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SUPER-RICCI FLOWS

EVA KOPFER, KARL-THEODOR STURM

ABSTRACT. We study the heat equation on time-dependent metric measure spaces (as well as
the dual and the adjoint heat equation) and prove existence, uniqueness and regularity. Of
particular interest are properties which characterize the underlying space as a super-Ricci flow
as previously introduced by the second author [51I]. Our main result yields the equivalence of
> dynamic convexity of the Boltzmann entropy on the (time-dependent) L?-Wasserstein
space
> monotonicity of L?*-Kantorovich-Wasserstein distances under the dual heat flow acting on
probability measures (backward in time)
> gradient estimates for the heat flow acting on functions (forward in time)
> a Bochner inequality involving the time-derivative of the metric.
Moreover, we characterize the heat flow on functions as the unique forward EVI-flow for the
(time-dependent) energy in L2-Hilbert space and the dual heat flow on probability measures as
the unique backward EVI-flow for the (time-dependent) Boltzmann entropy in L-Wasserstein
space.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

1.1. Introduction. The present paper has two main objectives

(i) to define and study the heat flow on time-dependent metric measure spaces
(ii) to characterize super-Ricci flows of metric measure spaces by properties of optimal trans-
ports and heat flows.

The former is regarded as the ‘parabolic’ analogue to the analysis of heat flow, optimal transport,
and functional inequalities on ‘static’ metric measure spaces. The latter should be considered
as a first contribution to a theory of Ricci flows of metric measure spaces. Our approach will
combine and extend two previous — hitherto unrelated — lines of developments: the analysis
on (‘static’) metric measure spaces and the analysis on (‘smooth’) time-dependent Riemannian
manifolds.

Heat flow on (‘static’) metric measure spaces. The heat equation is one of the most fundamental
and well studied PDEs on Riemannian manifolds. It is intimately linked to other important
objects like Dirichlet energy, Boltzmann entropy, optimal transport, and Brownian motion. On
one hand, it is a very robust object and admits an integral representation in terms of the heat
kernel. Without any extra assumptions, its existence and basic properties are always guaranteed.
On the other hand, its more subtle properties reveal deep informations on the underlying space,
like curvature, genus, index etc.

Within the last decades, the heat flow was also successfully studied on more general spaces, in
particular, on metric measure spaces [14], 211 [47, [49]. The foundational work of Ambrosio, Gigli
and Savaré [4, 5, 0] clarified the picture, allowed to unify various of the previous approaches, and
made clear that for each metric measure space (X,d,m) with [exp ( — Cd*(x,z))dm(z) < oo
(for some C, z) there exists a unique solution to the heat equation, most conveniently defined as
gradient flow in L?(X,m) for the Dirichlet energy (‘Cheeger energy’) £(u) = [y [Vul|* dm.

Synthetic lower Ricci bounds. The heat flow on Riemannian manifolds — and more generally on
metric measure spaces — turned out to be a powerful tool for characterizing (synthetic) lower
bounds on the Ricci curvature. Such curvature bounds are indeed necessary and sufficient for
various important properties of the heat flow ¢ — P,u. Moreover, they imply that ¢ — (Pu)m
is the gradient flow for the Boltzmann entropy S(um) = [wulogudm in the space P(X) of
probability measures equipped with the L?-Kantorovich-Wasserstein distance . For instance,
nonnegative Ricci curvature is equivalent to

> the gradient estimate |V Pu|? < Py|Vul|?

> the existence of coupled pairs of Brownian motions with d(Xy,Y:) < d(Xo, Yo)

> the transport estimate W ((Pyu)m, (Pw)m) < W (um,vm)

> the convexity of the Boltzmann entropy S on the geodesic space (P(X), W).
Indeed, in the Lott-Stum-Villani approach to synthetic lower Ricci bounds [50) B8] the latter
property was used to define nonnegative Ricci curvature for metric measure spaces. Further-
more, the previous properties — gradient estimate, coupling property of Brownian motions, and
transport estimate — illustrate the effect of nonnegative Ricci curvature in a very graphical way,
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well suited for applications and modeling, and also perfectly make sense in discrete settings, cf.
Ollivier [41], Tannenbaum et al. [19], Sandhu et al. [46].

Heat flow on time-dependent metric measure spaces. New phenomena emerge and novel chal-
lenges arise for the heat flow if the underlying geometric objects (Riemannian manifolds, metric
measure spaces) will vary in time, e.g. if they will change their ‘shape’ or ‘material properties’.
This might result from exterior forces or from an interior dynamic, like mean curvature flow or
Ricci flow. To model such time-dependent geometric objects, one typically considers families
(M, g¢)ier consisting of a manifold M and a one-parameter family of metric tensors g, t € I C R.
We will consider more generally time-dependent metric measure spaces (X, dy, my)ier consisting
of a Polish space X equipped with one-parameter families of metrics (= distance functions) d;
and measures my,t € I. The main question to be addressed are:

(a) In which generality does existence and uniqueness hold for solutions to the heat equation
on time-dependent metric measure spaces?

(b) Is the heat flow the gradient flow for the energy? Does it coincide with the gradient flow
for the entropy?
More generally: is there a meaningful concept of gradient flows for time-dependent
functionals on time-dependent geodesic spaces?

(¢) What is the time-dependent counterpart to nonnegative Ricci curvature or, more gener-
ally, to the CD(0, co)-condition?
More precisely: which kind of curvature bound is necessary and/or sufficient for (the
time-dependent counterpart to) the gradient estimate? Which for the corresponding
transport estimate?
Is there a synthetic version of such a curvature bound?

In contrast to the static case, until now nothing seemed to be known for the heat flow on general
time-dependent metric measure spaces.

For time-dependent Riemannian manifolds (M, g¢)ier — with smoothly varying, non-degenerate
g+ — question (a) allows for an easy, affirmative answer. Surprisingly enough, Brownian motion
was constructed only recently [8, 16]. Question (b) was unsolved so far. McCann/Topping 2010
[39], Arnaudon/Coulibaly/Thalmaier [9], and Haslhofer/Naber [24] proved that the first three
questions in (c) have one common answer:

1
Rngt + §8tgt Z 0. (1)

Finally, in [51] the second author presented a synthetic definition for the latter, formulated as
‘dynamic convexity’ of the Boltzmann entropy Sy in the Wasserstein space (P(X), Wy).

The current paper, regarded as accompanying paper to [51], will provide complete answers to
the previous questions in the setting of time-dependent metric measure spaces. We will prove
existence, uniqueness, and regularity results for the heat equation and its dual. The former
will be identified as the forward gradient flow for the Dirichlet energy & in L2(X,my), the
latter as the backward gradient flow for the Boltzmann entropy S; in (P(X), W;). A general
discussion on gradient flows for time-dependent functionals on time-dependent geodesic spaces
will be included. Our main result provides a comprehensive characterization of super Ricci flows
(X,d, my)er by the equivalence of dynamic convexity of the Boltzmann entropy, monotonicity
of transport estimates under the dual heat flow, monotonicity of gradient estimates under the
primal heat flow, and the time-dependent Bochner inequality.

