Institut für angewandte Mathematik Sommersemester 2015

Prof. Dr. Anton Bovier, Lisa Hartung

4. Übungsblatt "Algorithmische Mathematik II, Stochastik für Lehramt"

Abgabe bis Mittwoch 13.05.15 in der Vorlesungspause

1. (Random Walk: Reflektionsprinzip + Ballot Theorem)

Diese Aufgabe zählt doppelt!

Seien $\{X_i\}_{i\geq 1}$ unabhängige, identisch verteilte Zufallsvariablen auf $\Omega=\{-1,1\}$ mit $\mathbb{P}(X_1=1)=\mathbb{P}(X_1=-1)=\frac{1}{2}$. Definiere

$$S_0 \equiv 0$$
 und $S_n \equiv X_1 + \ldots + X_n$

als zufällige Irrfahrt (Random Walk) eines Teilchens auf \mathbb{Z} mit Start in 0. Für $K \in \mathbb{N}$ sei

$$T_K = \min \{ n > 0 \mid S_n = K \}$$

der Zeitpunkt des ersten Besuchs in K. Insbesondere ist T_0 die erste Rückkehrzeit zum Startpunkt. Zeigen Sie, dass

a) die Verteilung von S_n gegeben ist durch

$$\mathbb{P}[S_n = k] = \begin{cases} 0, & \text{falls } n + k \text{ ungerade oder } |k| > n, \\ 2^{-n} \binom{n}{(n+k)/2} & \text{sonst.} \end{cases}$$

b) das Reflexionsprinzip gilt, d.h. für jedes c > 0 erhält man:

$$\mathbb{P}[S_n = K - c, T_K \le n] = \mathbb{P}[S_n = K + c].$$

c) für Verteilung von T_K gilt:

$$\mathbb{P}[T_K < n] = \mathbb{P}[S_n > K] + \mathbb{P}[S_n > K].$$

d) für K > 0:

$$\mathbb{P}[T_0 > n \text{ und } S_n = K] = \mathbb{P}[T_K = n] = \frac{K}{n} \mathbb{P}[S_n = K].$$

e) Bei einer Wahl erhält Kandidat A α Stimmen und Kandidat B β Stimmen, $\beta < \alpha$. Angenommen, die Stimmen werden in "völlig zufälliger" Reihenfolge ausgezählt. Zeigen Sie: Die Wahrscheinlichkeit, dass A während der Stimmenauszählung stets in Führung liegt, beträgt $\frac{\alpha-\beta}{\alpha+\beta}$.

2. (Unabhängigkeit und Zahlentheorie)

Sei s > 1. Die Riemannsche Zeta-Funktion ist definiert durch

$$\zeta(s) \equiv \sum_{n=1}^{\infty} n^{-s}.$$

Sei X auf (Ω, \mathcal{A}, P) eine Zufallsvariable mit Werten in N und Verteilung

$$\mathbb{P}[X=n] = \frac{n^{-s}}{\zeta(s)}.$$

Sei E_m das Ereignis "X ist teilbar durch m". Zeigen Sie:

- a) Für alle $m \in \mathbb{N}$ ist $\mathbb{P}[E_m] = m^{-s}$.
- b) Die Ereignisse E_p , wobei p eine Primzahl ist, sind unabhängig.
- c) Berechnen Sie $\mathbb{P}\left[\bigcap_{p \text{ Primzahl}} E_p^c\right]$, und folgern Sie die Eulersche Formel

$$\frac{1}{\zeta(s)} = \prod_{\substack{p \text{ Primzahl}}} \left(1 - \frac{1}{p^s}\right).$$

- d) Zeigen Sie, dass die Wahrscheinlichkeit, dass X durch keine Quadratzahl außer 1 teilbar ist, gleich $1/\zeta(2s)$ ist.
- e) Sei Y unabhängig von X mit derselben Verteilung, und sei H der größte gemeinsame Teiler von X und Y. Sei B_p das Ereignis, dass X und Y beide durch p teilbar sind. Was hat das Ereignis $\bigcap B_p^c$ mit H zu tun? Zeigen Sie:

$$\mathbb{P}[H=n] = \frac{n^{-2s}}{\zeta(2s)}.$$

3. (Zufällige Polynome)

Seien U, V Zufallsvariablen mit Werten in $\{-1, 1\}$, deren gemeinsame Verteilung bestimmt ist durch

$$\begin{split} \mathbb{P}[U=1] &= \ \mathbb{P}[U=-1] \ = \ \frac{1}{2} \,, \qquad \text{und} \\ \mathbb{P}[V=1|U=1] &= \ \mathbb{P}[V=-1|U=-1] \ = \ \frac{1}{3} \,. \end{split}$$

- a) Mit welcher Wahrscheinlichkeit hat das Polynom $x^2 + Ux + V$ mindestens eine reelle Nullstelle?
- b) Berechnen Sie den bedingten Erwartungswert der größeren Nullstelle von x^2+Ux+V gegeben es gibt mindestens eine reelle Nullstelle.
- c) Mit welcher Wahrscheinlichkeit hat das Polynom $x^2 + (U+V)x + U + V$ mindestens eine reelle Nullstelle?