inside the domain of analyticity, then log|f(a)| < fozn loglf(reig)lP(reie,a)% for any
a € D(0,7). Applying this to f and each a; we get

1 1/4) .2 1!
(-c8") = Nj;“’g'f(“f)'
2n
1N : .. dO
f (N P Pj(relf’))log|f(rel9)|%

n do (1A= db
i0 (roify_ i0
fo log|f(re )|2n + Of(N jE:O P;(re'”) 1) log|f(re )|2ﬂ.

The two claims 7.2.9, 7.2.10 below, immediately imply that the second integral is
bounded in absolute value by 10Cov6r2, outside an exceptional set of probability
exp(—cr?). This in turn shows that outside the exceptional set, the first integral

2 o de (1
f log [f(re’¥)| — > (- — 51— 1000\/5) r2
0 2r 2

which is exactly the lower bound we are trying to prove.
Let T denote the unit circle {|z| = 1}.
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CLAIM 7.2.9.

max
zerT

iNfP-(z)—l( < Coo™2.
N

CLAIM 7.2.10.
2n ; do
f |10g|f(re’9)| | —— <1072
0 2

outside an exceptional set of probability exp(—cr?).

Proof of Claim 7.2.9. We start by recalling that for f02 ”P(reie,a)% =1 for any
a € D(0,r). Split the circle xrT into a union of N disjoint arcs I; of equal angular
measure u(l;) = le centered at z;. Then if |z| =1,

1 N-1 N-1
1== ) P(za;)+ Y | (P(z,a)-P(z,a)))|dal
N j=0 j=0YI;

where the last integral is with respect to the normalized angular measure on I;.
Also, by elementary and well known estimates on the Poisson kernel (consult (1) or
(71))
|P(z,a)-P(z,a;)] < max|e—aj| -max|V,P(z,a)l
a€l; z,a
Czr 005

C1or - —=— = =72 =Co6'2,
O a2 T

proving the claim. U

IA

Proof of Claim 7.2.10. By Lemma 7.2.8, we know that if r is large enough,
then outside an exceptional set of probability exp(—cr?), there is a point a € %rT
such that log|f(a)| = 0. Fix such a point a. Then

2n
; 0. dO
0sfP(re‘H,a)loglf(re‘Q)l—,
2r
0
and hence
2w do 2n 4o
fP(reie,a)logf f(re'?) — sfP(reie,a)logJr If(re'?) —.
J 2n J 2

It remains to recall that for |z| =r and |a| = %r,

1
3 <P(z,a)<3,

and that
21

0., a0
f10g+ |f(re’6)|2— <logM(r,f) <r?
7
0
(provided we are outside the exceptional set). Hence

2 d@
f log™ [f(re'?)|— < 9r?
5 21
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FIGURE 2. The zero set of f(-,¢)(left) and Z,;(¢), conditioned to
have a hole of radius five.

2
f |10g|f(rei9)| | @ < 10r2,
; 2

proving the claim. U

(7.3.1)

(7.3.2)

7.3. Notes

¢ Sharp constants: Recently, Alon Nishry (63) has found a way to get sharp con-

stants in the exponent for hole probability. In particular, for the planar GAF, he
shows that r—4 logP(ng(r) =0) — — 37?3. In the same paper, he finds asymptotics for
hole probabilities for zeros of a wide class of random entire function.

Time dependent processes: We noted above (Remark 7.2.4) that the hole proba-
bility for the perturbed lattice

Zp = {\/J_r(k+i€)+cak,[ 1k, 0eZ}

has the same asymptotic decay as the hole probability for Zg, the zero set of the
planar Gaussian analytic function. It turns out that natural time dependent ver-
sions of both these point processes exist, and that their large deviation behavior is
strikingly different (see figure 2).

The perturbed lattice model can be made into a time homogeneous Markov pro-
cess by allowing each lattice point to evolve as an independent Ornstein-Uhlenbeck
process:

Zp1 ()= {Vak +i0)+cap (t): k,C € Z}.

Specifically, ak,[(t) = e_t/sz,[(et) where for each n € Zz, we have a Brownian mo-

tion in C that we write as B, (¢) = % [Bn,l(t) + iBn’g(t)).