In the static case, synthetic lower Ricci bounds will play its role to the full only in combination
with an upper bound on the dimension which led to the formulation of the so-called curvature-
dimension condition CD(K, N). The time-dependent counterpart to the CD(K, N)-condition
will be so-called super-(K, N)-Ricci flows. Taking into account the role of the parameter N € R
requires quite some effort. However, we expect this to be worth for future applications. The
case K # 0, however, can be reduced to the case K = 0 by means of a simple scaling of space
and time, see Theorem To simplify the presentation, throughout this paper we thus will
restrict ourselves to the curvature bound K = 0.
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Ricci flows, Super-Ricci flows, and Super-N-Ricci flows. Given a manifold M and a smooth
1-parameter family (g:)ier of Riemannian tensors on M, we say that the ‘time-dependent Rie-
mannian manifold’ (M, g)ier evolves as a Ricci flow if Ricy, = —%Gtgt for all t € I. Tt is called
super-Ricci flow if instead only Ricgy, > —%&tgt holds true on M x I (regarded as inequalities be-
tween quadratic forms on the tangent bundle of (M, gF) for each (z,t) € M x I). In other words,
super-Ricci flows are ‘super-solutions’ to the Ricci flow equation and Ricci flows are ‘minimal’
super-Ricci flows.

Thanks to the groundbreaking work of Hamilton [22, 23] and Perelman [42] 44], [43], see also
[13, 26, 40], Ricci flow has attracted lot of attention and has proved itself as a powerful tool
and inspiring source for many new developments. Currently, one of the major challenges is to
extend the theory of Ricci flows and the scope of its applications beyond the setting of smooth
Riemannian manifolds. In particular, one aims to define and analyze (‘Ricci’) flows through
singularities and to study evolutions of spaces with changing dimension and/or topological type.
Kleiner /Lott [27] and Haslhofer /Naber [24] presented notions of singular and weak solutions for
Ricci flows. In [24], Ricci flows of ‘regular’ (i.e. smooth with uniform bounds on curvature and
derivatives of it) time-depending Riemannian manifolds (M, g;)ier of arbitrary dimension are
characterized by means of functional inequalities on the path space (spectral gap or logarithmic
Sobolev inequalities for the Ornstein Uhlenbeck operator). In [27], Ricci flow of ‘singular’ 3-
dimensional Riemannian manifolds (M, g¢):cs (regarded as 4-dimensional Ricci flow spacetimes)
is defined and analyzed in detail, allowing also for Ricci flows through singularities.

Compared to Ricci flows, super-Ricci flows allow for a much larger classes of examples. This
is an advantage if one is interested in analysis (e.g. functional inequalities, heat kernel estimates,
etc.) on huge classes of singular spaces or if one tries to extend tools and insights from the study
of ‘classical’ Ricci flows to more general time evolutions of geometric objects. It is a disadvantage
if one aims for uniqueness results or for properties close to those of Ricci flows. The defining
property of super-Ricci flows for mm-spaces (X, d;, m;); contains no constraint on the evolution
of the measures m; but only a lower bound on the evolution of the distances d;. Moreover,
super-Ricci flows can increase the dimension in order to match the constraint imposed by the
lower bound on the Ricci curvature. These distracting effects can be ruled out by considering
the more restrictive class of ‘super-IN-Ricci flows’. A time-dependent weighted n-dimensional
Riemannian manifold (M, g;, e~ ft dvolg, ), for instance, is a super-n-Ricci flow if and only if g
satisfies (L)) and if f; is constant for each ¢, see Theorem 2.9 in [51].

In [51], the second author of this paper presented a synthetic definition for super-N-Ricci
flows in the general setting of time-dependent metric measure spaces. Work in progress deals
with synthetic upper Ricci bounds [52] which — in combination with the former — then also will
allow for characterizations of ‘Ricci flows’ of mm-spaces. For most of our results, we request
a controlled t-dependence for d; and my;. Of course, this is a severe limitation and rules out
various challenging applications. Even more, one might wish to replace X by varying X, e.g.
allowing for changing topological type. However, in contrast to the static case, so far there
are no existence and uniqueness results for the heat flow on time-dependent mm-spaces which
hold in ‘full generality’. The current paper will lay the foundations for further work devoted to
enlarge the scope and to include singularities and degenerations.

1.2. Some Examples. Let us give some motivating examples of super-Ricci flows as defined
in |51l Definition 2.4]. We also discuss whether they are super-N-Ricci flows or Ricci flows.

Ezample 1.1 (‘Vertebral column’). Consider a surface of revolution with piecewise constant
negative curvature Ric = —Kg for some K > 0 depicted in Figure [Il Under the evolution of a
Ricci flow the curvature of the surface where Ric = — K¢ will increase, while the curvature of
the “rims” (Ric = +o00) will decrease. In this sense the region of negative curvature will inflate,
while the edges will smooth out. Under the evolution of a super-Ricci flow the surface inflates
as well but it may keep the edges — or it may start to smoothen them at any later time or with
smaller speed.
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%/—/
Ric=1+00 / Ric=K

FiGurE 1. Surface of revolution of a piecewise hyperbolic space

Ezample 1.2 (‘Wandering Gaussian’). Let X = R", dy(z,y) = ||z — y|| and m; = e~"*Leb" with
Vi(x) = (&, a0)? + (2, Bt) + %

where a, 8 : I — R™ and v : I — R are arbitrary functions. Then (X, d;, my)¢cs is a super-Ricci
flow. For each N € [n,00) it will be a super-N-Ricci flow if and only if « = 5 = 0.

Ezample 1.3 (‘Exploding point’). Let (M, go) be a compact, n-dimensional Riemannian manifold
of constant Ricci curvature —K gy < 0 (e.g. a compact quotient of a hyperbolic space) and put

9t =1 o, t<t,

for t, = —ﬁ. Let (X,d;, m¢)ter be the induced time-dependent mm-space with normalized

volume m; where (X,d;) for t < t, will be identified with a 1-point space (and m; with the
Dirac mass in this point), see also Firgure Then this is a super-Ricci flow — provided we
slightly enlarge the scope of [51] to also admit degenerate distances d; (or varying spaces X;).
It will be no super-N-Ricci flow for N < n.

t

o-------- (AL d!]m m.‘l(l)

e ({p},0,dp)

FIGURE 2. Point exploding to a hyperbolic quotient

More generally, consider (M,g,) = (M’ x M,q ® g;) with (M’,¢') being a compact n'-
dimensional Ricci-flat Riemannian manifold. Then the induced time-dependent mm-space is a
super-Ricci flow but no super-N-Ricci flow for N < n’ +n. For any N € [n/,n’ + n), up to
isometry the only super-N-Ricci flow which coincides with the given mm-space for ¢t < ¢, is the
static mm-space induced by (M’, ¢’).
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Ezample 1.4 (‘Singular suspension’). Consider the product M x [0, 7], where M = S?(1/+/3) x
S2(1/4/3) and S%(r) denotes the 2-dimensional sphere with radius 7. We contract each of the
fibers S := M x {0} and N := M x {r} to a point, the ‘south’ and the ‘north pole’, respectively.
The resulting space is called spherical suspension and is denoted by X(M). We endow (M)
with the measure di(z, s) := dm(z) ® (sin? s ds) and the metric ds(nry defined by

cos(dsary((z, 5), (2',5))) := cos s cos 5" + sin s sin s' cos(d(z, ") A7),

where m and d are the volume and metric of M and where (z,s), (z/,s') € M x [0, 7]. Since M
is a RCD*(3,4) space, the cone of it is a RCD*(4, 5) space [25].

