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Abstract. We study the heat equation on time-dependent metric measure spaces (as well as
the dual and the adjoint heat equation) and prove existence, uniqueness and regularity. Of
particular interest are properties which characterize the underlying space as a super-Ricci flow
as previously introduced by the second author [51]. Our main result yields the equivalence of

. dynamic convexity of the Boltzmann entropy on the (time-dependent) L2-Wasserstein
space

. monotonicity of L2-Kantorovich-Wasserstein distances under the dual heat flow acting on
probability measures (backward in time)

. gradient estimates for the heat flow acting on functions (forward in time)

. a Bochner inequality involving the time-derivative of the metric.
Moreover, we characterize the heat flow on functions as the unique forward EVI-flow for the
(time-dependent) energy in L2-Hilbert space and the dual heat flow on probability measures as
the unique backward EVI-flow for the (time-dependent) Boltzmann entropy in L2-Wasserstein
space.
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1. Introduction and Statement of Main Results

1.1. Introduction. The present paper has two main objectives

(i) to define and study the heat flow on time-dependent metric measure spaces
(ii) to characterize super-Ricci flows of metric measure spaces by properties of optimal trans-

ports and heat flows.

The former is regarded as the ‘parabolic’ analogue to the analysis of heat flow, optimal transport,
and functional inequalities on ‘static’ metric measure spaces. The latter should be considered
as a first contribution to a theory of Ricci flows of metric measure spaces. Our approach will
combine and extend two previous – hitherto unrelated – lines of developments: the analysis
on (‘static’) metric measure spaces and the analysis on (‘smooth’) time-dependent Riemannian
manifolds.

Heat flow on (‘static’) metric measure spaces. The heat equation is one of the most fundamental
and well studied PDEs on Riemannian manifolds. It is intimately linked to other important
objects like Dirichlet energy, Boltzmann entropy, optimal transport, and Brownian motion. On
one hand, it is a very robust object and admits an integral representation in terms of the heat
kernel. Without any extra assumptions, its existence and basic properties are always guaranteed.
On the other hand, its more subtle properties reveal deep informations on the underlying space,
like curvature, genus, index etc.

Within the last decades, the heat flow was also successfully studied on more general spaces, in
particular, on metric measure spaces [14, 21, 47, 49]. The foundational work of Ambrosio, Gigli
and Savaré [4, 5, 6] clarified the picture, allowed to unify various of the previous approaches, and
made clear that for each metric measure space (X, d,m) with

∫
exp

(
− Cd2(x, z)

)
dm(x) < ∞

(for some C, z) there exists a unique solution to the heat equation, most conveniently defined as
gradient flow in L2(X,m) for the Dirichlet energy (‘Cheeger energy’) E(u) =

∫
X |∇u|2 dm.

Synthetic lower Ricci bounds. The heat flow on Riemannian manifolds – and more generally on
metric measure spaces – turned out to be a powerful tool for characterizing (synthetic) lower
bounds on the Ricci curvature. Such curvature bounds are indeed necessary and sufficient for
various important properties of the heat flow t 7→ Ptu. Moreover, they imply that t 7→ (Ptu)m
is the gradient flow for the Boltzmann entropy S(um) =

∫
u log u dm in the space P(X) of

probability measures equipped with the L2-Kantorovich-Wasserstein distance W . For instance,
nonnegative Ricci curvature is equivalent to

. the gradient estimate |∇Ptu|2 ≤ Pt|∇u|2

. the existence of coupled pairs of Brownian motions with d(Xt, Yt) ≤ d(X0, Y0)

. the transport estimate W
(
(Ptu)m, (Ptv)m

)
≤W

(
um, vm

)
. the convexity of the Boltzmann entropy S on the geodesic space (P(X),W ).

Indeed, in the Lott-Stum-Villani approach to synthetic lower Ricci bounds [50, 38] the latter
property was used to define nonnegative Ricci curvature for metric measure spaces. Further-
more, the previous properties – gradient estimate, coupling property of Brownian motions, and
transport estimate – illustrate the effect of nonnegative Ricci curvature in a very graphical way,
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well suited for applications and modeling, and also perfectly make sense in discrete settings, cf.
Ollivier [41], Tannenbaum et al. [19], Sandhu et al. [46].

Heat flow on time-dependent metric measure spaces. New phenomena emerge and novel chal-
lenges arise for the heat flow if the underlying geometric objects (Riemannian manifolds, metric
measure spaces) will vary in time, e.g. if they will change their ‘shape’ or ‘material properties’.
This might result from exterior forces or from an interior dynamic, like mean curvature flow or
Ricci flow. To model such time-dependent geometric objects, one typically considers families
(M, gt)t∈I consisting of a manifold M and a one-parameter family of metric tensors gt, t ∈ I ⊂ R.
We will consider more generally time-dependent metric measure spaces (X, dt,mt)t∈I consisting
of a Polish space X equipped with one-parameter families of metrics (= distance functions) dt
and measures mt, t ∈ I. The main question to be addressed are:

(a) In which generality does existence and uniqueness hold for solutions to the heat equation
on time-dependent metric measure spaces?

(b) Is the heat flow the gradient flow for the energy? Does it coincide with the gradient flow
for the entropy?
More generally: is there a meaningful concept of gradient flows for time-dependent
functionals on time-dependent geodesic spaces?

(c) What is the time-dependent counterpart to nonnegative Ricci curvature or, more gener-
ally, to the CD(0,∞)-condition?
More precisely: which kind of curvature bound is necessary and/or sufficient for (the
time-dependent counterpart to) the gradient estimate? Which for the corresponding
transport estimate?
Is there a synthetic version of such a curvature bound?

In contrast to the static case, until now nothing seemed to be known for the heat flow on general
time-dependent metric measure spaces.

For time-dependent Riemannian manifolds (M, gt)t∈I – with smoothly varying, non-degenerate
gt – question (a) allows for an easy, affirmative answer. Surprisingly enough, Brownian motion
was constructed only recently [8, 16]. Question (b) was unsolved so far. McCann/Topping 2010
[39], Arnaudon/Coulibaly/Thalmaier [9], and Haslhofer/Naber [24] proved that the first three
questions in (c) have one common answer:

Ricgt +
1

2
∂tgt ≥ 0. (1)

Finally, in [51] the second author presented a synthetic definition for the latter, formulated as
‘dynamic convexity’ of the Boltzmann entropy St in the Wasserstein space (P(X),Wt).

The current paper, regarded as accompanying paper to [51], will provide complete answers to
the previous questions in the setting of time-dependent metric measure spaces. We will prove
existence, uniqueness, and regularity results for the heat equation and its dual. The former
will be identified as the forward gradient flow for the Dirichlet energy Et in L2(X,mt), the
latter as the backward gradient flow for the Boltzmann entropy St in (P(X),Wt). A general
discussion on gradient flows for time-dependent functionals on time-dependent geodesic spaces
will be included. Our main result provides a comprehensive characterization of super Ricci flows
(X, dt,mt)t∈I by the equivalence of dynamic convexity of the Boltzmann entropy, monotonicity
of transport estimates under the dual heat flow, monotonicity of gradient estimates under the
primal heat flow, and the time-dependent Bochner inequality.

In the static case, synthetic lower Ricci bounds will play its role to the full only in combination
with an upper bound on the dimension which led to the formulation of the so-called curvature-
dimension condition CD(K,N). The time-dependent counterpart to the CD(K,N)-condition
will be so-called super-(K,N)-Ricci flows. Taking into account the role of the parameter N ∈ R+

requires quite some effort. However, we expect this to be worth for future applications. The
case K 6= 0, however, can be reduced to the case K = 0 by means of a simple scaling of space
and time, see Theorem 1.11. To simplify the presentation, throughout this paper we thus will
restrict ourselves to the curvature bound K = 0.



4 EVA KOPFER, KARL-THEODOR STURM

Ricci flows, Super-Ricci flows, and Super-N -Ricci flows. Given a manifold M and a smooth
1-parameter family (gt)t∈I of Riemannian tensors on M , we say that the ‘time-dependent Rie-
mannian manifold’ (M, gt)t∈I evolves as a Ricci flow if Ricgt = −1

2∂tgt for all t ∈ I. It is called

super-Ricci flow if instead only Ricgt ≥ −1
2∂tgt holds true on M×I (regarded as inequalities be-

tween quadratic forms on the tangent bundle of (M, gxt ) for each (x, t) ∈M×I). In other words,
super-Ricci flows are ‘super-solutions’ to the Ricci flow equation and Ricci flows are ‘minimal’
super-Ricci flows.

Thanks to the groundbreaking work of Hamilton [22, 23] and Perelman [42, 44, 43], see also
[13, 26, 40], Ricci flow has attracted lot of attention and has proved itself as a powerful tool
and inspiring source for many new developments. Currently, one of the major challenges is to
extend the theory of Ricci flows and the scope of its applications beyond the setting of smooth
Riemannian manifolds. In particular, one aims to define and analyze (‘Ricci’) flows through
singularities and to study evolutions of spaces with changing dimension and/or topological type.
Kleiner/Lott [27] and Haslhofer/Naber [24] presented notions of singular and weak solutions for
Ricci flows. In [24], Ricci flows of ‘regular’ (i.e. smooth with uniform bounds on curvature and
derivatives of it) time-depending Riemannian manifolds (M, gt)t∈I of arbitrary dimension are
characterized by means of functional inequalities on the path space (spectral gap or logarithmic
Sobolev inequalities for the Ornstein Uhlenbeck operator). In [27], Ricci flow of ‘singular’ 3-
dimensional Riemannian manifolds (M, gt)t∈I (regarded as 4-dimensional Ricci flow spacetimes)
is defined and analyzed in detail, allowing also for Ricci flows through singularities.

Compared to Ricci flows, super-Ricci flows allow for a much larger classes of examples. This
is an advantage if one is interested in analysis (e.g. functional inequalities, heat kernel estimates,
etc.) on huge classes of singular spaces or if one tries to extend tools and insights from the study
of ‘classical’ Ricci flows to more general time evolutions of geometric objects. It is a disadvantage
if one aims for uniqueness results or for properties close to those of Ricci flows. The defining
property of super-Ricci flows for mm-spaces (X, dt,mt)t contains no constraint on the evolution
of the measures mt but only a lower bound on the evolution of the distances dt. Moreover,
super-Ricci flows can increase the dimension in order to match the constraint imposed by the
lower bound on the Ricci curvature. These distracting effects can be ruled out by considering
the more restrictive class of ‘super-N -Ricci flows’. A time-dependent weighted n-dimensional
Riemannian manifold (M, gt, e

−ftdvolgt)t, for instance, is a super-n-Ricci flow if and only if gt
satisfies (1) and if ft is constant for each t, see Theorem 2.9 in [51].

In [51], the second author of this paper presented a synthetic definition for super-N -Ricci
flows in the general setting of time-dependent metric measure spaces. Work in progress deals
with synthetic upper Ricci bounds [52] which – in combination with the former – then also will
allow for characterizations of ‘Ricci flows’ of mm-spaces. For most of our results, we request
a controlled t-dependence for dt and mt. Of course, this is a severe limitation and rules out
various challenging applications. Even more, one might wish to replace X by varying Xt, e.g.
allowing for changing topological type. However, in contrast to the static case, so far there
are no existence and uniqueness results for the heat flow on time-dependent mm-spaces which
hold in ‘full generality’. The current paper will lay the foundations for further work devoted to
enlarge the scope and to include singularities and degenerations.

1.2. Some Examples. Let us give some motivating examples of super-Ricci flows as defined
in [51, Definition 2.4]. We also discuss whether they are super-N -Ricci flows or Ricci flows.

Example 1.1 (‘Vertebral column’). Consider a surface of revolution with piecewise constant
negative curvature Ric = −Kg for some K > 0 depicted in Figure 1. Under the evolution of a
Ricci flow the curvature of the surface where Ric = −Kg will increase, while the curvature of
the “rims” (Ric = +∞) will decrease. In this sense the region of negative curvature will inflate,
while the edges will smooth out. Under the evolution of a super-Ricci flow the surface inflates
as well but it may keep the edges – or it may start to smoothen them at any later time or with
smaller speed.
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Ric=-KRic=+∞

Figure 1. Surface of revolution of a piecewise hyperbolic space

Example 1.2 (‘Wandering Gaussian’). Let X = Rn, dt(x, y) = ‖x− y‖ and mt = e−VtLebn with

Vt(x) = 〈x, αt〉2 + 〈x, βt〉+ γt

where α, β : I → Rn and γ : I → R are arbitrary functions. Then (X, dt,mt)t∈I is a super-Ricci
flow. For each N ∈ [n,∞) it will be a super-N -Ricci flow if and only if α ≡ β ≡ 0.

Example 1.3 (‘Exploding point’). Let (M, g0) be a compact, n-dimensional Riemannian manifold
of constant Ricci curvature −Kg0 < 0 (e.g. a compact quotient of a hyperbolic space) and put

gt =

{
(1 + 2Kt)g0, t > t∗
0, t ≤ t∗

for t∗ = − 1
2K . Let (X, dt,mt)t∈R be the induced time-dependent mm-space with normalized

volume mt where (X, dt) for t ≤ t∗ will be identified with a 1-point space (and mt with the
Dirac mass in this point), see also Firgure 2. Then this is a super-Ricci flow – provided we
slightly enlarge the scope of [51] to also admit degenerate distances dt (or varying spaces Xt).
It will be no super-N -Ricci flow for N < n.

({p}, 0, δp)

(M,dg0 ,mg0)

t*

0

t

Figure 2. Point exploding to a hyperbolic quotient

More generally, consider (M, gt) = (M ′ × M, g′ ⊗ gt) with (M ′, g′) being a compact n′-
dimensional Ricci-flat Riemannian manifold. Then the induced time-dependent mm-space is a
super-Ricci flow but no super-N -Ricci flow for N < n′ + n. For any N ∈ [n′, n′ + n), up to
isometry the only super-N -Ricci flow which coincides with the given mm-space for t ≤ t∗ is the
static mm-space induced by (M ′, g′).
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Example 1.4 (‘Singular suspension’). Consider the product M × [0, π], where M = S2(1/
√

3)×
S2(1/

√
3) and S2(r) denotes the 2-dimensional sphere with radius r. We contract each of the

fibers S := M ×{0} and N := M ×{π} to a point, the ‘south’ and the ‘north pole’, respectively.
The resulting space is called spherical suspension and is denoted by Σ(M). We endow Σ(M)
with the measure dm̂(x, s) := dm(x)⊗ (sin4 s ds) and the metric dΣ(M) defined by

cos(dΣ(M)((x, s), (x
′, s′))) := cos s cos s′ + sin s sin s′ cos(d(x, x′) ∧ π),

where m and d are the volume and metric of M and where (x, s), (x′, s′) ∈M × [0, π]. Since M
is a RCD∗(3, 4) space, the cone of it is a RCD∗(4, 5) space [25].

The punctured cone Σ0 := Σ(M) \ {S,N} is an incomplete 5-dimensional Riemannian man-
ifold. Let g0 denote the metric tensor of Σ0. The curvature of the punctured cone can be
calculated explicitly and is given by Ric(g0) = 4g0. Then g(t) := (1− 8t)g0 defines a solution to
the Ricci flow Ric(gt) = −1

2∂tgt with g(0) = g0, which collapses to a point at time T = 1
8 .

We claim that the associated metric measure space (Σ(M), dΣ(M)(t), m̂t)t∈I for I = (0, T ) is
a super-Ricci flow. Fix t ∈ I and let µ0, µ1 ∈ Dom(St) on Σ(M) be given. Let (µa)a∈[0,1] be
a Wt-geodesic connecting µ0, µ1. Then, µa = (ea)∗ν, where ν is an optimal path measure, i.e.
a probability measure on the dt-geodesics Γ(Σ(M)) of Σ(M) such that (e0, e1)∗ν is an optimal
coupling of (e0)∗ν = µ0, (e1)∗ν = µ1, where ea : Γ(Σ(M))→ Σ(M) denotes the evaluation map.
According to Theorem 3.3 in [10] every optimal path measure ν will give no mass to dt-geodesics
through the poles. Hence we can omit the dt-geodesics through the poles without changing the
Wt-geodesics. Since the punctured cone (Σ0, gt)t∈I is a Ricci flow, and in particular a super-Ricci
flow in the sense of Definition 2.4 in [51], the metric measure space (Σ(M), dΣ(M)(t), m̂t)t∈I is a
super-Ricci flow as well.

Let us emphasize that for each t ∈ [0, 1/8) the sectional curvature of the punctured spherical
cone Σ0 is neither bounded from below nor from above. Indeed, for x, y ∈ S2(1/

√
3) and

0 < r < π an orthonormal basis of the tangent space T(x,y,r)Σ0 is given by {û1, û2, v̂1, v̂2, ŵ}
where ûi = 1

sin r (ui, 0, 0), v̂i = 1
sin r (0, vi, 0), ŵ = (0, 0, 1) and u1, u2 is an orthonormal basis

of Tx(S2(1/
√

3)) and v1, v2 is an orthonormal basis of Ty(S
2(1/
√

3)). Then for the sectional
curvature we find

Sec(x,y,r)(û1, û2) =
3− cos2 r

sin2 r
, Sec(x,y,r)(û1, v̂1) = −cos2 r

sin2 r

Sec(x,y,r)(û1, v̂2) = −cos2 r

sin2 r
, Sec(x,y,r)(û1, ŵ) = 1,

and analogously if we replace û1 by the vectors û2, v̂1, v̂2. This implies in particular that
Ric(x,y,r)(ξ, ξ) = 4, but for r → 0 and r → π, Sec(x,y,r)(û1, û2) → +∞ and Sec(x,y,r)(û1, v̂i) →
−∞.

Let us also point out ongoing work [18] indicating that (Σ(M), dΣ(M)(t), m̂t)t∈I will not be a
Ricci flow in the sense of [52].

1.3. Main Results.

The setting. Throughout this introductory chapter, we fix a time-dependent metric measure
space

(
X, dt,mt

)
t∈I where I = (0, T ) and X is a compact space equipped with one-parameter

families of geodesic metrics dt and Borel measures mt. We always assume the measures mt are
mutually absolutely continuous with bounded, Lipschitz continuous logarithmic densities and
that the metrics dt are uniformly bounded and equivalent to each other with∣∣∣∣log

dt(x, y)

ds(x, y)

∣∣∣∣ ≤ L · |t− s| (2)

(‘log Lipschitz continuity’). Moreover, we assume that for each t the static space (X, dt,mt) sat-
isfies a Riemannian curvature-dimension condition in the sense of [2], [17]. (In various respects,
the latter is not really a restriction, see Remark 1.13.)
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Thus for each t under consideration, there is a well-defined Laplacian ∆t on L2(X,mt) char-
acterized by −

∫
X ∆tu v dmt = Et(u, v) where the Dirichlet energy

Et(u, u) =

∫
X
|∇tu|2dmt = lim inf

v→u in L2(X,mt)

v∈Lip(X,dt)

∫
X

(liptv)2 dmt

is defined either in terms of the minimal weak upper gradient |∇tu| of u ∈ L2(X,mt) or alter-
natively in terms of the pointwise Lipschitz constant liptv(.).

Heat equation. Our first important result concerns existence and uniqueness for solutions to the
heat equation – as well as for the adjoint heat equation – on the time-dependent metric measure
space (X, dt,mt)t∈I . Moreover, it yields regularity of solutions and representation as integrals
w.r.t. a heat kernel. See Theorems 3.3 and 3.5 for the precise formulations in slightly more
general context.

Theorem 1.5. There exists a heat kernel p on {(t, s, x, y) ∈ I2×X2 : t > s}, Hölder continuous
in all variables and satisfying the propagator property pt,r(x, z) =

∫
pt,s(x, y)ps,r(y, z) dms(y),

such that

(i) for each s ∈ I and h ∈ L2(X,ms)

(t, x) 7→ Pt,sh(x) :=

∫
pt,s(x, y)h(y) dms(y)

is the unique solution to the heat equation

∂tut = ∆tut on (s, T )×X
with us = h;

(ii) for each t ∈ I and g ∈ L2(X,mt)

(s, y) 7→ P ∗t,sg(y) :=

∫
pt,s(x, y)g(x) dmt(x)

is the unique solution to the adjoint heat equation

∂svs = −∆svs + ḟs · vs on (0, t)×X
with vt = g. Here ḟs = −∂t

(
dmt
dms

)∣∣
t=s
.

Many properties which are self-evident for the heat semigroup on static mm-spaces (e.g.
“operator and semigroup commute” or “the semigroup maps L2 into the domain of the operator”)
no longer hold true for the heat propagator on time-dependent mm-spaces – or require detailed,
sophisticated proofs. Let us emphasize here that in general Dom(∆t) will depend on t.

We derive various important L2-properties and estimates – partly in the more general setting
of heat flows for time-dependent Dirichlet forms – the most prominent of them being the EVI-
characterization, the energy estimate and the commutator lemma.

Theorem 1.6. (i) The heat flow is uniquely characterized as the dynamic forward EVI(−L/2,∞)-
flow for 1

2× the Dirichlet energy on L2(X,mt)t∈I in the following sense: for all solutions
(ut)t∈(s,τ) to the heat equation, for all τ ≤ T and all w ∈ Dom(E)

−1

2
∂+
s

∥∥us − w∥∥2

s,t

∣∣∣
s=t

+
L

4
·
∥∥us − w∥∥2

s,t
≥ 1

2
Et(ut)−

1

2
Et(w).

(ii) For all s ∈ (0, T ) and u ∈ Dom(Es)
Pt,su ∈ Dom(∆t) for a.e. t > s

and
∫ τ
s e
−3L(t−s) ∫ |∆tPt,su|2dmt dt ≤ 1

2Es(u) for all τ > s..

(iii) For all σ < τ , all u, v ∈ L2 and a.e. s, t ∈ (σ, τ) with s < t∫ [
∆tPt,sus − Pt,s∆sus

]
vt dmt ≤ C ·

√
t− s

where us = Ps,σu, vt = P ∗τ,tv.
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We define the dual heat flow P̂t,s : P(X)→ P(X) by

(P̂t,sµ)(dy) =

[∫
pt,s(x, y) dµ(x)

]
ms(dy).

In particular, (P̂t,sδx)(dy) = pt,s(x, dy) and P̂t,s
(
g ·mt

)
=
(
P ∗t,sg

)
·ms.

Characterization of super-Ricci flows. In [51], the second author has introduced and analyzed
the notion of super-Ricci flows for time-dependent metric measure (X, dt,mt)t∈I . The defining
property of the latter is the so-called dynamic convexity of the Boltzmann entropy S : I ×P →
(−∞,∞] with

St(µ) =

∫
u log u dmt if µ = umt

and St(µ) =∞ if µ 6� mt. Here P = P(X) will denote the space of probability measures on X,
equipped with time-dependent Kantorovich-Wasserstein distances Wt induced by dt, t ∈ I. This
property was proven to be stable under an appropriate space-time version of measured Gromov-
Hausdorff convergence and suitably bounded families of super-Ricci flows were shown to be
compact – a far reaching analogue to the stability and compactness results in the Lott-Sturm-
Villani theory of metric measure spaces with synthetic lower Ricci bounds. Furthermore, in
the case of time-dependent Riemannian manifolds this novel, synthetic definition of super-Ricci
flows was proven to be equivalent to the classical one: Ricgt + 1

2∂tgt ≥ 0.

The main goal of the current paper is to characterize super-Ricci flows in terms of the heat
flow (acting on functions, forward in time) and of the dual heat flow (acting on probability
measures, backward in time). Our first result in this direction is a complete analogue to the
characterization of synthetic lower Ricci bounds in the sense of Lott-Sturm-Villani for ‘static’
metric measure spaces derived by Ambrosio, Gigli, Savaré [6].

Theorem 1.7. The following assertions are equivalent:

(I) For a.e. t ∈ (0, T ) and every Wt-geodesic (µa)a∈[0,1] in P with µ0, µ1 ∈ Dom(S)

∂+
a St(µ

a)
∣∣
a=1− − ∂

−
a St(µ

a)
∣∣
a=0+

≥ −1

2
∂−t W

2
t−(µ0, µ1) (3)

(‘dynamic convexity’).
(II) For all 0 ≤ s < t ≤ T and µ, ν ∈ P

Ws(P̂t,sµ, P̂t,sν) ≤Wt(µ, ν) (4)

(‘transport estimate’).
(III) For all u ∈ Dom(E) and all 0 < s < t < T∣∣∇t(Pt,su)

∣∣2 ≤ Pt,s(|∇su|2) (5)

(‘gradient estimate’).
(IV) For all 0 < s < t < T and for all us, gt ∈ F with gt ≥ 0, gt ∈ L∞, us ∈ Lip(X) and for

a.e. r ∈ (s, t)

Γ2,r(ur)(gr) ≥
1

2

∫
•
Γr (ur)grdmr (6)

(‘dynamic Bochner inequality’ or ‘dynamic Bakry-Emery condition’) where ur = Pr,sus
and gr = P ∗t,rgt. Moreover, the following regularity assumption is satisfied:

ur ∈ Lip(X) for all r ∈ (s, t) with sup
r,x

liprur(x) <∞. (7)

Here and in the sequel

Γ2,r(ur)(gr) :=

∫ [1

2
Γr(ur)∆rgr + (∆rur)

2gr + Γr(ur, gr)∆rur

]
dmr
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denotes the distribution valued Γ2-operator (at time r) applied to ur and tested against gr and

•
Γr (ur) := w- lim

δ→0

1

δ

(
Γr+δ(ur)− Γr(ur)

)
denotes any subsequential weak limit of 1

2δ

(
Γr+δ − Γr−δ

)
(ur) in L2((s, t)×X).

EVI characterization of the dual heat flow. Recall that we started with the heat equation (acting
on functions, forward in time) as a forward gradient flow for the time-dependent Dirichlet energy.
By duality, we defined the dual heat flow (acting on probability measures, backward in time).
This turns out to be the backward gradient flow for the Boltzmann entropy – in a very precise,
strong sense – and it is the only one with this property.

Theorem 1.8. Each of the assertions of the previous Theorem implies that the dual heat flow
t 7→ µt = P̂τ,tµ is the unique dynamical (backward) EVI−-gradient flow for the Boltzmann
entropy S in the following sense:
For every µ ∈ Dom(S) and every τ < T the absolutely continuous curve t 7→ µt satisfies

1

2
∂−s W

2
s,t(µs, σ)

∣∣
s=t− ≥ St(µt)− St(σ)

for all σ ∈ Dom(S) and all t ≤ τ .

Characterization of super-N -Ricci flows. For static metric measure spaces, it turned out that
many powerful applications of synthetic lower bounds on the Ricci curvature are available only
in combination with some synthetic upper bound on the dimension. This led to the so-called
curvature-dimension condition CD(K,N). In a similar spirit, in [51] the notion of super-Ricci
flows for time-dependent metric measure spaces was tightened up towards super-N -Ricci flows.

We aim to characterize super-N -Ricci flows in terms of the heat flow, the dual heat flow, and
the time-dependent Bochner inequality. Our main result provides a complete characterization,
analogous to the proof of the equivalence of the curvature-dimension condition of Lott-Stum-
Villani and the Bochner inequality of Bakry-Émery for ‘static’ metric measure spaces derived
by Erbar, Kuwada, and the second author [17].

Theorem 1.9. For each N ∈ (0,∞) the following are equivalent:

(IN) For a.e. t ∈ (0, T ) and every Wt-geodesic (µa)a∈[0,1] in P with µ0, µ1 ∈ Dom(S)

∂+
a St(µ

a)
∣∣
a=1− − ∂

−
a St(µ

a)
∣∣
a=0+

≥ −1

2
∂−t W

2
t−(µ0, µ1) +

1

N

∣∣St(µ0)− St(µ1)
∣∣2. (8)

(IIN) For all 0 ≤ s < t ≤ T and µ, ν ∈ P

W 2
s (P̂t,sµ, P̂t,sν) ≤W 2

t (µ, ν)− 2

N

∫ t

s

[
Sr(P̂t,rµ)− Sr(P̂t,rν)

]2
dr. (9)

(IIIN) For all u ∈ Dom(E) and all 0 < s < t < T∣∣∇t(Pt,su)
∣∣2 ≤ Pt,s(|∇s(u)|2

)
− 2

N

∫ t

s

(
Pt,r∆rPr,su

)2
dr. (10)

(IVN) For all 0 < s < t < T and for all us, gt ∈ F with gt ≥ 0, gt ∈ L∞, us ∈ Lip(X) the
regularity assumption (7) is satisfied and for a.e. r ∈ (s, t)

Γ2,r(ur)(gr) ≥
1

2

∫
•
Γr (ur)grdmr +

1

N

(∫
∆rurgrdmr

)2
(11)

(‘dynamic Bochner inequality’ or ‘dynamic Bakry-Emery condition’) where ur = Pr,sus
and gr = P ∗t,rgt.

Remark 1.10. a. In (IN), the requested property for a.e. t will imply that it holds true for
all t ∈ (0, T ).
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b. The transport estimate (IIN) implies the ‘stronger’ property

W 2
s (P̂t,sµ, P̂t,sν) ≤W 2

t (µ, ν)− 2

N

∫ t

s

∫ 1

0

(
∂aSr(ρ

a
r)
)2
da dr

where (ρar)a denotes the Wr-geodesic connecting P̂r,tµ and P̂r,tν.
c. Under slightly more restrictive assumptions on (X, dt,mt) – namely, C1-dependence of
t 7→ log dt instead of Lipschitz continuity – in subsequent work of the first author [29] a
refined version of the dynamic Bochner inequality (IVN) will be deduced with estimate
(11) for every r and all ur, gr in respective domains – without requiring that they are
solutions to heat and adjoint heat equations, resp.

d. Note that the regularity assumption (7) in our formulation of the dynamic Bochner
inequality is not really a restriction. Indeed, such an estimate with C = 2(K + L) will
always follow from the log-Lipschitz bound (2) and the RCD(−K,∞)-condition for the
static mm-spaces (X, dt,mt).

Super-(K,N)-Ricci flows. A more general version of the previous Theorem will deal with the
equivalences to dynamic (K,N)-convexity of the Boltzmann entropy as introduced in [51]. To
simplify the presentation, however, we will restrict ourselves here to the case K = 0. Indeed, we
would not expect new challenges or novel insights from the more general case (K,N) since this
can be easily transformed into the case (0, N) by means of a simple rescaling time and space.

Theorem 1.11. Assume that the time-dependent mm-space (X, dt,mt)t∈I is super-(K,N)-Ricci
flow in the sense that for a.e. t ∈ I and every Wt-geodesic (µa)a∈[0,1] in P with µ0, µ1 ∈ Dom(S)

∂+
a St(µ

a)
∣∣
a=1− − ∂

−
a St(µ

a)
∣∣
a=0+

≥ −1

2
∂−t W

2
t−(µ0, µ1) +

1

N

∣∣St(µ0)− St(µ1)
∣∣2

+KW 2
t (µ0, µ1). (12)

Then for each C ∈ R the time-dependent mm-space (X, d̃t, m̃t)t∈Ĩ is a super-N -Ricci flow if we
put

d̃t = e−Kτ(t)dτ(t), m̃t = mτ(t), τ(t) =
−1

2K
log(C − 2Kt)

and Ĩ = {τ(t) : t ∈ I, 2Kt < C}.

Proof. Put d̃ = e−Kτ(t)dτ(t). Then every W̃t-geodesic will be a Wτ(t)-geodesic. Therefore, the

transformation d 7→ d̃ will not change the term 1
N

∣∣St(µ0)−St(µ1)
∣∣2 nor the term ∂+

a St(µ
a)
∣∣
a=1−−

∂−a St(µ
a)
∣∣
a=0+

in (12). Moreover,

1

2
∂−t W̃

2
t−(µ0, µ1) = e−2Kτ(t)

[
−K∂tτ(t) ·Wτ(t) +

(
∂−t W.