One may construct a time dependent version of the planar GAF by defining

(e o] zn
flz,t)= ) an(t)—
where a,(#) are again i.i.d. complex valued Ornstein-Uhlenbeck processes. With
probability one, this process defines an analytic function in the entire plane, and
at any fixed time ¢ the distribution of Z¢(¢) is translation invariant. However, since
some information is lost when one restricts attention from f(-,) to Zg(¢), it is not
clear that Z¢(¢) should even be Markovian. Fortunately, using an argument similar
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(7.3.4)

(7.8.5)

(7.3.6)

(7.3.7)
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to the one given for the hyperbolic GAF (Theorem 5.3.1), one may show that |f(z, )|
can be reconstructed from Zg(¢) and since the evolution of the coefficients is radially
symmetric the zero set itself is a time homogeneous Markov process.

Whereas before we were interested in the hole probability that rD contains no
points, it now makes sense to introduce the time dependent hole probability, p(r,T)
that rD contains no points of the process for all ¢ € [0,7']. Using straightforward
estimates for Ornstein-Uhlenbeck processes, one can obtain the following (32)

PROPOSITION 7.3.1. In the dynamical perturbed lattice model, let Hy,(T,R)
denote the event that RD contains no points of the process for all t € [0,T]. Then for
any R >R > 16 and T > T, there exist positive constants c1 and cg depending only
on T« and R« so that

1
limsup - log(P(H}, (T, R)) < —c1R*

T—o0

and

1
liminf = log(P(H, (T, R))) = —coR%.
T—oo T

This result starkly contrasts with the time dependent hole probability for the
planar GAF, as the following result shows (32).

THEOREM 7.3.2. Let Hg(T,R) deonte the event that the dynamical planar GAF
does not have any zeros in RD for any t €[0,T]. Then

1 1
limsup — log (P(H(T, R)) = —e(3 0B

T—o0

and
1
liminf = log (P(H¢(T,R))) = _o(3Ho(R?
T—oo T

Overcrowding For the planar GAF, one can fix a disk of radius r and ask for the
asymptotic behaviour of P[n(r) > m] as m — oo. Following a conjecture of Yuval
Peres, it was proved in (52) that for any r > 0, logP[n(r) > m] = —%mz log(m)(1 +
o(1)). It is also shown there that for hyperbolic GAF with parameter p, there are
upper and lower bounds of the form e_cm2 for P[n(r) > m], for any fixed r € (0, 1).
Moderate and very large deviations Inspired by the results obtained by Jan-
covici, Lebowitz and Manificat (36) for Coulomb gases in the plane (e.g., Ginibre
ensemble), M.Sodin (79) conjectured the following.

Let n(r) be the number of zeroes of the planar GAF in the disk D(0,r). Then,
asr— oo

1 2a -1, 1 <ac<l;
10g1°g(1)[|n(r)—r2|>’“]) _ Sa—2 ?< a<2:
logr 2a, 2=a.

The upper bound in the case a > 2 follows by taking %r% in place of r in The-

o 1
orem 7.2.5 (In (52) it is shown that log(m
which is slightly stronger). A lower bound for the case 1 < a <2 was proved in (52).
All the remaining cases have been settled now by Sodin, Nazarov and Volberg (58).

) is asymptotic to r2%log(r),






CHAPTER 8

Advanced Topics: Dynamics and Allocation to
Random Zeros

8.1. Dynamics

8.1.1. Dynamics for the hyperbolic GAF. Recall the hyperbolic GAF

o) VLIL+1)..(L+n-1)
f = n n
1E)= ) a i :

which is defined for L > 0, and distinguished by the fact that its zero set is invariant
in distribution under Mobius transformations preserving the unit disk

+
8.1.1) Paplz) = = b zeD
Bz+a

with |a|%—| ,BI2 =1. In order to understand the point process of zeros of f7, it is useful
to think of it as a stationary distribution of a time-homogeneous Markov process.
Define the complex Ornstein-Uhlenbeck process

a(t):: e_t/2W(et), W(t): Bl(t)\';élBQ(t),

where Bi, Bg are independent standard Brownian motions, and W(¢) is complex
Brownian motion scaled so that EW(1)W(1) = 1. The process {a(#)} is then stationary
Markov with the standard complex Gaussian as its stationary distribution. Consider
the process

x VLL+1)...L+n-1)
f1.(z,8) = n(t n
.(2,1) nZ::Oa () W z

where a,(¢) are now i.i.d. Ornstein-Uhlenbeck processes. Then the entire process
f1.(z,t) is conformally invariant in the sense that

{

has the same distribution as f7,(z,t), ¢ > 0. For this, by continuity, it suffices to check
that the covariances agree. Indeed, for s <t¢,

Efr(z,9)f(w, ) = e "V2Ef (2,0)f1, (w, 0)

, L2
(Pa,ﬁ(z)] fL(<Poc,ﬁ(Z)’t)}t>0

so the problem is reduced to checking the equality of covariances for a fixed time,
which has already been discussed in Proposition 2.3.4.