The punctured cone X := (M) \ {S, N} is an incomplete 5-dimensional Riemannian man-
ifold. Let gy denote the metric tensor of ¥y. The curvature of the punctured cone can be
calculated explicitly and is given by Ric(gp) = 4go. Then g(t) := (1 — 8t)go defines a solution to
the Ricci flow Ric(g:) = —39,g¢ with g(0) = go, which collapses to a point at time 7" = §.

We claim that the associated metric measure space (X(M), dsar)(t), M )ier for I = (0,7) is
a super-Ricci flow. Fix ¢ € I and let po, 11 € Dom(S) on %(M) be given. Let (ia)qc(o,1] be
a Wi-geodesic connecting pig, 11. Then, p, = (€q)«V, where v is an optimal path measure, i.e.
a probability measure on the d;-geodesics I'(X(M)) of (M) such that (eg, e1)«v is an optimal
coupling of (eg)«v = o, (1)« = 1, where e,: I'(X(M)) — (M) denotes the evaluation map.
According to Theorem 3.3 in [10] every optimal path measure v will give no mass to di-geodesics
through the poles. Hence we can omit the d;-geodesics through the poles without changing the
Wi-geodesics. Since the punctured cone (Xg, g¢)tcs is a Ricci flow, and in particular a super-Ricci
flow in the sense of Definition 2.4 in [51], the metric measure space (X(M), ds;ar)(t), ) ier is a
super-Ricci flow as well.

Let us emphasize that for each ¢ € [0,1/8) the sectional curvature of the punctured spherical
cone Y is neither bounded from below nor from above. Indeed, for z,y € S%(1/4/3) and
0 < r < m an orthonormal basis of the tangent space T, 1> is given by {1, g, 01, Vg, W}
where 4; = ﬁ(ui,0,0), v = ﬁ(o,vi,O), w = (0,0,1) and uj,ug is an orthonormal basis
of T,,(S%(1/4/3)) and vy, vy is an orthonormal basis of T,(S%(1/v/3)). Then for the sectional
curvature we find

g (11, ) 3 —cos?r g (6.5 cos?
ec U, U2) = ———5 eC U1,01) = ——
(l‘,yﬂ”) ’ Sln2 r ? (1‘7y»7') I Sln2 ,
2
~ ~ CcCoS™r R R
SeCay) (B,02) = =5 gy SoCayn (@1, 8) =1,

and analogously if we replace 41 by the vectors wg,?1,02. This implies in particular that
Ric(gyr(&,6) = 4, but for r — 0 and r — 7, Sec(y (U1, U2) — +00 and Sec(y , ) (U1, ;) —
—00.

Let us also point out ongoing work [18] indicating that (X(M), dsar)(t), 772¢)ter will not be a
Ricci flow in the sense of [52].

1.3. Main Results.

The setting. Throughout this introductory chapter, we fix a time-dependent metric measure
space (X , dt,mt) tel where I = (0,7) and X is a compact space equipped with one-parameter
families of geodesic metrics d; and Borel measures m;. We always assume the measures m; are
mutually absolutely continuous with bounded, Lipschitz continuous logarithmic densities and
that the metrics d; are uniformly bounded and equivalent to each other with

dt ([E, y) ‘
log <L-|t—s 2
o | <= g
(‘log Lipschitz continuity’). Moreover, we assume that for each ¢ the static space (X, d;, m;) sat-

isfies a Riemannian curvature-dimension condition in the sense of [2], [I7]. (In various respects,
the latter is not really a restriction, see Remark [1.13])
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Thus for each ¢ under consideration, there is a well-defined Laplacian A; on L*(X,m;) char-
acterized by — [ Ayuvdmy = &(u,v) where the Dirichlet energy

Ei(u, u)—/ |Viul?dmy = liminf /(liptv)2 dmy
X X

v—uin L2(X,my)

v€ELip(X,dt)
is defined either in terms of the minimal weak upper gradient |V,u| of v € L?(X,m;) or alter-

natively in terms of the pointwise Lipschitz constant lip,v(.).

Heat equation. Our first important result concerns existence and uniqueness for solutions to the
heat equation — as well as for the adjoint heat equation — on the time-dependent metric measure
space (X, d, my)tcr. Moreover, it yields regularity of solutions and representation as integrals
w.r.t. a heat kernel. See Theorems 3.3 and 3.5 for the precise formulations in slightly more
general context.

Theorem 1.5. There exists a heat kernel p on {(t,s,7,y) € [?x X? : t > s}, Hélder continuous
in all variables and satisfying the propagator property pir(x,z) = [ pr.s(@, y)psr(y, z) dms(y),
such that

(i) for each s € I and h € L*(X,my)

(t:2) = Prshl@) i= [ prale,)h(y) dm(v)
1s the unique solution to the heat equation
Oy = Ay on (s,T) x X
with ug = h;

(i) for eacht € I and g € L*(X,my)

(s.0) = Plos0) = [ sl )gla) dm(a)
s the unique solution to the adjoint heat equation
Osvs = —Agvs + fs - Vg on (0,t) x X
with vy = g. Here fo = —Gt(dmt)

dms

t=s"

Many properties which are self-evident for the heat semigroup on static mm-spaces (e.g.
“operator and semigroup commute” or “the semigroup maps L? into the domain of the operator”)
no longer hold true for the heat propagator on time-dependent mm-spaces — or require detailed,
sophisticated proofs. Let us emphasize here that in general Dom(A;) will depend on t.

We derive various important L2-properties and estimates — partly in the more general setting
of heat flows for time-dependent Dirichlet forms — the most prominent of them being the EVI-
characterization, the energy estimate and the commutator lemma.

Theorem 1.6. (i) The heat flow is uniquely characterized as the dynamic forward EVI(—L/2, 0o)-
flow for %x the Dirichlet energy on L?(X,my)ier in the following sense: for all solutions
(ut)ie(s,r) to the heat equation, for all 7 <T and all w € Dom(E)

L 1 1
+ 7 flus - w2, = &) - B

1 2
Lot = w?, =

ls=t
(ii) For all s € (0,T) and v € Dom(Es)
P, su € Dom(Ay) forae t>s
and fST e—3L(t=s) i |AtPt,su|2dmt dt < %&(u) for all T > s..
(iii) For all o < 7, all u,v € L? and a.e. s,t € (0,7) with s < t

/ [AtPt,sus - ]Dt,sAsus Ut dmt < c- Vi—s

Et(w)

where us = Ps su, vy = PF

T,tv'
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We define the dual heat flow Prq: P(X) — P(X) by
(Prap) (dy) = [ / Pes(,y) du(w)] m(dy).

In particular, (Pt756$)(dy) = pt.s(x,dy) and ]5@5 (g . mt) = (Pt’fsg) “ M.

Characterization of super-Ricci flows. In [51], the second author has introduced and analyzed
the notion of super-Ricci flows for time-dependent metric measure (X, d;, m¢)icr. The defining
property of the latter is the so-called dynamic convexity of the Boltzmann entropy S : I x P —
(—o0, 00] with

S(p) = /ulogudmt if p=wumy

and S(p) = oo if u & my. Here P = P(X) will denote the space of probability measures on X,
equipped with time-dependent Kantorovich-Wasserstein distances W; induced by d;, t € I. This
property was proven to be stable under an appropriate space-time version of measured Gromov-
Hausdorff convergence and suitably bounded families of super-Ricci flows were shown to be
compact — a far reaching analogue to the stability and compactness results in the Lott-Sturm-
Villani theory of metric measure spaces with synthetic lower Ricci bounds. Furthermore, in
the case of time-dependent Riemannian manifolds this novel, synthetic definition of super-Ricci
flows was proven to be equivalent to the classical one: Ricy, + %Gtgt > 0.

