Institute for Applied Mathematics WS 2023/24 Prof. Dr. Anton Bovier, Manuel Esser

Markov Processes Sheet 6

Due on November 22, 2023

Exercise 1

 $\begin{bmatrix} 4 & Pt \end{bmatrix}$

 $\begin{bmatrix} 8 \ Pt \end{bmatrix}$

Let (S, d) be a Polish space. Let X and Y be S-valued random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where Ω is assumed to be a Polish space. Furthermore, let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra of \mathcal{F} . Suppose that $M \subset C_b(S)$ is separating and countable and that

$$\mathbb{E}[f(X)|\mathcal{G}] = f(Y) \qquad \text{a.s. for all } f \in M.$$

Show that X = Y a.s.

Definition. A set $M \subset C_b(S)$ is called *separating* if whenever μ and ν are probability measures on S and

$$\int_{S} f \, d\mu = \int_{S} f \, d\nu \qquad \text{for all } f \in M,$$

then $\mu = \nu$.

Exercise 2

Suppose $c : \mathbb{R} \to (0, \infty)$ is strictly positive and continuous.

(i) Consider a Feller-Dynkin Markov process whose generator, when restricted to C^2 -functions with compact support, is given by

$$Gf(x) = \frac{1}{2}c(x)f''(x).$$

By applying the martingale problem to an appropriate function, show that if a < x < b and τ is the hitting time of $\{a, b\}$, then

$$\mathbb{E}_x \tau = \int_a^b \frac{2}{c(z)} \frac{(x \wedge z - a)(b - x \vee z)}{b - a} dz$$

Remark. You may suppose that $\tau < \infty$ a.s. (Dont need that really. Rather need that paths are continuous.)

(ii) Use part (i) to show that if τ is the hitting time of 0, then for x > 0, $\mathbb{E}_x \tau < \infty$ if and only if $\int_0^\infty \frac{1}{c(z)} dz < \infty$.

Exercise 3

[8 Pt]

Let B be the one-dimensional Brownian motion, and let τ be the hitting time of 0.

(i) Let the process X_a be defined by

$$X_a(t) = \begin{cases} B(t) & : t < \tau, \\ 0 & : t \ge \tau. \end{cases}$$

Show that the generator $(G_a, D(G_a))$ of X_a is given by

$$G_a f = \frac{1}{2} f''$$
 and $\mathcal{D}(Ga) = \{ f \in C_0([0,\infty)) : f', f'' \in C_0([0,\infty)), f''(0) = 0 \}.$

(ii) Define the operator (G, D(G)) by

$$Gf = \frac{1}{2}f'' \qquad \text{and} \qquad \mathcal{D}(G) = \{f \in C_0([0,\infty)) : f', f'' \in C_0([0,\infty)), f'(0) = f''(0) = 0\}$$

Show that (G, D(G)) is not the generator of a Feller-Dynkin semi-group. Hint: Recall what was the generator of $X_r(t) = |B(t)|, t \ge 0$.