It follows automatically that the process {Zg, (£)} of zeros of f7.(-,¢) is conformally
invariant. To check that it is a Markov process, recall from Section 5.4.1 that {Z¢, (¢)}
determines f7,(-,¢) up to a multiplicative constant of modulus 1. Since the evolution
of an Ornstein-Uhlenbeck process is radially symmetric it follows that f7.(-,#) modulo
such a constant is a Markov process; and hence (-, ¢) is a Markov process as well.

135
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8.1.2. SDE for dynamics of one zero. Finally, we give an SDE description of
the motion of zeros. Let a,(t) = e 2W,,(e) be i.i.d. Ornstein-Uhlenbeck processes.
Condition on starting at time 1 with a zero at the origin. This implies that Wy(1) =0,
and by the Markov property all the W; are complex Brownian motions started from
some initial distribution at time 1. For ¢ in a small time interval (1,1 +¢) and for z
in the neighborhood of 0, we have

@1(2) = Wo(t) + Wi(t)z + Wa()22 + O(23).

If W1(1)Wa(1) # 0, then the movement of the root z; of ¢; where z1 = 0 is described
by the movement of the solution of the equation Wo(¢) + Wy(t)z; + Wa(t)zZ = O(23).
Solving the quadratic gives

-W; 4WoWy 3
= —_Lli- f1- +O(WD).
2t 2W2( 12 ) ( 0)

Expanding the square root we get

WO WgWZ 3
2t =—— - +O(Wy).
Tw w3 0

Since Wy(t) is complex, Wg(t) is a martingale, so there is no drift term. The noise
term then has coefficient —1/W7, so the movement of the zero at 0 is described by
the SDE (at t = 1) dz; = —W1(&) 1 d Wy (¢) or, rescaling time for the time-homogeneous
version, for any 7 with ao(7) =0 we get

1

(8.1.2) dz; = e

day(T).

The absence of drift in (8.1.2) can be understood as follows: in the neighborhood
we are interested in, this solution z; will be an analytic function of the {W,}, and
therefore has no drift.

For other values of L the same argument gives

dz; = dao(7).

1
vVLai(z)

Of course, it is more informative to describe this movement in terms of the re-
lationship to other zeros, as opposed to the coefficient a;. For this, we consider the
reconstruction formula 5.3.10, which gives

o0
la1l =1y O =cz [T "zl as.
k=1

This means that when there are many other zeros close to a zero, the noise term in
its movement grows and it oscillates wildly. This produces a repulsion effect for zeros
that we have already observed in the point process description. The equation (8.1.2)
does not give a full description of the process as the noise terms for different zeros
are correlated. We give a more complete description of the dynamics in subsection
8.3.2.
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8.2. Allocation

8.2.1. Transportations of measures. Consider again the planar Gaussian
analytic function defined by the random power series

k

Z
(8.2.1) f(z)= el
z kgbak \/F

where a;, are independent standard complex Gaussian random variables (without
loss of generality take L = 1 here). It is distinguished by the invariance of its distri-
bution with respect to the rigid motions of the complex plane as described in Chapter
2. So far we have been concerned with computing various aspects of the distribution
of zeros of random analytic functions. In this chapter we show that it is possible
to tackle certain deep stochastic geometric questions regarding the zeros of f. The
stochastic geometric aspect that will be studied in this chapter is transportation
or matching or allocation..

DEFINITION 8.2.1. Given two measures u and v on A, a transportation between
1 and v is a measure p on A x A whose first marginal is y and the second marginal,
v. When p and v are both counting measures (i.e., atomic measures with atoms of
size 1), and so is p, the transportation will be also called a matching. When p is a
counting measure and v is the Lebesgue measure (or when u is a point process and
v is a fixed deterministic measure), a transportation will be called an allocation.

Informally we think of p as taking a mass du(x) from the point x and spreading
it over A by transporting a mass of p(x,dy) to the point y. A matching is just what
it says, a pairing of the support of p with the support of v (when both are counting
measures). An allocation may be picturesquely described as a scheme for dividing
up land (Lebesgue measure) among farmers (points of the point process) in a fair
manner (each farmer gets unit area of land).