The main goal of the current paper is to characterize super-Ricci flows in terms of the heat
flow (acting on functions, forward in time) and of the dual heat flow (acting on probability
measures, backward in time). Our first result in this direction is a complete analogue to the
characterization of synthetic lower Ricci bounds in the sense of Lott-Sturm-Villani for ‘static’
metric measure spaces derived by Ambrosio, Gigli, Savaré [6].

Theorem 1.7. The following assertions are equivalent:
(I) For a.e. t € (0,T) and every Wy-geodesic (u*)aep0,1) in P with p°, p* € Dom(S)
_ 1,._
a(jst(:ua)’a:1, - 80, St(:ua)‘a:(]+ > _5815 Wt2— (MO’ /’Ll) (3)

(‘dynamic convexity’).
(IT) For all0<s<t<T and p,v € P

Wi(Prsp, Prsv) < W, v) (4)

(‘transport estimate’).
(IIT) For allu € Dom(€) and all0 < s<t<T

IVi(Prsu)|? < Pos(|Vsul?) (5)

(‘gradient estimate’).
(IV) Forall0 < s <t <T and for all us,g; € F with g > 0, gs € L™, us € Lip(X) and for
a.e. T € (s,t)

1 .
Lo (ur)(gr) 2 5 / Ty (ur)grdm, (6)
(‘dynamic Bochner inequality’ or ‘dynamic Bakry-Emery condition’) where u, = P, sus

and gr = P/, gt. Moreover, the following reqularity assumption is satisfied:

u, € Lip(X) for all r € (s,t) with suplip,u,(z) < co. (7)

T,

Here and in the sequel

1
Lo (ur)(gr) := / [irr(ur)Argr + (Arur)’gr + T (ur, gr) gy | dimy,
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denotes the distribution valued I's-operator (at time r) applied to u, and tested against g, and

Lr (ur) := w-lim %(Pﬂr&(ur) - Fr(“r))

denotes any subsequential weak limit of %(Frﬂg — Fr,(;) (uy) in L2((s,t) x X).

EVI characterization of the dual heat flow. Recall that we started with the heat equation (acting
on functions, forward in time) as a forward gradient flow for the time-dependent Dirichlet energy.
By duality, we defined the dual heat flow (acting on probability measures, backward in time).
This turns out to be the backward gradient flow for the Boltzmann entropy — in a very precise,
strong sense — and it is the only one with this property.

Theorem 1.8. Fach of the assertions of the previous Theorem implies that the dual heat flow
t— = Pm,u is the unique dynamical (backward) EVI~-gradient flow for the Boltzmann
entropy S in the following sense:

For every i € Dom(S) and every 7 < T the absolutely continuous curve t — u; satisfies

1
505 Wilps )|y = Si(e) = Si(0)

for all o € Dom(S) and allt < T.

Characterization of super-N-Ricci flows. For static metric measure spaces, it turned out that
many powerful applications of synthetic lower bounds on the Ricci curvature are available only
in combination with some synthetic upper bound on the dimension. This led to the so-called
curvature-dimension condition CD(K, N). In a similar spirit, in [51] the notion of super-Ricci
flows for time-dependent metric measure spaces was tightened up towards super-/N-Ricci flows.

We aim to characterize super-NN-Ricci flows in terms of the heat flow, the dual heat flow, and
the time-dependent Bochner inequality. Our main result provides a complete characterization,
analogous to the proof of the equivalence of the curvature-dimension condition of Lott-Stum-
Villani and the Bochner inequality of Bakry—Emery for ‘static’ metric measure spaces derived
by Erbar, Kuwada, and the second author [17].

Theorem 1.9. For each N € (0,00) the following are equivalent:
(In) For a.e. t € (0,T) and every Wi-geodesic (u®)qepo1] in P with p°, u* € Dom(S)

05 S oy — 0 Sy > — 500 WG )+ S0 — S ()
(IIy) For all0 <s<t<T and pu,v € P
W2(Py s, Prsv) < W2 (p,v) — % : {Sru%,?«u) - Sru%,ru)] “ar. 9)
(IIIy) For alluw € Dom(E) and all0 <s <t <T
Vi(Pysu)|* < Py (Vs (w)]?) — % / t (PtJATPT,su)er. (10)

(IVy) For all0 < s <t < T and for all us,gr € F with g > 0, gt € L™, us € Lip(X) the
reqularity assumption is satisfied and for a.e. v € (s,t)

To.(ur)(gr) > ;/fr (ur)grdm,. + ;,(/Arwgrdmrf (11)

(‘dynamic Bochner inequality’ or ‘dynamic Bakry-Emery condition’) where u, = P, sug
and gr = P/, gt.

Remark 1.10. a. In (Iy), the requested property for a.e. ¢t will imply that it holds true for
all t € (0,T).
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b. The transport estimate (IIy) implies the ‘stronger’ property

. . 2 [t 2
W2 P Pow) < W) = - [ [ (008106)) dactr
s JO

where (p?), denotes the W,-geodesic connecting Pr,tﬂ and Pmy.

c. Under slightly more restrictive assumptions on (X, ds, m;) — namely, C'-dependence of
t — log d; instead of Lipschitz continuity — in subsequent work of the first author [29] a
refined version of the dynamic Bochner inequality (IV y) will be deduced with estimate
for every r and all u,, g, in respective domains — without requiring that they are
solutions to heat and adjoint heat equations, resp.

d. Note that the regularity assumption @ in our formulation of the dynamic Bochner
inequality is not really a restriction. Indeed, such an estimate with C' = 2(K + L) will
always follow from the log-Lipschitz bound and the RCD(—K, co)-condition for the
static mm-spaces (X, d¢, my).

Super-(K, N)-Ricci flows. A more general version of the previous Theorem will deal with the
equivalences to dynamic (K, N)-convezity of the Boltzmann entropy as introduced in [51]. To
simplify the presentation, however, we will restrict ourselves here to the case K = 0. Indeed, we
would not expect new challenges or novel insights from the more general case (K, N) since this
can be easily transformed into the case (0, N) by means of a simple rescaling time and space.

Theorem 1.11. Assume that the time-dependent mm-space (X, dy, my)ier is super-(K, N)-Ricci
flow in the sense that for a.e. t € I and every Wy-geodesic () qe(o,1) in P with pl, ut € Dom(S)

a —_ a 1 — 1 2
0 St yoym = 0 S (oo = =50 W (', 1) + 5[ Se(”) = Sulu)|
FEWE (10, 1) (12)

Then for each C € R the time-dependent mm-space (X, dy, mt),cj 95 a super-N-Ricci flow if we
put

. i 1
dt = eiKT(t)dT(t), my = mT(t), T(t) = ﬁ lOg(C - 2Kt>

and I ={r(t):t € I,2Kt < C}.