)(
τ(t)−

)
· ∂tτ(t)

]
·Wτ(t)

= e−2Kτ(t) · ∂tτ(t) ·
[
−K ·W 2

. +
1

2
∂−t W

2
.

](
τ(t)−

)
=

[
−K ·W 2

. +
1

2
∂−t W

2
.

](
τ(t)−

)
.

Thus (12) implies

1

2
∂−t W̃

2
t−(µ0, µ1) =

[
−K ·W 2

. +
1

2
∂−t W

2
.

](
τ(t)−

)
≥ −∂+

a Sτ(t)(µ
a)
∣∣
a=1− + ∂−a Sτ(t)(µ

a)
∣∣
a=0+

+
1

N

∣∣Sτ(t)(µ
0)− Sτ(t)(µ

1)
∣∣2

which proves the dynamic N -convexity of S̃ and thus the super-N -Ricci flow property of
(X, d̃t, m̃t)t∈Ĩ . �

Corollary 1.12. For each N ∈ (0,∞) and K ∈ R the following are equivalent:
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(IK,N) For a.e. t ∈ (0, T ) and every Wt-geodesic (µa)a∈[0,1] in P with µ0, µ1 ∈ Dom(S)

∂+
a St(µ

a)
∣∣
a=1− − ∂

−
a St(µ

a)
∣∣
a=0+

≥ −1

2
∂−t W

2
t−(µ0, µ1) +K ·W 2

t (µ0, µ1)

+
1

N

∣∣St(µ0)− St(µ1)
∣∣2. (13)

(IIK,N) For all 0 ≤ s < t ≤ T and µ, ν ∈ P

e−2KsW 2
s (P̂t,sµ, P̂t,sν) ≤ e−2KtW 2

t (µ, ν)− 2

N

∫ t

s
e−2Kr

[
Sr(P̂t,rµ)− Sr(P̂t,rν)

]2
dr. (14)

(IIIK,N) For all u ∈ Dom(E) and all 0 < s < t < T

e2Kt
∣∣∇t(Pt,su)

∣∣2 ≤ e2KsPt,s
(
|∇s(u)|2

)
− 2

N

∫ t

s
e2Kr

(
Pt,r∆rPr,su

)2
dr. (15)

(IVK,N) For all 0 < s < t < T and for all us, gt ∈ F with gt ≥ 0, gt ∈ L∞, us ∈ Lip(X) the
regularity assumption (7) is satisfied and for a.e. r ∈ (s, t)

Γ2,r(ur)(gr) ≥
1

2

∫
•
Γr (ur)grdmr +K

∫
Γr(ur)grdmr +

1

N

(∫
∆rurgrdmr

)2
(16)

where ur = Pr,sus and gr = P ∗t,rgt.

Proof. As in the proof of the previous Theorem, consider the time-dependent mm-space (X, d̃t, m̃t)t∈Ĩ
with d̃t = e−Kτ(t)dτ(t), m̃t = mτ(t) and Ĩ = {τ(t) : t ∈ I, 2Kt < C} where τ(t) = −1

2K log(C −
2Kt). Then

W̃ 2
t = e−2KτW 2

τ , Γ̃t = e2KτΓτ , ∆̃t = e2Kτ∆τ , Γ2,t = e2KτΓ2,τ , τ̇t = e2Kτ .

Moreover, P̃t,s = Pτ(t),τ(s). Thus each of the statements (IN ) – (IVN ) for (X, d̃t, m̃t)t∈Ĩ obviously
is equivalent to the corresponding statement (IK,N ) – (IVK,N ) for (X, dt,mt)t∈I . For instance,

the equivalence “(IIN ) for (X, d̃t, m̃t) ⇔ (IIK,N ) for (X, dt,mt)” follows from the fact that

e−2KτW 2
τ − e−2KσW 2

σ = W̃ 2
t − W̃ 2

s

for τ = τ(t) and σ = τ(s) and

2

N

∫ t

s

[
S̃r(

ˆ̃Pt,rµ)− Sr( ˆ̃Pt,rν)
]2
dr =

2

N

∫ τ

σ
e−2Kr

[
Sr(P̂t,rµ)− Sr(P̂t,rν)

]2
dr.

�

Discussion of standing assumptions. Let us briefly comment on the assumptions which we im-
posed throughout this introduction and for major parts of this paper.

Let us start with the discussion on the a priori assumption that each of the static spaces
satisfies a Riemannian curvature-dimension condition.

Remark 1.13. Given a time-dependent mm-space (X, dt,mt)t∈I which satisfies all the assump-
tions mentioned in the beginning of this chapter but no Riemannian curvature-dimension con-
dition is requested. Instead of that, each static mm-space (X, dt,mt) is merely assumed to be
infinitesimally Hilbertian and St is requested to be absolutely continuous along Wt-geodesics.

Then assertion (IN) of the Main Theorem 1.9 implies that for a.e. t ∈ I the static space

(X, dt,mt) satisfies a RCD∗(−L,N) condition.

Proof. (IN) together with the log-Lipschitz bound (2) implies that along all Wt-geodesics

∂+
a St(µ

a)
∣∣
a=1− − ∂

−
a St(µ

a)
∣∣
a=0+

≥ −L ·W 2
t (µ0, µ1) +

1

N

∣∣St(µ0)− St(µ1)
∣∣2.

In combination with the absolute continuity of a 7→ St(µ
a) this yields the RCD∗(−L,N)-

condition, cf. [51]. �

Next, we will discuss the assumption (2) concerning log-Lipschtiz continuity of t 7→ dt.
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Remark 1.14. Let (M, gt)t be a time-dependent Riemannian manifold and let (X, dt,mt)t be the
induced time-dependent mm-space.

(i) Then for any L1, L2 ∈ [−∞,∞]

L1 ≤
1

t− s log
dt
ds
≤ L2 ⇐⇒ L1gt ≤

1

2
∂tgt ≤ L2gt.

Moreover, if (M, gt)t evolves as Ricci flow then the previous assertions are equivalent to

− L2gt ≤ Ricgt ≤ −L1gt. (17)

If (M, gt)t is a super-Ricci flow then instead we merely have the implications

1

t− s log
dt
ds
≤ L2 =⇒ −L2gt ≤ Ricgt

and

L1 ≤
1

t− s log
dt
ds

⇐= Ricgt ≤ −L1gt.

The proof is obvious. Similar assertions holds for the log-Lipschitz continuity of t 7→ mt.
(ii) For Ricci flows of Riemannian manifolds, we can write mt = e−(ft−fs)ms for all s < t

with ft − fs =
∫ t
s scalgrdr. Thus

L1 ≤
1

t− s log
dmt

dms
≤ L2 ⇐⇒ −L2 ≤ scalgt ≤ −L1.

Super-Ricci flows allow for arbitrary time-dependence of the exponential weight functions
ft. Their regularity in time does not impose any a priori restriction on the metric tensors
of the underlying space.

(iii) The condition (17) with finite L1, L2 rules out Ricci flows running through singularities.
In particular, it will not allow collapsing or changing topological type.

Related works. Our main results, Theorem 1.7 and Theorem 1.9, combine and extend two pre-
vious – hitherto unrelated – lines of developments:

• results in the setting of ‘smooth’ families of time-dependent Riemannian manifolds which
characterize solutions to Ric + 1

2∂tgt ≥ 0 on I ×M (‘super-Ricci flows’) e.g. by means

of the monotonicity property (II) in terms of the L2-Wasserstein metric for the dual
heat flow, initiated by work by McCann and Topping [39]; for subsequent work in this
direction which also includes equivalences with gradient estimates (III) and coupling
properties of backward Brownian motions, see e.g. Topping [53], Philipowski/Kuwada
[32, 33], Arnaudon/Coulibaly/Thalmaier [8], Lakzian/Munn [34], Li/Li [35].
• results for (‘static’) metric measure spaces by Ambrosio/Gigli/Savare [6] as well as by

Erbar/Kuwada/Sturm [17].

Indeed, Theorem 1.7 and Theorem 1.9 extend the main results from [6] and from [17] (cf. also
[7]) to the time-dependent setting. Partly, our proofs also provide new and simpler arguments in
the static setting, for instance, for the implication (IIIN) ⇒ (IIN). Even though we benefited
very much from the powerful, detailed calculus on mm-spaces developed in [5, 6, 4] and pushed
forward in [1, 2, 7, 20], in many cases we had to develop entirely new strategies and to derive
numerous auxiliary estimates and regularity assertions. For the proof of implication (IIN) ⇒
(IIIN), we followed the argumentation of [12] and carried over their arguments from the static
to the dynamic setting.

The analysis of the heat flow on time-dependent spaces (either Dirichlet spaces or metric
measure spaces) seems to be completely new.

Even in the smooth case, the characterization (I) of super-Ricci flows in terms of the so-called
dynamic convexity (as introduced in the accompanying paper [51] by the second author) was
not known before.
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Work in progress. The current paper, together with the previous paper by the second author
[51], will lay the foundations for a broad systematic study of (super-)Ricci flows in the context of
mm-spaces with various subsequent publications in preparation which among others will address
the following challenges:

• time-discrete gradient flow scheme à Jordan-Kinderlehrer-Otto for the heat equation and
its dual as gradient flows of energy and entropy, resp. [28];
• improved dynamic Bochner inequality; Lp-gradient and Lq-transport estimates; con-

struction and optimal coupling of Brownian motions on time-dependent mm-spaces [29]
• geometric functional inequalities on time-dependent mm-spaces – in particular, local

Poincaré, logarithmic Sobolev and dimension-free Harnack inequalities – and character-
ization of super-Ricci flows in terms of them [30];
• synthetic approaches to upper Ricci bounds [52] and rigidity results for Ricci flat metric

cones [18].

Preliminary remarks. We use ∂t as a short hand notation for d
dt . Moreover, we put ∂+

t u(t) =

lim sups→t
1
t−s(u(t)− u(s)) and ∂−t u(t) = lim infs→t

1
t−s(u(t)− u(s)).

In the sequel, r, s, t always denote ‘time’ parameters whereas a, b denote ‘curve’ parameters.

1.4. Sketch of the Argumentation for the Main Result.

The structure of the proof of Theorem 1.9 is as follows. In Chapter 4, we present the implica-
tions (IN) =⇒ (IIN) and (IIIN) =⇒ (IIN) as well as the converse of the latter in the case
N = ∞. Chapter 5 is devoted to the proof of the equivalence (IIIN) ⇐⇒ (IVN) as well as to
the proof of the implication (IIN)=⇒ (IVN).

In Chapter 6 we prove that (III) implies the dynamic EVI (‘evolution variation inequality’).
More precisely, we derive two versions, the dynamic EVI− and a relaxed form of the dynamic
EVI+. The combination of these two versions implies that the dual heat flow is the unique
EVI flow for the Boltzmann entropy.

The latter will be proven in a more abstract context in the Appendix (Chapter 7) which is
devoted to the study of dynamical EVI-flows in a general framework. Here in particular, it will
also be shown that (IIIN) & EVI− =⇒ (IN). �

Let us now briefly sketch the arguments for each of the implications.

(IN) =⇒ (IIN). Given two solutions to the dual heat flow (µr)r and (νr)r, for fixed t we
connect the measures µt = umt and νt = vmt by a Wt-geodesic (ηa)a∈[0,1] and we choose a pair

of functions φ, ψ in duality w.r.t. 1
2W

2
t and optimal for the pair µt, νt (‘Kantorovich potentials’),

see Figure 3. (Note that in the smooth Riemannian setting the Wt-geodesic and the Kantorovich
potentials are linked through the relation ηa =

(
exp(−a∇φ)

)
∗µt =

(
exp(−(1− a)∇ψ)

)
∗νt.)

In the general setting, we deduce with u = dµt
dmt

, v = dνt
dmt

• 1
2∂
−
r W

2
t (µr, νr)|r=t+ ≥ Et(φ, u) + Et(ψ, v) from Kantorovich duality

• Et(φ, u) + Et(ψ, v) ≥ −∂aSt(ηa)
∣∣
a=0+

+ ∂aSt(η
a)
∣∣
a=1− from semiconvexity of St

• 1
2∂
−
r W

2
r (µt, νt)

∣∣
r=t− ≥ −∂aSt(η1−) + ∂aSt(η

0+) + 1
N

[
St(µt)− St(νt)

]2
from the defining

property of a super-N -Ricci flows.

Additing up these estimates yields 1
2∂
−
r W

2
t (µr, νr)|r=t+ + 1

2∂
−
r W

2
r (µt, νt)

∣∣
r=t− ≥

1
N

[
St(µt) −

St(νt)
]2

. A careful time shift argument allows to replace the left hand side by 1
2∂
−
t+W

2
t (µt, νt)

which then proves the claim.
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∇ log u ∇ log v

−∇φ −∇ψ

µT νT

η0 = umt = µt νt = vmt = η1ηa

Figure 3.

(IIN) =⇒ (IVN). Given a Lipschitz function u and a probability density g (w.r.t. mτ ) put
gr = P ∗τ,rg, ur = Pr,σu and hr :=

∫
grΓr(ur)dmr for 0 < σ < r < τ < T .

By duality we already know that the transport estimate (IIN) implies the infinite-dimensional
gradient estimate (III) which helps us to deduce that

hτ − hσ ≥
∫ τ

σ

[
− 2Γ2,r(ur)(gr) +

∫
•
Γr (ur) grmr

]
dr.

To improve this inequality, we follow the approach initiated by [12] and consider the perturbation
of gτ given by

gσ,aτ := gτ

(
1− a[∆τuσ + Γτ (log gτ , uσ)]

)
for small a > 0. It can be interpreted as the Taylor expansion of the Wτ -geodesic starting in
gτ with initial velocity uσ. The transport estimate (IIN) applied to the probability measures
gτmτ and gσ,aτ mτ gives us for all a > 0

W 2
σ (P̂τ,s(gτmτ ), P̂τ,σ(gσ,aτ mτ )) − W 2

τ (gτmτ , g
σ,a
τ mτ )

≤ − 2

N

∫ τ

σ
[Sr(P̂τ,r(gτmτ ))− Sr(P̂τ,r(gσ,aτ mτ ))]2dr.

In the limit a↘ 0 we eventually end up with

hτ − hσ ≤ −
2

N

∫ τ

σ

(∫
∆rur grdmr

)2
dr.

Together with the previous lower estimate for hτ − hσ this proves the claim.

(IVN)⇐⇒ (IIIN). This is – modulo regularity issues – a simple, well-known (cf. [51], Theorem
5.5) differentiation-integration argument for the function

r 7→
∫
P ∗t,rg · Γr

(
Pr,su

)
dmr.

(IIIN) =⇒ (IIN). Given any ‘regular’ curve (µaτ )a∈[0,1] and τ ∈ I we will study the evolution
of this curve under the dual heat flow. More precisely, we analyze the growth of the action

At
(
µ·t
)

:=

∫ 1

0

∣∣µ̇at ∣∣t da =

∫ 1

0

∫
X

∣∣∇tΦa
t

∣∣2 dµat da
of the curve (µat )a∈[0,1] for t < τ where µat = P̂τ,tµ

a
τ = uatmt and (Φa

t )a∈[0,1] denotes the velocity

potentials in the static space (X, dt,mt). For s < t we approximate the action As
(
µ·s
)

by∑
i=k

1

ai − ai−1
W 2
s

(
µ
ai−1
s , µais

)
,
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the latter in terms of Ws-Kantorovich potentials, and finally by means of the interpolating Hopf-
Lax semigroup. Applying the Bakry-Ledoux gradient estimate (IIIN) then allows to estimate

2ε+
1

t− s
[
At(µ·t)−As(µ·s)

]
≥ 2

N + ε

∣∣∣ ∫ 1

0

∫
X
∇tΦa

t · ∇t log uat dµ
a
t da
∣∣∣2

=
2

N + ε

∣∣∣St(µ1
t )− St(µ0

t )
∣∣∣2

for each ε > 0 provided that s is sufficiently close to t. Passing to the limit s ↑ t and integrating
the result from s to τ yields

As(µ·s) ≤ Aτ (µ·τ )− 2

N

∫ τ

s

[
St(µ

0
t )− St(µ1

t )
]2
dt.

This indeed proves the claim since

W 2
τ (µ0, µ1) = inf

{
Aτ (µ·τ ) : (µaτ )a∈[0,1] regular curve connecting µ0, µ1

}
for any µ0, µ1 and τ whereas W 2

s (µ0
s, µ

1
s) ≤ As(µ·s) for all s < τ .

(IIIN) =⇒ (IN). To deduce the dynamic convexity of the Boltzmann entropy St, let a Wt-

geodesic (µat )a∈[0,1] be given and consider its evolution µas := P̂t,sµ
a
t , s < t, under the dual heat

flow. Then on one hand

W 2
t (µ0

t , µ
1
t ) =

1

a
W 2
t (µ0

t , µ
a
t ) +

1

1− 2a
W 2
t (µat , µ

1−a
t ) +

1

a
W 2
t (µ1−a

t , µ1
t ) (18)

for all a ∈ (0, 1/2), whereas on the other

W 2
s (µ0

t , µ
1
t ) ≤

1

a
W 2
s (µ0

t , µ
a
s) +

1

1− 2a
W 2
s (µas , µ

1−a
s ) +

1

a
W 2
s (µ1−a

s , µ1
t ). (19)

We already know that the gradient estimate (IIIN) implies the transport estimate (IIN) and
the latter yields

lim inf
s↗t

1

t− s
1

1− 2a

[
W 2
t (µat , µ

1−a
t )−W 2

s (µas , µ
1−a
s )

]
≥ 2

N

1

1− 2a

[
St(µ

a
t )− St(µ1−a

t )
]2
.

The EVI-property to be discussed below will allow to estimate

lim inf
s↗t

1

t− s
1

a

[
W 2
t (µ0

t , µ
a
t )−W 2

s (µ0
t , µ

a
s)
]
≥ 2

a

[
St(µ

a
t )− St(µ0

t )
]
− LaW 2

t (µ0
t , µ

1
t ),

as well as

lim inf
s↗t

1

t− s
1

a

[
W 2
t (µ1−a

t , µ1
t )−W 2

s (µ1−a
s , µ1

t )
]
≥ 2

a

[
St(µ

1−a
t )− St(µ1

t )
]
− LaW 2

t (µ0
t , µ

1
t ).

Using (18) together with (19) and adding up the last three inequalities we obtain after letting
a↘ 0 (see also Figure 4):

lim inf
s↗t

1

t− s
[
W 2
t (µ0

t , µ
1
t )−W 2

s (µ0
s, µ

1
s)
]
≥ 2

N

[
St(µ

0
t )− St(µ1

t )
]2

+2∂−a St(µ
a
t )
∣∣
a=0+

− 2∂+
a St(µ

a
t )
∣∣
a=1−.

In order to prove the EVI-property, we follow the approach by [6] and [17] respectively and
extend their arguments to the time-dependent setting. We show that the gradient estimate
implies that the dual heat flow is a dynamic EVI−-gradient flow. For this we introduce in
Section 6.1 a dual formulation W̃s,t of our time-dependent distance Ws,t.

For each fixed s < t we take a regular curve (ρa)a∈[0,1] approximating the Wt-geodesic joining

σ and µt := P̂τ,tµ where µ, σ ∈ P(X) are fixed. We then apply the dual heat flow ρa,ϑ :=

P̂t,s+a(t−s)ρ
a to the regular curve, cf. Figure 5, and eventually show using (III) that

1

2
W̃ 2
s,t(ρ1,ϑ, ρ0,ϑ)− (t− s)(St(ρ1,ϑ)− Ss(ρ0,ϑ)) ≤

∫ 1

0

[1

2
|ρ̇a|2t + (t− s)2

∫
ḟϑ(a)dρa,ϑ

]
da.
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µ0
t µ1

t

µ1−a
s

µa
t µ1−a

t

µa
s

‘EVI’ ‘EVI’

‘transport estimate’

Figure 4.

Then, by approximation, we obtain

1

2
W̃ 2
s,t(µs, σ)− (t− s)(St(σ)− Ss(µs)) ≤

1

2
W 2
t (µt, σ)− (t− s)2

∫ 1

0

∫
ḟϑ(a)dρa,ϑda.

In contrast to the static case we obtain the additional error term (t−s)2
∫ 1

0

∫
ḟϑ(a)dρa,ϑda which

however vanishes after dividing by t− s and letting s↗ t. Thus

St(µt)− St(σ) ≤ lim inf
s↗t

1

2(t− s)
(
W 2
t (µt, σ)− W̃ 2

s,t(µs, σ)
)

=
1

2
∂−s W

2
s,t(µs, σ)|s=t−.

Note that the log-Lipschitz continuity of the distance allows to estimate the last term from above
by

1

2
∂−s W

2
t (µs, σ)|s=t− +

L

2
W 2(µt, σ).

ρ0 = µt σ = ρ1 = ρ1,ϑ

ρ0,ϑ = µs

ρa

ρa,ϑ

Figure 5.
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2. The Heat Equation for Time-dependent Dirichlet Forms

2.1. The Heat Equation. Let us choose here a setting which is slightly more general than for
the rest of the paper. We assume that we are given a Polish space X and a σ-finite reference
measure m� on it which is assumed to have full topological support. Moreover, we assume that
we are given a strongly local Dirichlet form E� with domain F = Dom(E�) on H = L2(X,m�)
and with square field operator Γ� such that E�(u, v) =

∫
X Γ�(u, v) dm� for all functions u, v ∈ F .

These objects will be regarded as reference measure and reference Dirichlet form, resp., in the
subsequent definitions and discussions. The spaces H and F will be regarded as a Hilbert space
equipped with the scalar products

∫
uv dm� and E�(u, v) +

∫
uv dm�, resp. We identify H with

its own dual; the dual of F is denoted by F∗. Thus we have F ⊂ H ⊂ F∗ with continuous and
dense embeddings.

Recall that a Dirichlet form E� on L2(X,m�) is a densely defined, nonnegative symmetric
form on L2(X,m�) which is closed (which is equivalent to say that the quadratic form is lower
semicontinous on L2(X,m�)) and which satisfies the Markov property

E�(ξ ◦ u) ≤ E�(u) for all ξ : R→ R 1-Lipschitz such that ξ(0) = 0.

Here and in the sequel, the same symbol will be used for a bilinear form and the quadratic
form associated with it, i.e. E�(u) = E�(u, u). The Dirichlet form E� is called strongly local if
E�(u, v) = 0 whenever (u+ c)v = 0m�-a.e. for some c ∈ R. We refer to [15] for a comprehensive
study of Dirichlet forms and to [11] for the important role of the square field operator.

Let I ⊂ R be a bounded open interval, say I = (0, T ) for simplicity. In order to deal with
time-dependent evolutions, following [48] we consider for 0 ≤ s < τ ≤ T the Hilbert spaces

F(s,τ) = L2
(
(s, τ)→ F

)
∩H1

(
(s, τ)→ F∗

)
equipped with the respective norms

(∫ τ
s ‖ut‖2F + ‖∂tut‖2F∗ dt

)1/2
. According to [45], Lemma

10.3, the embeddings F(s,τ) ⊂ C
(
[s, τ ]→ H

)
hold true which guarantee that values at t = s and

t = τ are well defined.

Moreover, assume that we are given a 1-parameter family (mt)t∈(0,T ) of measures on X such

that mt = e−ftm� for some bounded measurable function f on I ×X with ft ∈ F and ∃C s.t.
∀t, x

Γ�(ft)(x) ≤ C. (20)

The basic ingredient will be a 1-parameter family (Γt)t∈(0,T ) of

• symmetric, positive semidefinite bilinear forms Γt on F , each of which has the diffusion
property

Γt(Ψ(u1, . . . , uk), v) =

k∑
i=1

Ψi(u1, . . . , uk)Γt(ui, v)

∀k ∈ N,∀v, u1, . . . , uk ∈ F ∩ L∞(X,m�), ∀Ψ ∈ C1(Rk) with Ψ(0) = 0, [11],
• and all of them being uniformly comparable (‘uniformly elliptic’) w.r.t. the reference

form Γ� on F , i.e. ∃C s.t. ∀t ∈ (0, T ),∀u ∈ F , ∀x ∈ X
1

C
Γ�(u)(x) ≤ Γt(u)(x) ≤ C Γ�(u)(x). (21)

For each t ∈ (0, T ) we define a strongly local, densely defined, symmetric Dirichlet form Et on
L2(X,mt) with domain Dom(Et) = F and a self-adjoint, non-positive operator At on L2(X,mt)
with domain Dom(At) ⊂ F uniquely determined by the relations∫

X
Γt(u, v) dmt = Et(u, v) = −

∫
X
Atu v dmt

for u, v ∈ F . Recall that u ∈ Dom(At) if and only if u ∈ F and ∃C ′ such that Et(u, v) ≤
C ′ · ‖v‖L2(mt) for all v ∈ F .
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Definition 2.1. A function u is called solution to the heat equation

Atu = ∂tu on (s, τ)×X
if u ∈ F(s,τ) and if for all w ∈ F(s,τ)

−
∫ τ

s
Et(ut, wt)dt =

∫ τ

s
〈∂tut, wte−ft〉F∗,F dt (22)

where 〈·, ·〉F∗,F = 〈·, ·〉 denotes the dual pairing. Note that thanks to (20), w ∈ L2
(
(s, τ) → F

)
if and only if we−f ∈ L2

(
(s, τ)→ F

)
.

Since ut ∈ Dom(At) (and thus ∂tut ∈ L2) for almost every t by virtue of Theorem 2.12 we
may equivalently rewrite the right hand side of the above equation as∫ τ

s
〈∂tut, wte−ft〉F∗,F dt =

∫ τ

s

∫
X
∂tut · (wte−ft) dm� dt =

∫ τ

s

∫
X
∂tut · wt dmt dt

which allows for a more intuitive, alternative formulation of (22) as follows:

−
∫ τ

s
Et(ut, wt)dt =

∫ τ

s

∫
X
∂tut · wt dmt dt.

Theorem 2.2. For all 0 ≤ s < τ ≤ T and each h ∈ H there exists a unique solution u ∈ F(s,τ)

of the heat equation on (s, τ)×X with us = h (or equivalently with limt↘s ut = h).

Proof. For each t the bilinear form E�t on F is defined by

E�t (u, v) = −
∫
X
Atu v dm�

=

∫
X

Γt(u, ve
ft)e−ft dm�

=

∫
X

[Γt(u, v) + vΓt(u, ft)] dm�

for u, v ∈ F . It immediately follows that u ∈ F(s,τ) is a solution to the heat equation if and only
if for all w ∈ F(s,τ)

−
∫ τ

s
E�t (ut, wt)dt =

∫ τ

s

∫
X
∂tut · wt dm� dt.

(Indeed, we simply have to replace the test function wt by wte
ft .)

Our assumptions on Γt and ft guarantee that E�t for each t is a closed coercive form with
domain F = Dom(E�) on H = L2(X,m�), uniformly comparable to E�. For each t , the operator
At is a bounded linear operator from F to F∗. Indeed,

‖At‖F ,F∗ = sup
u,v∈F

∣∣E�t (u, v)
∣∣

‖u‖1/2F · ‖v‖
1/2
F

≤ sup
u,v∈F

1

‖u‖1/2F · ‖v‖
1/2
F

∫
X
|Γt(u, v)| dm� + sup

u,v∈F

1

‖u‖1/2F · ‖v‖
1/2
F

∫
X
|vΓt(u, ft)| dm�

≤ C
(

1 + ‖Γ(ft)‖1/2∞
)

if C is chosen such that |Γt(u, v)| ≤ C ·Γ�(u)1/2 ·Γ�(v)1/2 for all u, v and t. Thus we may apply
the general existence result for solutions to time-dependent operator equations ∂tu = Atu on
a fixed Hilbert space H. For this, we refer to [37], Chapter III, Theorem 4.1 and Remark 4.3,
see also [45], Theorem 10.3. (Note, however, that the latter assumes a continuity of t 7→ At in
operator norm which is not really necessary.) �

Remark 2.3. We denote this solution by ut(x) = Pt,sh(x). Then (Pt,s)0<s≤t<T is a family of
bounded linear operators on H which has the propagator property

Pt,r = Pt,s ◦ Ps,r



HEAT FLOW ON TIME-DEPENDENT METRIC MEASURE SPACES AND SUPER-RICCI FLOWS 19

for all r ≤ s ≤ t. For fixed s and h the function t 7→ Pt,sh is continuous in H (due to the
embedding F(s,T ) ⊂ C

(
[s, T ] → H

)
). And by construction the function (t, x) 7→ Pt,sh(x) is a

solution to the (forward) heat equation ∂tu = Atu on (s, T )×X. That is, for all h ∈ H
∂tPt,sh = AtPt,sh. (23)

Note that the operator Pt,s : H → H in the general time-dependent case is not symmetric –
neither with respect to m� nor with respect to mt nor with respect to ms.

2.2. The Adjoint Heat Equation.

Definition 2.4. Given 0 ≤ σ < t ≤ T , a function v is called solution to the adjoint heat
equation

−Asv + ∂sf · v = ∂sv on (σ, t)×X
if v ∈ F(σ,t) and if for all w ∈ F(σ,t)∫ t

σ
Es(vs, ws)ds+

∫ t

σ

∫
X
vs · ws · ∂sfs dms ds =

∫ t

σ

∫
X
∂svs · ws dms ds.

Theorem 2.5. Assume (20) and

|ft(x)− fs(x)| ≤ L |t− s|. (24)

(i) Given 0 ≤ σ < t ≤ T , for each g ∈ H there exists a unique solution v ∈ F(σ,t) of the
adjoint heat equation on (σ, t)×X with vt = g.

(ii) This solution can be represented as

vs = P ∗t,sg

in terms of a family (P ∗t,s)s≤t of linear operators on H satisfying the ‘adjoint propagator
property’

P ∗t,r = P ∗s,r ◦ P ∗t,s (∀r ≤ s ≤ t).
(iii) The operators Pt,s and P ∗t,s are in duality w.r.t. each other:∫

Pt,sh · g dmt =

∫
h · P ∗t,sg dms (∀g, h ∈ H).

Proof. (i), (ii) The assumption implies that the same arguments used before to prove existence
and uniqueness of solutions to the heat equation ∂tu = Atu can now be applied to prove existence
and uniqueness of solutions to the adjoint heat equation −∂sv = Asv − (∂sfs)v.

(iii) Put ut = Pt,sh and vs = P ∗t,sg. Then∫
utvt dmt −

∫
usvs dms

=

∫ t

s

∫
∂rur vr dmr dr +

∫ t

s

∫
ur ∂rvr dmr dr −

∫ t

s

∫
ur vr ∂rfr dmr dr

=

∫ t

s
Er(ur, vr) dr −

∫ t

s
Er(ur, vr) dr = 0.

�

Note, however, that – even under the assumption m�(X) <∞ – in general constants will not
be solutions to the adjoint heat equation. Instead of preserving constants, the adjoint heat flow
preserves integrals of nonnegative densities.

Lemma 2.6. For each fixed t, the operators At and A∗t : u 7→ Atu− ∂tft · u on L2(X,mt) have
the same domains: Dom(At) = Dom(A∗t )
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Proof. Recall that v ∈ Dom(A∗t ) if and only if v ∈ Dom(Et) and if there exists a constant C
such that for all u ∈ Dom(Et)

Et(u, v) +

∫
u v ∂tf dmt ≤ C · ‖u‖L2(mt).

Boundedness of ∂tf implies that this is equivalent to v ∈ Dom(At). �

In contrast to the form domains, the operator domains Dom(At) in general will depend on t.