One use of transportation is to quantify how close the two measures p and v are.
Indeed, the reader may be familiar with the fact that one can define a metric d (the
Prohorov-metric) on the space of probability measures of a complete separable metric
space by setting d(u,v) equal to the smallest  (infimum, to be precise) for which one
can find a transportation p of y and v that is supported in an r-neighbourhood of the
diagonal, {(x,x):x € A}, of A2.

EXERCISE 8.2.2. Prove that d is indeed a metric.

Now consider a translation invariant simple point process & in the plane, for ex-
ample, the zeros of f or a Poisson process with constant intensity. Then the expected
measure E[Z ()] is a constant multiple of the Lebesgue measure on the plane. Now
consider a transportation p between & and c-Lebesgue measure (where c is the in-
tensity of &). Since & is random, we would want p to be measurable (w.r.t. the
natural sigma-field on the space of sigma-finite measures on A?) and since & is
translation invariant, it is natural to ask for p to be diagonally invariant in the
sense that

(8.2.2) pC+w, +w) 2 p(-, ) for any w € R2.

Unlike in exercise 8.2.2 one cannot hope for a transportation that is supported within
a finite distance of the diagonal. For, if & has no points in D(0,r), then for |y| < %,
then p(-,y) is necessarily supported in {x : |x—y| > 5}. For most point processes of
interest, the event of D(0,r) being a hole will have positive probability, no matter
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how large r is, which implies that p cannot be supported within a finite distance of
the diagonal of A2. Therefore we shall consider the decay of probability that mass is
carried to a large distance r, as r — oo as a measure of how localized a transportation
is.

Let us make this notion precise. In this book we shall talk only of allocations, i.e.,
mass transportations from a point process to Lebesgue measure. Moreover, the point
process being translation invariant, we shall always require (8.2.2) to hold. There-
fore for every y, p(-,y) has the same law, and the quantity that we are interested in,
is the asymptotic behaviour of P [p(D(0,7)¢,0) > 0] as r — oo.

REMARK 8.2.3. The alert reader might wonder what we would do if we were
dealing with matching or transportation between two independent copies X7, %y of
the point process. For, in that case we should consider P [p(D(y,r)¢,y)>0] for a
typical point y € X9 and it is not obvious what that means. The notion of a typical
point of a stationary point process can be given precise meaning, in terms of what is
known as the palm measure of the point process (16). To get the palm version of
%, fix r > 0 and pick a point y uniformly at random from & N D(0,r) and translate
the entire process by —y so that the point at location y is brought to the origin. This
defines a point process &, that has a point at 0, almost surely (If Z NnD(0,r) = @,
define %, = {0}). As r — 0o, &, converges in distribution to a point process & that
also has a point at the origin. This is the palm version of . When the matching
scheme is applied to &, the distance from 0 to its match can be justly interpreted
as the typical distance to which a point of %3 is matched in the original setting. By
limiting ourselves to allocations, we shall avoid the (minor) technicalities involved
in dealing with palm measures.

In the next section, we describe a beautiful explicit allocation scheme due to
Sodin and Tsirelson for the zeros of f. We also give a brief sketch of the idea behind
the proof of Nazarov, Sodin and Volberg (59) that the diameters of basins (allocated
to a typical zero of f) in this allocation have better than exponential tails.

8.2.2. The gravitational allocation scheme. Let f be an entire function with
no multiple zeros. Set u(z) =log|f(z)| - %Izl2. Consider flow lines along the integral
curves of the vector field —Vu(z) (well defined off of the zero set of ). In other words,
for each z € C\ f~1{0}, consider the ODE

@ =-Vu(Z(t))

with the initial condition Z(0) = z. We shall call these paths the “gradient” curves of
u. Visualizing the potential as a height function, we may interpret these flow lines
as the trajectories of particles without inertia in a gravitational field. Recall that
%Au(z) =dng(z)- %dm(z) in the distributional sense (see the explanation following
(2.4.3)). Thus, outside of the zero set of f, the potential u is super harmonic, and
therefore, u has no local minima other than the zeros of f. Therefore for a “typical”
initial point z, the gradient curves will flow down to a zero of f (This cannot be true
for all starting points, for instance if z is a saddle point of Vu). For each a € f~1{0},
define its basin

B(a)={z € C : Vu(z) # 0, and the gradient curve passing through z terminates at a}.

Clearly, each basin B(a) is a connected open set, and B(a)nB(a') = @ if @ and a’ are
two different zeros of f. The remarkable observation made by Sodin and Tsirelson (82)
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is that, if a basin B(a) is bounded and has a suitably nice boundary, then B(a) has
area exactly equal to !
A heuristic argument: We give a heuristic argument that purports to show that
the above scheme is in fact an allocation.