Proof. Put d = e*KT(t)dT(t). Then every Wt—geodesic will be a W, ;)-geodesic. Therefore, the
transformation d — d will not change the term + ‘S’t(,uo) —S(uh) ’2 nor the term 8(‘[5}(#“”
8(;St(ua)|a:0+ in (12)). Moreover,

1, - ok _
SOTWE(, ) = e (t)[—KatT(t)-WT(t)+(8t W)(T(t)—)-atT(t)]-WT(t)

a=1—

_ 2T () - [_ K-W?+ %8[1/((2} (r(t)—)
_ [_K-W? + %a;Wﬂ (r(t) —)-
Thus implies
SR = [—rew g o) )
2

B . 1
> =07 Sy ()] oy + 05 Sry ()| 1 N\Sf(t) (1) = Sy ("]

which proves the dynamic N-convexity of S and thus the super-N-Ricci flow property of
(Xv dt7 mt)tei' O

Corollary 1.12. For each N € (0,00) and K € R the following are equivalent:
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(Ik,n) For a.e. t € (0,T) and every Wy-geodesic (1u*)qepo,1) in P with p°, p* € Dom(S)

az—zi_St(MaHa:l_ - 8a_St(:U'a)‘a:0+

1,._
> _Eat WE (1%, ) + K - W2 (")
1 2
+N\5t(ﬂo> = Sy(ph)]". (13)
(IIg n) Forall0<s<t<T and p,v € P
. . 2 [t . . 2
e W2 Props, Prov) < KW (nv) - / e~2KT [sr(Pt,m) - ST(PMV)} dr.  (14)
(IlIg n) For allu € Dom(€) and all0 < s <t <T
2 [ 2
KV (Pru)|* < 2P (Vo)) - / 2K (Pt,TATPT,Su) dr. (15)

(IVknN) For all0 < s <t <T and for all us,g: € F with g¢ > 0, g € L™, ug € Lip(X) the
reqularity assumption is satisfied and for a.e. r € (s,t)

1 [ 1 ’
FQ,T(UT)(gT) > B} / Ly (wr)grdm;, + K/FT(uT)grme + N(/Arurgrme) (16)
where u, = P, sus and g, = P,g;.

Proof. As in the proof of the previous Theorem, consider the time-dependent mm-space (X, dy, my)
with d; = e*KT(t)dT(t), My = My and I={r(t):tel2Kt<C} where 7(t) = 7= log(C —
2Kt). Then

172 —2K 11172 T 2KT A 2KT 2Kt . 2KT
Wi =e Wz, Ti=e7"T, Ar=e"TAr, Top=e"Tar 7r=e"".

tel

Moreover, P, ; = Py (1),7(s)- Thus each of the statements (Iy) — (IVy) for (X, dy, M), j obviously
is equivalent to the corresponding statement (Ix n) — (IVk n) for (X, d¢, m¢)icr. For instance,
the equivalence “(Ily) for (X, d¢, m¢) < (Ilx n) for (X, d, my)” follows from the fact that

e 2RTWE e 2Ro2 — W W2

for 7 = 7(t) and 0 = 7(s) and
2 2 2 T R N 2
/ Ptru Sy (Pyv)| dr = N/ e 2K [ST(Pt,ru) — Sy (Pyv)| dr.

O

Discussion of standing assumptions. Let us briefly comment on the assumptions which we im-
posed throughout this introduction and for major parts of this paper.

Let us start with the discussion on the a priori assumption that each of the static spaces
satisfies a Riemannian curvature-dimension condition.

Remark 1.13. Given a time-dependent mm-space (X, d;, my)tc; which satisfies all the assump-
tions mentioned in the beginning of this chapter but no Riemannian curvature-dimension con-
dition is requested. Instead of that, each static mm-space (X, d;, m;) is merely assumed to be
infinitesimally Hilbertian and S; is requested to be absolutely continuous along W;-geodesics.
Then assertion (Iy) of the Main Theorem implies that for a.e. t € I the static space

(X,dy,my) satisfies a RCD*(—L, N) condition.
Proof. (In) together with the log-Lipschitz bound implies that along all Wi-geodesics
05 Se(u®)],

In combination with the absolute continuity of a +— Sy(u®) this yields the RCD*(—L, N)-
condition, cf. [51]. O

_ a 1 2
Sy = LRGN+ ]S ) — i)

Next, we will discuss the assumption concerning log-Lipschtiz continuity of t — d;.
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Remark 1.14. Let (M, g¢); be a time-dependent Riemannian manifold and let (X, d;, m;); be the
induced time-dependent mm-space.

(i) Then for any L;, Ly € [—00, o0]

1 d 1
L < log - < Ly <= Lig < =g < Laog,.
t—s ds 2

Moreover, if (M, g;); evolves as Ricci flow then the previous assertions are equivalent to
— Lag: < Ricg, < —Ligy. (17)

If (M, g;): is a super-Ricci flow then instead we merely have the implications

d
log =* <Ly = —Lag; < Ric,

t—s ds

and
1

— S

I <

d
logd—t <= Ricy, < —L19:.

The proof is obvious. Similar assertions holds for the log-Lipschitz continuity of ¢ — m.
(ii) For Ricci flows of Riemannian manifolds, we can write m; = e~ (t=fs)m, for all s < ¢
with f; — fs = [ scaly,dr. Thus

10 dmt
&4

1
[ <
l_t

<Ly, <= —Ls<scaly, <—Lj.

S
Super-Ricci flows allow for arbitrary time-dependence of the exponential weight functions
ft. Their regularity in time does not impose any a priori restriction on the metric tensors
of the underlying space.

(iii) The condition with finite L1, Lo rules out Ricci flows running through singularities.
In particular, it will not allow collapsing or changing topological type.

Related works. Our main results, Theorem [I.7] and Theorem combine and extend two pre-
vious — hitherto unrelated — lines of developments:

e results in the setting of ‘smooth’ families of time-dependent Riemannian manifolds which
characterize solutions to Ric + %@gt > 0on I x M (‘super-Ricci flows’) e.g. by means
of the monotonicity property (II) in terms of the L2-Wasserstein metric for the dual
heat flow, initiated by work by McCann and Topping [39]; for subsequent work in this
direction which also includes equivalences with gradient estimates (III) and coupling
properties of backward Brownian motions, see e.g. Topping [53], Philipowski/Kuwada
[32] 33], Arnaudon/Coulibaly /Thalmaier [8], Lakzian/Munn [34], Li/Li [35].

e results for (‘static’) metric measure spaces by Ambrosio/Gigli/Savare [6] as well as by
Erbar/Kuwada/Sturm [17].

Indeed, Theorem |1.7] and Theorem [1.9| extend the main results from [6] and from [I7] (cf. also
[7]) to the time-dependent setting. Partly, our proofs also provide new and simpler arguments in
the static setting, for instance, for the implication (IIIy) = (IIy). Even though we benefited
very much from the powerful, detailed calculus on mm-spaces developed in [5, [6, 4] and pushed
forward in [I}, 2, [7, 20], in many cases we had to develop entirely new strategies and to derive
numerous auxiliary estimates and regularity assertions. For the proof of implication (IIy) =
(IIIy), we followed the argumentation of [I2] and carried over their arguments from the static
to the dynamic setting.

The analysis of the heat flow on time-dependent spaces (either Dirichlet spaces or metric
measure spaces) seems to be completely new.

Even in the smooth case, the characterization (I) of super-Ricci flows in terms of the so-called
dynamic convexity (as introduced in the accompanying paper [51] by the second author) was
not known before.
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Work in progress. The current paper, together with the previous paper by the second author
[51], will lay the foundations for a broad systematic study of (super-)Ricci flows in the context of
mm-spaces with various subsequent publications in preparation which among others will address
the following challenges:

e time-discrete gradient flow scheme a Jordan-Kinderlehrer-Otto for the heat equation and
its dual as gradient flows of energy and entropy, resp. [28];

e improved dynamic Bochner inequality; LP-gradient and L?-transport estimates; con-
struction and optimal coupling of Brownian motions on time-dependent mm-spaces [29]

e geometric functional inequalities on time-dependent mm-spaces — in particular, local
Poincaré, logarithmic Sobolev and dimension-free Harnack inequalities — and character-
ization of super-Ricci flows in terms of them [30];

e synthetic approaches to upper Ricci bounds [52] and rigidity results for Ricci flat metric
cones [I§].

