Institut für Angewandte Mathematik WS 2024/25

Prof. Dr. Anton Bovier, Manuel Esser

Einführung in die Wahrscheinlichkeitstheorie 9. Übungsblatt

Abgabe bis zum 13.12.2024

Information der Fachschaft: Dieses Jahr findet die Mathe-Weihnachtsfeier am Donnerstag, den 12.12., ab 18 s.t. statt. Alle aktuellen Informationen sind auf der Website zu finden. Eine vorherige Anmeldung per Email ist zwingend notwendig. Schaut vorbei!

Notation

Für eine Folge von Zufallsvariablen $(X_n)_{n\in\mathbb{N}}$ und eine Zufallsvariable X schreiben wir

- $X_n \xrightarrow{\mathcal{D}} X$, falls $(X_n)_{n \in \mathbb{N}}$ in Verteilung gegen X konvergiert,
- $X_n \xrightarrow{P} X$, falls $(X_n)_{n \in \mathbb{N}}$ in Wahrscheinlichkeit gegen X konvergiert,
- $X_n \xrightarrow{\text{f.s.}} X$, falls $(X_n)_{n \in \mathbb{N}}$ fast sicher gegen X konvergiert.

Aufgabe 1 [5 Pkt]

Es sei $(X_n)_{n\geq 2}$ eine Folge unabhängiger Zufallsvariablen mit

$$\mathbb{P}(X_n = n) = \frac{1}{n \log n}$$
 und $\mathbb{P}(X_n = 0) = 1 - \frac{1}{n \log n}$.

Zeigen Sie, dass

$$\frac{1}{n}\sum_{i=2}^{n}(X_i - \mathbb{E}(X_i))$$

zwar in Wahrscheinlichkeit gegen Null konvergiert, aber nicht fast sicher.

Aufgabe 2 [5 Pkt]

Sei $(X_n)_{n\geq 1}$ eine Folge unabhängiger exponentialverteilter Zufallsvariablen mit Parameter α (d.h. $\mathbb{P}(X_n\geq s)=e^{-\alpha s}$ für $s\geq 0$). Beweisen Sie, dass

$$\limsup_{n \to \infty} \frac{X_n}{\ln n} = \frac{1}{\alpha} \quad \text{fast sicher.}$$

Aufgabe 3 [3+2 Pkt]

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $X, X_1, X_2, \ldots : (\Omega, \mathcal{A}) \to (\mathbb{R}^k, \mathcal{B}^k), k \in \mathbb{N}$ messbar. Man sagt, dass die Folge (X_n) in Wahrscheinlichkeit gegen X konvergiert und schreibt $X_n \xrightarrow{P} X$, falls für jedes $\varepsilon > 0$

$$\mathbb{P}(\|X_n - X\| > \varepsilon) \to 0 \quad \text{für } n \to \infty,$$

wobei $\|\cdot\|$ eine beliebige Norm auf \mathbb{R}^k ist. Beweisen Sie:

- a) Sei $c \in \mathbb{R}^k$ und $f : \mathbb{R}^k \to \mathbb{R}^m$ stetig an der Stelle c. Gilt $X_n \stackrel{P}{\longrightarrow} c$, so gilt auch $f(X_n) \stackrel{P}{\longrightarrow} f(c)$.
- b) Es seien $X_n = (X_n^1, \dots, X_n^k)$ und $X = (X^1, \dots, X^k)$. Die Aussage $(X_n^1, \dots, X_n^k) \xrightarrow{P} (X^1, \dots, X^k)$ gilt genau dann, wenn $X_n^i \xrightarrow{P} X^i$ für alle $i \in \{1, \dots, k\}$.

Bemerkung: Aussage a) bleibt erfüllt, wenn man c durch einen Zufallsvektor X ersetzt und die Menge der Unstetigkeitsstellen der Funktion f eine P_X -Nullmenge darstellt.

Aufgabe 4 [2+1+2 Pkt]

Es seien X, X_1, X_2, \ldots reellwertige Zufallsvariablen. Zeigen Sie:

- a) Ist X P-f.s. konstant, so gilt: $X_n \xrightarrow{\mathcal{D}} X$ impliziert $X_n \xrightarrow{P} X$.
- b) Aus $(X_n X)^2 \xrightarrow{P} 0$ folgt $X_n \xrightarrow{P} X$.
- c) Aus $X_n \longrightarrow X$ f.s. folgt $n^{-1} \sum_{i=1}^n X_i \longrightarrow X$ f.s.