Institute for Applied Mathematics WS 2023/24 Prof. Dr. Anton Bovier, Manuel Esser

Markov Processes Sheet 10

Due on December 20, 2023

Exercise 1

Consider a linear operator G that is given by

$$Gf(x) = \frac{1}{2}x(1-x)f''(x)$$
 for all polynomials $f: [0,1] \to \mathbb{R}$.

- (i) Show that the closure \overline{G} of G on C([0, 1]) exists, and that \overline{G} is the generator of a Feller-Dynkin semi-group $(P_t)_{t \in [0,\infty)}$.
- (ii) Let $(X_t)_{t\in[0,\infty)}$ be the corresponding Markov process for $(P_t)_{t\in[0,\infty)}$ (cf. Theorem 3.34 of the lecture notes). Suppose that $(X_t)_{t\in[0,\infty)}$ has continuous paths, and let $\tau = \inf\{t \ge 0 \mid X_t = 0 \text{ or } X_t = 1\}$. Show that for all $x \in [0, 1]$,
 - (a) $\mathbb{E}^{x} \left[\int_{0}^{\infty} X_{t}(1 X_{t}) dt \right] = x(1 x),$ (b) $\mathbb{P}^{x} [X_{\tau} = 1] = x,$ (c) $\mathbb{E}^{x} [\tau] = -2x \log x - 2(1 - x) \log(1 - x).$

Exercise 2

Let $u, \alpha : \mathbb{R} \to \mathbb{R}$ be bounded and twice continuously differentiable and let $f \in C^2(\mathbb{R}_+ \times \mathbb{R})$ be a bounded solution to

$$\partial_t f = \alpha \partial_x f + \frac{1}{2} \partial_x^2 f, \qquad f(0, \cdot) = u.$$

Show that

$$f(t,x) = \mathbb{E}_x \left[u(B_t) \exp\left(\int_0^t \alpha(s) \mathrm{d}B_s - \frac{1}{2} \int_0^t \alpha^2(s) \mathrm{d}s\right) \right],$$

where $(B_t)_{t\geq 0}$ is, under \mathbb{P}_x , Brownian motion starting in x.

 $\begin{bmatrix} 10 \ Pt \end{bmatrix}$

[5 Pt]

Hint: You may use (without proof) the following result, which is a version of Girsanov's theorem.

Let B be a Brownian motion under \mathbb{P} and define the processes

$$W_t := B_t - \int_0^t \alpha(s) \mathrm{d}s$$
$$Z_t := \exp\left(\int_0^t \alpha(s) \mathrm{d}B_s - \frac{1}{2}\int_0^t \alpha^2(s) \mathrm{d}s\right),$$

which is a martingale in the present case. Moreover define, for fixed $T \ge 0$, the measure

$$\mathbb{P}(A) := \mathbb{E}[\mathbb{1}_A Z_T], \qquad A \in \mathcal{F}_T.$$

Then the process $(W_t, t \in [0, T])$ is a Brownian motion under $\widetilde{\mathbb{P}}$.

Exercise 3

Let $(B_t)_{t\geq 0}$ be a *d*-dimensional Brownian motion and let $(X_t)_{t\geq 0} = (X_t^{(1)}, \ldots, X_t^{(d)})_{t\geq 0}$ be a solution to the SDE

[5 Pt]

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t \quad t \ge 0, \qquad X_0 = (x^{(1)}, \dots, x^{(d)}) \in \mathbb{R}^d,$$

where we assume (for simplicity) that $b : \mathbb{R}^d \to \mathbb{R}^d$ and $\sigma : \mathbb{R}^d \to \mathbb{R}^{d \times d}$ are bounded and Lipschitz continuous. Determine, for $i, j \in \{1, \ldots, n\}$, the limits

$$\lim_{t \to 0} \frac{1}{t} \mathbb{E} \left[X_t^{(i)} - x^{(i)} \right] \quad \text{and} \quad \lim_{t \to 0} \frac{1}{t} \mathbb{E} \left[(X_t^{(i)} - x^{(i)}) (X_t^{(j)} - x^{(j)}) \right].$$