Preliminary remarks. We use 0; as a short hand notation for %. Moreover, we put 0, u(t) =

limsup,_,; 7= (u(t) — u(s)) and 9; u(t) = liminf,; 2 (u(t) — u(s)).
In the sequel, r, s,t always denote ‘time’ parameters whereas a,b denote ‘curve’ parameters.

1.4. Sketch of the Argumentation for the Main Result.

The structure of the proof of Theorem[1.9 is as follows. In Chapter 4, we present the implica-
tions (Iy) = (IIy) and (IIIy) = (IIy) as well as the converse of the latter in the case
N = oo. Chapter 5 is devoted to the proof of the equivalence (IIIy) <= (IVy) as well as to
the proof of the implication (IIxy)= (IVy).

In Chapter 6 we prove that (III) implies the dynamic EVT (‘evolution variation inequality’).
More precisely, we derive two versions, the dynamic EVI™ and a relaxed form of the dynamic
EVIT. The combination of these two versions implies that the dual heat flow is the unique
EVI flow for the Boltzmann entropy.

The latter will be proven in a more abstract context in the Appendix (Chapter 7) which is
devoted to the study of dynamical EVI-flows in a general framework. Here in particular, it will
also be shown that (IIIy) & EVI™ = (Iy). O

Let us now briefly sketch the arguments for each of the implications.

(In) = (IIx). Given two solutions to the dual heat flow (u,), and (vy),, for fixed ¢ we
connect the measures ji; = umy and vy = vmy by a Wi-geodesic (7%),¢(0,1) and we choose a pair
of functions ¢, in duality w.r.t. %WE and optimal for the pair uy, vy (‘Kantorovich potentials’),
see Figure 3| (Note that in the smooth Riemannian setting the W;-geodesic and the Kantorovich
potentials are linked through the relation n* = (exp(—aV¢)) pu = (exp(—(1 —a) Vi) ;)

d/lt v = dvy
dm’ "~ dmy

In the general setting, we deduce with u =
o 20 W (i, vp)lr=t+ > E(p,u) + (3, v) from Kantorovich duality
o Ei(p,u) + E(Y,v) > —aast(na)\a:0+ + aast(na)\azl_ from semiconvexity of S;
o 20 W2, Vt)‘r:t_ > —0,5:(n* ") + 0aSe(n°T) + % [Se(pe) — St(l/t)]2 from the defining
property of a super-N-Ricci flows.
Additing up these estimates yields 307 W2 (ur, vp)|r=t+ + %87«_W7«2(Mt7Vt)‘r:t_ > 2 [Si() —
St(yt)]Q. A careful time shift argument allows to replace the left hand side by %@;Wf(ut, vt)
which then proves the claim.
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FIGURE 3.

(IIy) = (IVy). Given a Lipschitz function u and a probability density g (w.r.t. m;) put
gr = T*,rg, u, = Prou and h, := fgrfr(ur)dmr for0<o<r<r<T.

By duality we already know that the transport estimate (II) implies the infinite-dimensional
gradient estimate (III) which helps us to deduce that

mhgzLT[2rww»@J+/frw»%m4m«

To improve this inequality, we follow the approach initiated by [12] and consider the perturbation
of g, given by

97" = gr (1 — a[Arus 4+ 7 (log g7, ua)])

for small @ > 0. It can be interpreted as the Taylor expansion of the W -geodesic starting in
g- with initial velocity u,. The transport estimate (IIx) applied to the probability measures
grm, and g7'“m, gives us for all a > 0

W2(Pris(geme), Pro(92me)) = WE(grmy, g2%m,)
2 [T . )
= N [ST(PT,r(ngT)) — S ( r,r(gg’amT))]er,

In the limit a N\, 0 we eventually end up with

hy — hy < —% /;(/ATUT grdmr>2dr.

Together with the previous lower estimate for h,; — h, this proves the claim.

(IVy) <= (IIly). This is — modulo regularity issues — a simple, well-known (cf. [51], Theorem
5.5) differentiation-integration argument for the function

r— /Pt’frg -T, (Pmu) dm,.

(IlIy) = (ILy). Given any ‘regular’ curve (uf).eo,1) and 7 € I we will study the evolution
of this curve under the dual heat flow. More precisely, we analyze the growth of the action

1 1
A (1) ‘:/o ]ﬂﬂtda:/o /XW@;}]Qdugda

of the curve (uf)aepo,1) for t < 7 where uf = Am,ui = ugmy and (®f),e(0,1) denotes the velocity
potentials in the static space (X, d;, m;). For s < t we approximate the action A, (,u's) by

1 . ,
Z 7W32 (/’Lgl_laugl)7

a; — Q;—
i—p i—1



HEAT FLOW ON TIME-DEPENDENT METRIC MEASURE SPACES AND SUPER-RICCI FLOWS 15

the latter in terms of Wy-Kantorovich potentials, and finally by means of the interpolating Hopf-
Lax semigroup. Applying the Bakry-Ledoux gradient estimate (IIIy) then allows to estimate

1 2 1 2
2+ [A) — As()] [ [ vt ioga duga
- 0 X

- N+e¢
_ 2 1y NE
= 7N+5‘St('ut) St(/it)‘

for each € > 0 provided that s is sufficiently close to ¢. Passing to the limit s T ¢ and integrating
the result from s to 7 yields

A1) < Arlui) = o [ [S1008) = i),
This indeed proves the claim since
W2(u', pt) = inf {AT(,u'T) : (K7 )ae[o,1) Tegular curve connecting 1P, ul}
for any puY, ut and 7 whereas W2(u?, ul) < Aq(p;) for all s < 7.

(IIIxy) = (In). To deduce the dynamic convexity of the Boltzmann entropy S, let a W;-
geodesic (uf)qcjo,1] be given and consider its evolution ug := P; suf, s < t, under the dual heat
flow. Then on one hand

1 _ 1 _
W ) = WG i) + 75 W ") + — W (™ ) (18)
for all a € (0,1/2), whereas on the other
1 _ 1 _
W ) < — W 1S) + 7= W (g™ ) + W™ ). (19)

We already know that the gradient estimate (IIIx) implies the transport estimate (IIy) and

the latter yields
liminf —— [Wtz(u?,ui_“) - WQ(M"?/H*“)] >2 1
st t—sl—2a sATSI S “N1-2a

The EVI-property to be discussed below will allow to estimate

[5:u8) — Su()]

. . ]- a a 2 a
timnf ;= (WP, ) = W2 113)] > 7 |Sulost) = Suluid)] — LaW2 () ),
as well as
. . 1 1 —a —a 2 —a
limnf - — = [Wf(utl ) = W ,ui)} > = [St(utl ) - St(ui)] — LaW§ (), i)

Using together with and adding up the last three inequalities we obtain after letting
a N\, 0 (see also Figure |4)):

. 1 2 2
lim inf - [W{"(u?, pe) — W2 s, ui)} > < [St(u? ) — St(u%)]
+20, Se(1f)| oy — 207 Se(p)] 1y _-

In order to prove the EVI-property, we follow the approach by [6] and [I7] respectively and
extend their arguments to the time-dependent setting. We show that the gradient estimate
implies that the dual heat flow is a dynamic EVI~-gradient flow. For this we introduce in
Section a dual formulation W&t of our time-dependent distance W ;.