Example 2.7. Consider H = L2(R, dx) with mt(dx) = dx and

Γt(u)(x) =
[
1 + t · 1R+(x)

]
· |u′(x)|2

for t ∈ I = (0, 1). Then

Dom(At) =
{
u ∈W 1,2(R) ∩W 2,2(R−) ∩W 2,2(R+) : u′(0−) = (1 + t) · u′(0+)

}
.

Thus Dom(As) 6= Dom(At) for all s 6= t.

Proof. Obviously, u ∈ Dom(At) if and only if u ∈W 1,2(R) and [1 + t · 1R+ ]u′ ∈W 1,2(R). �

A basic quantity for the subsequent considerations will be the time-dependent Boltzmann
entropy. Here we put St(v) :=

∫
X v · log v dmt and consider it as a time-dependent functional on

the space of (not necessarily normalized) measurable functions v : X → [0,∞].

Proposition 2.8. (i) For all solutions u ≥ 0 to the heat equation and all s < t

St(ut) ≤ eL(t−s) · Ss(us).
(ii) For all solutions v ≥ 0 to the adjoint heat equation and all s < t

Ss(vs) ≤ St(vt) + L

∫ t

s

∫
X
vr dmr dr.

Note that
∫
X vr dmr is independent of r if m�(X) <∞.

Proof. In both cases, straightforward calculations yield

eLt∂t

[
e−Lt

∫
ut log ut dmt

]
≤

∫
(log ut + 1)∂tut dmt = −

∫
Γt(log ut)ut dmt ≤ 0

and

∂s

∫
vs log vs dms =

∫
(log vs + 1)∂svs dms −

∫
vs log vs · ∂sfs dms

=

∫
Γs(log vs) vs dms +

∫
vs · ∂sfs dms ≥ −L

∫
vs dms.

�

2.3. Energy Estimates. Throughout this section, assume (20) as well as (24) and in addition

|Γt(u)− Γs(u)| ≤ 2L ·
∫ t

s
Γr(u)dr (25)

for all u ∈ F and all s < t.
Recall that by definition each solution u to the heat equation on (s, τ) × X satisfies u ∈

L2
(
(s, τ)→ F

)
∩H1

(
(s, τ)→ F∗

)
⊂ C

(
(s, τ)→ H

)
and∫ τ

s
Et(ut) dt ≤

1

2
‖us‖2L2(ms)

. (26)

We are now going to prove that these assertions can be improved by one order of (spatial)

differentiation. To do so, we first define a self-adjoint, non-positive operator Ãt on L2(X,m�)
by

−
∫
X
Ãtu v dm� = Ẽt(u, v) :=

∫
X

Γt(u, v) dm�
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for all u, v ∈ F . Then Dom(Ãt) = Dom(At) and

Ãtu = Atu+ Γt(u, ft).

Indeed, −
∫
Atu v dm� =

∫
Γt(u, ve

ft)e−ft dm� = −
∫
Ãtu v dm� +

∫
Γt(u, ft)v dm�. Next, con-

sider the Hille-Yosida approximation Ãδt := (I − δÃt)−1Ãt of Ãt on L2(X,m�), put Ẽδt (u, v) :=

−
∫
Ãδtu v dm� and recall the well-known fact that Ẽδt (u, u)↗ Ẽt(u, u) for each u ∈ F as δ ↘ 0.

More generally,

Lemma 2.9. For all α, β > 0 with β − α ≤ 1
2 : F ⊂ Dom((I − δÃt)−αÃβt ) and for all u ∈ F :

u ∈ Dom(Ãβt ) ⇐⇒ sup
δ>0

∥∥∥(I − δÃt)−αÃβt u
∥∥∥
L2
<∞

with
∥∥∥(I − δÃt)−αÃβt u

∥∥∥
L2
↗
∥∥∥Ãβt u∥∥∥

L2
for δ ↘ 0.

Proof. For fixed t we apply the spectral theorem to the non-negative self-adjoint operator −Ãt
on H which yields the representation −Ãt =

∫∞
0 λEλ in terms of projection operators. For each

continuous semi-bounded Φ : R+ → R

Dom
(

Φ(−Ãt)
)

=

{
u ∈ H :

∫ ∞
0
|Φ(λ)|2dEλ(u, u)

}
and (Φ(−Ãt)u, v)H =

∫∞
0 Φ(λ)dEλ(u, v). Thus, in particular, F =

{
u ∈ H :

∫∞
0 λdEλ(u, u)

}
and

Dom
(

(I − δÃt)−αÃβt
)

=

{
u ∈ H :

∫ ∞
0

∣∣∣∣ λβ

(1 + δλ)α

∣∣∣∣2 dEλ(u, u)

}
.

Moreover, by monotone convergence as δ ↘ 0∥∥∥(I − δÃt)−αÃβt u
∥∥∥2

L2
=

∫ ∞
0

∣∣∣∣ λβ

(1 + δλ)α

∣∣∣∣2 dEλ(u, u) ↗
∫ ∞

0
λ2βdEλ(u, u) =

∥∥∥Ãβt u∥∥∥2

L2
.

�

Lemma 2.10. For all δ > 0 and all u, v ∈ F the map t 7→ Ẽδt (u, v) is absolutely continuous with∣∣∣∂tẼδt (u, v)
∣∣∣ ≤ L

2

[
Ẽt(u, u) + Ẽt(v, v)

]
.

Proof. For all δ, u, v as above, put uδt = (I − δÃt)−1u and vδt = (I − δÃt)−1v. Then

∂tẼδt (u, v) = lim
ε→0

1

ε

∫ [
(I − δÃt+ε)−1Ãt+εu− (I − δÃt)−1Ãtu

]
· v dm�

= lim
ε→0

1

ε

∫ [
(I − δÃt+ε)−1(Ãt+ε − Ãt)(1− δÃt)−1u

]
· v dm�

= lim
ε→0

1

ε

[
Ẽt(uδt , vδt+ε)− Ẽt+ε(uδt , vδt+ε)

]
≤ L

2
lim
ε→0

[
Ẽt(uδt , uδt ) + Ẽt+ε(vδt+ε, vδt+ε)

]
≤ L

2
lim
ε→0

[
Ẽt(u, u) + Ẽt+ε(v, v)

]
=
L

2

[
Ẽt(u, u) + Ẽt(v, v)

]
.

Here we also used the fact that Ẽt(uδt , uδt )↗ Ẽt(ut, ut) as δ → 0. �

Lemma 2.11. There exists a constant C such that for all 0 < s < τ < T , for all solutions
u ∈ F(s,τ) to the heat equation on (s, τ)×X and for all δ > 0∫ τ

s

∫
X

∣∣∣(I − δÃt)−1/2Ãtut

∣∣∣2 dm� dt ≤ C · [Es(us) + ‖us‖2L2(ms)

]
. (27)

Thus, in particular, if us ∈ F then ut ∈ Dom(Ãt) for a.e. t ∈ (s, τ) and∫ τ

s

∫
X

∣∣∣Ãtut∣∣∣2 dm� dt ≤ C · [Es(us) + ‖us‖2L2(ms)

]
. (28)
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Proof. For any δ > 0 and u ∈ F

Ẽs(us) ≥ Ẽδs (us) ≥ −
∫ τ

s
∂tẼδt (ut) dt ≥ −2

∫ τ

s
Eδt (ut, ∂tut) dt− o1

= 2

∫ τ

s

∫
X

(I − δÃt)−1Ãtu ·Atut dm� dt− o1

= 2

∫ τ

s

∫
X

(I − δÃt)−1Ãtu · Ãtut dm� dt

−2

∫ τ

s

∫
X

(I − δÃt)−1Ãtu · Γt(ut, ft) dm� dt− o1

≥
∫ τ

s

∫
X

∣∣∣(I − δÃt)−1/2Ãtu
∣∣∣2 dm� dt− o1 − o2.

Here

o1 :=

∫ τ

s
∂rEδr (ut)

∣∣∣
r=t
dt ≤ L

∫ τ

s
Et(ut)dt ≤

L

2
‖us‖2L2(ms)

according to the previous Lemma and

o2 :=

∫ τ

s

∫
X

∣∣∣(I − δÃt)−1/2Γt(ut, ft)
∣∣∣2 dm� dt

≤ C ′
∫ τ

s

∫
X

Γt(ut) e
−ft dm� dt ≤

C ′

2
‖us‖2L2(ms)

for C ′ = supt ‖Γt(ft)eft‖L∞(mt). Moreover, Ẽs(us) ≤ C ′′Es(us) for C ′′ = supt ‖eft‖L∞(mt). Thus

the claim follows with C = max{C ′′, L+C′

2 }. �

Theorem 2.12. For all 0 < s < τ < T and for all solutions u ∈ F(s,T ) to the heat equation

(i) ut ∈ Dom(At) for a.e. t ∈ (s, τ).
(ii) If the initial condition us ∈ F then

u ∈ L2
(
(s, τ)→ Dom(A·

)
∩H1

(
(s, τ)→ H

)
.

More precisely,

e−3LτEτ (uτ ) + 2

∫ τ

s
e−3Lt

∫
X

∣∣Atut∣∣2 dmt dt ≤ e−3Ls · Es(us). (29)

(iii) For all solutions v to the adjoint heat equation on (σ, t)×X and all s ∈ (σ, t)

Es(vs) + ‖vs‖2L2(ms)
≤ e3L(t−s) ·

[
Et(vt) + ‖vt‖2L2(mt)

]
.

Moreover, vs ∈ Dom(As) for a.e. s ∈ (σ, t).

Proof. (i): In the case us ∈ F , this follows from the previous Lemma and the fact that

Dom(At) = Dom(Ãt). In the general case us ∈ H, by the very definition of the heat equa-
tion it follows that uσ ∈ F for a.e. σ ∈ (s, τ). Applying the previous argument now with σ in
the place of s yields that ut ∈ Dom(At) for a.e. t ∈ (σ, τ) and thus the latter finally holds for
a.e. t ∈ (s, τ).

(ii): The log-Lipschitz bound (25) states |∂tΓt(.)| ≤ 2L ·Γt(.). Together with (24) this implies
∂sEs(ut)

∣∣
s=t
≤ 3L · Et(ut). Therefore,

e3Lt∂t
[
e−3LtEt(ut)

]
≤ ∂sEt(us)

∣∣
s=t

= −2

∫
|Atut|2dmt

where the last equality is justified according to (i).

(iii) Similarly as we did in the previous Lemmas, we can construct a regularization for the
adjoint heat equation which will allow to prove that vs ∈ Dom(As) for a.e. s ∈ (σ, t). Therefore,
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we may conclude

∂sEs(vs) ≥ 2

∫
|Asvs|2dms − 3L · Es(vs)− 2

∫
Asvs · vs · ∂sfs dms

≥ −3L · Es(vs)−
L

2

∫
v2
s dms

and thus

∂s

[
Es(vs) + ‖vs‖2L2(ms)

]
≥ −3L · Es(vs)−

L

2

∫
v2
s dms

+2

∫ [
Γs(vs) + v2

s · ∂sfs
]
dms −

∫
v2
s · ∂sfs dms

≥ −3L ·
[
Es(vs) + ‖vs‖2L2(ms)

]
.

�

Remark 2.13. For fixed s and a.e. σ > s the operator Pσ,s maps H into Dom(E) and then for
a.e. t > σ the operator Pt,σ maps Dom(E) into Dom(At). Thus by composition, for a.e. t > s
the operator Pt,s maps H into Dom(At).

A simple restatement of the assertions of the subsequent Proposition 2.14 will yield that for
all s ≤ t and all h ∈ H

• 0 ≤ h ≤ 1 ⇒ 0 ≤ Pt,sh ≤ 1
• Pt,s1 = 1 provided m�(X) <∞
•
(
Pt,sh

)2 ≤ Pt,s(h2
)
.

Proposition 2.14. The following holds true.

(i) For all solutions u to the heat equation on (s, τ)×X and all t > s

us ≥ 0 a.e. on X =⇒ ut ≥ 0 a.e. on X.

More generally, for any M ≥ 0

us ≤M a.e. on X =⇒ ut ≤M a.e. on X.

If m�(X) <∞ then this implication holds for all M ∈ R.
(ii) For all solutions v to the adjoint heat equation on (σ, t)×X and all s < t

vt ≥ 0 a.e. on X =⇒ vs ≥ 0 a.e. on X.

More generally, for any M ≥ 0

vt ≤M a.e. on X =⇒ vs ≤ eL(t−s)M a.e. on X.

If m�(X) <∞ then this implication holds for all M ∈ R.
(iii) For all solutions u to the heat equation on (s, τ)×X, all t > s and all p ∈ [1,∞]

‖ut‖Lp(mt) ≤ eL/p·(t−s) · ‖us‖Lp(ms).

In particular,
∫
ut dmt ≤ eL(t−s) ∫ us dms for nonnegative solutions.

(iv) For all solutions u, g to the heat equation on (s, τ)×X and all t > s

u2
s ≤ gs a.e. on X =⇒ u2

t ≤ gt a.e.on X.

Proof. (i) Assume that u solves the heat equation. Put w = (u−M)+. Then for each t, strong
locality of the Dirichlet form Et implies

Et
(
ut, (ut −M)+

)
= Et

(
(ut −M)+, (ut −M)+

)
.

The chain rule applied to Φ(x) = (x)+ implies that a.e on (s, T )×X
∂tut · (ut −M)+ = ∂t(ut −M)+ · (ut −M)+.
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Therefore, for a.e. t

0 ≤ Et
(
(ut −M)+, (ut −M)+

)
= Et

(
ut, (ut −M)+

)
= −

∫
∂tut, (ut −M)+e

−ft dm� = −
∫
∂t(ut −M)+(ut −M)+e

−ft dm�

≤ −1

2
eLt · ∂t

[
e−Lt

∫
X

(ut −M)2
+dmt

]
,

where we used (24) in the last inequality. Thus us ≤M will imply ut ≤M for all t > s.
In the case, m�(X) < ∞, the constants will be in H and solve the heat equation. Thus the

previous argument can also be applied to u±M which yields the claim.
(ii) Assume that v solves the adjoint heat equation. Then with a similar calculation as before

we obtain for a.e. s
1

2
∂s

∫
(vs − eL(t−s)M)2

+ dms

=

∫
(vs − eL(t−s)M)+∂s(vs − eL(t−s)M)+ dms −

1

2

∫
(vs − eL(t−s)M)2

+∂sfs dms

=

∫
(vs − eL(t−s)M)+(∂svs + LeL(t−s)M)+ dms −

1

2

∫
(vs − eL(t−s)M)2

+∂sfs dms

=Es(vs, (vs − eL(t−s)M)+) +

∫
vs(vs − eL(t−s)M)+∂sfs dms

+

∫
(vs − eL(t−s)M)+(LeL(t−s)M)+ dms −

1

2

∫
(vs − eL(t−s)M)2

+∂sfs dms

≥− 3

2
L

∫
(vs − eL(t−s)M)2

+ dms.

Applying Gronwall’s inequality yields∫
(vs − eL(t−s)M)2

+ dms ≤ e3L(t−s)
∫

(vt −M)2
+ dmt,

which proves the claim.
(iii) Assume p ∈ (1,∞). (The case p = ∞ follows from (i), and the case p = 1 follows from

(ii) by duality.) Then, by the previous arguments the linear operator

Pt,s : L1(ms) + L∞(ms)→ L1(mt) + L∞(mt)

maps L1(ms) boundedly into L1(mt) and L∞(ms) boundedly into L∞(mt). Then, by the Riesz-
Thorin interpolation theorem Pt,s maps Lp(ms) boundedly into Lp(mt) with quantitative esti-
mate

||Pt,su||Lp(mt) ≤ eL(t−s)/p||u||Lp(ms).

(iv) Choose w = (u2 − g)+. Then, again by the chain rule and since u and g are solutions to
the heat equation, we find for a.e. t

1

2
eLt · ∂t

[
e−Lt

∫
X
w2
t dmt

]
≤

∫
∂t(u

2
t − gt)wt dmt

=

∫
∂tut(2utwt) dmt −

∫
∂tgtwt dmt

= −Et(ut, 2utwt) + Et(gt, wt)

= −Et(u2
t − gt, wt)− 2

∫
X

Γt(ut, ut)wt dmt

= −Et(wt, wt)− 2

∫
X

Γt(ut, ut)wt dmt ≤ 0,

where we applied the strong locality in the last equation. Thus∫
w2
t dmt ≤ eL(t−s)

∫
w2
sdms
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for all t > s. This proves the claim.
�

As a direct consequence we obtain the following corollary.

Corollary 2.15. For all s < t

(i) ‖Pt,s‖L∞(ms)→L∞(mt) ≤ 1, ‖P ∗t,s‖L1(mt)→L1(ms) ≤ 1,

(ii) ‖Pt,s‖L1(ms)→L1(mt) ≤ eL(t−s), ‖P ∗t,s‖L∞(mt)→L∞(ms) ≤ eL(t−s),

(iii) ‖Pt,s‖L2(ms)→L2(mt) ≤ eL(t−s)/2, ‖P ∗t,s‖L2(mt)→L2(ms) ≤ eL(t−s)/2.

The next result yields that the heat flow is a dynamic EVI(−L/2,∞)-flow for 1
2 times the

Dirichlet energy Et on L2(X,mt). For the definition of dynamic EVI-flows we refer to Section 7.

Theorem 2.16. (i) Then the heat flow is a dynamic forward EVI(−L/2,∞)-flow for 1
2×

the Dirichlet energy on L2(X,mt)t∈I , see Appendix. More precisely, for all solutions
(ut)t∈(s,τ) to the heat equation, for all τ ≤ T and all w ∈ Dom(E)

−1

2
∂+
s

∥∥us − w∥∥2

s,t

∣∣∣
s=t

+
L

4
·
∥∥ut − w∥∥2

t
≥ 1

2
Et(ut)−

1

2
Et(w) (30)

where ‖.‖s,t is defined according to Definition 7.1 with dt(v, w) =
∥∥v − w∥∥

t
= (
∫
|v −

w|2dmt)
1/2.

(ii) The heat flow is uniquely characterized by this property. For all t > s and all solutions

to the heat equation ‖ut‖t ≤ eL(t−s)/2‖us‖s.

Proof. (i) Assumption (24) implies ∂t
∥∥v∥∥2

t
≤ L

∥∥v∥∥2

t
as well as (following the argumentation

from Proposition 7.2)

∂s
∥∥v∥∥2

s,t

∣∣
s=t
≤ L

2

∥∥v∥∥2

t

for all v and t. Therefore, we can estimate

1

2
∂+
s

∥∥us − w∥∥2

s,t

∣∣∣
s=t

≤ lim sup
s→t

1

2(s− t)
(∥∥us − w∥∥2

t
−
∥∥ut − w∥∥2

t

)
+ lim sup

s→t

1

2(s− t)
(∥∥us − w∥∥2

s,t
−
∥∥us − w∥∥2

t

)
≤ 〈ut − w, ∂tut〉t +

L

4

∥∥ut − w∥∥2

t

= −Et(u, u) + Et(w, u) +
L

4

∥∥ut − w∥∥2

t

≤ −1

2
Et(u, u) +

1

2
Et(w,w) +

L

4

∥∥ut − w∥∥2

t
.

(ii) Uniqueness and the growth estimate immediately follow from the EVI-property. Indeed,
the distance

∥∥.∥∥
t

and the function E on the time-dependent geodesic space L2(X,mt)t∈I satisfy
all assumptions mentioned in the appendix on EVI-flows. In particular, the distance is log-

Lipschitz: ∂t
∥∥v∥∥2

t
≤ L

∥∥v∥∥2

t
and the energy satisfies the growth bound Es ≤ C0 Et. �

The next lemma states semicontinuity of the heat flow and the adjoint heat flow with respect
to the seminorm

√
E .

Lemma 2.17. Let u, g ∈ Dom(E), 0 < r ≤ t < T . Then

lim
s↗t

P ∗t,sg = g in (Dom(E),
√
E),

lim
s↘r

Ps,ru = u in (Dom(E),
√
E).
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Proof. Since P ∗t,sg → g in L2(X) and the Dirichlet energy is lower semicontinuous we have

Et(g) ≤ lim inf
s↗t

Et(P ∗t,sg).

On the other hand from Theorem 2.12(iii)

Es(P ∗t,sg) + ||P ∗t,sg||L2(ms) ≤ eL(t−s)(Et(g) + ||g||L2(mt)),

for every s < t. Hence, again since P ∗t,sg → u in L2(X),

Et(g) ≥ lim sup
s↗t

e−L(t−s)(Es(P ∗t,sg) + ||P ∗t,sg||L2(ms))− ||g||L2(mt)

≥ lim sup
s↗t

Es(P ∗t,sg) = lim sup
s↗t

Et(P ∗t,sg),

where the last identity follows from the Lipschitz property of the metrics and the logarithmic
densities. Then, since Et is a bilinear form, the parallelogram identity yields

lim sup
s↗t

Et(P ∗t,sg − g) = lim sup
s↗t

(2Et(g) + 2Et(P ∗t,sg)− Et(u+ P ∗t,sg))

≤ 4Et(g)− lim inf
s↗t

Et(g + P ∗t,sg)) ≤ 4Et(g)− Et(2g)

= 0,

where the last inequality is a consequence of the lower semicontinuity of Et.
The second assertion follows along the same lines replacing Theorem 2.12(iii) by Theorem

2.12(ii). �

2.4. The Commutator Lemma. In the static case, generator and semigroup commute. In
the dynamic case, this is no longer true. However, we can estimate the error∣∣∣∣∫

X

[
At(Pt,su)− Pt,s(Asu)

]
v dmt

∣∣∣∣ .
To guarantee well-definedness of all the expressions, we avoid ‘Laplacians’ and use ‘gradients’
instead.

Lemma 2.18. For all σ < τ , all solutions u ∈ F(σ,τ) to the heat equation, and all solutions
v ∈ F(σ,τ) to the adjoint heat equation

|Et(ut, vt)− Es(us, vs)| ≤ C(us, vt) · |t− s|1/2 (31)

for a.e. s, t ∈ (σ, τ) with s < t where

C(us, vt) = C ·
[
Es(us) + Et(vt) + ‖vt‖2L2(mt)

]
(32)

with C := Le3(L+1)T .

In other words, the commutator lemma states∣∣∣∣∫
X

[
At(Pt,sus)− Pt,s(Asus)

]
vt dmt

∣∣∣∣ ≤ C(us, vt) · |t− s|1/2. (33)

Proof. Obviously, the function r 7→ Er(ur, vr) is finite (even locally bounded) and measurable
on (σ, τ). Therefore, by Lebesgue’s density theorem for a.e. s, t ∈ (σ, τ)

Et(ut, vt) = lim
δ↘0

1

δ

∫ t

t−δ
Er(ur, vr) dr, Es(us, vs) = lim

δ↘0

1

δ

∫ s+δ

s
Er(ur, vr) dr

and thus

Et(ut, vt)− Es(us, vs) = lim
δ↘0

∫ t−δ

s

1

δ

(
Er+δ(ur+δ, vr+δ)− Er(ur, vr)

)
dr.
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To proceed, we decompose the integrand into three terms

1

δ
[Er+δ(ur+δ, vr+δ)− Er(ur, vr)] =

1

δ
[Er+δ(ur+δ, vr+δ)− Er+δ(ur, vr+δ)]

+
1

δ
[Er+δ(ur, vr+δ)− Er(ur, vr+δ)]

+
1

δ
[Er(ur, vr+δ)− Er(ur, vr)]

=: αr(δ) + βr(δ) + γr(δ).

Let us first estimate the second term

βr(δ) =
1

4δ
[Er+δ(ur + vr+δ) + Er+δ(ur − vr+δ)− Er(ur + vr+δ)− Er(ur − vr+δ)]

≤ 3L

4
e3Lδ [Er(ur + vr+δ) + Er(ur − vr+δ)]

≤ 3L

2
e6Lδ [Er(ur) + Er+δ(vr+δ)]

due to the fact that |∂rEr(w)| ≤ 3L Er(w) for each w ∈ F . According to Theorem 2.12, the final
expressions can be estimated (uniformly in δ) in terms of Es(us) and Et(vt) + ‖vt‖2L2(mt)

. Thus

we finally obtain

lim
δ↘0

∫ t−δ

s
βr(δ) dr ≤

3L

2

∫ t

s
[Er(ur) + Er(vr)] dr

≤ (t− s) 3L

2
e3L(t−s)

[
Es(us) + Et(vt) + ‖vt‖2L2(mt)

]
.

Now let us consider jointly the first and third terms∫ t−δ

s
[αr(δ) + γr(δ)] dr =

1

δ

∫ t−δ

s

[
Er+δ

(
(ur+δ − ur), vr+δ

)
+ Er

(
ur, (vr+δ − vr)

)]
dr

= −1

δ

∫ t−δ

s

∫
X

[
(ur+δ − ur) ·Ar+δvr+δ · e−fr+δ

+Arur · (vr+δ − vr) · e−fr
]
dm� dr

= −1

δ

∫ δ

0

∫ t−δ

s

∫
X

[
Ar+εur+ε ·Ar+δvr+δ · e−fr+δ +

Arur · (−Ar+εvr+ε + ḟr+εvr+ε) · e−fr
]
dm� dr dε

Integrability of |Arur|2 w.r.t. dmr dr implies that
∫ t
t−δ |Arur|2dmr dr → 0 as δ → 0 as well as∫ s+δ

s |Arur|2dmr dr → 0. Thus together with Lipschitz continuity of t 7→ ft this implies

1

δ

∫ δ

0

∫ t−δ

s

∫
X

[
Ar+εur+ε ·Ar+δvr+δ · e−fr+δ +−Arur ·Ar+εvr+ε · e−fr

]
dm� dr dε→ 0

as δ → 0. Thus (since ḟ is bounded by L and since r 7→ ‖vr‖L2(mr) is non-decreasing)

lim
δ→0

∣∣∣∣∫ t−δ

s
[αr(δ) + γr(δ)] dr

∣∣∣∣ ≤ −1

δ

∫ δ

0

∫ t−δ

s

∫
X

∣∣Arur · ḟr+εvr+ε∣∣ dmr dr dε

≤ L · |t− s|1/2 ·
(∫ t

s

∣∣Arur∣∣2 dmr dr

)1/2

· ‖vt‖L2(mt)

≤ L · |t− s|1/2 ·
(

1

2
e3L(t−s)Es(us)

)1/2

· ‖vt‖L2(mt).
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To summarize, we have∣∣Et(ut, vt)− Es(us, vs)∣∣ = lim
δ↘0

∣∣∣∣∫ t−δ

s

(
αr(δ) + βr(δ) + γr(δ)

)
dr

∣∣∣∣
≤ |t− s| 3L

2
e3L(t−s)

[
Es(us) + Et(vt) + ‖vt‖2L2(mt)

]
+L · |t− s|1/2 ·

(
1

2
e3L(t−s)Es(us)

)1/2

· ‖vt‖L2(mt)

≤ C · |t− s|1/2 ·
[
Es(us) + Et(vt) + ‖vt‖2L2(mt)

]
with C := Le3(L+1)T according to the energy estimates of the previous Theorem. �
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3. Heat Flow and Optimal Transport on Time-dependent Metric Measure Spaces

We are now going to define, construct, and analyze the heat equation on time-dependent
metric measure spaces

(
X, dt,mt

)
t∈I .

3.1. The Setting. Here and for the rest of the paper, our setting is as follows:
The ‘state space’ X is a Polish space and the ‘parameter set’ I ⊂ R will be a bounded open

interval; for convenience we assume I = (0, T ). For each t under consideration, dt will be a
complete separable geodesic metric on X and mt will be a σ-finite Borel measure on X. We
always assume that there exist constants C,K,L,N ′ ∈ R such that

• the metrics dt are uniformly bounded and equivalent to each other with∣∣∣∣log
dt(x, y)

ds(x, y)

∣∣∣∣ ≤ L · |t− s| (34)

for all s, t and all x, y (‘log Lipschitz continuity in t’);
• the measures mt are mutually absolutely continuous with bounded, Lipschitz continuous

logarithmic densities; more precisely, choosing some reference measure m� the mea-
sures can be represented as mt = e−ftm� with functions ft satisfying |ft(x)| ≤ C,
|ft(x)− ft(y)| ≤ C · dt(x, y) and

|fs(x)− ft(x)| ≤ L · |s− t| (35)

for all s, t and all x, y;
• for each t the static space (X, dt,mt) is infinitesimally Hilbertian and satisfies a curvature-

dimension condition CD(K,N ′) in the sense of [50], [38], [4].

In terms of the metric dt for given t, we define the L2-Kantorovich-Wasserstein metric Wt on
the space of probability measures on X:

Wt(µ, ν) = inf

{∫
X×X

d2
t (x, y) dq(x, y) : q ∈ Cpl(µ, ν)

}1/2

where Cpl(µ, ν) as usual denotes the set of all probability measures on X ×X with marginals µ
and ν. In general, it is not really a metric but just a pseudo metric. Denote by P = P(X) the
set of all probability measures µ on X (equipped with its Borel σ-field) with Wt(µ, δz) <∞ for
some/all z ∈ X and t ∈ I.

The log-Lipschitz bound (34) implies that for all s, t ∈ I and all µ, ν ∈ P∣∣∣∣log
Wt(µ, ν)

Ws(µ, ν)

∣∣∣∣ ≤ L · |t− s|, (36)

see Corollary 2.2 in [51]. Note that the latter is equivalent to weak differentiability of t 7→
Wt(µ, ν) and |∂tWt(µ, ν)| ≤ L ·Wt(µ, ν) for all µ, ν ∈ P.

A powerful tool is the dual representation of W 2
t :

1

2
W 2
t (µ, ν) = sup

{∫
ϕdµ+

∫
ψdν : ϕ(x) + ψ(y) ≤ 1

2
d2
t (x, y)

}
,

where the supremum is taken among all continuous and bounded functions ϕ,ψ. Closely related
to this is the dt-Hopf-Lax semigroup defined on bounded Lipschitz functions ϕ by

Qtaϕ(x) := inf
y∈X

{
ϕ(y) +

1

2a
d2
t (x, y)

}
, a > 0, x ∈ X.

The map (a, x) 7→ Qtaϕ(x) satisfies the Hamilton-Jacobi equation

∂aQ
t
aϕ(x) = −1

2
(liptQ

t
aϕ)2(x), lim

a→0
Qtaϕ(x) = ϕ(x). (37)

In addition, since (X, dt) is assumed to be geodesic,

Lip(Qtaϕ) ≤ 2Lip(ϕ), Lip(Qt.f(x)) ≤ 2[Lip(ϕ)]2.

See for instance [6, Section 3] for these facts.
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For µ, ν ∈ P(X) the Kantorovich duality can be written as

1

2
W 2
t (µ0, µ1) = sup

ϕ

{∫
Qt1ϕdµ1 −

∫
ϕdµ0

}
. (38)

We say that a curve µ : J → P(X) belongs to ACp(J ;P(X)) if

Wt(µ
a, µb) ≤

∫ b

a
g(r)dr ∀a < b ∈ J

for some g ∈ Lp(J). We will exclusively treat the case p = 2 and call µ a 2-absolutely continuous
curve. Recall that there exists a minimal function g, called metric speed and denoted by |µ̇a|t
such that

|µ̇a|t := lim
b→a

Wt(µ
a, µb)

|b− a| .

