Markov Processes
 Sheet 10

Due on December 20, 2023

Exercise 1

Consider a linear operator G that is given by

$$
G f(x)=\frac{1}{2} x(1-x) f^{\prime \prime}(x) \quad \text { for all polynomials } f:[0,1] \rightarrow \mathbb{R}
$$

(i) Show that the closure \bar{G} of G on $C([0,1])$ exists, and that \bar{G} is the generator of a Feller-Dynkin semi-group $\left(P_{t}\right)_{t \in[0, \infty)}$.
(ii) Let $\left(X_{t}\right)_{t \in[0, \infty)}$ be the corresponding Markov process for $\left(P_{t}\right)_{t \in[0, \infty)}$ (cf. Theorem 3.34 of the lecture notes). Suppose that $\left(X_{t}\right)_{t \in[0, \infty)}$ has continuous paths, and let $\tau=\inf \left\{t \geq 0 \mid X_{t}=0\right.$ or $\left.X_{t}=1\right\}$. Show that for all $x \in[0,1]$,
(a) $\mathbb{E}^{x}\left[\int_{0}^{\infty} X_{t}\left(1-X_{t}\right) d t\right]=x(1-x)$,
(b) $\mathbb{P}^{x}\left[X_{\tau}=1\right]=x$,
(c) $\mathbb{E}^{x}[\tau]=-2 x \log x-2(1-x) \log (1-x)$.

Exercise 2

Let $u, \alpha: \mathbb{R} \rightarrow \mathbb{R}$ be bounded and twice continuously differentiable and let $f \in C^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ be a bounded solution to

$$
\partial_{t} f=\alpha \partial_{x} f+\frac{1}{2} \partial_{x}^{2} f, \quad f(0, \cdot)=u .
$$

Show that

$$
f(t, x)=\mathbb{E}_{x}\left[u\left(B_{t}\right) \exp \left(\int_{0}^{t} \alpha(s) \mathrm{d} B_{s}-\frac{1}{2} \int_{0}^{t} \alpha^{2}(s) \mathrm{d} s\right)\right],
$$

where $\left(B_{t}\right)_{t \geq 0}$ is, under \mathbb{P}_{x}, Brownian motion starting in x.

Hint: You may use (without proof) the following result, which is a version of Girsanov's theorem.
Let B be a Brownian motion under \mathbb{P} and define the processes

$$
\begin{aligned}
W_{t} & :=B_{t}-\int_{0}^{t} \alpha(s) \mathrm{d} s \\
Z_{t} & :=\exp \left(\int_{0}^{t} \alpha(s) \mathrm{d} B_{s}-\frac{1}{2} \int_{0}^{t} \alpha^{2}(s) \mathrm{d} s\right)
\end{aligned}
$$

which is a martingale in the present case. Moreover define, for fixed $T \geq 0$, the measure

$$
\widetilde{\mathbb{P}}(A):=\mathbb{E}\left[\mathbb{1}_{A} Z_{T}\right], \quad A \in \mathcal{F}_{T}
$$

Then the process $\left(W_{t}, t \in[0, T]\right)$ is a Brownian motion under $\widetilde{\mathbb{P}}$.

Exercise 3

Let $\left(B_{t}\right)_{t \geq 0}$ be a d-dimensional Brownian motion and let $\left(X_{t}\right)_{t \geq 0}=\left(X_{t}^{(1)}, \ldots, X_{t}^{(d)}\right)_{t \geq 0}$ be a solution to the SDE

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} B_{t} \quad t \geq 0, \quad X_{0}=\left(x^{(1)}, \ldots, x^{(d)}\right) \in \mathbb{R}^{d}
$$

where we assume (for simplicity) that $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}$ are bounded and Lipschitz continuous. Determine, for $i, j \in\{1, \ldots, n\}$, the limits

$$
\lim _{t \rightarrow 0} \frac{1}{t} \mathbb{E}\left[X_{t}^{(i)}-x^{(i)}\right] \quad \text { and } \quad \lim _{t \rightarrow 0} \frac{1}{t} \mathbb{E}\left[\left(X_{t}^{(i)}-x^{(i)}\right)\left(X_{t}^{(j)}-x^{(j)}\right)\right] .
$$