Fix € > 0 so small that D(a,¢) c B(a) and set B, = B(a)\ D(a,¢). Then Au = -2 on
B¢ and by Green’s theorem we find

—2|B|

fAu(z)dm(z)

Be

ou
f %(z)ldzl

0B,

0
- f )z,
0D(a,€)

where in the last equality we used the intuitively obvious fact that g—z =0 on 0B(a),
since gradient lines must be flowing tangentially on the boundary of two basins. The
negative sign is there because the outward facing normal on dD(a,€) changes direc-
tion depending on whether we regard it as the boundary of D(a,¢) or the boundary
of B(a)\ D(a,e). This last integral can be written as

2n , i0
—fRe{(f(L“’.)—1(a+ee*i9))ei9}ede - —27+0(),
J fla+eeif) 2

because by Cauchy’s theorem (the curve ee'? encloses a, a zero of f with unit multi-
plicity),
1 2ﬂf/(at +eel?)
— | ———————edf=1.
2 J fla+eei?)
Thus by letting € — 0, we deduce that |B(a)| = 7 as we wanted to show.

The obvious gaps in this "back-of-the-envelope" calculation are that we have
assumed a priori that the basins are bounded and have piecewise smooth boundaries.
See Figure 1 for a picture of the potential and Figure 2 for a patch of the allocation
defined by the gradient lines of the potential in the case when f is a sample of the
planar Gaussian analytic function f.

REMARK 8.2.4. Although this scheme gives a very explicit allocation of Lebesgue
measure to the set of zeros, superficially it may seem as though the analytic function
is essential to make it work. That is not quite correct, because at least when we have
a finite set of points, it is possible to express everything in terms of the points of the
point process alone, without recourse to the analytic function whose zeros they are.
Given a finite collection of points {z1,...,2,} in the complex plane, one may define

n
f(z) = [I (z—zp) and define u(z) exactly as before. In this case
k=1
1

n
(8.2.3) -Vuz)=-) ——+z,
k=1% "%k

1
lz—zp|
wards zp. It is worth recalling here that the correct analogue of the gravitational

so at the point z each zero z;, exerts a “gravitational force” of magnitude to-
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FIGURE 1. The potential function u(z) =log|f(z)| — %Izlz.

potential (equivalently, the Green’s function for the Laplacian) in two dimensions is
log|z —w| while in RY for d = 3, it is [|x— yll’d+2. Henceforth we shall refer to this
scheme as gravitational allocation. Figure 2 shows a piece of the allocation when
applied to a finite number of points chosen uniformly from a square (a finite approx-
imation to Poisson process on the plane), and visibly, the basins are more elongated
compared to the case of the zeros. In R? with d = 3, the idea can be made to work for
the Poisson process also. See the notes at the end of this chapter.

Here is a cute fact about the gravitational allocation scheme that has not found
any application yet. This exercise is not essential to anything that comes later.

EXERCISE 8.2.5. The first part of Theorem 8.2.7 asserts that for the planar
Gaussian analytic function f, the allocation scheme described above does partition
the whole plane into basins of equal area m. Assuming this, show that the ¢ime to
flow from 0 into a zero of f has exponential distribution with mean %

(Hint: Consider the time-derivative of the Jacobian of the reversed dynamics.)

In the following exercise, make appropriate assumptions that the relevant an-
gles are well-defined, that the boundaries are smooth etc.

EXERCISE 8.2.6. Let f and g be two entire functions. Define the potential v(z) =
log|f(z)| —log|g(z)| and consider flow lines along the vector field Vv. Since v is +oo
(—o0) at the zeros of g (respectively f), typical flow lines start at a zero of f and end
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FIGURE 2. Gravitational allocation for a Poisson process (left) and
for Zs.

at a zero of g.

Consider two gradient lines y; and ys that start at @ € f~1{0} and end at b € g71{0}.
Let 6, be the angle between these two curves at a and 8, the angle at b. Let Q be
the region bounded by this two curves and let Q. = Q\[B(a,e)UB(b,€)]. Assume that
0, and 6y, exist and also that Q contains no other zeros of f or g. Then apply Green’s

theorem to | Av and let € — 0 to show that 6, = 0,. (For a picture When f and g
Q.

are independent samples of the planar Gaussian analytic function, see Figure 3).

Having proved this, one can define the mass transportation between the zeros of f

and g by setting

1
pla,b) = %{Angle of the sector of directions at a
along which the flow lines end up at b}.