See for example [3, Theorem 1.1.2]. For continuous curves µ ∈ C([0, 1],P(X)) satisfying µa =
uam with ua ≤ R, µ belongs to AC2([0, 1],P(X)) if and only if for each t ∈ (0, T ) there exists

a velocity potential (Φa
t )a such that

∫ 1
0

∫
Γt(Φ

a
t )dµ

ada <∞ and∫
ϕdµa1 −

∫
ϕdµa0 =

∫ a1

a0

∫
Γt(ϕ,Φ

a
t )dµ

ada, for every ϕ ∈ Dom(E). (39)

Moreover we can express the metric speed in the following way

|µ̇a|2t =

∫
Γt(Φ

a
t )dµ

a. (40)

See section 6 and 8 in [7] for a detailed discussion.
Occasionally, we have to measure the ‘distance’ between points x, y ∈ X which belong to

different time sheets. In this case, for s, t ∈ I and µ, ν ∈ P(X) we define

Ws,t(µ, ν) := inf lim
h→0

sup
0=a0<···<an=1,
ai−ai−1≤h

{
n∑
i=1

(ai − ai−1)−1W 2
s+ai−1(t−s)(µ

ai−1 , µai)

}1/2

where the infimum runs over all 2-absolutely continuous curves µ : [0, 1] → P(X) with µ0 = µ,
µ1 = ν. See Section 6.1 for a detailed discussion and in particular for the equivalent characteri-
zation

Ws,t(µ, ν) = inf

{∫ 1

0
|µ̇a|2Ws+a(t−s)

da

}1/2

(41)

where the infimum runs over all 2-absolutely continuous curves (ρa)a∈[0,1] in P(X) connecting
µ and ν.

In the following we will make frequently use of the concept of regular curves, which has already
been successfully used in [6, 17, 7]. We use the refined version of [7].

Definition 3.1. For fixed t ∈ [0, T ], let ρa = uamt ∈ P(X), a ∈ [0, 1]. We say that the curve ρ
is regular (w.r.t. mt) if:

(1) u ∈ C1([0, 1], L1(X)) ∩ Lip([0, 1],F∗),
(2) there exists a constant R > 0 such that ua ≤ R m-a.e. for every a ∈ [0, 1],
(3) there exists a constant E > 0 such that Et(

√
ua) ≤ E for every a ∈ [0, 1].

Remark. Due to our assumptions on the measures, (ρa)a is a regular curve w.r.t mt if and only
if it is also a regular curve w.r.t ms. In this case, it is also a regular curve w.r.t mϑ, where ϑ is
a function belonging to C1([0, 1],R). So we will just say regular curve.

We will use the following approximation result which is a combination of [7, Lemma 12.2] and
[17, Lemma 4.11]. For this we define for a fixed time t the semigroup mollification htε given by

htεψ =
1

ε

∫ ∞
0

Ht
aψκ

(a
ε

)
da, (42)
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where (Ht
a)a≥0 denotes the semigroup associated to the Dirichlet form Et, and κ ∈ C∞c ((0,∞))

with κ ≥ 0 and
∫∞

0 κ(a)da = 1. Recall that for ψ ∈ L2(mt) ∩ L∞(mt), h
t
εψ,∆t(h

t
εψ) ∈

Dom(∆t) ∩ Lipb(X). Moreover ||htεψ − ψ|| → 0 in Dom(E) as ε→ 0 for ψ ∈ Dom(E).

Lemma 3.2. Let X be a RCD(K,∞) space. Let ρ0, ρ1 ∈ P(X) and (ρa)a∈[0,1] be the Wt-geodesic
connecting them. Then there exists a sequence of regular curves (ρan)a∈[0,1], n ∈ N, such that

Wt(ρ
a
n, ρ

a)→ 0 for every a ∈ [0, 1], (43)

lim sup
n→∞

∫ 1

0
|ρ̇an|2tda ≤W 2

t (ρ0, ρ1). (44)

If we additionally impose that ρ0, ρ1 ∈ Dom(S), then

St(ρ
a
n)→ St(ρ

a) for every a ∈ [0, 1], (45)

and

lim sup
n→∞

sup
a∈[0,1]

St(ρ
a
n) ≤ sup

a∈[0,1]
St(ρ

a) = max
a∈[0,1]

St(ρ
a). (46)

Proof. We follow the argumentation in [7, Lemma 12.2] and approximate ρ0, ρ1 by two sequences
of measures {σin}n with bounded densities. Then as in [6, Proposition 4.11] one employs a
threefold regularization procedure to the Wt-geodesic (νan)a connecting σ0

n and σ1
n: Given k ∈ N,

we first define ρan,k,1 = Ht
1/kν

a
n, where Ht denotes the static semigroup. Then we set ρan,k,2 =∫

R ρ
a−a′
n,k,1χk(a

′)da′, where χk(a) = kχ(ka) for some smooth kernel χ ∈ Cc(R). Finally we set

ρan,k = ht1/kρ
a
n,k,2, where ht1/k is given by (42). Then by a standard diagonal argument one

obtains a sequence of regular curves in the sense of Definition 3.1 satisfying (43) and (44).
In order to show (45) and (46) note that since X is a RCD(K,∞) space we have that a 7→

St(ρ
a) is K-convex, where (ρa) denotes the Wt geodesic. Together with the lower semicontinuity

of the entropy the map a 7→ St(ρ
a) is continuous. Using the convexity properties we follow the

argumentation in [17, Lemma 4.11] and insert the explicit formulas of the regularization (ρan) to
obtain

St(ρ
a
n) ≤ St(ρan,2) ≤

∫
R
χn(a′)St(ρ

a−a′)da′

≤ St(ρa) +

∫
R
χn(a′)|St(ρa−a

′
)− St(ρa)|da′.

(47)

Since a 7→ St(ρ
a) is uniformly continuous by compactness, the last term vanishes as n → ∞.

Thus we obtain lim supn→∞ St(ρ
a
n) ≤ St(ρa). The lower semicontinuity in turn implies (45).

One obtains (46) from (47) by exploiting the uniform continuity of the entropy along geodesics
on compact intervals once more. �

Later on in this paper (Section 4.2), we will see that there is an easier construction of regular
curves based on the ‘dual heat flow’ to be introduced next.

3.2. The Heat Equation on Time-dependent Metric Measure Spaces. Due to the
CD(K,N ′)-condition for each of the static spaces (X, dt,mt), the detailed analysis of energies,
gradients and heat flows on mm-spaces due to Ambrosio, Gigli and Savaré [3, 4, 5, 6] applies.
In particular, for each t there is a well-defined energy functional

Et(u) =

∫
X
|∇tu|2dmt = lim inf

v→u in L2(X,mt)

v∈Lip(X,dt)

∫
X

(liptv)2 dmt (48)

for u ∈ L2(X,mt) where liptu(x) denotes the pointwise Lipschitz constant (w.r.t. the metric
dt) at the point x and |∇tu| denotes the minimal weak upper gradient (again w.r.t. dt). Since
(X, dt,mt) is assumed to be infinitesimally Hilbertian, for each t under consideration Et is a
quadratic form. Indeed, it is a strongly local, regular Dirichlet form with intrinsic metric dt and
square field operator

Γt(u) = |∇tu|2.
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In the sequel, we freely switch between these two notations of the same object.
The Laplacian ∆t is defined as the generator of Et, i.e. as the unique non-positive self-adjoint

operator on L2(X,mt) with domain D(∆t) ⊂ D(Et) and

−
∫
X

∆tu v dmt = Et(u, v) (∀u ∈ D(∆t), v ∈ D(Et)).

Thanks to the RCD(K,∞)-condition, for each t the domain of the Laplacian coincides with the
domain of the Hessian [20], i.e. Dom(∆t) = W 2,2(X, dt,mt). Indeed, the ‘self-improved Bochner
inequality’ implies that

Γ2,t(u) ≥ K |∇tu|2 + |∇2
tu|2HS

which after integration w.r.t. mt, integration by parts, and application of Cauchy-Schwarz in-
equality gives

‖∇2
tu‖2 ≤ (1 +K−/2) ·

(
‖∆tu‖2 + ‖u‖2

)
(49)

with K− := max{−K, 0} and ‖.‖2 := ‖.‖2L2(mt)
.

Note that in general, Dom(∆t) may depend on t, see Example 2.7.

Due to our assumptions that the measures are uniformly equivalent and that the metrics are
uniformly equivalent, the sets L2(X,mt) and W 1,2(X, dt,mt) := D(Et) do not depend on t and
the respective norms for varying t are equivalent to each other. We put H = L2(X,m�) and
F = D(E�) as well as

F(s,τ) = L2
(
(s, τ)→ F

)
∩H1

(
(s, τ)→ F∗

)
⊂ C

(
[s, τ ]→ H

)
for each 0 ≤ s < τ ≤ T . For the definition of ‘solution to the heat equation’ and for the existence
of the heat propagator we refer to the previous chapter.

Theorem 3.3. (i) For each 0 ≤ s < τ ≤ T and each h ∈ H there exists a unique solution
u ∈ F(s,τ) to the heat equation ∂tut = ∆tut on (s, τ)×X with us = h.

(ii) The heat propagator Pt,s : h 7→ ut admits a kernel pt,s(x, y) w.r.t. ms, i.e.

Pt,sh(x) =

∫
pt,s(x, y)h(y) dms(y). (50)

If X is bounded, for each (s′, y) ∈ (s, T )×X the function (t, x) 7→ pt,s(x, y) is a solution to the
heat equation on (s′, T )×X.

(iii) All solutions u : (t, x) 7→ ut(x) to the heat equation on (s, τ)×X are Hölder continuous
in t and x. All nonnegative solutions satisfy a scale invariant parabolic Harnack inequality of
Moser type.

(iv) The heat kernel pt,s(x, y) is Hölder continuous in all variables, it is Markovian∫
pt,s(x, y) dms(y) = 1 (∀s < t,∀x)

and has the propagator property

pt,r(x, z) =

∫
pt,s(x, y) ps,r(y, z) dms(y) (∀r < s < t,∀s, z).

Proof. (i) It remains to verify the boundedness and regularity assumptions on ft and Γt which
were made for Theorem 2.2. Choose a reference point t0 ∈ I and put Γ� = Γt0 . Then E�(u) =∫

Γt0(u)e−ft0dm�. The uniform bounds on ft and on Γ�(ft) are stated as assumption (35). The
log Lipschitz bound (34) on dt implies the requested uniform bound on Γt. The claim thus
follows from Theorem 2.2.

(ii), (iii), (iv) The RCD-condition with finite N ′ implies scale invariant Poincaré inequalities
and doubling properties for each of the static spaces (X, dt,mt) with uniform constants. Together
with the uniform bounds on ft, Γt(.) and Γt(ft) this allows to apply results of [36] which provides
all the assertions of the Theorem. �



HEAT FLOW ON TIME-DEPENDENT METRIC MEASURE SPACES AND SUPER-RICCI FLOWS 33

Remark 3.4. The formula (50) allows to give a pointwise definition for Pt,sh(x) for each h ∈
L2(X,m�) (or, in other words, to select a ‘nice’ version) and, moreover, it allows to extend its
definition to h ∈ L1 ∪ L∞.

Recall, however, that in general the operator Pt,s is not symmetric w.r.t. any of the involved
measures (mt,ms or m�) and that in general the operator norm in Lp for p 6= ∞ will not be
bounded by 1.

3.3. The Dual Heat Equation. By duality, the propagator (Pt,s)s≤t acting on bounded con-

tinuous functions induces a dual propagator (P̂t,s)s≤t acting on probability measures as follows∫
u d(P̂t,sµ) =

∫
(Pt,su)dµ (∀u ∈ Cb(X), ∀µ ∈ P(X)). (51)

It obviously has the ‘dual propagator property’ P̂t,r = P̂s,r ◦ P̂t,s. Whereas the time-dependent
function vt(x) = Pt,su(x) is a solution to the heat equation

∂tv = ∆tv, (52)

the time-dependent measure νs(dy) = P̂t,sµ(dy) is a solution to the dual heat equation

−∂sν = ∆̂sν.

Here again ∆̂s is defined by duality:
∫
u d(∆̂sµ) =

∫
∆su dµ (∀u,∀µ).

If we define Markov kernels pt,s(x, dy) for s ≤ t by pt,s(x, dy) = pt,s(x, y) dms(y) then

Pt,su(x) =

∫
u(y)pt,s(x, dy) =

∫
u(y)pt,s(x, y) dms(y)

and the dual propagator is given by

(P̂t,sµ)(dy) =

∫
pt,s(x, dy) dµ(x) =

[∫
pt,s(x, y) dµ(x)

]
dms(y).

In particular, (P̂t,sδx)(dy) = pt,s(x, dy). Note that P̂t,sµ(X) =
∫
Pt,s1(x)dµ(x) = 1.

Theorem 3.5. (i) For each 0 ≤ σ < t ≤ T and each g ∈ H there exists a unique solution
v ∈ F(0,t) to the adjoint heat equation ∂svs = −∆svs + (∂sfs)vs on (σ, t)×X with vt = g.

(ii) This solution is given as vs(y) = P ∗t,sg(y) in term of the adjoint heat propagator

P ∗t,sg(y) =

∫
pt,s(x, y)g(x) dmt(x). (53)

If X is bounded, for each (t′, x) ∈ (0, t)×X the function (s, y) 7→ pt,s(x, y) is a solution to the
adjoint heat equation on (0, t′)×X.

(iii) All solutions v : (s, y) 7→ vs(y) to the adjoint heat equation on (σ, t) × X are Hölder
continuous in s and y. All nonnegative solutions satisfy a scale invariant parabolic Harnack
inequality of Moser type.

Proof. The assumption on Lipschitz continuity of t 7→ ft implies that all the regularity assump-
tions requested in [36] also hold for the time-dependent operators ∆s − (∂sfs) (which then are
just the operators ∆s perturbed by multiplication operators in terms of bounded functions).
Thus all the previous results apply without any changes. �

Corollary 3.6. For all g, h ∈ L1(X)∫
h · P ∗t,sg dms =

∫
Pt,sh · g dmt

and

P̂t,s
(
g ·mt

)
=
(
P ∗t,sg

)
·ms. (54)
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Lemma 3.7. (i) P̂t,s is continuous on P(X) w.r.t. weak convergence.

(ii) The dual heat flow s 7→ µs = P̂t,sµ is uniformly Hölder continuous (w.r.t. any of the
metrics Wτ , r ∈ I, see next section). More precisely, there exists a constant C such that for all
s, s′ < t, all τ and all µ

W 2
τ (µs, µs′) ≤ C · |s− s′|. (55)

(iii) If X is compact then for each s < t

P̂t,s : P(X)→ D
where D = {µ ∈ P(X) : µ = um�, u ∈ F ∩ L∞, 1/u ∈ L∞}.

(iv) For µ ∈ P(X) such that µ ∈ Dom(S), the dual heat flow (P̂t,sµ)s<t belongs to
AC2([0, t],P(X)).

Proof. (i) For each bounded continuous u on X the function Pt,su is bounded continuous. Thus
µn → µ implies ∫

u dP̂t,sµn =

∫
Pt,su dµn →

∫
Pt,su dµ =

∫
u dP̂t,sµ

which proves the requested convergence P̂t,sµn → P̂t,sµ.

(ii) Given µs = P̂t,sµ and µs′ = P̂t,s′µ for s < s′ < t. Then

W 2
τ (µs, µs′) ≤

∫ ∫
d2
τ (x, y) ps′,s(x, y) dms(y) dµs′(x).

According to [48, 36], the heat kernel admits upper Gaussian estimates of the form

ps′,s(x, y) ≤ C

mτ (Bτ (
√
σ, x))

· exp
(
− d2

τ (x, y)

Cσ

)
with σ := |s−s′| and Bτ (r, x) denoting the ball of radius r around x in the metric space (X, dτ ).
Moreover, Bishop-Gromov volume comparison in RCD(K,N)-spaces provides an upper bound
for the volume of spheres

A(R, x) ≤
(R
r

)N−1
· eR
√
|K|(N−1) ·A(r, x)

for R ≥ r where A(r, x) = ∂r+mτ (Bτ (r, x)) and thus (by integrating from 0 to
√
σ)

A(R, x) ≤ NRN−1

σN/2
· eR
√
|K|(N−1) ·mτ (Bτ (

√
σ, x))

for R ≥ √σ. Hence, we finally obtain

W 2
τ (µs, µs′) ≤

∫ ∫
d2
τ (x, y) ps′,s(x, y) dms(y) dµs′(x)

≤
∫
X

[ C

mτ (Bτ (
√
σ, x))

·
∫
X
d2
τ (x, y) · exp

(
− d2

τ (x, y)

Cσ

)
dmτ (y)

]
dµs′(x)

≤ Cσ + C

∫
X

∫ ∞
√
σ
R2 · exp

(
− R2

Cσ

)
N
RN−1

σN/2
· eR
√
|K|(N−1) dRdµs′(x)

≤ C ′ · σ.
(iii) By definition of solution to the adjoint heat equation, the densities us of P̂t,sµ (w.r.t. ms)

lie in Dom(E). Parabolic Harnack inequality implies continuity and positivity. Together with
compactness of X this yields upper and lower bounds (away from 0) for u.

(iv) In a similar calculation as in Proposition 2.8, we find for µ = vmt, µs = P̂t,sµ since the
dual heat flow is mass preserving,∫ t

s

∫
Γr(log vr)dµrdr = St(µ)− Ss(µs)−

∫ t

s

∫
vr∂rfrdmrdr

≤ St(µ) +mt(X) + L(t− s).
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Now choose φ ∈ Dom(E) with φ,Γ(φ) ∈ L∞(X). Then∣∣∣∣∫ φvtdmt −
∫
φvsdms

∣∣∣∣ =

∣∣∣∣∫ t

s
Er(φ, vr)dr

∣∣∣∣
≤
∫ t

s

(∫
Γr(φ)vrdmr

)1/2(∫
Γr(log vr)vrdmr

)1/2

dr

≤
∫ t

s

(∫
Γt(φ)vrdmr

)1/2(
e2L(s−t)

∫
Γr(log vr)vrdmr

)1/2

dr

Then, Theorem 7.3 in [1] yields

|µ̇r|2t ≤ e2L(s−t)
∫

Γr(log vr)vrdmr ∈ L1
loc((0, t)),

where the last conclusion is due to our previous calculation. �

Lemma 3.8. Let u, g ∈ Dom(E) and t ∈ (0, T ) with g ∈ L1(X,mt). Then

lim
h↘0

1

h

(∫
ugdmt −

∫
uP ∗t,t−hgdmt−h

)
=

∫
Γt(u, g)dmt

and for a.e. s < t

lim
h↘0

1

h

(∫
uP ∗t,s+hgdms+h −

∫
uP ∗t,sgdms

)
=

∫
Γs(u, P

∗
t,sg)dms

Proof. Without loss of generality assume that g ≥ 0 and
∫
g dmt = 1. The general case can be

obtained by considering the positive and negative parts separately and normalization. We first
prove that for g ∈ Dom(E) and u ∈ Lip(X)

1

h

(∫
ugdmt −

∫
uP ∗t,t−hgdmt−h

)
=

∫ 1

0

∫
Γt−rh(u, P ∗t,t−rhg)dmt−rhdr. (56)

Note that for 0 ≤ r1 ≤ r2 ≤ 1∣∣∣∣∫ uP ∗t,t−r2hgdmt−r2h −
∫
uP ∗t,t−r1hgdmt−r1h

∣∣∣∣ ≤ Lip(u)W2(P̂t,t−r2h(gmt), P̂t,t−r1h(gmt)),

and hence, as a consequence of Lemma 3.7(ii), the map r 7→
∫
uP ∗t,t−rhgdmt−rh is absolutely

continuous. Thus

1

h

(∫
ugdmt −

∫
uP ∗t,t−hgdmt−h

)
= −1

h

∫ 1

0
∂r

∫
uP ∗t,t−rhgdmt−rhdr

=− 1

h

∫ 1

0

∫
ue−ft−rh∂rP

∗
t,t−rhgdm� −

1

h

∫ 1

0

∫
uP ∗t,t−rhg∂re

−ft−rhdm�dr

=

∫ 1

0
E�t−rh(P ∗t,t−rhg, ue

−ft−rh)dr +

∫ 1

0

∫
P ∗t,t−rhgue

−ft−rh∂rft−rhdm�dr

−
∫ 1

0

∫
P ∗t,t−rhgue

−ft−rh∂rft−rhdm�dr

=

∫ 1

0
E�t−rh(P ∗t,t−rhg, ue

−ft−rh)dr =

∫ 1

0
Et−rh(P ∗t,t−rhg, u)dr,

where we used that r 7→ P ∗t,t−rhg is a rescaled solution to the adjoint heat equation.

Since we assume that the space has a lower Riemannian Ricci bound, we obtain equation (56)
for every u ∈ Dom(E) by approximating with Lipschitz functions un, satisfying un → u strongly
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in (Dom(E),
√
|| · ||2

L2(X)
+ E(·)), see [5, Proposition 4.10]. Hence

lim
h↘0

1

h

(∫
ugdmt −

∫
uP ∗t,t−hgdmt−h

)
= lim

h↘0

∫ 1

0

∫
Γt−rh(u, P ∗t,t−rhg)dmt−rhdr

=

∫ 1

0
lim
h↘0

∫
Γt−rh(u, P ∗t,t−rhg)dmt−rhdr

=

∫
Γt(u, g)dmt,

where the third inequality directly follows from Lemma 2.17 and the second equality follows
from dominated convergence.

Similarly for the second claim we write for h < t− s
1

h

(∫
uP ∗t,s+hgdms+h −

∫
uP ∗t,sgdms

)
=

1

h

∫ s+h

s
∂r

∫
uP ∗t,rg dmr dr

=
1

h

∫ s+h

s

∫
Γr(u, P

∗
t,rg)dmr dr,

which converges for a.e. s to
∫

Γs(u, P
∗
t,sg) dms as h↘ 0. �

To summarize:

. Given any h ∈ L2(X,ms) the function (t, x) 7→ ut(x) = Pt,sh(x) solves the heat equation
∂tut = ∆tut in (s, T )×X with initial condition us = h. In Markov process theory, this
is the Kolmogorov backward equation (in reverse time direction).

. By duality we obtain the dual propagator P̂t,s acting on probability measures. Given

any ν ∈ (P(X),Wt), the probability measures (s, y) 7→ µs = P̂t,sν solve the dual heat

equation −∂sµs = ∆̂sµs in [0, t)×X with terminal condition µt = ν.

. Their densities vs = dµs
dms

solve the Fokker-Planck equation or Kolmogorov forward equa-

tion (in reverse time direction)

−∂svs = ∆svs−∂sfs · vs
in (0, t)×X. The latter is also called adjoint heat equation.
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4. Towards Transport Estimates

In the sequel, N always will denote an extended number in (0,∞]. The assumptions from
section 3.1 will always be in force (in particular, we assume RCD∗(K,N ′) and the bounds (34)
and (35)). Moreover, X will be assumed to be bounded (and thus compact).

4.1. From Dynamic Convexity to Transport Estimates.

Definition 4.1. We say that the time-dependent mm-space
(
X, dt,mt

)
t∈I is a super-N -Ricci

flow if the Boltzmann entropy S is dynamical N -convex on I × P in the following sense: for
a.e. t ∈ I and every Wt-geodesic (µa)a∈[0,1] in P with µ0, µ1 ∈ Dom(S)

∂+
a St(µ

a)
∣∣
a=1− − ∂

−
a St(µ

a)
∣∣
a=0+

≥ −1

2
∂−t W

2
t−(µ0, µ1) +

1

N

∣∣∣St(µ0)− St(µ1)
∣∣∣2. (57)

N -super Ricci flows in the case N =∞ are simply called super Ricci flows.

Recall that D = {µ ∈ P(X) : µ = um�, u ∈ F ∩ L∞, 1/u ∈ L∞}.

Proposition 4.2. Given probability measures µ, ν ∈ D ⊂ P, then the Wt-geodesic (ηa)a∈[0,1]

connecting µ and ν has uniformly bounded densities dηa

dmt
≤ C and there exist Wt-Kantorovich

potentials φ from µ to ν and ψ from ν to µ (both conjugate to each other) such that

∂aSt(η
a)
∣∣
a=0+

≥ −Et(φ, u), ∂aSt(η
a)
∣∣
a=1− ≤ +Et(ψ, v).

Proof. This result uses only properties of the static mm-space (X, dt,mt). It can be found as
estimate (6.19) in the proof of Theorem 6.5 in [2]. Note that due to our (upper and lower)
boundedness assumption on u, v, no extra regularization is requested. �

Proposition 4.3. Given τ ≤ T and µ, ν ∈ D ⊂ P, put µt = P̂τ,tµ and νt = P̂τ,tν. For each
t ∈ (0, τ), let φt and ψt be any conjugate Wt-Kantorovich potentials from µt to νt and vice versa.
Then for every 0 < r < t < s < τ

1

2
∂+
r W

2
t (µr, νr)|r=t− ≤ Et(φt, ut) + Et(ψt, vt), (58)

and
1

2
lim inf
δ↘0

1

δ

∫ s

r

[
W 2
t (µt+δ, νt+δ)−W 2

t (µt, νt)
]
dt ≥

∫ s

r
Et(φt, ut) + Et(ψt, vt) dt. (59)

Here ut and vt denote the densities of µt and νt, resp., w.r.t. mt.

Proof. We closely follow the argumentation of the proof of Theorem 6.3 in [2]. According
to Proposition 2.12, ut, vt ∈ Dom(E). Moreover, due to boundedness of X, the Kantorovich
potentials φt and ψt are Lipschitz and thus also lie in Dom(E). Since φt and ψt are conjugate
Wt-Kantorovich potentials from µt to νt and vice versa, we get

1

2
W 2
t (µt, νt) =

∫
φtdµt +

∫
ψtdνt

whereas
1

2
W 2
t (µr, νr) ≥

∫
φtdµr +

∫
ψtdνr

for r 6= t. Thus with the help of Lemma 3.8 and Theorem 2.5 (ii)

1

2
lim sup
r↗t

1

t− r
[
W 2
t (µt, νt)−W 2

t (µr, νr)
]

≤ lim sup
r↗t

1

t− r

[∫
φt[dµt − dµr] +

∫
ψt[dνt − dνr]

]
= Et(φt, ut) + Et(ψt, vt).
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This proves the first claim. With the same notation as before note that supt Et(φt) <∞ as well
as supt Et(ψt) <∞ since each (X, dt) is bounded (Proposition 2.2 in [2]). We then find again by
Lemma 3.8 and Fatou’s Lemma

1

2
lim inf
δ↘0

1

δ

∫ s

r

[
W 2
t (µt+δ, νt+δ)−W 2

t (µt, νt)
]
dt

≥ lim inf
δ↘0

1

δ

∫ s

r

[∫
φt[dµt+δ − dµt] +

∫
ψt[dνt+δ − dνt]

]
dt

≥
∫ s

r
Et(φt, ut) + Et(ψt, vt) dt.

�

Theorem 4.4. Assume that
(
X, dt,mt

)
t∈(0,T )

is a super-Ricci flow and that (µt)t≤τ and (νt)t≤τ

are dual heat flows started in probability measures µτ , ντ ∈ D. Then for a.e. t ∈ (0, T )

∂tW
2
t (µt, νt) ≥ 0.

Proof. The assumptions on the densities are preserved by the dual heat flow, that is, µt and
νt will have densities in Dom(E) which are bounded from above and bounded away from 0,
uniformly in t. Using the absolute continuity of t 7→W 2

t (µt, νt), we obtain for all r < s

W 2
s (µs, νs)−W 2

r (µr, νr) ≥ lim sup
δ↘0

∫ s

r

1

δ

[
W 2
t (µt+δ, νt+δ)−W 2

t (µt, νt)

+W 2
t+δ(µt+δ, νt+δ)−W 2

t (µt+δ, νt+δ)
]
dt

≥ lim inf
δ↘0

∫ s

r

1

δ

(
W 2
t (µt+δ, νt+δ)−W 2

t (µt, νt)
)
dt

+ lim inf
δ↘0

1

δ

∫ s

r

(
W 2
t+δ(µt+δ, νt+δ)−W 2

t (µt+δ, νt+δ)
)
dt

≥
∫ s

r
2
(
Et(ut, φt) + Et(vt, ψt)

)
dt

+ lim inf
δ↘0

1

δ

∫ s

r

(
W 2
t (µt, νt)−W 2

t−δ(µt, νt)
)
dt

≥
∫ s

r
2
(
Et(ut, φt) + Et(vt, ψt)

)
dt

−
∫ s

r
2
(
Et(ut, φt) + Et(vt, ψt)

)
dt ≥ 0,

where we used Proposition 4.3 in the third inequality while the fourth inequality is due to
Proposition 4.2 and the definition of super-Ricci flow, i.e.

−1

2
∂−r W

2
r (µt, νt)

∣∣
r=t− ≤ ∂aS(η1−

t )− ∂aS(η0+
t )

for every Wt-geodesic (ηbt )b∈[0,1] connecting µt and νt. In the previous argumentation, we used

in the third and fourth inequality that 1
δ [W 2

t+δ −W 2
t ] is uniformly bounded, which is due to the

log-Lipschitz bound on the distances. �

Corollary 4.5. Assume that
(
X, dt,mt

)
t∈(0,T )

is a super-Ricci flow and that (µt)t≤τ and (νt)t≤τ

are dual heat flows started in points µτ and ντ ∈ P, resp., for some τ ∈ (0, T ]. Then for all
0 ≤ s < t ≤ τ

Ws(µs, νs) ≤Wt(µt, νt). (60)

Proof. For measures µτ , ντ with densities in Dom(E) which are bounded from above and bounded
away from 0 the estimate (60) immediately follows from the previous theorem and the fact that
the map t 7→Wt(µt, νt) is absolutely continuous (Lemma 3.7).

The set of such probability measures is dense in P (w.r.t. weak topology) and according to

Lemma 3.7, P̂t,s is continuous on P. Thus the estimate (60) carries over to all µτ , ντ ∈ P. �
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Theorem 4.6 (“(IN) ⇒ (IIN)”). Assume that
(
X, dt,mt

)
t∈(0,T )

is a super-N -Ricci flow and

that probability measures µτ , ντ ∈ P are given for some τ ∈ (0, T ]. Then the dual heat flows
(µt)t≤τ and (νt)t≤τ starting in these points satisfy for all 0 ≤ s < t ≤ τ

W 2
s (µs, νs) ≤W 2

t (µt, νt)−
2

N

∫ t

s
[Sr(µr)− Sr(νr)]2 dr. (61)

Proof. For measures µτ , ντ within the subset D we follow the proof of the previous Theorem 4.4
line by line and finally use the enforcement of the super Ricci flow property to deduce

−1

2
lim inf
δ↘0

1

δ

[
W 2
t+δ(µt+δ, νt+δ)−W 2

t (µt+δ, νt+δ)
]
≤ ∂aSt(η

1−
t )− ∂aSt(η0+

t )

− 1

N
[St(µt)− St(νt)]2 .

Together with the other estimates from the proof of the previous theorem this gives

W 2
s (µs, νs)−W 2

t (µt, νt) ≤ −
2

N

∫ t

s
[Sr(µr)− Sr(νr)]2 dr.

