Institute for Applied Mathematics WS 2023/24 Prof. Dr. Anton Bovier, Manuel Esser

Markov Processes Sheet 1

Due on October 18, 2023

Exercise 1

Let $X_n, n \in \mathbb{N}$ be i.i.d random variables with $\mathbb{P}(X_1 = 1) = 1/2 = \mathbb{P}(X_1 = -1)$. Let $S_0 = 0$ and $S_n = \sum_{k=1}^n X_k$ for $n \in \mathbb{N}$.

- 1. Show that $\{S_n\}_{n \in \mathbb{N}_0}$ is a Markov process.
- 2. Compute the generator of S_n .
- 3. Use the martingale problem to show that $\{\frac{1}{3}S_n^3 \sum_{l=1}^n S_l\}_{n \in \mathbb{N}}$ is a martingale.

Exercise 2

 $\begin{bmatrix} 6 & Pt \end{bmatrix}$

 $\begin{bmatrix} 5 \ Pt \end{bmatrix}$

Suppose that P(x, dy) is a transition kernel on a measurable state space (S, \mathcal{B}) , and μ is an invariant measure w.r.t. P. We say that μ satisfies the *detailed balance condition w.r.t.* P iff

$$\int \int \mu(dx) P(x, dy) f(x, y) = \int \int \mu(dy) P(y, dx) f(x, y) \text{ for all measurable } f: S \times S \to \mathbb{R}_+.$$

- a) Show that a measure that satisfies the detailed balance condition is invariant.
- b) Suppose that (X_n) is a stationary Markov chain with one step transition kernel P and with initial distribution μ . Show that $X_n \sim \mu$ for all $n \geq 0$.
- c) Now let $p \in (0, 1)$, and consider a Markov chain with state space \mathbb{Z}_+ and transition probabilities P(x, x + 1) = p for $x \ge 0$, P(x, x 1) = q := 1 p for $x \ge 1$, and P(0, 0) = q.
 - (i) Find a nontrivial invariant measure.
 - (ii) Show that if p < q then there is a unique invariant probability measure.
 - (iii) Show that if $p \ge q$ then an invariant probability measure does not exist.

Exercise 3

A process $(X_n)_{n \in \mathbb{N}}$ is called predictable w.r.t. a filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ if X_n is measurable w.r.t. \mathcal{F}_{n-1} for any $n \in \mathbb{N}$. Show that:

- a) A predictable, discrete-time martingale is almost surely constant.
- b) For a nonnegative martingale $(X_n)_{n \in \mathbb{N}}$ we have almost surely:

$$X_n(\omega) = 0 \quad \Rightarrow \quad X_{n+k}(\omega) = 0 \text{ for all } k \ge 0.$$

Exercise 4

 $\begin{bmatrix} 4 & Pt \end{bmatrix}$

Let $p \in (\frac{1}{2}, 1)$, and consider a Markov chain $(X_n)_{n \in \mathbb{N}}$ with state space \mathbb{Z} and transition probabilities P(x, x + 1) = p and P(x, x - 1) = q := 1 - p for $x \in \mathbb{Z}$. Let

$$u(x) := E_x \left[\sum_{n=0}^{\infty} a^{X_n} \right], \qquad a > 0.$$

Show that $u(x+1) = a \cdot u(x)$.