8.2.3. Bounding the diameters of cells in the gravitational allocation.
The calculations in the previous section were somewhat formal, and in this section
we state precise results on the gravitational allocation when applied to the planar
Gaussian analytic function. The result that makes all the effort worthwhile is this.

THEOREM 8.2.7 (Nazarov, Sodin, Volberg). Apply the gravitational allocation
scheme to f, the planar Gaussian analytic function.

(1) Almost surely, each basin is bounded by finitely many smooth gradient curves
(and, thereby, has area 1), and C =Ugez , B(a) up to a set of measure 0 (more,
precisely, up to countably many smooth boundary curves).

(2) For any point z € C, the probability of the event that the diameter of the basin

.. . . _ 3/2 _
containing z is greater than R is between ce CRUgR)Y™" o d Ce=cRVIgR

The proof of this theorem is quite intricate and is beyond the scope of this book.
We shall merely whet the appetite of the reader by sketching an outline of the central
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-0.651

/

FIGURE 3. Gradient lines of v(z) =log|f(z)| —log|g(z)I.

part of the proof of Thorem 8.2.7 and direct those hungry for more to the original
paper (59).

The diameter of a basin in the allocation can be large only if there is a long
gradient line. Thus the following auxiliary result is of great relevance.

THEOREM 8.2.8 (Absence of long gradient curves). Let Q(w,s) be the square cen-
tered at w with side length s and let 0Q(w, s) be its boundary. Then there are constants
¢,C such that for any R = 1, the probability that there exists a gradient curve joining

0Q(0,R) with dQ(0,2R) does not exceed Ce cEVIogR

8.2.4. Proof sketch: absence of long gradient curves. First, notice that the
potential u is shift invariant. Heuristically, we pretend that u is almost bounded.
Thus, if a long gradient curve I' exists, |Vu| must be very small on I' (about 1%).
The second idea is to discretise the problem. Since it is hard to work with arbitrary
curves (they are infinitely many), we want to replace each curve by a connected set
of small squares covering it. Since the second derivatives of u are “morally bounded"
and the smallness size of Vu we need is 1%,, it is natural to divide the square Q(0,2R)
into squares of size 1%. Then, if |Vu| < 1% at one point of the square Q(w, I%), it is less
than 1% in the entire square, and, in particular at its center w. We shall call such a
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square black. Now note that, since u is shift invariant and Vu(z) = (@) —z, we have

P{Vu@w) < §} =P{vu)i< §}=P{

L <%}SCR_2.

ao

This means that the expected number of black squares in the entire square Q(0,2R)
is bounded by CR*R~2 = CR?, which is barely enough to make a connected chain
from 0Q(0,R) to 0Q(0,2R). Moreover, if we take any smaller square @ (w,2r) with
side length r, the expected number of black squares in it is about (rR)?R~2 = r2,
which is much less than the number rR of squares needed to get a chain joining
0Q(w,r) to 0Q(w,2r). This also gives an estimate r/R for the probability of existence
of at least rR black squares in @(w,r) (just use the Chebyshev inequality). Hence,
the probability of existence of a noticeable (i.e., comparable in length to the size of
the square) piece of a black chain in @ (w,2r) also does not exceed r/R.

The next observation is that u(w’) and u(w”) are almost independent if |w' — w"|

is large. More precisely, we have

(w/w//)k W
— L —e

Ef(w)f(w') = Z A
k=0

This means that the absolute value of the covariance of the standard complex Gauss-
|w’|2 ‘wrr‘2 \w’—w”l2

ian random variables f(w')e” 2 and f(w”)e” 2 equals e 2z . Recall that two
standard Gaussian random variables with covariance o can be represented as two
independent Gaussian random variables perturbed by something of size o. This

Iw'—w”lz

morally means that Vu(w’) and Vu(w") are independent up to an error of size e~ 2

Since we want to estimate the probability that they are less than }%, we can think of

\w/—w”\z

them as independent if e™ 2 < }%, ie., if lw' —w"| > Ay/logR where A is a large
constant.

Thus, our situation can be approximately described by the following toy model.
We have a big square @(0,2R) partitioned into subsquares with side length }%. Each
small square is black with probability R 2 and the events that the small squares are
black are independent if the distance between the centers of the squares is at least
VIlogR. Our aim is to estimate the probability of the event that there exists a chain
of black squares connecting 0Q(0,R) and 6Q(0,2R).