For general µτ , ντ ∈ P we apply the previous result to the pair µt, νt ∈ D (cf. Lemma 3.7)
which already yields the claim for all 0 ≤ s < t < τ . The claim for t = τ now follows by
approximation

W 2
s (µs, νs) ≤ W 2

t (µt, νt)−
2

N

∫ t

s
[Sr(µr)− Sr(νr)]2 dr

→ W 2
τ (µτ , ντ )− 2

N

∫ τ

s
[Sr(µr)− Sr(νr)]2 dr

as t ↑ τ . Here the convergence of the integrals is obvious. The convergence of the first term on
the right-hand side follows from Lemma 3.7. �

4.2. From Gradient Estimates to Transport Estimates.

Theorem 4.7 (“(IIIN) ⇒ (IIN)”). Assume that
(
X, dt,mt

)
t∈(0,T )

satisfies the Bakry-Ledoux

gradient estimate (IIIN ) for the primal heat flow. Then the dual heat flow starting in arbitrary
points µ0

τ , µ
1
τ ∈ P(X) satisfies for all 0 < s < τ < T

W 2
s (µ0

s, µ
1
s) ≤W 2

τ (µ0
τ , µ

1
τ )− 2

N

∫ τ

s

[
St(µ

0
t )− St(µ1

t )
]2
dt. (62)

Proof. (i) Given τ ∈ I and a regular curve (see chapter 3) (µaτ )a∈[0,1], define of each t ≤ τ the
Wt-action

At
(
µ·t
)

= sup

{
k∑
i=1

1

ai − ai−1
W 2
t

(
µ
ai−1

t , µait
)

: k ∈ N, 0 = a0 < a1 < . . . < ak = 1

}
of the curve a 7→ µat = P̂τ,tµ

a
τ . Let t ∈ (0, τ ] be given with At

(
µ·t
)
<∞. In other words, such that

the curve a 7→ µat is 2-absolutely continuous. (Obviously, this is true for t = τ . The subsequent
discussion indeed will show that this holds for all t ≤ τ .) Let (uat )a∈[0,1] and (Φa

t )a∈[0,1] denote
the densities and velocity potentials for the curve (µat )a∈[0,1] (see [7, Theorem 8.2], or (39),(40))
in the static space (X, dt,mt). Then, in particular,

At
(
µ·t
)

=

∫ 1

0

∣∣µ̇at ∣∣Wt
da =

∫ 1

0

∫
X

∣∣∇tΦa
t

∣∣2 dµat da.
Given s ∈ (0, t) and ε > 0 choose bounded Lipschitz functions −ϕ0

s, ϕ
1
s which are in Ws-duality

to each other such that

W 2
s (µ0

s, µ
1
s) ≤ 2

[ ∫
X
ϕ1
sdµ

1
s −

∫
X
ϕ0
sdµ

0
s

]
+ ε(t− s)

and let (ϕas)a∈[0,1] denote the Hopf-Lax interpolation of ϕ0
s, ϕ

1
s in the static space (X, ds,ms).
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Then applying the continuity equation (39) and the Hamilton-Jacobi equation (37) yields

ε +
1

t− s
[
At(µ·t)−W 2

s (µ0
s, µ

1
s)
]

≥ 1

t− s

∫ 1

0

∣∣µ̇at ∣∣2da− 2

t− s
[ ∫

X
ϕ1
sdµ

1
s −

∫
X
ϕ0
sdµ

0
s

]
=

1

t− s

∫ 1

0

[ ∫
X

∣∣∇tΦa
t

∣∣2dµat − 2∂a

∫
X
Pt,sϕ

a
sdµ

a
t

]
da

=
1

t− s

∫ 1

0

∫
X

[∣∣∇tΦa
t −∇tPt,sϕas

∣∣2 − ∣∣∇tPt,sϕas∣∣2 + Pt,s
∣∣∇sϕas∣∣2]dµat da

≥ 1

t− s

∫ 1

0

∫
X

∣∣∇tΦa
t −∇tPt,sϕas

∣∣2dµat da
+

2

N(t− s)

∫ t

s

∫ 1

0

∫
X

[
Pt,r∆rPr,sϕ

a
s

]2
dµat da dr ≥ 0

where for the second last inequality we have used the Bakry-Ledoux gradient estimate (IIIN ).
In the case N =∞ this already proves the claim. Indeed, since ε > 0 was arbitrary it states

that

W 2
s (µ0

s, µ
1
s) ≤ Aτ (µ·τ )

for any regular curve (µaτ )a∈[0,1]. Given any µ0
τ , µ

1
τ ∈ P(X) we can choose regular curves

(µaτ,n)a∈[0,1] for n ∈ N such that Aτ (µ·τ,n) → W 2
τ (µ0

τ , µ
1
τ ) and Wτ (µ0

τ,n, µ
0
τ ) → 0 as well as

Wτ (µ1
τ,n, µ

1
τ )→ 0 for n→∞. According to Lemma 3.7, the latter also implies Ws(µ

0
s,n, µ

0
s)→ 0

as well as Ws(µ
1
s,n, µ

1
s) → 0 for n → ∞ where µas,n := P̂τ,sµ

a
τ,n. Together with the previous

estimate (applied with t = τ to the regular curves (µaτ,n)a∈[0,1]) we obtain

W 2
s (µ0

s, µ
1
s) = lim

n→∞
W 2
s (µ0

s,n, µ
1
s,n) ≤ lim

n→∞
Aτ (µ·τ,n) = W 2

τ (µ0
τ , µ

1
τ ).

This is the claim.
Moreover, applying this monotonicity result to each pair µ

ai−1
τ , µaiτ of points on the initial

regular curve selected by an arbitrary partition (ai)i=1,...,k yields

As(µ·s) ≤ Aτ (µ·τ )

for all s ≤ τ . In particular, this implies that the previous argumentation is valid for all t ≤ τ .

(ii) Moreover, the previous estimates for given s, t, ε can be tightened up by choosing k ∈ N
and (ai)i=1,...,k as well as for i = 1, . . . , k suitable bounded Lipschitz functions −ϕ0,i

s , ϕ
1,i
s which

are in Ws-duality to each other and which are ‘almost maximizers’ of the dual representation of
W 2
s

(
µ
ai−1
s , µais

)
such that
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ε +
1

t− s
[
At(µ·t)−As(µ·s)

]
≥ ε/2 +

1

t− s
[
At(µ·t)−

k∑
i=1

1

ai − ai−1
W 2
s

(
µ
ai−1
s , µais

)]
≥ 1

t− s

∫ 1

0

∣∣µ̇at ∣∣2da− 2

t− s
k∑
i=1

1

ai − ai−1

[ ∫
X
ϕ1,i
s dµ

1
s −

∫
X
ϕ0,i
s dµ

0
s

]
=

1

t− s

∫ 1

0

[ ∫
X

∣∣∇tΦa
t

∣∣2dµat − 2∂a

∫
X
Pt,sϕ

a,k
s dµat

]
da

=
1

t− s

∫ 1

0

∫
X

[∣∣∇tΦa
t −∇tPt,sϕa,ks

∣∣2 − ∣∣∇tPt,sϕa,ks ∣∣2 + Pt,s
∣∣∇sϕa,ks ∣∣2]dµat da

≥ 1

t− s

∫ 1

0

∫
X

∣∣∇tΦa
t −∇tPt,sϕa,ks

∣∣2dµat da
+

2

N(t− s)

∫ t

s

∫ 1

0

∫
X

[
Pt,r∆rPr,sϕ

a,k
s

]2
dµat da dr =: (α)

The function ϕa,ks here is obtained for a ∈ (ai−1, ai) by Hopf-Lax interpolation of the Lipschitz

functions ϕ
ai−1+,k
s := 1

ai−ai−1
ϕ0,i
s and ϕai−,ks := 1

ai−ai−1
ϕ1,i
s .

Now let us choose t to be a Lebesgue density point of t 7→
∫ 1

0 Et(Pt,sϕas , P ∗τ,tuaτ ) da. Then for
s sufficiently close to t the commutator lemma (applied to time points r and t) implies that[ 1

(t− s)

∫ t

s

∫ 1

0

∫
X
Pt,r∆rPr,sϕ

a,k
s dµat da dr

]2
≥
[ 1

(t− s)

∫ t

s

∫ 1

0

∫
X

∆tPt,sϕ
a,k
s dµat da dr

]2
− ε ·N/2.

Let us also briefly remark that the densities uat of the measures µat are bounded away from 0,
uniformly in a (due to the smooth dependence on a of the measures in the regularized curve we
started with) and locally uniformly in t (due to the parabolic Harnack inequality for solutions
to the adjoint heat equation). In particular, in the subsequent calculations the singularity of the
logarithm at 0 does not matter. Thus applying Young’ inequality (a− b)2 ≥ δ

1+δa
2 − δb2 where

δ = N/ε

(α) =
1

t− s

∫ 1

0

∫
X

∣∣∇tΦa
t −∇tPt,sϕa,ks

∣∣2dµat da+
2

N

∣∣∣ ∫ 1

0

∫
X
∇tPt,sϕa,ks · ∇t log uat dµ

a
t da
∣∣∣2 − ε

≥ 2

N + ε

∣∣∣ ∫ 1

0

∫
X
∇tΦa

t · ∇t log uat dµ
a
t da
∣∣∣2 − ε

+
[ 1

t− s −
2

ε

∫
X

∣∣∇t log uat
∣∣2dµat da] · ∫

X

∣∣∇tΦa
t −∇tPt,sϕa,ks

∣∣2dµat da
≥ 2

N + ε

∣∣∣ ∫ 1

0

∫
X
∇tΦa

t · ∇t log uat dµ
a
t da
∣∣∣2 − ε =: (β)

provided s is sufficiently close to t. Finally, using the continuity equation for the curve (µat )a∈[0,1]

(and its velocity potentials Φa
t ) we obtain

(β) =
2

N + ε

∣∣∣St(µ1
t )− St(µ0

t )
∣∣∣2 − ε.

Passing to the limit s↗ t yields

ε + ∂−t−At(µ·t) ≥
2

N + ε

∣∣∣St(µ1
t )− St(µ0

t )
∣∣∣2 − ε

and thus (since ε > 0 was arbitrary)

∂−t−At(µ·t) ≥
2

N

∣∣∣St(µ1
t )− St(µ0

t )
∣∣∣2. (63)
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Recall that this holds for a.e. t ∈ (0, τ). Moreover, note that t 7→ At(µ·t) is absolutely continuous.
Indeed, by Lemma 3.7 and the log-Lipschitz assumption (34)∣∣∣W 2

t+ε(µ
a
t+ε, µ

b
t+ε)−W 2

t (µat , µ
b
t)
∣∣ ≤ ∣∣∣W 2

t+ε(µ
a
t+ε, µ

b
t)−W 2

t (µat , µ
b
t)
∣∣

+
∣∣∣W 2

t (µat+ε, µ
b
t+ε)−W 2

t (µat , µ
b
t)
∣∣

≤ 2Lε e2LεW 2
t (µat , µ

b
t)

+
2
√
ε

1− 2
√
ε
W 2
t (µat , µ

b
t) +

1√
ε
W 2
t (µat+ε, µ

a
t ) + +

1√
ε
W 2
t (µbt+ε, µ

b
t)

≤ C0

√
εW 2

t (µat , µ
b
t) + C1

√
ε.

Thus we may integrate (63) from any s ∈ (0, τ) to τ to obtain

As(µ·s) ≤ Aτ (µ·τ )− 2

N

∫ τ

s

[
St(µ

0
t )− St(µ1

t )
]2
dt. (64)

Finally, given arbitrary µ0
τ , µ

1
τ ∈ P(X) the subsequent lemma provides a construction of

2-absolutely continuous, regular curves (µ̃aσ)a∈[0,1] connecting µ0
σ, µ

1
σ for a.e. σ < τ with

Aσ(µ̃·σ)→W 2
τ (µ0

τ , µ
1
τ )

as σ ↗ τ . Carrying out the previous estimations, finally resulting in (64), with (µ̃aσ)a∈[0,1] in the
place of (µaτ )a∈[0,1] yields

W 2
s (µ0

s, µ
1
s) ≤ As(µ̃·s)

≤ Aσ(µ̃·σ)− 2

N

∫ σ

s

[
St(µ

0
t )− St(µ1

t )
]2
dt

→ W 2
τ (µ0

τ , µ
1
τ )− 2

N

∫ τ

s

[
St(µ

0
t )− St(µ1

t )
]2
dt.

This proves the claim. �

Lemma 4.8. (i) Assume (III) (with N =∞) and let (µa)a∈[0,1] be an arbitrary Wτ -geodesic in
P(X). Let χ be a standard convolution kernel on R. Then for a.e. t < τ and every δ > 0 the
measures

µa,δt :=

∫
R

(
P̂τ,tµ

ϑ(a+δb)
)
χ(b)db = P̂τ,t

(∫
R
µϑ(a+δb)χ(b)db

)
constitute a regular curve (µa,δt )a∈[0,1] (in the sense of Definition 3.1). Here ϑ(a) = 0 for a ∈
[0, δ], ϑ(a) = 1 for a ∈ [1− δ, 1], and ϑ(a) = a−δ

1−2δ for a ∈ [δ, 1− δ].
Choosing tn ↗ τ and δn ↘ 0 yields a sequence of regular curves satisfying (43) - (46). In

addition, for these approximations the endpoints are simply given by the dual heat flow:

µa,δntn = P̂τ,tnµ
a

for a = 0 as well as a = 1 and for all n.

Proof. The re-parametrization by means of ϑ forces the curve to be constant for some short
interval around the endpoints and squeeze it in-between. The latter leads to a moderate increase
of the metric speed. The former guarantees that the endpoints remain unchanged under the
convolution. The convolution w.r.t. the kernel χ guarantees smooth dependence on a, i.e. (1)
of Def 3.1. (43) follows from Lemma 3.7. Smoothness in a (thanks to the convolution) and
Hölder continuity in (t, x) (being a solution to the adjoint heat equation) guarantee uniform
boundedness of uat (x) for (a, t, x) ∈ [0, 1]× (0, t]×X for each t < τ , i.e. (2) of Def 3.1. Moreover,
uat (x) is uniformly bounded away from 0. Thus (3) of Def 3.1 is equivalent to a uniform bound
for the energy Et(ua).

Boundedness of uar for r < τ implies∫ 1

0

∫ r

0
Et(uat ) dt da ≤

1

2

∫ 1

0
‖uar‖2L2(mr)

da <∞.
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Thus for a.e. t < τ ∫ 1

0
Et(uat )da <∞ and Et(u0

t ) <∞, Et(u1
t ) <∞.

Convolution w.r.t. the kernel χ thus turns the integrable function a 7→ Et
(
u
ϑ(a)
t

)
into a bounded

function:
∫
R Et

(
u
ϑ(a+δb)
t

)
χ(b)db ≤ C. Since the energy u 7→ Et(u) is convex, Jensen’s inequality

implies

Et
(∫

R
u
ϑ(a+δb)
t χ(b)db

)
≤
∫
R
Et
(
u
ϑ(a+δb)
t

)
χ(b)db ≤ C.

The action estimate (44) follows from part (i) of the previous proof. Indeed, the dual heat
flow decreases the action. Also convolution in the a-parameter decreases the action. The re-
parametrization increases the action by a factor bounded by 1

(1−2δ)2
.

The entropy estimates (45) and (46) follow as in the proof of Lemma 3.2 �

4.3. Duality between Transport and Gradient Estimates in the Case N = ∞. In the
subsequent chapter, we will prove the implication (IIN) ⇒ (IIIN) by composing the results
(IIN) ⇒ (IVN) and (IVN) ⇒ (IIIN). Partly, these arguments are quite involved. (And
actually, for the last one, we freely make use of the subsequent Theorem 4.9).

Here we present a direct, much simpler proof in the particular case N = ∞. Indeed, this
proof will yield a slightly stronger statement: the equivalence of the respective estimates for
given pairs s, t. See also [31] for a related result.

Theorem 4.9 (“(II) ⇔ (III)”). For fixed 0 < s < t < T the following are equivalent:

(II)t,s For all µ, ν ∈ P
Ws(P̂t,sµ, P̂t,sν) ≤Wt(µ, ν) (65)

(III)t,s For all u ∈ Dom(E)

Γt(Pt,su) ≤ Pt,s(Γs(u)) m-a.e. on X. (66)

Proof. “(II)t,s ⇒ (III)t,s”: Given a bounded Lipschitz function u on X, points x, y ∈ X, and a

dt-geodesic (γa)a∈[0,1] connecting x and y, put µat = δγa and µas = P̂t,sµ
a
t . The transport estimate

Ws(µ
a
s , µ

b
s) ≤Wt(µ

a
t , µ

b
t) implies that∣∣µ̇s∣∣Ws

≤
∣∣µ̇t∣∣Wt

=
∣∣γ̇∣∣

dt
= dt(x, y).

Thus following the argumentation from [5], Theorem 6.4, we obtain∣∣∣Pt,su(x)− Pt,su(y)
∣∣∣ =

∣∣∣ ∫ u dP̂t,sδx −
∫
u dP̂t,sδy

∣∣∣
≤

∫ 1

0

(∣∣∇su∣∣2dµas)1/2
·
∣∣µ̇s∣∣Ws

da

≤
∫ 1

0

(
Pt,s
∣∣∇su∣∣2(γa)

)1/2
·
∣∣γ̇∣∣

dt
da

≤ dt(x, y) · sup
{
Pt,s
∣∣∇su∣∣2(z) : dt(x, z) + dt(z, y) = dt(x, y)

}
.

The Hölder continuity of z 7→ Pt,s
∣∣∇su∣∣2(z), therefore, allows to conclude that (Pt,s

∣∣∇su∣∣2)1/2

is an upper gradient for Pt,su. This proves the claim for bounded Lipschitz functions. The
extension to u ∈ Dom(E) follows as in [5].

“(III)t,s ⇒ (II)t,s”: previous Theorem. �
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5. From Transport Estimates to Gradient Estimates and Bochner Inequality

As before, for the sequel a time-dependent mm-space (X, dt,mt)t∈I will be given such that

• for each t ∈ I the static space satisfies the RCD∗(K,N ′) condition for some finite numbers
K and N ′

• the distances are bounded and log-Lipschitz in t, that is, |∂tdt(x, y)| ≤ L · dt(x, y) for
some L uniformly in t, x, y (existence of ∂tdt for a.e. t)
• f is L-Lipschitz in t and x.

5.1. The Bochner Inequality.

The Time-Derivative of the Γ-Operator.

Definition 5.1. Given an interval J ⊂ I and u ∈ FJ with Γr(ur)(x) ≤ C uniformly in (r, x) ∈
J ×X. Then we define

•
Γr (ur)(x) as (one of the) weak subsequential limit(s) of

1

2δ

[
Γr+δ(ur)− Γr−δ(ur)

]
(x) (67)

in L2(J ×X) for δ → 0. That is, for a suitable 0-sequence (δn)n and all g ∈ L2(J ×X)

1

2δn

∫
J

∫
X

[
Γr+δn(ur)− Γr−δn(ur)

]
gr dmr dr →

∫
J

∫
X

•
Γr (ur) gr dmr dr

as n→∞.

Actually, thanks to Banach-Alaoglu theorem, such a weak limit always exists since (67) – due
to the log-Lipschitz continuity of the distances – defines a family of functions in L2(J ×X) with
bounded norm. Thus in particular we will have

lim inf
δ→0

1

2δ

∫
J

∫
X

[
Γr+δ(ur)− Γr−δ(ur)

]
gr dmr dr

≤
∫
J

∫
X

•
Γr (ur) gr dmr dr (68)

≤ lim sup
δ→0

1

2δ

∫
J

∫
X

[
Γr+δ(ur)− Γr−δ(ur)

]
gr dmr dr.

Remark 5.2. All the subsequent statements involving
•
Γr (ur) will be independent of the choice

of the sequence (δn)n and of the accumulation point in L2(J × X). For instance, the precise
meaning of Theorem 1.7 is that each of the properties (I), (II) or (III) will imply (IV) for

every choice of the weak subsequential limit
•
Γr (ur). Conversely, if (IV) is satisfied for some

choice of the weak subsequential limit
•
Γr (ur) then it implies properties (I), (II) and (III).

Indeed, the only property of
•
Γr (ur) which enters the calculations is (68).

Note that the log-Lipschitz continuity of the distances also immediately implies that∣∣∣ •Γr (ur)
∣∣∣ ≤ 2L · Γr(ur). (69)

Lemma 5.3. For every u ∈ FJ with supr,x Γr(ur)(x) <∞ and every g ∈ L∞(J ×X)∫
J

∫
X

•
Γr (ur) gr dmr dr = lim

n→∞

1

δn

∫
J

∫
X

[
Γr+δn(ur, ur+δn)− Γr(ur, ur+δn)

]
gr dmr dr.

In particular,

lim inf
δ↘0

1

δ

∫
J

∫
X

[
Γr+δ(ur+δ, ur)− Γr(ur+δ, ur)

]
gr dmr dr

≤
∫
J

∫
X

•
Γr (ur) gr dmr dr

≤ lim sup
δ↘0

1

δ

∫
J

∫
X

[
Γr+δ(ur+δ, ur)− Γr(ur+δ, ur)

]
gr dmr dr.
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Proof.∫
J

∫
X

•
Γr (ur) gr dmr dr = lim

n→∞

( 1

2δn

∫
J

∫
X

[
Γr+δn(ur)− Γr(ur)

]
gr dmr dr

+
1

2δn

∫
J

∫
X

[
Γr(ur)− Γr−δn(ur)

]
gr dmr dr

)
= lim
n→∞

( 1

2δn

∫
J

∫
X

[
Γr+δn(ur)− Γr(ur)

]
gr dmr dr

+
1

2δn

∫
J

∫
X

[
Γr+δn(ur+δn)− Γr(ur+δn)

]
gr dmr dr

)
= lim
n→∞

( 1

δn

∫
J

∫
X

[
Γr+δn(ur, ur+δn)− Γr(ur, ur+δn)

]
gr dmr dr

+
1

2δn

∫
J

∫
X

[
Γr+δn(ur+δn − ur)− Γr(ur+δn − ur)

]
gr dmr dr

)
= lim
n→∞

1

δn

∫
J

∫
X

[
Γr+δn(ur, ur+δn)− Γr(ur, ur+δn)

]
gr dmr dr.

Here for the second equality we used index shift and Lusin’s theorem (to replace gr+δndmr+δn

again by grdmr). The last equality follows from the log-Lipschitz continuity of r 7→ dr which
allows to estimate

1

δ

∣∣∣ ∫
J

∫
X

[
Γr+δ(ur+δ − ur)− Γr(ur+δ − ur)

]
gr dmr dr

∣∣∣
≤ 2L ·

∫
J

∫
X

Γr(ur+δ − ur) gr dmr dr

≤ C ′ ·
∫
J
Er(ur+δ − ur)dr → 0

as δ → 0 since r 7→ ur, as a map from J to F , is ‘nearly continuous’ (Lusin’s theorem). �

The Distributional Γ2-Operator.

Definition 5.4. For r ∈ (0, T ) and u ∈ Dom(∆r) with |∇ru| ∈ L∞ we define the distribution
valued Γ2-operator as a continuous linear operator

Γ2,r(u) : F ∩ L∞ → R

by

Γ2,r(u)(g) :=

∫ [
− 1

2
Γr
(
Γr(u), g

)
+ (∆ru)2g + Γr(u, g)∆ru

]
dmr. (70)

Note that∣∣∣Γ2,r(u)(g)
∣∣∣ ≤ 2‖∇ru‖∞ · ‖∇2

ru‖2 · ‖∇rg‖2 + ‖g‖∞ · ‖∆ru‖22 + ‖∇ru‖∞ · ‖∇rg‖2 · ‖∆ru‖2
≤ ‖g‖∞ · ‖∆ru‖22 + C · ‖∇ru‖∞ · ‖∇rg‖2 · (‖∆ru‖2 + ‖u‖2)

thanks to the fact that ‖∇2
ru‖22 ≤ (1 +K−) · (‖∆ru‖22 + ‖u‖22), cf. (49).

Also note that the assumptions on u will be preserved under the heat flow (at least for a.e. r)
and the assumptions on g are preserved under the adjoint heat flow. If u is sufficiently regular
(i.e. ∆u ∈ Dom(Er) and |∇ru|2 ∈ Dom(∆r)) then obviously

Γ2,r(u)(g) =

∫
Γ2,r(u) · g dmr

for all g under consideration where as usual Γ2,r(u) = 1
2∆r|∇ru|2 − Γr(u,∆ru).

On the other hand, if g ∈ Dom(∆r) then in (70) we may replace the term −Γr
(
Γr(u), g

)
by

Γr(u)∆rg.
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The Bochner Inequality.

Definition 5.5. (i) We say that (X, dt,mt)t∈I satisfies the dynamic Bochner inequality with
parameter N ∈ (0,∞] if for all 0 < s < t < T and for all us, gt ∈ F with gt ≥ 0, gt ∈ L∞,
us ∈ Lip(X) and for a.e. r ∈ (s, t)

Γ2,r(ur)(gr) ≥
1

2

∫
•
Γr (ur)grdmr +

1

N

(∫
∆rurgrdmr

)2
(71)

where ur = Pr,sus and gr = P ∗t,rgt, cf. (11).
(ii) We say that (X, dt,mt)t∈I satisfies property (IVN) if it satisfies the dynamic Bochner

inequality with parameter N as above and in addition the regularity assumption (7) is satisfied,
i.e. ur ∈ Lip(X) for all r ∈ (s, t) with supr,x liprur(x) <∞.

Note that in the case N =∞ inequality (71) simply states that

Γ2,r(ur) ≥
1

2

•
Γr (ur)mr

as inequality between distributions, tested against nonnegative functions gr as above.

5.2. From Bochner Inequality to Gradient Estimates.

Theorem 5.6 (“(IVN) ⇒ (IIIN)”). Suppose that the mm-space (X, dt,mt)t∈I satisfies the
dynamic Bochner inequality (71) and the regularity assumption from Definition 5.5 (ii). Then
for a.e. x ∈ X

Γt(Pt,su)(x)− Pt,sΓs(u)(x) ≤ − 2

N

∫ t

s

[
Pt,r∆rur(x)

]2
dr. (72)

Proof. Given s, t ∈ (0, T ) as well as u ∈ Lip(X) and g ∈ F ∩ L∞ with g ≥ 0, put ur = Pr,su,
gr = P ∗t,rg for r ∈ [s, t] and consider the function

hr :=

∫
grΓr(ur)dmr =

∫
Γr(ur)dµr

with µr := grmr.
(a) Choose s ≤ σ < τ ≤ t such that

hτ ≤ lim inf
δ↘0

1

δ

∫ τ

τ−δ
hrdr and hσ ≥ lim sup

δ↘0

1

δ

∫ σ+δ

σ
hrdr. (73)

Note that by Lebesgue’s density theorem, the latter is true at least for a.e. σ ≥ s and for a.e.
τ ≤ t. (Moreover, at the end of this proof (as part (b)) we will present an argument which
allows to conclude that (73) holds for σ = s, τ = t.) Then

hτ − hσ ≤ lim inf
δ↘0

1

δ

∫ τ−δ

σ

[
hr+δ − hr

]
dr

≤ lim sup
δ↘0

1

δ

∫ τ−δ

σ

∫
X

Γr+δ(ur+δ)d(µr+δ − µr) dr

+ lim inf
δ↘0

1

δ

∫ τ−δ

σ

∫
X
gr

[
Γr+δ(ur+δ, ur)− Γr(ur+δ, ur)

]
dmr dr

+ lim sup
δ↘0

1

δ

∫ τ−δ

σ

∫
X
gr

[
Γr+δ(ur+δ, ur+δ − ur) + Γr(ur+δ − ur, ur)

]
dmr dr

=:(I) + (II) + (III ′) + (III ′′).
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Each of the four terms will be considered separately. Since r 7→ µr is a solution to the dual heat
equation, we obtain

(I) = lim sup
δ↘0

1

δ

∫ τ−δ

σ

∫
X

Γr+δ(ur+δ) ·
(
−
∫ r+δ

r
∆qgq dmq dq

)
dr

=− lim inf
δ↘0

∫ τ

σ+δ

∫
X

Γr(ur)
(1

δ

∫ r

r−δ
∆qgqe

−fq dq
)
dm� dr

=−
∫ τ

σ

∫
X

Γr(ur) ·∆rgr dmr dr

due Lebesgue’s density theorem applied to r 7→ ∆rgre
−fr . Note that the latter function is in L2

(Theorem 2.12) and the function r 7→ Γr(ur) is in L∞ thanks to Definition 5.5 (ii).

The second term can easily estimated in terms
•
Γr according to Lemma 5.3:

(II) = lim inf
δ↘0

1

δ

∫ τ−δ

σ

∫
X
gr

[
Γr+δ(ur+δ, ur)− Γr(ur+δ, ur)

]
dmr dr

≤
∫ τ

σ

∫
X
gr
•
Γr (ur)dmrdr.

The term (III ′) is transformed as follows

(III ′) =− lim inf
δ↘0

1

δ

∫ τ−δ

σ

∫
X

(
Γr+δ(gr, ur+δ) + gr ∆r+δur+δ

)
·
(∫ r+δ

r
∆quq dq

)
dmr dr

=− lim inf
δ↘0

∫ τ

σ+δ

∫
X

(
Γr(gr−δ, ur) + gr−δ ∆rur

)
·
(1

δ

∫ r

r−δ
∆quq dq

)
dmr dr

=−
∫ τ

σ

∫
X

(
Γr(gr, ur) + gr ∆rur

)
·∆rur dmr dr.

Here again we used Lebesgue’s density theorem (applied to r 7→ ∆rur) and the ‘nearly continuity’
of r 7→ gr as map from (s, t) into L2(X,m) and as map into F (Lusin’s theorem). Moreover, we
used the boundedness (uniformly in r and x) of gr and of ∇rur as well as the square integrability
of ∆rur.

Similarly, the term (III ′′) will be transformed:

(III ′′) =− lim inf
δ↘0

1

δ

∫ τ−δ

σ

∫
X

(
Γr(gr, ur) + gr ∆rur

)
·
(∫ r+δ

r
∆quq dq

)
dmr dr

=−
∫ τ

σ

∫
X

(
Γr(gr, ur) + gr ∆rur

)
·
(

∆rur

)
dmr dr.

Summarizing and then using (71), we therefore obtain

hτ − hσ =(I) + (II) + (III ′) + (III ′′)

≤
∫ τ

σ

∫
X

[
− Γr(ur) ·∆rgr + gr

•
Γr (ur)− 2

(
Γr(gr, ur) + gr ∆rur

)
∆rur

]
dmr dr

≤− 2

N

∫ τ

σ

[ ∫
X

∆rur gr dmr

]2
dr = − 2

N

∫ τ

σ

[ ∫
X
Pτ,r∆rur g dmτ

]2
dr.

Thus ∫
X

Γτ (Pτ,σu)g dmτ −
∫
X
Pτ,σΓσ(u) g dmτ ≤ −

2

N

∫ τ

σ

[ ∫
X
Pτ,r∆rur g dmτ

]2
dr. (74)

(b) Recall that, given u and g, this holds for a.e. τ and a.e. σ. Now let us forget for the
moment the term with N . Choosing g’s from a dense countable set one may achieve that the
exceptional sets for σ and τ in (74) do not depend on g. Next we may assume that σ, τ ∈ [s, t]
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with σ < τ is chosen such that (74) with N = ∞ simultaneously holds for all u from a dense
countable set C1 in Lip(X). Approximating arbitrary u ∈ Lip(X) by un ∈ C1 yields∫
X

Γτ (Pτ,σu)g dmτ−
∫
X
Pτ,σΓσ(u) g dmτ ≤ lim inf

n

∫
X

Γτ (Pτ,σun)g dmτ−lim
n

∫
X
Pτ,σΓσ(un) g dmτ ≤ 0.

due to lower semicontinuity of the weighted energy on L2. In other words, we have derived the
gradient estimate (III) for almost all times σ and τ . Thanks to Theorem 4.9 this implies the
transport estimate (II) for these time instances. But both sides of the transport estimate are
continuous in time (thanks to the continuity of r 7→Wr and the continuity of the dual heat flow).
This implies that the transport estimate holds for all σ, τ ∈ [s, t] with σ < τ . In particular, it
holds for σ = s and τ = t. Again by Theorem 4.9 it yields the gradient estimate for given s and
t and thus our initial assumption (73) is satisfied for the choice σ = s and τ = t.

