Institute for Applied Mathematics WS 2023/24 Prof. Dr. Anton Bovier, Manuel Esser

Markov Processes Sheet 4

Due on November 8, 2023

Exercise 1

Define the family of operators $P_t, t \in \mathbb{R}_+$, on $C_0(\mathbb{R})$ by $P_t f(x) = f(x+t)$. Show that $P_t, t \in \mathbb{R}_+$, is a strongly continuous contraction semigroup and that its generator $(G, \mathcal{D}(G))$ is given by

$$Gf = f'$$
 and $\mathcal{D}(G) = \{f \in C_0(\mathbb{R}) : f' \in C_0(\mathbb{R})\}.$

Exercise 2

Let B be a one-dimensional Brownian motion and define the so-called *reflected Brownian* motion X by

$$X_t := |B_t|, \quad \forall t \ge 0.$$

Define the family, $P_t, t \in \mathbb{R}_+$, of operators by $P_t f(x) := \mathbb{E}^x[f(X_t)]$ for $f \in C_0(\mathbb{R})$. Show that its generator $(G, \mathcal{D}(G))$ is given by

$$Gf = \frac{1}{2}f''$$
 and $\mathcal{D}(G) = \{f \in C_0([0,\infty)) : f', f'' \in C_0([0,\infty)), f'(0) = 0\}.$

Exercise 3

Let G be the linear operator on $C_0(\mathbb{R})$ defined by

$$Gf = f''' \qquad \text{and} \qquad \mathcal{D}(G) = \{ f \in C_0(\mathbb{R}) : f', f'', f''' \in C_0(\mathbb{R}) \}$$

Show that G is *not* the generator of a strongly continuous contraction semi-group. *Hint:* You may show that Theorem 3.20 (ii) is contradicted if you suppose that G would be the generator of a strongly continuous contraction semi-group.

Exercise 4

Let G be a closed operator on a Banach space B_0 , and let $\rho(G)$ be its resolvent set. Let $\lambda, \mu \in \rho(G)$. Show that the corresponding resolvents $R_{\lambda} = (\lambda - G)^{-1}$ and $R_{\mu} = (\mu - G)^{-1}$ satisfy the resolvent identity.


```
\begin{bmatrix} 5 \ Pt \end{bmatrix}
```

 $\begin{bmatrix} 5 \ Pt \end{bmatrix}$

 $\begin{bmatrix} 5 \ Pt \end{bmatrix}$

 $\begin{bmatrix} 5 \ Pt \end{bmatrix}$