To solve this toy model problem, it is natural to switch to square blocks of
squares of size r = \/logR because then, roughly speaking, any two blocks are in-
dependent. Any chain of black squares with side length 1% determines a chain of
blocks of size r in which all blocks contain a noticeable piece of the chain of black
squares. The probability that any particular chain of L blocks has this property is
about (R%)L < e L1 (due to independence). On the other hand, it is easy to esti-
mate the number of connected chains of L blocks with side length r: there are (R/r)?
blocks where we can start our chain and during each step we have a constant num-
ber of blocks to move to. This yields the estimate (R/r)2e“L. Hence, the probability
that there exists a chain of L blocks of side length r and each block, in turn, con-
tains a noticeable piece of the chain of black squares of side length 1/R, is bounded
by (R/r)2el(C-clogR)  Qince our chains should connect dQ(0,R) with 9Q(0,2R), we
need only the values L = R/r. For such L, we have (R/r)2elC-clogR) < o—cLlogR vyygq
conclude that the probability that there exists a chain of black squares of side length
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1/R connecting 0Q(0,R) and dQ(0,2R) is bounded by

Z e CLlogR < oxp { —c logR} = RVIogE

L=—L
logR

R
V1ogR

There are several technical difficulties in the road to an honest proof. The first one
is that it is hard to work with the random potential directly and everything has to
be formulated in terms of f. The second one is that the potential u is not exactly
bounded: it can be both very large positive and very large negative. Large positive
values are easy to control but large negative values are harder and we prefer to
include the possibility that u is large negative into the definition of black squares.
The last difficulty is that independence of the values of f at distant points is not exact
but only approximate and some work is needed to justify the product formula for the
probability. All this makes the actual proof much more complicated and lengthy than
the outline we just sketched.

8.3. Notes

8.3.1. Notes on Dynamics.

8.3.2. General formulation of dynamics. In this section we create a dynamical ver-
sion of a GAF and hence of its zero set. We describe the motion of the zeros by a system of
SDEs.

First consider a function f;(z), where ¢ > 0 and z € Q, with the following properties.

o For each ¢, the function z — f;(2) is a (random) analytic function.
o For each z € Q, the function ¢ — f;(z) is a continuous semi-martingale.

Let {{z(£)}, be the set of zeros of f;. More precisely, index the zeros in an arbitrary way at ¢ = 0.
Then as ¢ varies the function f; varies continuously and hence the zeros also trace continuous
curves in Q). There are two potential problems. Firstly, it may happen that the zeros collide
and separate. More seriously zeros may escape to the boundary.

For now we assume that the above problems do not arise and work formally. Later in
cases of interest to us, we shall see that these problems indeed do not arise.

Consider a zero curve ((¢), and suppose that at time 0 we have {(0) = w. By our as-
sumption, the order to which fy vanishes at w is 1. Hence by Rouche’s theorem, we can fix a
neighbourhood D (w;r)of w and € > 0 (these depend on the sample path and hence are random),
such that for any ¢ € (0,¢), {(¢) is the unique zero of f; in D(w;r). Fix such a ¢ and expand f;
around w. We obtain

'

¢
(W 10—,

(8.3.1) £:(2) = fr(w) + £, (w)(z —w) +

Therefore, one root of the equation

£/ (w)

0= ;) + £}z ~w)+ -

(z-w)®+0(z-w)®)

(the one closer to w) differs from {(¢) by O(fs(w)3). The quadratic above can be solved explicitly

and we get
f;(w) 2ft(w)f;'(w) 3
() = w_f;’(w) (1— I_W)+O(ft(W) )

fiw) frw)*f) (w) 5
= - O(f; .
w £w) + 28 ()3 +0(f;(w)”)
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Recall that f;(w) =0 to get
df(w)

flw)

¢
(Here ’d’ denotes the Ito derivative.) The same calculations can be made for any ¢ and all the
zeros ((¢) and we end up with

d¢(0) =~

_df (. (8)
0)

In some cases the zeros of f; determine f; almost surely. Then obviously, the zero set will be a
Markov process itself. In such cases the right hand side of the system of equations(8.3.2) can
be expressed in terms of {¢ j(t)} g (the equation for {},(¢) will involve all the other { 78 of course)
and we have the equations for the diffusion of the zeros (possibly infinite dimensional).

Returning to Gaussian analytic functions, suppose we are given a GAF of the form f(z) =
Y nanWn(z) where a, are i.i.d. complex normals and v, are analytic functions. We now make
a dynamical version of f as follows. Let a,(¢) be i.i.d. stationary complex Ornstein-Uhlenbeck
processes defined as a,(t) = et 2Wn(et), where W, are i.i.d. standard complex Brownian mo-
tions. Here ‘standard’ means that E [|[W,(¢)|2] = 1. It is well known and easy to see that they
satisfy the SDEs

(8.3.2) gy = for k> 1.