(c) Taking this into account, we may conclude that (74) (for given N) holds with the choice
σ = s and τ = t. Finally, choosing sequences of g’s which approximate the Dirac distribution at
a given x ∈ X then implies that for all u ∈ Lip(X)

Γt(Pt,su)(x)− Pt,sΓs(u)(x) ≤ − 2

N

∫ t

s

[
Pt,r∆rur(x)

]2
dr (75)

for a.e. x ∈ X. This proves the claim for bounded Lipschitz functions. The extension to
u ∈ Dom(E) follows as in [5]. �

5.3. From Gradient Estimates to Bochner Inequality. In the previous chapter and the
previous sections of this chapter, we have proven the implications (IIIN) ⇒ (IIN) and (IVN)
⇒ (IIIN). Taking the subsequent section into account, where we show (IIN) ⇒ (IVN), we
already have proven that (IIIN) ⇒ (IVN). In the sequel, we will present another, more direct
proof for this implication.

Theorem 5.7 (“(IIIN) ⇒ (IVN)”). Suppose that the mm-space (X, dt,mt)t∈I satisfies the
gradient estimate (72). Then the dynamic Bochner inequality (71) holds true as well as the
regularity assumption from Definition 5.5 (ii).

Proof. Assume that the gradient estimate (IIIN) holds true. It immediately implies the reg-
ularity assumption (7). To derive the dynamic Bochner inequality, let s, t ∈ (0, T ) as well as
u ∈ Lip(X) and g ∈ F ∩ L∞ with g ≥ 0 be given. Put ur = Pr,su, gr = P ∗t,rg for r ∈ [s, t] and
as before consider the function

hr :=

∫
grΓr(ur)dmr.

Then (IIIN) implies that for all s < σ < τ < t

hτ − hσ ≤ lim inf
δ↘0

1

δ

∫ τ−δ

σ

[
hr+δ − hr

]
dr

= lim inf
δ↘0

1

δ

∫ τ−δ

σ

∫
X

[
Γr+δ(ur+δ)− Pr+δ,rΓr(ur)

]
gr+δdmr+δ dr

≤− 2

N
lim sup
δ↘0

∫ τ−δ

σ

∫
X

1

δ

∫ r+δ

r

(
Pr+δ,q∆quq

)2
dq gr+δdmr+δ dr

≤− 2

N

∫ τ

σ
lim inf
δ↘0

(∫
X

1

δ

∫ r+δ

r
Pr+δ,q∆quq dq gr+δdmr+δ

)2

=− 2

N

∫ τ

σ
lim inf
δ↘0

(1

δ

∫ r+δ

r

∫
X

∆quq gqdmq dq
)2
dr

=− 2

N

∫ τ

σ

(∫
X

∆rur grdmr

)2
dr
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according to Lebesgue’s density theorem. On the other hand, similarly to the argumentation in
the previous section, we have

hτ − hσ ≥ lim sup
δ↘0

1

δ

∫ τ

σ−δ

[
hr+δ − hr

]
dr

≥ lim inf
δ↘0

1

δ

∫ τ

σ−δ

∫
X

Γr+δ(ur+δ)d(µr+δ − µr) dr

+ lim sup
δ↘0

1

δ

∫ τ

σ−δ

∫
X
gr

[
Γr+δ(ur+δ, ur)− Γr(ur+δ, ur)

]
dmr dr

+ lim inf
δ↘0

1

δ

∫ τ

σ−δ

∫
X
gr

[
Γr+δ(ur+δ, ur+δ − ur) + Γr(ur+δ − ur, ur)

]
dmr dr

=:(I) + (II) + (III ′) + (III ′′).

Each of the four terms can be treated as before which then yields

hτ − hσ ≥ (I) + (II) + (III ′) + (III ′′)

≥
∫ τ

σ

∫
X

[
− Γr(ur) ·∆rgr + gr

•
Γr (ur)− 2

(
Γr(gr, ur) + gr ∆rur

)
∆rur

]
dmr dr

=

∫ τ

σ

[
− 2Γ2,r(ur)(gr) +

∫
•
Γr (ur) grmr

]
dr.

Combining this with the previous upper estimate and varying σ and τ , we thus have proven the
dynamic Bochner inequality

2Γ2,r(ur)(gr) ≥
∫
•
Γr (ur) grmr +

2

N

(∫
X

∆rur grdmr

)2

for a.e. r ∈ (s, t). �

5.4. From Transport Estimates to Bochner Inequality.

Theorem 5.8 (“(IIN)⇒ (IVN)”). Suppose that the mm-space (X, dt,mt)t∈I satisfies the trans-
port estimate (9)=(61). Then the dynamic Bochner inequality (10)=(71) with parameter N holds
true as well as the regularity assumption (7).

Proof of the regularity assumption. Thanks to Theorem 4.9, we already know that the transport
estimate (IIN) implies the gradient estimate (IIIN) in the case N = ∞. This proves the
requested regularity. �

Proof of the dynamic Bochner inequality. We follow the argumentation from [12] with signifi-
cant modifications due to time-dependence of functions, gradients, and operators and mainly
because of lack of regularity.

Let 0 < s < t < T and gt ∈ F ∩ L∞ with gt ≥ 0, gt 6≡ 0 as well as us ∈ Lip(X) be given
and fixed for the sequel. Without restriction

∫
gtdmt = 1. For τ ∈ (s, t), put uτ = Pτ,sus and

gτ = P ∗t,τgt. Note that – thanks to the parabolic Harnack inequality – g is uniformly bounded
from above and bounded from below, away from 0, on (s′, t′) ×X for each s < s′ < t′ < t. In
the beginning, let us also assume that ||us||∞ ≤ 1/4.

For each τ ∈ (s, t), define a Dirichlet form Egτ on L2(X, gτmτ ) with domain Dom(Egτ ) :=
Dom(E) by

Egτ (u) :=

∫
Γτ (u)gτdmτ for u ∈ Dom(E).

Associated with the closed bilinear form (Egτ ,Dom(Egτ )) on L2(X, gτmτ ), there is the self-adjoint
operator ∆g

τ and the semigroup (Hτ,g
a )a≥0, i.e. ua = Hτ,g

a u solves

∂aua = ∆g
τua on (0,∞)×X, u0 = u

where ∆g
τu = ∆τu+ Γτ (log gτ , u). For fixed σ ∈ (s, τ), we define the path (gσ,aτ )a≥0 to be

gσ,aτ := gτ (1 + uσ −Hτ,g
a uσ). (76)
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Note that these are probability densities w.r.t. mτ . Indeed, for all a > 0 and all s < σ < τ < t∫
gσ,aτ dmτ = 1 +

∫
uσ(1−Hτ,g

a 1) gτmτ = 1

thanks to conservativeness and symmetry of Hτ,g
a w.r.t. the measure gτmτ . Moreover, gσ,aτ ≥ 0

for all a, σ and τ since the uniform bound ||us||∞ ≤ 1/4 is preserved under the evolution of the
time-dependent heat flow, thus ||uσ||∞ ≤ ||Pσ,sus||∞ ≤ 1/4, as well as under the heat flow in
the static mm-space at fixed time τ , thus ||Hτ,g

a uσ||∞ ≤ ||uσ||∞ ≤ 1/4.

Now let us assume that the transport estimate (IIN) holds true and apply it to the probability
measures gτmτ and gσ,aτ mτ . Then for all s < σ < τ < t and all a > 0

W 2
σ (P̂τ,s(gτmτ ), P̂τ,σ(gσ,aτ mτ )) ≤ W 2

τ (gτmτ , g
σ,a
τ mτ )

− 2

N

∫ τ

σ
[Sr(P̂τ,r(gτmτ ))− Sr(P̂τ,r(gσ,aτ mτ ))]2dr.

Dividing by 2a2 and passing to the limit a ↘ 0, the subsequent Lemmata 5.9, 5.10 and 5.11
allow to estimate term by term. We thus obtain

− 1

2

∫
Pτ,σ(Γσ(uσ))gτdmτ +

∫
Γτ (Pτ,σuσ, uσ)gτdmτ

≤ 1

2(1− 2||uσ||∞)

∫
Γτ (uσ)gτdmτ −

1

N

∫ τ

σ

[∫
Γτ
(
Pτ,r(logP ∗τ,rgτ ), uσ

)
gτdmτ

]2

dr.

Replacing us by η us for η ∈ R+ sufficiently small, we can get rid of the constraint ||us||∞ ≤ 1/4.
Then Lemma 5.9, Lemma 5.10 and Lemma 5.11 applied to ηus instead of us gives us

− η2

2

∫
Pτ,σ(Γσ(uσ))gτdmτ + η2

∫
Γτ (Pτ,σuσ, uσ)gτdmτ

≤ η2

2(1− 2η||uσ||∞)

∫
Γτ (uσ)gτdmτ −

η2

N

∫ τ

σ

[∫
Γτ
(
Pτ,r(logP ∗τ,rgτ ), uσ

)
gτdmτ

]2

dr.

Dividing by η2 and letting η → 0 this inequality becomes

− 1

2

∫
Pτ,σ(Γσ(uσ))gτdmτ +

∫
Γτ (Pτ,σuσ, uσ)gτdmτ

≤ 1

2

∫
Γτ (uσ)gτdmτ −

1

N

∫ τ

σ

[∫
Γτ

(
Pτ,r(logP ∗τ,rgτ ), uσ

)
gτdmτ

]2

dr.

This can be reformulated into

1

2

∫
Γτ (uτ )gτdmτ −

1

2

∫
Γσ(uσ)gσdmσ

− 1

2

∫
Γτ (uσ)gτdmτ −

1

2

∫
Γτ (uτ )gτdmτ +

∫
Γτ (uτ , uσ)gτdmτ

≤ − 1

N

∫ τ

σ

[∫
Γτ

(
Pτ,r(logP ∗τ,rgτ ), uσ

)
gτdmτ

]2

dr.

(77)

Now let us try to follow the argumentation from the proof of Theorem 5.7 and consider again
the function

hr :=

∫
grΓr(ur)dmr

for r ∈ (s, t). Recall that we already know from Theorem 4.9 that the transport estimate (IIN)
implies the gradient estimate (III) (‘without N ’). Thus for all s < σ < τ < t

lim sup
δ↘0

1

δ

∫ τ

σ−δ

(
hr+δ − hr

)
dr ≤ hτ − hσ ≤ lim inf

δ↘0

1

δ

∫ τ−δ

σ

(
hr+δ − hr

)
dr
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Arguing as in the proof of Theorem 5.7 we get

hτ − hσ ≥
∫ τ

σ

[
− 2Γ2,r(ur)(gr) +

∫
•
Γr (ur) grmr

]
dr.

On the other hand, applying the previous estimate (77) (with r + δ, r and q in the place of τ ,
σ and r) we obtain

hτ − hσ ≤ lim inf
δ↘0

1

δ

∫ τ−σ

σ

[
− 2

N

∫ r+δ

r

[∫
Γr+δ

(
Pr+δ,q(logP ∗r+δ,qgr+δ), ur

)
gr+δdmr+δ

]2

dq

+

∫
Γr+δ(ur+δ − ur)gr+δdmr+δ

]
dr.

We estimate the term with the square from below using Young’s inequality[∫
Γr+δ

(
Pr+δ,q(logP ∗r+δ,qgr+δ), ur

)
gr+δdmr+δ

]2

≥ 1

1 + ε

[∫
Γr

(
Pr,q(log gq), ur

)
grdmr

]2

− 1

ε

[∫
Γr+δ

(
Pr+δ,q(logP ∗r+δ,qgr+δ), ur

)
grdmr+δ −

∫
Γr

(
Pr,q(log gq), ur

)
grdmr

]2

,

where ε > 0 is arbitrary. Further estimating and using the log-Lipschitz continuity r 7→ Γr yields[∫
Γr+δ

(
Pr+δ,q(logP ∗r+δ,qgr+δ), ur

)
gr+δdmr+δ −

∫
Γr

(
Pr,q(log gq), ur

)
grdmr

]2

≤ 2

[∫
Γr+δ

(
Pr+δ,q(log gq), ur

)
gr+δdmr+δ −

∫
Γr

(
Pr+δ,q(log gq), ur

)
gr+δdmr+δ

]2

+ 2

[∫
Γr

(
Pr+δ,q(log gq), ur

)
gr+δdmr+δ −

∫
Γr

(
Pr,q(log gq), ur

)
gr+δdmr+δ

]2

+ 2

[∫
Γr

(
Pr,q(log gq), ur

)
gr+δdmr+δ −

∫
Γr

(
Pr,q(log gq), ur

)
grdmr

]2

≤ 16L2δ2

[∫
Γr+δ

(
Pr+δ,q(log gq), ur

)
gr+δdmr+δ + C

∫
Γr+δ

(
Pr+δ,q(log gq)− ur

)
gr+δdmr+δ

]2

+ 2

[∫
Γr

(
Pr+δ,q(log gq)− Pr,q(log gq), ur

)
gr+δdmr+δ

]2

+ 2

[∫
Γr

(
Pr,q(log gq), ur

)
d(gr+δdmr+δ − grmr)

]2

,

which, after integration over [r, r + δ] and division by δ > 0, converges to 0 as δ goes to 0.
Indeed,

δ

∫ r+δ

r

∣∣∣ ∫ Γr+δ

(
Pr+δ,q(logP ∗r+δ,qgr+δ), ur

)
gr+δdmr+δ

∣∣∣2dq
≤ Cδ

(∫ r+δ

r

∫
Γq(log gq) gqdmqdr

)
Er(ur) −−−→

δ→0
0,

and Lemma 2.17 and Lebesgue differentiation theorem

1

δ

∫ r+δ

r

∣∣∣ ∫ Γr

(
Pr+δ,q(log gq)− Pr,q(log gq), ur

)
gr+δdmr+δ

∣∣∣2dq −−−→
δ→0

0,
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while

1

δ

∫ r+δ

r

[∫
Γr

(
Pr,q(log gq), ur

)
d(gr+δdmr+δ − grmr)

]2

dq −−−→
δ→0

0.

Thus, since ε is arbitrary, and from the Lebesgue differentiation theorem we get

lim inf
δ→0

1

δ

∫ r+δ

r

[∫
Γr+δ

(
Pr+δ,q(logP ∗r+δ,qgr+δ), ur

)
gr+δdmr+δ

]2

dr

≥
[∫

Γr

(
log gq, ur

)
grdmr

]2

=

[∫
(∆rur)grdmr

]2

.

Finally, with Corollary 2.15, the log-Lipschitz continuity of r 7→ Γr, Lemma 2.17, and Lebesgue
differentiation theorem applied to r 7→ ∆rur, which is in L2((s, t),H) thanks to Theorem 2.12,

lim sup
δ→0

1

δ

∫ τ−δ

σ

∫
Γr+δ(ur+δ − ur)gr+δdmr+δ dr

≤ lim sup
δ→0

1

δ

∫ τ−δ

σ
||gr+δ||∞

∫
Γr+δ(ur+δ − ur, ur+δ)dmr+δ dr

≤ lim sup
δ→0

1

δ

∫ τ−δ

σ
eL|r+δ−t|||gt||∞

(∫
Γr+δ(ur+δ − ur, ur+δ)dmr+δ −

∫
Γr+δ(ur+δ − ur, ur)dmr+δ

)
dr

= lim sup
δ→0

1

δ

∫ τ−δ

σ
eL|r+δ−t|||gt||∞

(
−
∫ ∫ r+δ

r
∆quqdq∆r+δur+δdmr+δ −

∫
Γr(ur+δ − ur, ur)dmr

)
dr

= lim sup
δ→0

(∫ τ

σ+δ
−eL|r−t|||gt||∞

∫
1

δ

∫ r

r−δ
∆quqdq∆rurdmrdr

+

∫ τ−δ

σ
eL|r+δ−t|||gt||∞

∫
1

δ

∫ r+δ

r
∆quqdq∆rurdmr dr

)
=

∫ τ

σ
eL|r−t|||gt||∞

(
−
∫

(∆rur)
2dmr +

∫
(∆rur)

2dmr

)
= 0.

Combining the previous estimates we get

hτ − hσ ≤ −
2

N

∫ τ

σ

(∫
∆rur grdmr

)2
dr,

and then

− 2

N

∫ τ

σ

(∫
∆rur grdmr

)2
dr ≥

∫ τ

σ

[
− 2Γ2,r(ur)(gr) +

∫
•
Γr (ur) grmr

]
dr,

which proves the claim. �

Lemma 5.9. For every s < σ ≤ τ < t,

lim inf
a→0

W 2
σ (P̂τ,σ(gσ,aτ mτ ), P̂τ,σ(gτmτ ))

2a2
≥ −

∫
1

2
Pτ,σ(Γσ(uσ))gτdmτ +

∫
Γτ (uτ , uσ)gτdmτ .

Proof. We denote by Qσa the Hopf-Lax semigroup with respect to the metric dσ. Note that
aQσa(φ) = Qσ1 (aφ), so the Kantorovich duality (38) can be written as

W 2
σ (ν1, ν2)

2a2
=

1

a
sup
φ

[∫
Qσaφdν1 −

∫
φdν2

]
.

We deduce

W 2
σ (P̂τ,σ(gσ,aτ mτ ), P̂τ,σ(gτmτ ))

2a2
≥
∫
QσauσP

∗
τ,σ(gσ,aτ )− uσP ∗τ,σgτ

a
dms

≥
∫
Qauσ − uσ

a
P ∗τ,σ(gσ,aτ − gτ )dmσ +

∫
Qauσ − uσ

a
P ∗τ,σgτdmσ +

∫
uσ
P ∗τ,σ(gσ,aτ − gτ )

a
dmσ.
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Note that, since us is a Lipschitz function, uσ is a Lipschitz function as well. Indeed, from the
dual representation of the Kantorovich-Rubinstein distance W 1

s with respect to the metric ds,
we deduce

|uσ(x)− uσ(y)| =
∣∣∣∣∫ us(z)dP̂σ,s(δx)(z)−

∫
us(z)dP̂t,s(δy)(z)

∣∣∣∣
≤ Lips(us)W

1
s (P̂σ,s(δx), P̂t,s(δy)) ≤ Lips(us)Ws(P̂σ,s(δx), P̂t,s(δy))

≤ Lips(us)Wσ(δx, δy) = Lips(us)dσ(x, y),

where the last inequality is a consequence of Theorem 4.9
Since 0 ≥ (Qσauσ(x) − uσ(x))/a ≥ −2Lip(uσ)2 and gσ,aτ → gτ in L2(X) the first integral

vanishes. For the second integral we use (37) and estimate by Fatou’s Lemma

lim inf
a→0

∫
Qσauσ − uσ

a
P ∗τ,σgτdmσ ≥ −

1

2

∫
lipσ(uσ)2P ∗τ,σgτdmσ.

For the last integral an argument similar to Lemma 3.8 for Hτ,g
a (compare Lemma 4.14 in [6])

yields

lim
a→0

∫
ψσ
P ∗τ,σ(gσ,aτ − gτ )

a
dmσ =

∫
Γτ (Pτ,σuσ, uσ)gτdmτ .

Combining the last two estimates we obtain

lim inf
a→0

W 2
σ (P̂τ,σ(gσ,aτ mτ ), P̂τ,σ(gτmτ ))

2a2
≥ −1

2

∫
lipσ(uσ)2P ∗τ,σgτdmσ +

∫
Γτ (Pτ,σuσ, uσ)gτdmτ

= −1

2

∫
Γσ(uσ)P ∗τ,σgτdmσ +

∫
Γτ (Pτ,σuσ, uσ)gτdmτ ,

where the last inequality follows from our static RCD(K,N ′) assumption, which implies Poincaré
inequality and doubling property for the static space (X, dσ,mσ), and the fact that uσ is a
Lipschitz function (cf. [14]). �

Lemma 5.10. For every s < σ ≤ τ < t,

lim sup
a→0

W 2
τ (gσ,aτ mτ , gτmτ )

2a2
≤ 1

2(1− 2||ψσ||∞)

∫
Γτ (uσ)gτdmτ .

Proof. Let (Qτa)a≥0 be the dτ Hopf-Lax semigroup and fix a bounded Lipschitz function φ. Note
that

∂a

∫
Qτa(φ)gσ,aτ dmτ ≤ −

∫
1

2
lipτ (Qτaφ)2gσ,aτ dmτ +

∫
Γτ (Qτaφ,H

τ,g
a uσ)gτdmτ

=

∫ [
−1

2
lipτ (Qτaφ)2(1 + uσ −Hτ,g

a uσ) + Γτ (Qτaφ,H
τ,g
a uσ)

]
gτdmτ ,

where the inequality follows from [3, Lemma 4.3.4] and dominated convergence. Applying the
Cauchy-Schwartz inequality and that Γτ (ψ) ≤ lipτ (ψ) mτ -a.e., we find∫

Γτ (Qτaφ,H
τ,g
a uσ)gτdmτ ≤

√
Eg(Qτaφ)Eg(Hτ,g

a uσ) ≤
√∫

lipτ (Qτaφ)2gτdmτEg(Hτ,g
a uσ).

Then, since 1 + uσ −Hτ,g
a uσ ≥ 1− 2||uσ||∞, we obtain using Young’s inequality

∂a

∫
Qτa(φ)gσ,aτ dmτ ≤

1

2(1− 2||uσ||∞)
Eg(Hτ,g

a uσ) ≤ 1

2(1− 2||uσ||∞)
Eg(uσ)

=
1

2(1− 2||uσ||∞)

∫
Γτ (uσ)gτdmτ .

Integrating over [0, a],∫
Qτaφg

σ,τ
τ dmτ −

∫
φgτdmτ ≤

a

2(1− 2||uσ||∞)

∫
Γτ (uσ)gτdmτ ,
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and dividing by a > 0 proves the claim since the Kantorovich duality can be written as

W 2
τ (ν1, ν2)

2a2
=

1

a
sup
φ

[∫
Qτaφdν1 −

∫
φdν2

]
and φ was an arbitrary bounded Lipschitz function. �

Lemma 5.11.

lim inf
a→0

∫ τ

s

[
Sr(P̂τ,r(g

σ,a
τ mτ ))− Sr(P̂τ,r(gτmτ ))

a

]2

dr ≥
∫ τ

s

[ ∫
Γτ
(
Pτ,r(log gr), uσ

)
gτdmτ

]2

dr.

Proof. With the same estimates as in [12] we have

[Sr(P̂τ,r(g
σ,a
τ mτ ))− Sr(P̂τ,r(gτmτ ))]2

≥ 1

(1 + δ)

[ ∫
(P ∗τ,r(g

σ,a
τ )− gr) log grdmr

]2

− 1

δ

[ ∫
(P ∗τ,rg

σ,a
τ − gr)2

gr
dmr

]2

.

Next we apply Jensen’s inequality to the convex function α : R× R+ → R ∪ {+∞} defined by

α(r, s) =


0, if r = 0 = s,
r2

s , if s 6= 0,

+∞, if s = 0 and r 6= 0.

Recall that the map dx 7→ pτ,r(x, y)dmτ (x) is not Markovian, but Lemma 2.15 implies

0 ≤Mτ,r(y) :=

∫
X
pτ,r(x, y)dmτ (x) ≤ eL(τ−r).

Hence we can write∫
α(P ∗τ,rg

σ,a
τ − P ∗τ,rgτ , P ∗τ,rgτ )dmr

≤
∫ ∫

α((gσ,aτ (x)− gτ (x))Mτ,r(y), gτ (x)Mτ,r(y))

Mτ,r
pτ,r(x, y)dmτ (x)dmr(y)

=

∫ ∫
α((gσ,aτ (x)− gτ (x)), gτ (x))pτ,r(x, y)dmτ (x)dmr(y)

=

∫
α((gσ,aτ (x)− gτ (x)), gτ (x))dmτ (x) =

∫
gτ (ψσ −Hτ,g

a uσ)2dmτ ,

where we applied Jensen’s inequality in the second, Fubini in the third, and the definition of
gσ,aτ in the last line. Dividing by a and taking the lim sup we end up with

lim sup
a→0

1

a

∫
(P ∗τ,rg

σ,a
τ − P ∗τ,rgτ )2

P ∗τ,rgτ
dmr ≤ lim sup

a→0

1

a

∫
gτ (uσ −Hτ,g

a uσ)2dmτ

≤ lim sup
a→0

2||uσ||∞
∫
gτ

(
Hτ,g
a uσ − uσ

a

)
dmτ = −2||uσ||∞

∫
gτΓτ (uσ, 1)dmτ = 0.

The first equality follows from the fact that 1
a(Hτ,g

a uσ − uσ)→ ∆g
τuσ weakly in F∗ (cf. Lemma

3.8 and [6, Lemma 4.14]).
Since δ > 0 is arbitrary it suffices to show

lim
a→0

1

a

∫
P ∗τ,r(g(Hτ,g

a uσ − uσ)) logP ∗τ,rgdmr =

∫
Γτ
(
Pτ,r(logP ∗τ,rg), uσ

)
gdmτ .

This, indeed, follows from the fact that Pτ,r(logP ∗τ,rg) ∈ F = Dom(Eτ ) = Dom(Egτ ) (thanks to

uniform boundedness of P ∗τ,rg from above and away from 0) and from the fact that 1
a(Hτ,g

a uσ −
uσ)→ ∆g

τuσ weakly in F∗ as a↘ 0, more precisely (cf. Lemma 3.8)

1

a

∫
(Hτ,g

a uσ − uσ)φgτdmτ → −
∫

Γτ (uσ, φ)gτdmτ

for all φ ∈ F as a↘ 0. �
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6. From Gradient Estimates to Dynamic EVI

In this section we will prove that the dual heat flow is a dynamic backward EVI-gradient flow
presumed that the Bakry-Émery gradient estimate (III) holds for the (‘primal’) heat equation.
We will present the argument only in the case N = ∞. That is, we now assume that for all
u ∈ Dom(E) and 0 < s < t < T

Γt(Pt,su) ≤ Pt,s(Γs(u)) m-a.e. on X. (78)

For the notion of dynamic backward EVI±-gradient flow we refer to the Appendix.
As in the previous chapters, the assumptions from section 3.1 will always be in force, in

particular, we assume the RCD∗(K,N ′)-condition for each static mm-space (X, dt,mt) as well
as boundedness and L-Lipschitz continuity (in t) for log dt(x, y) and (in t and x) for ft(x).

6.1. Dynamic Kantorovich-Wasserstein Distances. For the subsequent discussions let us
fix a pair (s, t) ∈ I × I and – if not stated otherwise – let ϑ : [0, 1] → R denote the linear
interpolation

ϑ(a) = (1− a)s+ ta (79)

starting in s and ending in t.
In the following we introduce dynamic notions of the distance between two measures ‘living

in different time sheets’. The first notion seems to be natural and is defined via the length of
curves, while the second one uses the approach of Hamilton Jacobi equations.

Definition 6.1. For s < t and a 2-absolutely continuous curve (µa)a∈[0,1] we define the action

As,t(µ) = lim
h→0

sup
{ n∑
i=1

(ai − ai−1)−1W 2
ϑ(ai−1)(µ

ai−1 , µai)
∣∣∣

0 = a0 < · · · < an = 1, ai − ai−1 ≤ h
}
.

For two probability measures µ, ν ∈ P(X) we define

W 2
s,t(µ, ν) = inf

{
As,t(µ)

∣∣∣µ ∈ AC2([0, 1],P(X)) with µ0 = µ, µ1 = ν
}
.

Lemma 6.2. The following holds true.

i) The action µ 7→ As,t(µ) is lower semicontinuous, i.e. if µaj → µa for every a as j →∞ we
have

As,t(µ) ≤ lim inf
j→∞

As,t(µj).

ii) For every absolutely continuous curve µ

As,t(µ) = lim
h→0

inf
{ n∑
i=1

(ai − ai−1)−1W 2
ϑ(ai−1)(µ

ai−1 , µai)|0 = a0 < · · · < an = 1, ai − ai−1 ≤ h
}
.

Proof. Since µja → µa for every a ∈ [0, 1] in the Wasserstein sense we have for every partition
0 = a0 < · · · < an = 1

n∑
i=1

(ai − ai−1)−1W 2
ϑ(ai−1)(µ

ai−1 , µai) = lim
j→∞

n∑
i=1

(ai − ai−1)−1W 2
ϑ(ai−1)(µ

ai−1

j , µaij ),

and hence
n∑
i=1

(ai − ai−1)−1W 2
ϑ(ai−1)(µ

ai−1 , µai) ≤ lim inf
j→∞

As,t(µj).

Taking the supremum over each partition and letting h→ 0 proves

As,t(µ) ≤ lim inf
j→∞

As,t(µj).
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We prove the second assertion by contradiction. Assume that there exists a sequence hj → 0,

and a partition 0 = aj0 < · · · < aj
nj

= 1 such that

aji − a
j
i−1 ≤ h and lim

j→∞

n∑
i=1

(aji − a
j
i−1)−1W 2

ϑ(aji−1)
(µa

j
i−1 , µa

j
i ) < As,t(µ).

For every j ∈ N we define the curve (µaj )a∈[0,1] by

µaj = µa
aji−1,a

j
i

, if a ∈ [aji−1, a
j
i ],

where (µa
aji−1,a

j
i

)
a∈[aji−1,a

j
i ]

denotes the W
ϑ(aji−1)

-geodesic connecting µa
j
i−1 and µaji . Note that for

every partition {āi}Ni=1 with āi − āi−1 � hj

N∑
i=1

(āi − āi−1)−1W 2
ϑ(āi−1)(µ

āi
j , µ

āi−1

j ) ≤ e2Lhj

n∑
i=1

(aji − a
j
i−1)−1W 2

ϑ(aji−1)
(µa

j
i , µa

j
i−1),

since for every aji−1 ≤ āk−1 < āk ≤ aji

W 2
ϑ(aji−1)

(µākj , µ
āk−1

j ) ≤ (āk − āk−1)2

(aji − a
j
i−1)2

W 2
ϑ(aji−1)

(µa
j
i−1 , µa

j
i ).

Hence

As,t(µj) ≤ e2Lhj

n∑
i=1

(aji − a
j
i−1)−1W 2

ϑ(aji−1)
(µa

j
i , µa

j
i−1).

This is a contradiction since µaj → µa for every a and hence

lim inf
j→∞

As,t(µj) ≥ As,t(µ).

�

Proposition 6.3. For s < t ∈ I and µ0, µ1 ∈ P we have

W 2
s,t(µ0, µ1) = inf

{∫ 1

0
|µ̇a|2s+a(t−s)da

}
(80)

where the infimum runs over all 2-absolutely continuous curves (µa)a∈[0,1] in P connecting µ0

and µ1.

Proof. Choose an arbitrary partition 0 = a0 < a1 < · · · < an = 1 with ai − ai−1 ≤ h. Let
(µa)a∈[0,1] ∈ AC2([0, 1],P(X)). Then, from the absolute continuity of (µa), and the log Lipschitz
property (34) we deduce

n∑
i=1

(ai − ai−1)−1W 2
ϑ(ai−1)(µ

ai−1 , µai) ≤
n∑
i=1

(ai − ai−1)−1

(∫ ai−1

ai

|µ̇a|ϑ(ai−1)da

)2

≤
n∑
i=1

∫ ai−1

ai

|µ̇a|2ϑ(ai−1)da

≤ e2Lh

∫ 1

0
|µ̇a|2ϑ(a)da.

