Institut für Angewandte Mathematik WS 2024/25

Prof. Dr. Anton Bovier, Manuel Esser

Einführung in die Wahrscheinlichkeitstheorie 1. Übungsblatt

Abgabe bis zum 18.10.2024

Aufgabe 1 (Subadditivität)

[5 Pkt]

Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Zeigen Sie, dass

- a) Für $A, B \in \mathcal{F}$ mit $A \subseteq B$ gilt $\mathbb{P}[A] \leq \mathbb{P}[B]$.
- b) Falls $A \in \mathcal{F}$ und (A_n) eine Folge von (nicht notwendigerweise disjunkten) Megen in \mathcal{F} mit $A \subseteq \bigcup_{n=1}^{\infty} A_n$ ist, so gilt

$$\mathbb{P}[A] \le \sum_{i=1}^{\infty} \mathbb{P}[A_n].$$

Aufgabe 2 (Monotone Stetigkeit)

[5 Pkt]

Es sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum.

- a) Sei $(A_n)_n$ eine Folge von Mengen in \mathcal{A} so dass $A_n \uparrow A$, d.h. $A_n \subseteq A_{n+1}$ und $A = \bigcup_{n=1}^{\infty} A_n$. Zeigen Sie, dass $\mathbb{P}[A] = \lim_{n \to \infty} \mathbb{P}[A_n]$.
- b) Sei $(B_n)_n$ eine Folge von Mengen in \mathcal{A} so dass $B_n \downarrow B$, d.h. $B_{n+1} \subseteq B_n$ und $B = \bigcap_{n=1}^{\infty} B_n$. Zeigen Sie, dass $\mathbb{P}[B] = \lim_{n \to \infty} \mathbb{P}[B_n]$

Aufgabe 3 (Einschluss-Ausschluss-Prinzip)

[5 Pkt]

Es sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und seien $A_1, \ldots, A_n \in \mathcal{F}$. Zeigen Sie das sog. Einschluss-Ausschluss-Prinzip

$$\mathbb{P}\Big(\bigcup_{k=1}^{n} A_k\Big) = \sum_{i=1}^{n} \mathbb{P}(A_i) - \sum_{i < j \le n} \mathbb{P}(A_i \cap A_j) + \sum_{i < j < k \le n} \mathbb{P}(A_i \cap A_j \cap A_k) + \dots + (-1)^{n+1} \mathbb{P}(A_1 \cap \dots \cap A_n).$$

Aufgabe 4 (σ -Algebren)

[5 Pkt]

- a) Seien A und B Teilmengen von Ω . Bestimmen Sie $\sigma(\{A,B\})$, d.h. die kleinste σ -Algebra über der Menge Ω , in der die Mengen A und B enthalten sind.
- b) Zeigen Sie, dass die folgenden Teilmengen von \mathbb{R} Elemente der Borel- σ -Algebra sind:

$$\text{(i) } (-\infty,x], \ x\in\mathbb{R}, \quad \text{(ii) } (x,y], \ x,y\in\mathbb{R}, \quad \text{(iii) } \pi+\mathbb{Q}=\left\{\pi+q: q\in\mathbb{Q}\right\}.$$