(8.3.3) da,(t) = —%an(t)dt+de(t),

where W, are i.i.d. standard complex Brownian motions.
Then set f:(z) =Y, a,(£)z". Then the zero set of f; is isometry-invariant with the distri-
bution of the zero set of f. In this case, we can write equations (8.3.2) as

df({r(2))
EATI0)
~ 1 (Zh an@yn @) dt + X v (/AW (t)
- £,(10)
Ya ¥n((p()dW,(2)
O LGe)
for every k. Here we used equations (8.3.3) to derive the second equality, and the fact that

£: ({1 (¢)) = 0 to derive the third equality. In particular, we compute the covariances of the zeros
to be

d¢p(®) =

1 _
dp, () @) Y Yn W, ()

£ OEA ) T
K({p(®),(1(2)
R ENE Q@)

where K is the covariance kernel of f.

8.3.3. Notes on Allocation. It is natural to ask if there are other methods for allocating
a discrete point set = in the plane to regions of equal area. One such method, introduced by
Hoffman, Holroyd and Peres in (31), produces matchings which are stable in the sense of the
Gale-Shapley stable marriage problem (26). Intuitively, points in C prefer to be matched with
points of = that are close to them in Euclidean distance and conversely, points of = prefer
regions of the plane close to themselves. An allocation is said to be unstable if there exist
points ¢ € Z and z € C that are not allocated to each other but both prefer each other to their
current allocations.

It is easy to see that a stable allocation of = to C will not in general allocate the points
of E to sets of equal area. To obtain an equal area allocation, one can impose the additional
condition that each point in = has appetite a, by which we mean that the Lebesgue measure
of the set matched to each point ¢ € = cannot exceed @. Hoffman, Holroyd and Peres, show
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FIGURE 4. The stable marriage allocation for a Poisson process
(left) and the zero set of the planar GAF.

that stable allocations with appetite a exist for any discrete point set =. Moreover, they show
that if the point process = has intensity A € (0,00) and is ergodic under translations, then with
probability one there exists a Lebesgue-a.e. unique stable allocation with appetite % under
which each point in = is allocated a set of Lebesgue measure %, and the set of unallocated
points in C has measure zero. Conceptually, this allocation is obtained by allowing each point
¢ € E to expand by growing a ball at a constant rate centered at ¢, and “capturing” all points
in C that it reaches ﬁrst Each point in Z “grows" according to this procedure until it has
captured area equal to A at which point it stops growing. This description, of course, is non-
rigorous and the interested reader is encouraged to consult (31) for precise statements and
further details. Pictures of the resulting allocation obtained for the Poisson process and Zg
are given in Figure 4 (notice that the region allocated to a point ¢ € Z need not be connected).

8.4. Hints and solutions

Exercise 8.2.5 Consider the reverse dynamics dZ (t) = Vu(Z(t)). The forward-t map T%,
taking Z(0) to Z(t), is injective on C \ {f_l{O}}. Moreover, for z §Zf_1{0}

. L (ATH@) _([3PuTez)
aDTt(z)—D( dt )_(( 0ux;0x ))Lj<2.

From this we get an expression for the derivative of the Jacobian determinant (this is called
Liouville’s theorem)
0%u(Ty2)

i det(DT4(z)) = Trace|| ——— =Au(Tyz) = -
dt Gxiaxj <2

Let a be a zero of f and let B’ = B(a) \ {a}. Since To is the identity map, from the deriva-

d|Tt(B )N

tive of the Jacobian determinant of T, we get —2|T¢(B")|, which of course implies

that |T#(B")| = e~2¢. So far the argument was completely deterministic. But now observe that
T+(B') is precisely the set of points in the basin of @ which in the forward dynamics had not hit

a by time ¢. By translation invariance, this shows that P[time to fall into £ 1{0} starting from 0 >
t]l= e_2t, as desired.
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Exercise 8.2.6 Au = 0 on Q¢. Further, the normal derivative g—’r‘L w.r.t. Q is zero on yq

and y2. Hence by Green’s theorem,
f ou f ou
on on’

QndB(a,e) QnoB(b,e)
Compute the normal derivatives of the potential by Taylor expansion of f,g at ¢ and b to
leading order in € to obtain 6, = 6.
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