Taking the supremum over all partitions and letting h→ 0 we obtain

As,t(µ) ≤
∫ 1

0
|µ̇a|2ϑ(a)da,

and consequently

W 2
s,t(µ0, µ1) ≤ inf

{∫ 1

0
|µ̇a|2s+a(t−s)da

}
.
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To verify the other inequality, we fix again a curve (µa)a∈[0,1] ∈ AC2([0, 1],P(X)) with finite
energy As,t(µ). For each h > 0 we consider the partition 0 = a0 < a1 < · · · < an ≤ 1 < an+1

with ai = ih and nh ≤ 1. We extend µa by µ1 whenever a > 1. We define µha to be the
Wϑ(ai−1)-geodesic connecting µai−1 with µai whenever a ∈ [ai−1, ai]. Then we clearly have that

µh ∈ AC2([0, 1],P(X)) and since µ is absolutely continuous, for each a ∈ [0, 1], µha → µa in
(P(X),W ). Note that |µ̇ha|ϑ(a) is a uniformly bounded function in L2([0, 1])∫ 1

0
|µ̇ha|2ϑ(a)da ≤ e2Lh

n+1∑
i=1

∫ ai

ai−1

|µ̇ha|2ϑ(ai−1)da

≤ e2Lh
n+1∑
i=1

(ai − ai−1)−1W 2
ϑ(ai−1)(µai−1 , µai) <∞,

since µha is a piecewise geodesic and As,t(µ) <∞. Then, by the Banach-Alaoglu Theorem there

exists a subsequence (not relabeled) h→ 0, and a function A ∈ L2([0, 1]) such that |µ̇h|ϑ(.) ⇀ A

in L2([0, 1]). Hence from the convergence of µha → µa we get

Wϑ(a)(µa, µa+δ) = lim
h→0

Wϑ(a)(µ
h
a, µ

h
a+δ)

≤ lim inf
h→0

∫ a+δ

a
|µ̇b|ϑ(a)db ≤ lim inf

h→0
eδ(t−s)

∫ a+δ

a
|µ̇b|ϑ(b)db

= eδ(t−s)
∫ a+δ

a
A(b)db,

and hence

|µ̇a|ϑ(a) ≤ A(a) for a.e. a ∈ [0, 1].

Consequently,∫ 1

0
|µ̇a|2ϑ(a)da ≤

∫ 1

0
A2(a)da ≤ lim inf

h→0

∫ 1

0
|µ̇ha|2ϑ(a)da

≤ lim inf
h→0

e2Lh
n+1∑
i=1

∫ ai

ai−1

|µ̇ha|2ϑ(ai−1)da ≤ lim inf
h→0

e2Lh
n+1∑
i=1

(ai − ai−1)−1W 2
ϑ(ai−1)(µai−1 , µai)

≤ As,t(µ),

which proves the claim.
�

To conclude this section we define a dynamic ‘dual distance’ inspired by the dual formulation
of the Kantorovich distance. We introduce the function space HLSϑ defined by

HLSϑ :=

{
ϕ ∈ Lipb([a0, a1]×X)

∣∣∣∣ ∂aϕa ≤ −1

2
Γϑ(a)(ϕa) L1 ×m a.e. in (a0, a1)×X

}
.

In particular for all nonnegative φ ∈ L1(X) and ϕ ∈ HLSϑ∫
φϕa1dm−

∫
φϕa0dm ≤ −

1

2

∫ a1

a0

∫
φΓϑ(a)(ϕa)dmda.

Definition 6.4. Let s < t and let ϑ : [a0, a1]→ [s, t] denote the linear interpolation. Define for
two probability measures µ0, µ1

W̃ 2
ϑ(µ0, µ1) := 2 sup

ϕ

{∫
ϕa1dµ1 −

∫
ϕa0dµ0

}
,

where the supremum runs over all maps ϕ(a, x) = ϕa(x) ∈ HLSϑ.

Note that W̃ϑ does not necessarily define a distance. It does not even have to be symmetric.
The next Lemma collects two essential properties of W̃ϑ.

Lemma 6.5. The following holds true.
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(1) W̃ϑ is lower semicontinuous with respect to the weak-∗topology on P(X)× P(X).
(2) For every µ0, µ1

W 2
s (µ0, µ1) ≤ e2L|s−t|(a1 − a0)W̃ 2

ϑ(µ0, µ1). (81)

Proof. To show the first assertion, let µ0, µ1 ∈ P(X) and choose ϕ ∈ HLSϑ almost optimal, i.e.

1

2
W̃ϑ(µ0, µ1) ≤

∫
ϕa1dµ1 −

∫
ϕa0dµ0 − ε,

where ε > 0. Let µn0 → µ0, µn1 → µ be two sequences converging in duality with continuous
bounded functions on X. then, since ϕa1 and ϕa0 belong to Cb(X),

1

2
W̃ϑ(µ0, µ1) ≤

∫
ϕa1dµa1 −

∫
ϕa0 − ε

= lim
n→∞

{∫
ϕa1dµ

n
1 −

∫
ϕa0dµ

n
0

}
− ε

≤ 1

2
lim inf
n→∞

W̃ϑ(µn0 , µ
n
1 )− ε.

This proves, since ε > 0 was arbitrary, that W̃ϑ is lower semicontinuous with respect to the
weak-∗topology on P(X)× P(X). The second statement follows from the Kantorovich duality.
Indeed, let ϕ ∈ Lipb(X). As already mentioned above the Hopf-Lax semigroup ϕb := Qsb(ϕ)
solves

d

db
ϕb ≤ −

1

2
Γs(ϕb) ≤ −

1

2
e−2L|s−t|Γ(1−b)s+bt(ϕb) L1 ×m a.e. in(0, 1)×X. (82)

Set ϕ̃a := e−2L|s−t|(a1 − a0)−1ϕγ(a), where γ : [a0, a1]→ [0, 1] with γ(a) = a−a0
a1−a0 . Then ϕ̃ solves

d

da
ϕ̃a ≤ −

1

2
Γϑ(a)(ϕ̃a) in (a0, a1)×X,

and

e−2L|s−t|(a1 − a0)−1

(∫
ϕ1dµ1 −

∫
ϕ0dµ0

)
=

∫
ϕ̃a1dµ1 −

∫
ϕ̃a0dµ0.

Hence

e−2L|s−t|(a1 − a0)−1

(∫
ϕ1dµ1 −

∫
ϕ0dµ0

)
≤ 1

2
W̃ 2
ϑ(µ0, µ1).

Taking the supremum among all ϕ the Kantorovich duality for the metric Ws implies

W 2
s (µ0, µ1) ≤ e2L|s−t|(a1 − a0)W̃ 2

ϑ(µ0, µ1).

�

Proposition 6.6. Let ϑ : [0, 1]→ [s, t] be the linear interpolation. Then we have W̃ϑ ≤Ws,t.

Proof. Fix ϕ ∈ HJSϑ and (µ)a∈[0,1] 2-absolutely continuous curve. We subdivide [0, 1] into l in-

tervals [(k−1)/l, k/l] of length 1
l . On each interval [(k−1)/l, k/l] we approximate (µa)|[(k−1)/l,k/l]

by regular curves (ρn,ka )a∈[(k−1)/l,k/l]. Obviously, for each k, n the map [(k − 1)/l, k/l] 3 a 7→∫
ϕadρ

k,n
a is absolutely continuous;∫

ϕa+hdρa+h −
∫
ϕadρa ≤ Lip(ϕa+h)W (ρa+h, ρa) + ||ϕa+h − ϕa||∞.

Let uk,na be the density of the regular curve ρk,na . Hence for fixed k, n

d

da

∫
ϕau

k,n
a dm ≤

∫
ϕau̇

k,n
a dm− 1

2

∫
uk,na Γϑ(a)(ϕa)dm

From Lemma 84 we deduce∫
u̇k,na ϕadm ≤

1

2
|ρ̇k,na |2ϑ(k−1/l) +

1

2

∫
(lipϑ(k−1/l)ϕa)

2dρk,na .

Adding these two inequalities, integrating over [(k − 1)/l, k/l] and noting that

e−L
|t−s|
l (lipϑ(k−1/l)(ϕa))

2 ≤ Γϑ(a)(ϕa) m a.e.,
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we obtain∫
ϕk/lu

k,n
k/ldm−

∫
ϕk−1/lu

k,n
k−1/ldm

≤ 1

2

∫ k/l

k−1/l
|ρ̇k,na |2ϑ(k−1/l)da+

1

2
(1− e−L

|t−s|
l )

∫ k/l

k−1/l

∫
(lipϑ(k−1/l)ϕa)

2dρk,na da

≤ 1

2

∫ k/l

k−1/l
|ρ̇k,na |2ϑ(k−1/l)da+

C1

2l
(1− e−L

|t−s|
l )

Taking the limit n→∞ (and taking the scaling into account) gives∫
ϕk/ldµk/l −

∫
ϕk−1/ldµk−1/l ≤

1

2
lW 2

ϑ(k−1/l)(µk−1/l, µk/l) +
C1

2l
(1− e−L

|t−s|
l ).

Summing over each partition and noting that the left hand side is a telescoping sum yields∫
ϕ1dµ1 −

∫
ϕ0dµ0 ≤

1

2

l∑
k=1

lW 2
ϑ(k−1/l)(µk−1/l, µk/l) +

C1

2
(1− e−L

|t−s|
l ).

Letting l→∞ we obtain the desired estimate. �

Corollary 6.7. Let s < t and [0, 1] 3 a 7→ ϑ(a) = (1− a)s+ at. Then for every µ0, µ1 ∈ P(X)
we have

Ws,t(µ0, µ1) = W̃ϑ(µo, µ1).

Proof. We already know from Proposition 6.6 that Ws,t(µ0, µ1) ≥Wϑ∗(µo, µ1). Hence it remains
to prove the other inequality.

For this let (ϕa) ∈ HLSϑ, and (µa) an absolutely continuous curve connecting µ0 and µ1.
Consider the Partition 0 = a0 < a1 < . . . an = 1 with ai − ai−1 ≤ h for some h > 0. Set

[ai−1, ai] 3 a 7→ ϑi(a) =
ai − a
ai − ai−1

ϑ(ai−1) +
a− ai−1

ai − ai−1
ϑ(ai)

and ϕ̃ia = ϕa|[ai−1,ai]. Notice that (ϕia)a is in HLSϑi . Hence

W̃ 2
ϑi

(µai−1 , µai) ≤ 2

{∫
ϕaidµai −

∫
ϕai−1dµai−1

}
.

Then summing over the partitions and taking the scalings into account we end up with
n∑
i=1

(ai − ai−1)−1W 2
ϑ(ai−1)(µai−1 , µai) ≤ e2Lh|s−t|

n∑
i=1

W̃ 2
ϑi

(µai−1 , µai)

≤ 2e2Lh|s−t|
n∑
i=1

{∫
ϕaidµai −

∫
ϕai−1dµai−1

}
= 2e2Lh|s−t|

{∫
ϕ1dµ1 −

∫
ϕ0dµ0

}
,

where we made use of Lemma 6.5(ii) in the first inequality. Taking the supremum over all
(ϕa) ∈ HLSϑ we deduce

n∑
i=1

(ai − ai−1)−1W 2
ϑ(ai−1)(µai−1 , µai) ≤ e2Lh|s−t|W̃ 2

ϑ(µ0, µ1), (83)

We conclude

W 2
s,t(µ0, µ1) ≤ W̃ 2

ϑ(µ0, µ1),

from taking the supremum in (83) over the partition 0 = a0 < a1 < · · · < an = 1 with
ai − ai−1 < h and subsequently letting h↘ 0.

�



60 EVA KOPFER, KARL-THEODOR STURM

6.2. Action Estimates. Let us recall the following estimate about the oscillation of a 7→
∫
ϕdρa

from [6, Lemma 4.12]. For fixed t > 0, let (ρa)a be a 2-absolutely continuous curve in P with
ρa = uamt and u ∈ C1((0, 1), L1(X,mt)). Then for any Lipschitz function ϕ we have∣∣∣∣∫ u̇aϕdmt

∣∣∣∣ ≤ 1

2
|ρ̇a|2t +

1

2

∫
Γt(ϕ)dρa. (84)

Actually, we have inequality (84) for each ϕ ∈ Dom(E) since we assume that each (X, dt,mt)
is a static RCD(K,∞) which implies that Lipschitz functions are dense in the domain of the

quadratic form E with respect to the norm
√
||ϕ||2 + E(ϕ) (Proposition 4.10 in [5]).

Moreover we will use the following result about difference quotients and concatenations of
functions in F(s,t).

Lemma 6.8. Let 0 < s < T .

(1) Let u ∈ F(s,t). Then for almost every a ∈ (s, t)

1

h
(ua+h − ua)→ ∂aua weakly∗ in F∗,

i.e. for every v ∈ F and for almost every a ∈ (s, t)∫
1

h
(ua+h − ua)vdm� → 〈∂aua, v〉.

(2) For u ∈ F(s,t) and ϑ ∈ C1([0, 1]) the linear interpolation from s to t, we have that
(u ◦ ϑ) ∈ F(0,1) with distributional derivative

∂a(u ◦ ϑ)(a) = (t− s)∂auϑ(a).

Proof. From Corollary 5.6. in [36] it follows for u ∈ F(s,t) and v ∈ F∫
ua+hvdm� −

∫
uavdm� =

∫ a+h

a
〈∂bub, v〉db.

Since b 7→ 〈∂bub, v〉 is in L1(s, t) we apply the Lebesgue differentiation theorem and obtain that
for almost every a ∈ (s, t)

lim
h→0

1

h

∫
ua+hvdm� −

∫
uavdm� = lim

h→0

1

h

∫ a+h

a
〈∂bub, v〉db = 〈∂aua, v〉.

This proves the first assertion. To show the second recall that we can approximate each u ∈ F(s,t)

by smooth functions (un) ⊂ C∞([s, t]→ F) by virtue of [36, Lemma 5.3]. So for each n ∈ N and
for each smooth compactly supported test function ψ : (0, 1)→ F we have that∫ 1

0

∫
(un ◦ ϑ)(a)∂aψadm�da = −

∫ 1

0

∫
ϑ̇(a)∂au

n
ϑ(a)ψadm�da.

Note that the term on the left-hand side converges to
∫ 1

0

∫
(u ◦ϑ)(a)∂aψadm�da as n→∞ since∣∣∣∣∫ 1

0

∫
(un ◦ ϑ− u ◦ ϑ)∂aψadm�da

∣∣∣∣ ≤ (t− s)−1

∫ t

s
||una − ua||F ||∂aψϑ−1(a)||Fda,

where we applied integration by substitution. Similarly for the right-hand side∣∣∣∣∫ 1

0
ϑ̇(a)〈∂aunϑ(a) − ∂auϑ(a), ψa〉dm�da

∣∣∣∣ ≤ ∫ t

s
||∂auna − ∂aua||F∗ ||ψϑ−1(a)||Fda,

and consequently as n→∞∫ 1

0

∫
(u ◦ ϑ)(a)∂aψadm�da = −

∫ 1

0
(t− s)〈∂auϑ(a), ψa〉da,

which is the assertion. �
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For the following lemmas let (ρa)a∈[0,1] be a regular curve and let ϑ : [0, 1]→ [0,∞)

ϑ(a) := (1− a)s+ at, where s < t.

Set ρa,ϑ := P̂t,ϑ(a)(ρa) = ua,ϑmϑ(a).

Lemma 6.9. The curve (ua,ϑ)a∈[0,1] belongs to Lip([0, 1],F∗) with ua,ϑ ∈ L2([0, 1] → F) and
distributional derivative ∂aua,ϑ ∈ L∞([0, 1]→ F∗) satisfying

∂aua,ϑ = −(t− s)∆ϑ(a)ua,ϑ + ∂afϑ(a)ua,ϑ − P ∗t,ϑ(a)(u̇a).

Proof. First we show that (ua,ϑ) is in L2([0, 1]→ F). For this recall that, since (ρa) is regular,
ua ≤ R and Et(

√
ua) ≤ E for all a ∈ [0, 1] and hence by Lemma 2.15 we get∫ 1

0
||ua,ϑ||2L2(mϑ(a))

da ≤ eL(t−s)
∫ 1

0
||ua||2L2(mt)

da ≤ ReL(t−s)
∫ 1

0
||ua||L1(mt)da = ReL(t−s),

and by Theorem 2.12∫ 1

0
Eϑ(a)(ua,ϑ)da ≤ e3L(t−s)

∫
[Et(ua) + ||ua||2L2(mt)

]da

≤ e3L(t−s)√R[

∫ 1

0
2Et(
√
ua)da+R] ≤ e3L(t−s)√R(2E +R).

This shows that (ua,ϑ) is in L2([0, 1]→ F).
Next we show that (ua,ϑ) is contained in Lip([0, 1],F∗). For this let ψ ∈ F . Then, for almost

every a0, a1 ∈ (0, 1), we obtain with Lemma 6.8, since P ∗t,ϑ(a)ua0 ∈ F(0,1),∫
ψua1,ϑdm� −

∫
ψua0,ϑdm�

=

∫
ψ(P ∗t,ϑ(a1)ua0 − P ∗t,ϑ(a0)ua0)dm� +

∫
ψP ∗t,ϑ(a1)(ua1 − ua0)dm�

=(t− s)
∫ a1

a0

E�ϑ(a)(P
∗
t,ϑ(a)ua0 , ψ)da+ (t− s)

∫ a1

a0

∫
ḟϑ(a)P

∗
t,ϑ(a)ua0ψdm�da

+

∫
Pt,ϑ(a1)(ψe

fϑ(a1))(ua1 − ua0)dmt

≤(t− s)
∫ a1

a0

Eϑ(a)(P
∗
t,ϑ(a)ua0)1/2Eϑ(a)(ψe

fϑ(a))1/2da

+ (t− s)
∫ a1

a0

||ḟϑ(a)||∞||P ∗t,ϑ(a)ua0 ||L2(mϑ(a))
||ψefϑ(a) ||L2(m�)da

+ ||e−ft ||∞E�(Pt,ϑ(a1)(ψe
fϑ(a1)))1/2 sup

a
||u̇a||F∗(a1 − a0)

≤(t− s)Eϑ(a)(ψ)1/2

∫ a1

a0

Lip(fϑ(a))Eϑ(a)(P
∗
t,ϑ(a)ua0)1/2da

+ (t− s)
∫ a1

a0

||ḟϑ(a)||∞||P ∗t,ϑ(a)ua0 ||L2(mϑ(a))
||ψefϑ(a) ||L2(m�)da

+ ||e−ft ||∞E�(Pt,ϑ(a1)(ψe
fϑ(a1)))1/2 sup

a
||u̇a||F∗(a1 − a0).

Due to our assumptions on f we have that

Lip(fϑ(a)) ≤ C, ||ḟϑ(a)||∞ ≤ L, ||ft||∞ ≤ C,
while the energy estimate Theorem 2.12 and Corollary 2.15 yields

Eϑ(a)(P
∗
t,ϑ(a)ua0) ≤ e3L(t−s)[Et(ua0) + ||ua0 ||2L2(mt)

],

||P ∗t,ϑ(a)ua0 ||L2(mϑ(a))
≤ eL(t−s)/2||ua0 ||L2(mt).
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Note that the last two expressions are bounded since u is a regular curve. Moreover from (21),
the gradient estimate (78) and Corollary 2.15 we find

E�(Pt,ϑ(a1)(ψe
fϑ(a1))) ≤ CeL(t−s)Lip(efϑ(a1))2Eϑ(a1)(ψ)

Applying (21) once more we find that there exists a constant λ such that∫
ψua1,ϑdm� −

∫
ψua0,ϑdm� ≤ (a1 − a0)λ||ψ||F , (85)

and thus

||ua1 − ua0 ||F∗ ≤ λ.
Note also that (85) holds for every a0, a1 by approximating with Lebesgue points. This implies
the existence of ∂aua,ϑ ∈ L∞([0, 1],F∗) such that∫

ψua1,ϑdm� −
∫
ψua0,ϑdm� =

∫ a1

a0

〈∂aua,ϑ, ψ〉F∗,Fda.

Fix ψ ∈ Lipb(X). By a similar calculation as above it ultimately follows that

lim
h→0

1

h
(

∫
ψua+h,ϑdm� −

∫
ψua,ϑdm�)

= (t− s)E�ϑ(a)(P
∗
t,ϑ(a)ua, ψ) + (t− s)

∫
ḟϑ(a)P

∗
t,ϑ(a)uaψdm�

+ lim
h→0

∫
Pt,ϑ(a+h)(ψe

fϑ(a+h))
(ua+h − ua)

h
dmt

almost everywhere. To determine the last integral recall that u ∈ C1([0, 1], L1(X)). Then since
ψ ∈ Lipb(X)

lim
h→0

∫
Pt,ϑ(a+h)(ψe

fϑ(a+h))
(ua+h − ua)

h
dmt =

∫
Pt,ϑ(a)(ψe

fϑ(a))u̇admt

=

∫
(ψefϑ(a))P ∗t,ϑ(a)u̇admϑ(a) = 〈P ∗t,ϑ(a)u̇a, ψ〉F∗,F .

From the Lipschitz continuity of (ua,ϑ) we deduce that for almost every a ∈ [0, 1]

〈∂aua,ϑ, ψ〉F∗,F = 〈−(t− s)∆ϑ(a)ua,ϑ + ∂afϑ(a)ua,ϑ − P ∗t,ϑ(a)(u̇a), ψ〉F∗,F .
We conclude the proof by approximating ψ ∈ F with bounded Lipschitz functions. �

Lemma 6.10. For any map ϕ ∈ HLSϑ the map a 7→
∫
ϕadρa,ϑ is absolutely continuous and∫

ϕ1dρ1,ϑ −
∫
ϕ0dρ0,ϑ ≤

∫ 1

0

[
− 1

2

∫
Γϑ(a)(ϕa)dρa,ϑ +

∫
Pt,ϑ(a)(ϕa) ∂aua dmt

+ (t− s)
∫

Γϑ(a)(ϕa, ua,ϑ)dmϑ(a)

]
da.

Proof. Let us begin by showing that a 7→ ρa,ϑ is 2-absolutely continuous. Indeed, let a0 < a1,
we have with the equivalence of the gradient estimate (78) and the Wasserstein contraction (65)

Wϑ(a0)(ρa0,ϑ, ρa1,ϑ) ≤Wϑ(a0)(P̂t,ϑ(a0)ρa0 , P̂t,ϑ(a0)ρa1) +Wϑ(a0)(P̂t,ϑ(a0)ρa1 , P̂t,ϑ(a1)ρa1)

≤Wt(ρa0 , ρa1) +Wϑ(a0)(P̂t,ϑ(a0)ρa1 , P̂t,ϑ(a1)ρa1).

By virtue of Lemma 3.7(iv) we have that ρ̃a = P̂t,ϑ(a)ρa1 = ũamϑ(a) is in AC2([0, 1],P(X)). This
proves that a 7→ ρa,ϑ is 2-absolutely continuous.

To conclude that a 7→
∫
ϕadρa,ϑ is absolutely continuous we write∫

ϕa1dρa1,ϑ −
∫
ϕa0dρa0,ϑ

=

∫
(ϕa1 − ϕa0)dρa1,ϑ +

∫
ϕa0dρa1,ϑ −

∫
ϕa0dρa0,ϑ

≤ ||ϕa1 − ϕa0 ||∞ + Lip(ϕa0)W (ρa1,ϑ, ρa0,ϑ).
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To compute its derivative we consider difference quotients. Since ϕ ∈ Lip([0, 1], L∞(X)) is in
HLSϑ and ua+h,ϑ → ua,ϑ in L1(X) we have

lim
h→0

h−1

∫
(ϕa+h − ϕa)dρa+h,ϑ ≤ −

1

2

∫
|∇ϑ(a)ϕa|2dρa,ϑ. (86)

Now we need to determine

lim
h→0

1

h
(

∫
ϕae

−fϑ(a)(ua+h,ϑ − ua,ϑ)dm� +

∫
ϕaua+h,ϑd(mϑ(a+h) −mϑ(a))).

The expression on the right hand side clearly converges to

−ϑ̇(a)

∫
ϕaḟϑ(a)ua,ϑdmϑ(a), (87)

while from Lemma 6.9 we deduce

lim
h→0

∫
e−fϑ(a)ϕa

1

h
(ua+h,ϑ − ua,ϑ)dm� =〈∂aua,ϑ, e−fϑ(a)ϕa〉F ,F∗ ,

and after inserting

〈∂aua, e−fϑ(a)ϕa〉F ,F∗ =(t− s)
(∫

ḟϑ(a)ua,ϑϕae
−fϑ(a)dm� + E�ϑ(a)(ua,ϑ, ϕae

−fϑ(a))
)

(88)

=(t− s)
(∫

ḟϑ(a)ua,ϑϕadmϑ(a) +

∫
Γϑ(a)(ua,ϑ, ϕa)dmϑ(a)

)
. (89)

Then from the absolute continuity of a 7→
∫
ϕadρa,ϑ together with (86), (87) and (89), we

obtain∫
ϕ1dρ1,ϑ −

∫
ϕ0dρ0,ϑ =

∫ 1

0
∂a

∫
ϕadρa,ϑda

≤
∫ 1

0

[
− 1

2

∫
|∇ϑ(a)ϕa|2dρa,ϑ +

∫
Pt,ϑ(a)ϕau̇admt − (t− s)

∫
ϕaḟϑ(a)ua,ϑdmϑ(a)

+ (t− s)
∫
ḟϑ(a)ua,ϑϕadmϑ(a) + (t− s)

∫
Γϑ(a)(ua,ϑ, ϕa)dmϑ(a)

]
da

≤
∫ 1

0

[
− 1

2

∫
|∇ϑ(a)ϕa|2dρa,ϑ +

∫
Pt,ϑ(a)ϕau̇admt + (t− s)

∫
Γϑ(a)(ua,ϑ, ϕa)dmϑ(a)

]
da.

�

We regularize the entropy functional by truncating the singularities of the logarithm. Define
eε : [0,∞) by setting e′ε(r) = log(ε+ r) + 1 and eε(0) = 0. Then eε is still a convex function and
e′ε ∈ Lipb([0, R]). For any t and ρ = umt ∈ P(X) we define

Sεt (ρ) =

∫
eε(u)dmt.

Note that for any ρ ∈ Dom(S) we clearly have Sε(ρ)→ S(ρ)as ε→ 0.
As in [6] we introduce

pε(r) := e′ε(r
2)− log ε.

Lemma 6.11. With the same notation as in Lemma 6.10 we find for any ε > 0

Sεt (ρ1,ϑ)− Sεs(ρ0,ϑ) ≥
∫ 1

0

∫
u̇aPt,ϑ(a)(e

′
ε(ua,ϑ))dmt + 4(t− s)

∫
e′′ε(ua,ϑ)Γϑ(a)(

√
ua,ϑ)dρa,ϑ

+ (t− s)
∫
ḟϑ(a)(ua,ϑe

′
ε(ua,ϑ)− e′ε(ua,ϑ))dmϑ(a)da.
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Proof. From the convexity of eε we get for every a0, a1 ∈ [0, 1] by virtue of Lemma 6.9

Sεϑ(a1)(ρa1,ϑ)− Sεϑ(a0)(ρa0,ϑ)

=

∫
eε(ua1,ϑ)− eε(ua0,ϑ)e−fϑ(a0)dm� +

∫
eε(ua1,ϑ)(e−fϑ(a1) − e−fϑ(a0))dm�

≥
∫
e′ε(ua0,ϑ)(ua1,ϑ − ua0,ϑ)e−fϑ(a0)dm� +

∫
eε(ua1,ϑ)(e−fϑ(a1) − e−fϑ(a0))dm�

=

∫ a1

a0

(〈∂aua,ϑ, e−fϑ(a0)e′ε(ua0,ϑ)〉 −
∫
eε(ua1,ϑ)ϑ̇(a)ḟϑ(a)e

−fϑ(a)dm�)da

=

∫ a1

a0

(〈−ϑ̇(a)∆ϑ(a)ua,ϑ + ϑ̇(a)ḟϑ(a)ua,ϑ + P ∗t,ϑ(a)(u̇a), e
−fϑ(a0)e′ε(ua0,ϑ)〉

−
∫
eε(ua1,ϑ)ϑ̇(a)ḟϑ(a)e

−fϑ(a)dm�)da

=

∫ a1

a0

(−ϑ̇(a)〈∆ϑ(a)ua,ϑ, e
−fϑ(a0)e′ε(ua0,ϑ)〉+

∫
ϑ̇(a)ḟϑ(a)ua,ϑe

−fϑ(a0)e′ε(ua0,ϑ)dm�

+

∫
P ∗t,ϑ(a)(u̇a)e

−fϑ(a0)e′ε(ua0,ϑ)dm� −
∫
eε(ua1,ϑ)ϑ̇(a)ḟϑ(a)e

−fϑ(a)dm�)da.

Now fix h > 0 and choose a partition of [0, 1] consisting of Lebesgue points {ai}ni=0 such that
0 ≤ ai+1 − ai ≤ h. Then

Sεt (ρ1,ϑ)− Sεs(ρ0,ϑ) =
n∑
i=1

(Sεϑ(ai)
(ρai,ϑ)− Sεϑ(ai−1)(ρai−1,ϑ))

≥
n∑
i=1

∫ ai

ai−1

(−ϑ̇(a)〈∆ϑ(a)ua,ϑ, e
−fϑ(ai−1)e′ε(uai−1,ϑ)〉+

∫
ϑ̇(a)ḟϑ(a)ua,ϑe

−fϑ(ai−1)e′ε(uai−1,ϑ)dm�

+

∫
P ∗t,ϑ(a)(u̇a)e

−fϑ(ai−1)e′ε(uai−1,ϑ)dm� −
∫
eε(uai,ϑ)ϑ̇(a)ḟϑ(a)e

−fϑ(a)dm�)da

=

∫ 1

0
(−ϑ̇(a)〈∆ϑ(a)ua,ϑ, ς

h
a 〉+

∫
ϑ̇(a)ḟϑ(a)ua,ϑς

h
a dm�

+

∫
P ∗t,ϑ(a)(u̇a)ς

h
a dm� −

∫
ωha ϑ̇(a)ḟϑ(a)e

−fϑ(a)dm�)da,

where

ςha = e
−fϑ(ai−1)e′ε(uai−1,ϑ), for a ∈ (ai−1, ai]

ωha = eε(uai,ϑ), for a ∈ (ai−1, ai].

Letting h→ 0 we obtain

ςha → e−fϑ(a)e′ε(ua,ϑ), in L1(X) for a.e. a ∈ (0, 1)

ωha → eε(ua,ϑ), in L1(X) for a.e. a ∈ (0, 1),
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and thus from dominated convergence

Sεt (ρ1,ϑ)− Sεs(ρ0,ϑ)

≥ lim sup
h→0

[

∫ 1

0
(−ϑ̇(a)〈∆ϑ(a)ua,ϑ, ς

h
a 〉+

∫
ϑ̇(a)ḟϑ(a)ua,ϑς

h
a dm�

+

∫
P ∗t,ϑ(a)(u̇a)ς

h
a dm� −

∫
ωha ϑ̇(a)ḟϑ(a)e

−fϑ(a)dm�)da]

≥ lim sup
h→0

[

∫ 1

0
(−ϑ̇(a)〈∆ϑ(a)ua,ϑ, ς

h
a 〉da]

+

∫ 1

0
(

∫
ϑ̇(a)ḟϑ(a)ua,ϑe

−fϑ(a)e′ε(ua,ϑ)dm�

+

∫
P ∗t,ϑ(a)(u̇a)e

−fϑ(a)e′ε(ua,ϑ)dm� −
∫
eε(ua,ϑ)ϑ̇(a)ḟϑ(a)e

−fϑ(a)dm�)da.

To see that 〈∆ϑ(a)ua,ϑ, ς
h
a 〉 → 〈∆ϑ(a)ua,ϑ, e

−fϑ(a)e′ε(ua,ϑ)〉, recall that from Theorem 2.12 it suf-
fices to show that

ςha → e−fϑ(a)e′ε(ua,ϑ) in L2(X).