For each fixed s < t we take a regular curve (p%),c[o,1] approximating the W;-geodesic joining

o and p; = ATVt/J, where p,0 € P(X) are fixed. We then apply the dual heat flow p,y =

Py sta(t—s)p” to the regular curve, cf. Figure [5, and eventually show using (III) that

Ly .
QWSQ,t(pLﬂyPO,ﬁ) — (t = 8)(St(p1,0) — Ss(pow)) < /O blp 7+ (t— 5)2/fﬁ(a)dﬂa,ﬁ}da'
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‘transport estimate’

FIGURE 4.
Then, by approximation, we obtain
1. 1 L.
S es) = (¢ = 9)(51(0) = 5.0) < W2 u0) = (4= 5 [ [ Foadonsda

In contrast to the static case we obtain the additional error term (¢ — s)? fol / f 9(a)dPa,9da which
however vanishes after dividing by ¢ — s and letting s ¢. Thus
St(,ut) — St(U) S lim inf

i 1
s/t 2t —s) (W7 0:0) = W2i1s,0)) = 505 W21, 0=

Note that the log-Lipschitz continuity of the distance allows to estimate the last term from above
by

1, L
583 Wt2(:usa J)|8:t— + §W2(Mt7 U)'

po= It 0':/)1:[)1719

P0,9 = Hs

FIGURE 5.
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2. THE HEAT EQUATION FOR TIME-DEPENDENT DIRICHLET FORMS

2.1. The Heat Equation. Let us choose here a setting which is slightly more general than for
the rest of the paper. We assume that we are given a Polish space X and a o-finite reference
measure m,, on it which is assumed to have full topological support. Moreover, we assume that
we are given a strongly local Dirichlet form &, with domain F = Dom(&,) on H = L*(X,m.)
and with square field operator I's such that & (u,v) = [ Is(u, v) dms for all functions u,v € F.
These objects will be regarded as reference measure and reference Dirichlet form, resp., in the
subsequent definitions and discussions. The spaces H and F will be regarded as a Hilbert space
equipped with the scalar products f wv dme and E,(u,v) + f uv dms, resp. We identify H with
its own dual; the dual of F is denoted by F*. Thus we have F C H C F* with continuous and
dense embeddings.

Recall that a Dirichlet form & on L?(X,ms) is a densely defined, nonnegative symmetric
form on L%(X,m,) which is closed (which is equivalent to say that the quadratic form is lower
semicontinous on L?(X,m,)) and which satisfies the Markov property

Eo(§ou) <&(u) forall £: R — R 1-Lipschitz such that £(0) = 0.

Here and in the sequel, the same symbol will be used for a bilinear form and the quadratic
form associated with it, i.e. & (u) = Es(u,u). The Dirichlet form &, is called strongly local if
Es(u,v) = 0 whenever (u+ c)v = 0me-a.e. for some ¢ € R. We refer to [15] for a comprehensive
study of Dirichlet forms and to [I1] for the important role of the square field operator.

Let I C R be a bounded open interval, say I = (0,7) for simplicity. In order to deal with
time-dependent evolutions, following [48] we consider for 0 < s < 7 < T the Hilbert spaces

Fisry =L*((s,7) = F)nH' ((s,7) = F*)

equipped with the respective norms ([ [lu¢||% + [|0ut]|%. dt) 2 According to [45], Lemma
10.3, the embeddings F(; ) C C([s, T] — 7—[) hold true which guarantee that values at ¢ = s and
t = 7 are well defined.

Moreover, assume that we are given a 1-parameter family (m¢),e(o ) of measures on X such

that m; = e ftm,, for some bounded measurable function fon I x X with f; € F and 3C s.t.
Vi, x

Lo(fi)(x) < C. (20)
The basic ingredient will be a 1-parameter family (I't);c1) of

e symmetric, positive semidefinite bilinear forms I'; on F, each of which has the diffusion
property

k
To(W(ur, ... ug),v) = Uilug, ..., up)le(us, v)
=1

Vk € N,Vo,ug,...,up € FNL®(X,m,), V¥ € CH(R¥) with ¥(0) = 0, [11],
e and all of them being uniformly comparable (‘uniformly elliptic’) w.r.t. the reference
form I'y on F, ie. 3C s.t. YVt € (0,7),Yu € F,Vz € X

éro(u)(x) < Ty(u)(z) < C To(u)(). (21)

For each t € (0,T) we define a strongly local, densely defined, symmetric Dirichlet form & on
L?(X,m;) with domain Dom(&;) = F and a self-adjoint, non-positive operator 4; on L?(X,m;)
with domain Dom(A;) C F uniquely determined by the relations

/ T(u,v) dmy = E(u,v) = —/ Aruv dmy
X X

for u,v € F. Recall that u € Dom(A4;) if and only if v € F and 3C’ such that & (u,v) <
C" vl L2 (m,) for all v € F.
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Definition 2.1. A function u is called solution to the heat equation
Apu = Oru on (s,7) x X
if u € Fis ) and if for allw € F(s 1

/ 515 ut,wt dt / <8tut,wte_ft)]:*’]: dt (22)
where (-,-) r+ 7 = (-,-) denotes the dual pairing. Note that thanks to , w E L2((S,T) — .7-")
if and only if we~! € L*((s,7) = F).

Since u; € Dom(A;) (and thus dyu; € L?) for almost every t by virtue of Theorem we
may equivalently rewrite the right hand side of the above equation as

/ <8tut, wtefft>]:*7]: dt = / / atut : (wtefft) dmo dt = / / atut - Wt dmt dt
s s JX s JX

which allows for a more intuitive, alternative formulation of as follows:

—/ St(ut,wt)dt _/ / 8tut * W dmt dt.
s s JX

Theorem 2.2. For all 0 < s <7 <T and each h € H there exists a unique solution u € F,
of the heat equation on (s, 7) x X with us = h (or equivalently with limy s u; = h).

Proof. For each t the bilinear form &£ on F is defined by

& (u,v) = —/Atuvdmo
X
= /Ft(u,veft)e_ftdmo
b's

= / [Ci(u,v) + vl (u, fi)] dme
X

for u,v € F. It immediately follows that u € F(, ) is a solution to the heat equation if and only

if for all w € ]:(377.)
_/ gto(utv wt)dt = / / Osuy - wy dmy dt.
S S X

(Indeed, we simply have to replace the test function w; by wyeft.)