This is a consequence of the boundedness of ua,ϑ and fϑ(a). Then again by dominated conver-
gence we have

Sεt (ρ1,ϑ)− Sεs(ρ0,ϑ)

≥
∫ 1

0
[ϑ̇(a)E�ϑ(a)(ua,ϑ, e

−fϑ(a)e′ε(ua,ϑ)) +

∫
ϑ̇(a)ḟϑ(a)ua,ϑe

−fϑ(a)e′ε(ua,ϑ)dm�

+

∫
P ∗t,ϑ(a)(u̇a)e

−fϑ(a)e′ε(ua,ϑ)dm� −
∫
eε(ua,ϑ)ϑ̇(a)ḟϑ(a)e

−fϑ(a)dm�]da

=

∫ 1

0
[ϑ̇(a)Eϑ(a)(ua,ϑ, e

′
ε(ua,ϑ)) +

∫
ϑ̇(a)ḟϑ(a)ua,ϑe

′
ε(ua,ϑ)dmϑ(a)

+

∫
P ∗t,ϑ(a)(u̇a)e

′
ε(ua,ϑ)dmϑ(a) −

∫
eε(ua,ϑ)ϑ̇(a)ḟϑ(a)dmϑ(a)]da.

�

6.3. The Dynamic EVI−-Property.

Proposition 6.12. Let ρa = uamt be a regular curve. Then setting ρa,ϑ = P̂t,ϑ(a)ρ
a, it holds

1

2
W̃ 2
ϑ(ρ1,ϑ, ρ0,ϑ)− (t− s)(St(ρ1,ϑ)− Ss(ρ0,ϑ))

≤ 1

2

∫ 1

0
|ρ̇a|2tda− (t− s)2

∫ 1

0

∫
ḟϑ(a)dρa,ϑda.

(90)

Proof. Applying Lemma 6.10 and Lemma 6.11, we find∫
ϕ1dρ1,ϑ −

∫
ϕ0dρ0,ϑ − (t− s)(Sεt (ρ1,ϑ)− Sεs(ρ0,ϑ))

≤
∫ 1

0

[ ∫
u̇aPt,ϑ(a)(ϕa − (t− s)e′ε(ua,ϑ))dmt

− 1

2

∫
Γϑ(a)(ϕa)dρa,ϑ + (t− s)

∫
Γϑ(a)(ϕa, ua,ϑ)dmϑ(a) − 4(t− s)2

∫
e′′ε(ua,ϑ)Γϑ(a)(

√
ua,ϑ)dρa,ϑ

− (t− s)2

∫
(eε(ua,ϑ)− e′ε(ua,ϑ)ua,ϑ)ḟϑ(a)dmϑ(a)

]
da.

(91)
Then since

4re′′ε(r) ≥ 4r2(e′′ε(r))
2 = r(p′ε(

√
r))2,
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we can estimate

−4ua,ϑe
′′
ε(ua,ϑ)Γϑ(a)(

√
ua,ϑ) ≤ −ua,ϑ(p′ε(

√
ua,ϑ))2Γϑ(a)(

√
ua,ϑ) = −ua,ϑΓϑ(a)(pε(

√
ua,ϑ)),

and while, with qε(r) :=
√
r(2−√rp′ε(

√
r)),

Γϑ(a)(ua,ϑ, ϕa) = 2
√
ua,ϑΓϑ(a)(

√
ua,ϑ, ϕa) = ua,ϑΓϑ(a)(pε(

√
ua,ϑ), ϕa) + qε(ua,ϑ)Γϑ(a)(

√
ua,ϑ, ϕa)

we find∫
ϕ1dρ1,ϑ −

∫
ϕ0dρ0,ϑ − (t− s)(Sεt (ρ1,ϑ)− Sεs(ρ0,ϑ))

≤
∫ 1

0

[ ∫
u̇aPt,ϑ(a)(ϕa − (t− s)e′ε(ua,ϑ))dmt

− 1

2

∫
Γϑ(a)(ϕa)dρa,ϑ + (t− s)

∫
Γϑ(a)(ϕa, pε(

√
ua,ϑ))dρa,ϑ − (t− s)2

∫
Γϑ(a)(pε(

√
ua,ϑ))dρa,ϑ

+ (t− s)
∫
qε(ua,ϑ)Γϑ(a)(

√
ua,ϑ, ϕa)dmϑ(a) − (t− s)2

∫
(eε(ua,ϑ)− e′ε(ua,ϑ)ua,ϑ)ḟϑ(a)dmϑ(a)

]
da.

(92)
Hence, by means of (84), the gradient estimate (78), and Young inequality 2xy ≤ δx2 + y2/δ
this yields∫

ϕ1dρ1,ϑ −
∫
ϕ0dρ0,ϑ − (t− s)(Sεt (ρ1,ϑ)− Sεs(ρ0,ϑ))

≤
∫ 1

0

[1

2
|ρ̇a|2t +

1

2

∫
Γt(Pt,ϑ(a)(ϕa − (t− s)e′ε(ua,ϑ))dρa

− 1

2

∫
Pt,ϑ(a)Γϑ(a)(ϕa − (t− s)pε(√ua,ϑ))dρa + (t− s)

∫
qε(ua,ϑ)Γϑ(a)(

√
ua,ϑ, ϕa)dmϑ(a)

− (t− s)2

∫
(eε(ua,ϑ)− e′ε(ua,ϑ)ua,ϑ)ḟϑ(a)dmϑ(a)

]
da

≤
∫ 1

0

[1

2
|ρ̇a|2t + +(t− s)

∫
|qε(ua,ϑ)||Γϑ(a)(

√
ua,ϑ, ϕa)|dmϑ(a)

− (t− s)2

∫
(eε(ua,ϑ)− e′ε(ua,ϑ)ua,ϑ)ḟϑ(a)dmϑ(a)

]
da

≤
∫ 1

0

[1

2
|ρ̇a|2t +

(t− s)
2δ

∫
(qε(ua,ϑ))2Γϑ(a)(ϕa)dmϑ(a) +

(t− s)δ
2

∫
Γϑ(a)(

√
ua,ϑ)dmϑ(a)

− (t− s)2

∫
(eε(ua,ϑ)− e′ε(ua,ϑ)ua,ϑ)ḟϑ(a)dmϑ(a)

]
da.

We first pass to the limit ε→ 0,

lim
ε→0

q2
ε(r) = 0, q2

ε(r) = 4r(1− r

ε+ r
)2 ≤ 4r,

lim
ε→0

(eε(r)− re′ε(r)) = −r,

|eε(r)− re′ε(r)| ≤ 2(ε+ r)| log(ε+ r)|+ r + ε log ε ≤ 2
√
ε+ r + r + ε log ε,

and then, δ → 0, ∫
ϕ1dρ1,ϑ −

∫
ϕ0dρ0,ϑ − (t− s)(St(ρ1,ϑ)− Ss(ρ0,ϑ))

≤
∫ 1

0

[1

2
|ρ̇a|2t + (t− s)2

∫
ḟϑ(a)dρa,ϑ

]
da.

Taking the supremum over ϕ we obtain the desired estimate (90). �
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Theorem 6.13. Assume that the gradient estimate holds true for the time-dependent metric
measure space (X, dt,mt)t∈(0,T ). Then for every µ ∈ Dom(S) and every τ ∈ (0, T ] the dual heat

flow µt := P̂τ,tµ emanating in µ we have

Ss(µs)− St(σ) ≤ 1

2(t− s)(W 2
t (µt, σ)−W 2

s,t(µs, σ))− (t− s)
∫ 1

0

∫
ḟϑ(a)dρa,ϑda (93)

for all s ∈ (0, τ) and all σ, µ ∈ Dom(S). Here (ρa)a∈[0,1] denotes the Wt-geodesic connecting

ρ0 = µt, ρ1 = σ and ρa,ϑ = P̂t,ϑ(a)(ρa).

In particular µt is a dynamic upward EVI−-gradient flow, i.e. for every t ∈ (0, τ) and every
σ ∈ Dom(S) we have

1

2
∂−s W

2
s,t(µs, σ)|s=t− ≥ St(µt)− St(σ).

Proof. Let (ρa)a∈[0,1] be a Wt-geodesic connecting µt and σ, which exists and is unique. We
approximate the geodesic (ρa)a∈[0,1] by regular curves (ρna)a∈[0,1]. Proposition 6.12 states that
for each (ρna)a∈[0,1]

1

2
W̃ 2
ϑ(ρn1,ϑ, ρ

n
0,ϑ)− (t− s)(St(ρn1,ϑ)− Ss(ρn0,ϑ))

≤ 1

2

∫ 1

0
|ρ̇na |2tda− (t− s)2

∫ 1

0

∫
ḟϑ(a)dρ

n
a,ϑda.

(94)

Since for every a ∈ [0, 1] ρna converges to ρa in duality with bounded continuous functions, ρna,ϑ
converges to ρa,ϑ in duality with bounded continuous functions as well. By virtue of Lemma 6.5
we obtain

lim inf
n→∞

W̃ 2
ϑ(ρn1,ϑ, ρ

n
0,ϑ) ≥ W̃ 2

ϑ(ρ1,ϑ, ρ0,ϑ).

Note that (ρna) also converges to ρa in duality with L∞ functions, since Lemma 3.2 provides
supn St(ρ

n
a) <∞. The same argument applies then to ρnaϑ. Hence

lim
n→∞

∫
ḟϑ(a)dρ

n
a,ϑ =

∫
ḟϑ(a)dρa,ϑ.

Then we end up with

1

2
W̃ 2
ϑ(µs, σ)− (t− s)(St(σ)− Ss(µs))

≤ 1

2
W 2
t (µt, σ)− (t− s)2

∫ 1

0

∫
ḟϑ(a)dρa,ϑda.

(95)

Applying Corollary 6.7 we obtain

(t− s)(Ss(µs)− St(σ)) ≤ 1

2
W 2
t (µt, σ)− 1

2
W 2
s,t(µs, σ)− (t− s)2

∫ 1

0

∫
ḟϑ(a)dρa,ϑda.

Dividing by t− s and letting s↗ t we find

St(µt)− St(σ) ≤ lim inf
s↗t

1

2(t− s)
(
W 2
t (µt, σ)−W 2

s,t(µs, σ)
)

=
1

2
∂−s W

2
s,t(µs, σ)|s=t−.

�

6.4. Summarizing. The precise integrated version (93) of the EVI−-property indeed also im-
plies a relaxed version of the EVI+-property which then in turn allows to prove uniqueness of
dynamic EVI-flows for the entropy.
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Corollary 6.14. The gradient estimate (III) implies the EVI+(−2L,∞)-property. More pre-

cisely, for every µ ∈ Dom(S) and every τ ≤ T the dual heat flow µt := P̂t,τµ emanating in µ
satisfies

1

2
∂−s W

2
s,t(µs, σ)|s=t ≥ St(µt)− St(σ)− LW 2

t (µt, σ)

for all t < τ and all σ ∈ P(X).

Proof. Given µt := P̂t,τµ for tτ , consider (93) for fixed s < τ and with s↘ t. Then

Ss(µs)− Ss(σ) = lim
s↘t

Ss(µs)− St(σ)

≤ lim
s↘t

1

2(t− s)
[
W 2
t (µt, σ)−W 2

s,t(µs, σ)
]

≤
(

lim
s↘t

1

2(t− s)
[
W 2
t,s(µt, σ)−W 2

s (µs, σ)
]

+
L

2

[
W 2
t (µt, σ) +W 2

s (µs, σ)
])

=
1

2
∂−t W

2
t,s(µt, σ)t=s+ + LW 2

s (µs, σ)

where the last estimate follows from (98). �

Corollary 6.15. Assume that (III) holds true and that (µt)t∈(σ,τ) is a dynamic upward EVI−-

or EVI+gradient flow for S emanating in some µ ∈ P. Then

µt = P̂t,τµ

for all t ∈ (σ, τ). That is, the dual heat flow is the unique dynamic backward EVI−-flow for the
Boltzmann entropy.

Proof. Corollary 7.8 together with Corollary 6.14 and Theorem 6.13. �

Theorem 6.16. The gradient estimate (IIIN) implies the dynamic N -convexity of the Boltz-
mann entropy (IN).

Proof. According to Theorem 4.7 and Theorem 6.13 the gradient estimate (IIIN) implies both

• the transport estimate (IIN) and
• the EVI−(0,∞)-property

According to Theorem 7.11 and Remark 7.12, both properties together imply dynamic N -
convexity. �
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7. Appendix

7.1. Time-dependent Geodesic Spaces. For this chapter, our basic setting will be a space
X equipped with a 1-parameter family of complete geodesic metrics (dt)t∈I where I ⊂ R is a
bounded open interval, say for convenience I = (0, T ). (More generally, one might allow dt to be
pseudo metrics where the existence of connecting geodesics is only requested for pairs x, y ∈ X
with dt(x, y) <∞.) We always request that there exists a constant L ∈ R (‘log-Lipschitz bound’)
such that ∣∣∣∣log

dt(x, y)

ds(x, y)

∣∣∣∣ ≤ L · |t− s| (96)

for all s, t and all x, y (‘log Lipschitz continuity in t’);

Let us first introduce a natural ‘distance’ on I ×X.

Definition 7.1. Given s, t ∈ I and x, y ∈ X we put

ds,t(x, y) := inf

{∫ 1

0
|γ̇a|2s+a(t−s)da

}1/2

(97)

where the infimum runs over all absolutely continuous curves (γa)a∈[0,1] in X connecting x and
y.

Proposition 7.2. (i) The infimum in the above formula is attained. Each minimizer (γa)a∈[0,1]

is a curve of constant speed, i.e. |γ̇a|s+a(t−s) = ds,t(x, y) for all a ∈ [0, 1].
(ii) A point z ∈ X lies on some minimizing curve γ with z = γa if and only if

ds,t(x, y) = ds,r(x, z) + dr,t(z, y)

with r = s+ a(t− s).
(iii) For all s, t ∈ I and x, y ∈ X

1− e−L|t−s|
L|t− s| ≤ ds,t(x, y)

ds(x, y)
≤ eL|t−s| − 1

L|t− s| .

Thus in particular, ∣∣∣∂tds,t(x, y)
∣∣
t=s

∣∣∣ ≤ L

2
ds(x, y). (98)

(iv) For all s < t ∈ I and x, y ∈ X

ds,t(x, y) = lim
δ→0

inf
(ti,xi)i

{
k∑
i=1

t− s
ti − ti−1

d2
ti

(
xi, xi−1

)}1/2

(99)

where the infimum runs over all k ∈ N. all partitions (ti)i=0,...,k of [s, t] with t0 = s, tk = t and
|ti − ti−1| ≤ δ as well as over all xi ∈ X with x0 = x, xk = y.

Proof. (i) For each absolutely continuous curve (γa)a∈[0,1](∫ 1

0
|γ̇a|2s+a(t−s)da

)1/2

≥
∫ 1

0
|γ̇a|s+a(t−s)da

with equality if and only if the curve has constant speed.
(ii) Restricting the minimizing curve for ds,t to parameter intervals [0, a] and [a, 1] provides

upper estimates for ds,r(x, z) and dr,t(z, y), resp., and thus yields the “≥”-inequality. Conversely,
given any pair of minimizers for ds,r(x, z) and dr,t(z, y) by concatenation a curve connecting x
and y can be constructed with action bounded by the scaled action of the two ingredients. This
proves the “≤”-inequality.

(iii) The log-Lipschitz continuity of the distance implies that for each absolutely continuous
curve

e−La|t−s|
∫ 1

0
|γ̇a|sda ≤

∫ 1

0
|γ̇a|s+a(t−s)da ≤ eLa|t−s|

∫ 1

0
|γ̇a|sda.

(iv) see section 6.1 for the argument in the case of Ws,t. �
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7.2. EVI Formulation of Gradient Flows. For the subsequent discussion, a lower semi-
bounded function V : I×X → (−∞,∞] will be given with Vs(x) ≤ C0 ·Vt(x)+C1 for all s, t ∈ I
and x ∈ X (thus, in particular, Dom(V ) = {x ∈ X : Vt(x) <∞} is independent of x) and such
that for each t ∈ I the function x 7→ Vt(x) is κ-convex along each dt-geodesic (for some κ ∈ R).
We also assume that minimizing dt-geodesics between pairs of points in Dom(V ) are unique.

In previous chapters, the following results will be applied

• to the Boltzmann entropy St on the time-dependent geodesic space (P,Wt)t∈I as well as
• to the Dirichlet energy Et on the time-dependent geodesic space L2(X,mt)t∈I

in the place of the function Vt on the time-dependent geodesic space (X, dt)t∈I .

Definition 7.3. Given a left-open interval J ⊂ I, an absolutely continuous curve (xt)t∈J will
be called dynamic backward EVI−-gradient flow for V if for all t ∈ J and all z ∈ Dom(Vt)

1

2
∂−s d

2
s,t(xs, z)

∣∣∣
s=t−

≥ Vt(xt)− Vt(z) (100)

where ds,t is defined in Definition 7.1.
A curve (xt)t∈J with a right-open interval J ⊂ I will be called dynamic backward EVI+-

gradient flow for V if instead

1

2
∂−s d

2
s,t(xs, z)

∣∣∣
s=t+

≥ Vt(xt)− Vt(z)

for all t ∈ J .
It is called dynamic backward EVI-gradient flow if it is both, a dynamic backward EVI+-

gradient flow and a dynamic backward EVI−-gradient flow.
We say that the backward gradient flow (xt)t∈J emanates in x′ ∈ X if limt↗sup J xt = x′.

Being a dynamic backward EVI±-gradient flow for V obviously implies that xt ∈ Dom(Vt)
for all t < τ .

Remark. Note that these definitions are slightly different from a previous one presented in [51].
If ds depends smoothly on s then

∂−s d
2
s,t(xs, z)

∣∣
s=t− = ∂−s d

2
t (xs, z)

∣∣
s=t− + ∂−s d

2
s,t(xt, z)

∣∣
s=t−

and always ∂−s d
2
s,t(xt, z)

∣∣
s=t− ≥ b0

t (γ) for any dt-geodesic γ connecting xt and z.

Often, we ask for an improved notion of dynamic backward EVI-gradient flows, involving pa-
rameters N ∈ (0,∞] (regarded as an upper bound for the ‘dimension’) and/or K ∈ R (regarded
as a lower bound for the ‘curvature’). The choices N = ∞ and K = 0 will yield the previous
concept.

Definition 7.4. We say that an absolutely continuous curve (xt)t∈(σ,τ) is a dynamic backward
EVI(K,N)-gradient flow for V if for all z ∈ Dom(Vt) and all t ∈ (σ, τ)

1

2
∂−s d

2
s,t(xs, z)

∣∣∣
s=t
− K

2
· d2

t (xt, z) ≥ Vt(xt)− Vt(z) +
1

N

∫ 1

0

(
∂aVt(γ

a)
)2

(1− a)da (101)

where γ denotes the dt-geodesic connecting xt and z.
Analogously, we define dynamic backward EVI±(K,N)-gradient flows for V .
In the case, K = 0, dynamic backward EVI(K,N)-gradient flows will be simply called dynamic

backward EVIN -gradient flows.

The concept of ‘backward’ gradient flows is tailor-made for our later application to the dual
heat flow. This flow is running backward in time and on its way it tries to minimize the
Boltzmann entropy. Regarded in positive time direction, it follows the ‘upward gradient’ of the
entropy.

On the other hand, in calculus of variations mostly the ‘downward’ gradient flow will be
considered where a curve tries to follow the negative gradient of a given functional.
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Definition 7.5. We say that an absolutely continuous curve (xt)t∈(σ,τ) is a dynamic forward
EVI(K,N)-gradient flow for V if for all z ∈ Dom(Vt) and all t ∈ (σ, τ)

−1

2
∂+
s d

2
s,t(xs, z)

∣∣∣
s=t
− K

2
· d2

t (xt, z) ≥ Vt(xt)− Vt(z) +
1

N

∫ 1

0

(
∂aVt(γ

a)
)2

(1− a)da (102)

where γ denotes the dt-geodesic connecting xt and z.
We say that a forward gradient flow emanates in a given point x′ ∈ X if limt↘σ xt = x′.

We will formulate all our results for ‘backward’ gradient flows and leave it to the reader to
carry them over to the case of ‘forward’ gradient flows.

Lemma 7.6. For each dynamic backward EVI±(K,∞)-gradient flow (xt)t∈(σ,τ) for V

∫ τ

σ
Vt(xt)dt <∞.

Proof. Choose z ∈ Dom(V ), apply the EVI(K,∞)-property at time t, and then integrate w.r.t.
time t

∫ τ

σ
Vt(xt)dt ≤

∫ τ

σ

[
Vt(z) +

1

2
∂sd

2
s,t(xs, z)

∣∣
s=t
− K

2
d2
t (xt, z)

]
dt

≤ (C0 Vτ (z) + C1)(τ − σ) +
1

2

∫ τ

σ

[
∂td

2
t (xt, z) + (L−K) d2

t (xt, z)
]
dt

= (C0 Vτ (z) + C1)(τ − σ) +
1

2
d2
τ (xτ , z)−

1

2
d2
σ(xσ, z) +

L−K
2

∫ τ

σ
d2
t (xt, z)dt.

Obviously, the right hand side is finite which thus proves the claim. �

7.3. Contraction Estimates.

Theorem 7.7. Given two curves (xt)t∈(σ,τ) and (yt)t∈(σ,τ), one of which is an is a dynamic

backward EVI−(K,N)-gradient flow for V and the other is a dynamic backward EVI+(K,N)-
gradient flow for V , then for all σ < s < t < τ

d2
s(xs, ys) ≤ e−2K(t−s) · d2

t (xt, yt)−
2

N

∫ t

s
e−2K(r−s) ·

∣∣∣Vr(xr)− Vr(yr)∣∣∣2dr. (103)

Proof. Assume that the curve (xt)t∈(σ,τ ] is a dynamic backward EVI−-gradient flow for V and

(yt)t∈(σ,τ ] is a dynamic backward EVI+-gradient flow for V . It implies that r 7→ dr(xr, yr) is
absolutely continuous since

|dt(xt, yt)− ds(xs, ys)| ≤ ds(xs, xt) + ds(ys, yt) + L(t− s)dt(xt, yt).
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Thus by the very definition of EVI flows

d2
t (xt, yt)− d2

s(xs, ys) = lim sup
δ↘0

[1

δ

∫ t

t−δ
d2
r(xr, yr) dr −

1

δ

∫ s+δ

s
d2
r(xr, yr) dr

]
= lim sup

δ↘0

1

δ

∫ t

s+δ

[
d2
r(xr, yr)− d2

r−δ(xr−δ, yr−δ)
]
dr

≥ lim inf
δ↘0

1

δ

∫ t

s+δ

[
d2
r(xr, yr)− d2

r,r−δ(xr, yr−δ)
]
dr

+ lim inf
δ↘0

1

δ

∫ t

s+δ

[
d2
r,r−δ(xr, yr−δ)− d2

r−δ(xr−δ, yr−δ)
]
dr

= lim inf
δ↘0

1

δ

∫ t

s+δ

[
d2
r(xr, yr)− d2

r,r−δ(xr, yr−δ)
]
dr

+ lim inf
δ↘0

1

δ

∫ t−δ

s

[
d2
r+δ,r(xr+δ, yr)− d2

r(xr, yr)
]
dr

(∗)
≥

∫ t

s
lim inf
δ↘0

1

δ

[
d2
r(xr, yr)− d2

r,r−δ(xr, yr−δ)
]
dr

+

∫ t

s
lim inf
δ↘0

1

δ

[
d2
r+δ,r(xr+δ, yr)− d2

r(xr, yr)
]
dr

≥ 2

∫ t

s

[K
2
d2
r(xr, yr) + Vr(yr)− Vr(xr) +

1

N

∫ 1

0

(
∂aVr(γ

a
r )
)2
a da

]
dr

+2

∫ t

s

[K
2
d2
r(xr, yr) + Vr(xr)− Vr(yr) +

1

N

∫ 1

0

(
∂aVr(γ

a
r )
)2

(1− a) da
]
dr

= 2K

∫ t

s
d2
r(xr, yr) dr +

2

N

∫ t

s

∫ 1

0

(
∂aVr(γ

a
r )
)2
da dr

≥ 2K

∫ t

s
d2
r(xr, yr) dr +

2

N

∫ t

s

∣∣∣Vr(xr)− Vr(yr)∣∣∣2dr.
Dividing by t− s and passing to the limit t− s↘ 0 yields

∂td
2
t (xt, yt) ≥ 2Kd2

t (xt, yt) +
2

N

∣∣∣Vt(xt)− Vt(yt)∣∣∣2
for a.e. t. The claim now follows via ‘variation of constants’.

It remains to justify the interchange of lim infδ↘0 and
∫
. . . dr in (∗) which requires quite

some effort. Recall from Proposition 7.2 that |d
2
s,t(x,y)

d2s(x,y)
− 1| ≤ 2L · |t − s| for all x, y, s, t with

|t− s| ≤ 1
L . Thus we can estimate

−1

δ

[
d2
r(xr, yr)− d2

r,r−δ(xr, yr−δ)
]

≤ −1

δ

[
d2
r(xr, yr)− d2

r−δ(xr, yr−δ)
]

+ o1

= −1

δ

∫ r

r−δ
∂sd

2
s(xr, ys) ds+ o1

≤ −1

δ

∫ r

r−δ
∂td

2
s,t(xr, yt)

∣∣∣
t=s

ds+ o1 + o2

≤ 2

δ

∫ r

r−δ

[
Vs(xr)− Vs(ys)

]
ds+ o1 + o2 + o3

≤ 2C0 · Vr(xr) + 2C1 + C + o1 + o2 + o3

where for the last inequality we used the growth estimate of s 7→ Vs(x) and the lower boundedness
of V and where we put with o1(r, δ) = 2Ld2

r(xr, yr−δ), o2(r, δ) = 2L 1
δ

∫ r
r−δ d

2
r(xr, yσ) dσ, o3(r) =

K d2
r(xr, yr). Continuity of r 7→ dr and of r 7→ xr as well as of r 7→ yr imply that for any fixed
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z ∈ X the function r 7→ d2
r(xr, z) is bounded as well as r 7→ d2

r(yr−δ, z) for r ∈ (s, t), uniformly
in δ ∈ (0, 1). Thus o1(r, δ)+o2(r, δ)+o3(r, δ) ≤ C ′ which finally justifies the interchange of limit
and integral.

Similarly, we can estimate

−1

δ

[
d2
r+δ,r(xr+δ, yr)− d2

r(xr, yr)
]

≤ −1

δ

∫ r+δ

r
∂sd

2
s(xs, yr) ds+ o′1

≤ 2C0 · Vr(yr) + 2C0 + C + o′1 + o′2 + o′3.

In both cases, the final expression is integrable w.r.t. r ∈ [s, t] according to Lemma 7.6 since by
assumption Vt(xt) <∞ as well as Vt(yt) <∞. �

Corollary 7.8. Assume that (xt)t∈(σ,τ) is a dynamic backward EVI(K,N)-gradient flow for V

and that (yt)t∈(σ,τ) is a dynamic backward EVI−(K,N)- or EVI+(K,N)-gradient flow for V
emanating in the same point xτ = yτ . Then

xt = yt

for all t ≤ τ .

Corollary 7.9. Assume that for given τ , a dynamic upward EVI(K,∞)-gradient flow termi-
nating in x′ exists for each x′ in a dense subset D ⊂ X. Then this flow can be extended to a
flow terminating in any x′ ∈ X and satisfying

ds(xs, ys) ≤ e−K(t−s) · dt(xt, yt) (104)

for any s < t ≤ τ .

7.4. Dynamic Convexity. Let us recall the notion of dynamic convexity as introduced in [51].

Definition 7.10. We say that the function V : I × X → (−∞,∞] is strongly dynamically
(K,N)-convex if for a.e. t ∈ I and for every dt-geodesic (γa)a∈[0,1] with γ0, γ1 ∈ Dom(Vt)

∂+
a Vt(γ

1−
t )− ∂−a Vt(γ0+

t ) ≥ −1

2
∂−t d

2
t−(γ0, γ1) +

K

2
d2
t (γ

0, γ1) +
1

N

∣∣Vt(γ0)− Vt(γ1)
∣∣2 . (105)

Theorem 7.11. Assume that for each t ∈ I and each x′ ∈ Dom(Vt) there exists a dynamic back-
ward EVI(K,N)-gradient flow (xs)s∈(σ,t] for V emanating in x′ and such that lims↗t Vs(xs) =
Vt(xt). Then V is strongly dynamically (K,N)-convex.

Remark 7.12. To be more precise, we request the inequality (100) at the point t and the in-
equality (101) at all times before t.

Proof. Fix t ∈ I and a dt-geodesic (γa)a∈[0,1] with γ0, γ1 ∈ Dom(Vt). The a priori assumption
of κ-convexity implies γa ∈ Dom(Vt) for all a ∈ [0, 1]. For each a, let (γas )s≤t denote the
EVIN -gradient flow for V emanating in γa = γat . Then for all a ∈ (0, 1

2)

Vt(γ
a)− Vt(γ0) ≤ 1

2
∂−s d

2
s,t(γ

a
s , γ

0)
∣∣∣
s=t−

≤ 1

2
∂−s d

2
s(γ

a
s , γ

0)
∣∣∣
s=t−

+ a2Ld2
t (γ

0, γ1)

(due to the log-Lipschitz continuity of s 7→ ds) and

Vt(γ
1−a)− Vt(γ1) ≤ 1

2
∂−s d

2
s,t(γ

1−a
s , γ1)

∣∣∣
s=t−

≤ 1

2
∂−s d

2
s(γ

1−a
s , γ1)

∣∣∣
s=t−

+ a2Ld2
t (γ

0, γ1).
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Moreover, the previous Theorem 7.7 implies

0 ≤ lim inf
s↗t

1

t− s
[1

2
d2
t (γ

a, γ1−a)− 1

2
d2
s(γ

a
s , γ

1−a
s )−K d2

t (γ
a, γ1−a)− 1

N

∫ t

s

∣∣∣Vr(γar )− Vr(γ1−a
r )

∣∣∣2dr
=

1

2
∂−s d

2
s(γ

a
s , γ

1−a
s )

∣∣∣
s=t−

−K d2
t (γ

a, γ1−a)− 1

N

∣∣∣Vt(γa)− Vt(γ1−a)
∣∣∣2.

(Here we used the requested continuity Vr(γ
a
r )→ Vt(γ

a) for r ↗ t.)
Adding up these inequalities (the last one multiplied by 1

1−2a and the previous ones by 1
a)

yields

1

a

[
Vt(γ

a)− Vt(γ0) + Vt(γ
1−a)− Vt(γ1)

]
≤ lim inf

s↗t

1

2(t− s)
([1
a
d2
t (γ

0, γa) +
1

1− 2a
d2
t (γ

a, γ1−a) +
1

a
d2
t (γ

1−a, γ1)
]

−
[1
a
d2
s(γ

0, γas ) +
1

1− 2a
d2
s(γ

a
s , γ

1−a
s ) +

1

a
d2
s(γ

1−a
s , γ1)

])
+2aLd2

t (γ
0, γ1)− K

1− 2a
d2
t (γ

a, γ1−a)− 1

N(1− 2a)

∣∣∣Vt(γa)− Vt(γ1−a)
∣∣∣2

≤ lim inf
s↗t

1

2(t− s)
(
d2
t (γ

0, γ1)− d2
s(γ

0, γ1)
)

−
[
(1− 2a)K − 2aL

]
· d2

t (γ
0, γ1)− 1

N(1− 2a)

∣∣∣Vt(γa)− Vt(γ1−a)
∣∣∣2.

In the limit a→ 0 this yields the claim. �
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