Our assumptions on I'; and f; guarantee that &£ for each t is a closed coercive form with
domain F = Dom(&,) on H = L%*(X,m,), uniformly comparable to &,. For each ¢ , the operator
Ay is a bounded linear operator from F to F*. Indeed,

’5;} u v)‘
1/2 1/2
woeF ul 3 [lo]

S Sup/|tuv|dm p/ Ftuft)dm
uvEF ||u||1/2 H ||1/2 ¢ UUE}- Hu||1/2 || ||1/2 ‘ ’ o

< o (1+Ir(Ig?)

if C is chosen such that |I'(u,v)| < C-To(u)Y/?-T's(v)Y/? for all u,v and t. Thus we may apply
the general existence result for solutions to time-dependent operator equations dyu = A,u on
a fixed Hilbert space H. For this, we refer to [37], Chapter III, Theorem 4.1 and Remark 4.3,
see also [45], Theorem 10.3. (Note, however, that the latter assumes a continuity of ¢ — A; in
operator norm which is not really necessary.) O

(| At[| 7 7=

Remark 2.3. We denote this solution by ui(x) = P;sh(z). Then (P s)o<s<t<7 is a family of
bounded linear operators on H which has the propagator property

Pt,r:Pt,soPs,r
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for all » < s < t. For fixed s and h the function t — P;¢h is continuous in H (due to the
embedding F; 7y C C([s,T] — H)). And by construction the function (t,z) — P, h(z) is a
solution to the (forward) heat equation dyu = Asu on (s,T) x X. That is, for all h € H

8tPt,sh = AtPt,sh- (23)

Note that the operator P;, : H — H in the general time-dependent case is not symmetric —
neither with respect to m, nor with respect to m; nor with respect to m.

2.2. The Adjoint Heat Equation.

Definition 2.4. Given 0 < o < t < T, a function v s called solution to the adjoint heat
equation

—Av+0sf - v = 0sv on (o,t) x X
if v € Fop) and if for all w € Fgyp

/5 Vg, W ds+//vs Wy - 0fsdmsd3—//8vs w dmg ds.

Theorem 2.5. Assume and
|fe(x) = fs(z)] < Lt — 5. (24)

(i) Given 0 < o <t < T, for each g € H there exists a unique solution v € F, ) of the
adgjoint heat equation on (o,t) x X with vy = g.
(ii) This solution can be represented as

*
Vs = Pt,sg

in terms of a family (P/s)s<¢ of linear operators on M satisfying the ‘adjoint propagator
property’
Pl = P, 0P/, (Vr < s <t).

(iii) The operators Py s and Py are in duality w.r.t. each other:
/Pt,sh cgdmy = /h - Pysgdms (Vg,h € H).
Proof. (i), (ii) The assumption implies that the same arguments used before to prove existence
and uniqueness of solutions to the heat equation d;u = Asu can now be applied to prove existence

and uniqueness of solutions to the adjoint heat equation —dsv = Asv — (095 fs)v.
(iii) Put u; = P sh and vs = P;¢g. Then

/utvt dmy —/usvs dmg
¢ ¢ t
= //&urvrdmrdr—i—/ /ur&nvrdmrdr—/ /urvr&«frdmrdr
St . S S
= /Sr(ur,vr)dr—/ Er(ur,vp)dr =0.

Note, however, that — even under the assumption m,(X) < oo — in general constants will not
be solutions to the adjoint heat equation. Instead of preserving constants, the adjoint heat flow
preserves integrals of nonnegative densities.

O

Lemma 2.6. For each fized t, the operators A; and A} : u — Ayu— Oy fy - u on L?(X, my) have
the same domains: Dom(A;) = Dom(Aj)
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Proof. Recall that v € Dom(Ay) if and only if v € Dom(&;) and if there exists a constant C
such that for all u € Dom(&;)

E(u,v) + /uv@tf dmy < C - [lull 2(my)-
Boundedness of 0 f implies that this is equivalent to v € Dom(Ay). O
In contrast to the form domains, the operator domains Dom(A;) in general will depend on ¢.
Example 2.7. Consider H = L?(R, dz) with m;(dz) = dz and

Le(u)(z) = [L+t-1r, ()] - [/ ()]
fort € I =(0,1). Then

Dom(Ay) = {u e WEA(R) N W2HR_) N W22(RL) : o/(0—) = (1 +1) -u’(0+)}.
Thus Dom(As) # Dom(A;) for all s # t.
Proof. Obviously, u € Dom(4;) if and only if u € WH(R) and [1 + ¢ - 1g, Ju’ € WH2(R). O

A basic quantity for the subsequent considerations will be the time-dependent Boltzmann
entropy. Here we put S¢(v) := [ « U -logvdm; and consider it as a time-dependent functional on
the space of (not necessarily normalized) measurable functions v : X — [0, 00].

Proposition 2.8. (i) For all solutions uw > 0 to the heat equation and all s <t
Si(ug) < X9 . 8 (uy).
(ii) For all solutions v > 0 to the adjoint heat equation and all s < t

t
Ss(vs) < Si(vy) +L/ / v, dm, dr.
S X

Note that [y v, dm, is independent of r if mo(X) < oo.

Proof. In both cases, straightforward calculations yield

€Lt8t [e_Lt/ut IOg (0 dmt] < /(10g Ut + 1)8tut dmt = /Ft(log Ut) Ut dmt < 0
and

85/1)3 logvsdms = /(logvs + 1)0svs dmg — /vs log vs - Os fs dmyg

= /Fs(logvs) vs dmg + /vs-asfs dmg > —L/vs dm.
O
2.3. Energy Estimates. Throughout this section, assume as well as and in addition

ITe(u) = To(u)| < 2L - / T, (w)dr (25)

for all v € F and all s < t.
Recall that by definition each solution u to the heat equation on (s,7) x X satisfies u €
L*((s,7) = F) N H'((s,7) = F*) c C((s,7) — H) and

T 1
[ Etudt < Gl (26)

We are now going to prove that these assertions can be improved by one order of (spatial)
differentiation. To do so, we first define a self-adjoint, non-positive operator A; on L%(X,m.)

by

—/ Ao dms = & (u,v) ::/ Ty (u,v) dme
X X
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for all u,v € F. Then Dom(A;) = Dom(A;) and

/Lg’LL = Atu —|— Ft(’LL ft)
Indeed, — [ Ayuvdm, = [ Ty(u,veft)e ft dm, = —fAtuvdm<> + fI‘t w, ft)v dms. Next, con-
sider the Hille-Yosida approximation A9 := (I — §A4;)"*A; of A; on L*(X,m,), put & (u,v) :=

— [ AYuv dm, and recall the well-known fact that & (u,u) 7 & (u,u) for each u € F as § \, 0.
More generally,

Lemma 2.9. For all o, 3> 0 with 8 —a < 3: F C Dom((I — 5[115)*0‘[1?) and for all u € F:

u € Dom(flf) <= sup H(I— 5/~1t)70‘f1t’3uH < 00
5>0 L?

with H(I — 6At)_o‘f~lt’3uHL2 e HAEUHLQ Jor 6§ \, 0.

Proof. For fixed ¢t we apply the spectral theorem to the non-negative self-adjoint operator —A,
on H which yields the representation —A, = fo A E), in terms of projection operators. For each
continuous semi-bounded ® : R; — R

Dom((I)(—) {ue?—l/ |dE>\uu)}

and (®(—A)u,v)y = fooo ®(N)dE)(u,v). Thus, in particular, F = {u eH: fooo )\dE)\(u,u)}

and

5 2

N

Moreover, by monotone convergence as § \, 0
00 )\B
=

(L+0A)
Lemma 2.10. For all § > 0 and all u,v € F the map t — gf(u, v) is absolutely continuous with

dE)\(u, u)}

|7 =a4)- ) JR

O

- L - .
‘&Ef(u,v)’ < — [St(u,u) —l—St(v,v)] .
Proof. For all 6,u,v as above, put ul = (I — (5At) wand v) = (I — 5&)*11). Then

%E (u,v) = lim ! [(I —0A ) M A ou— (I - 5/~1t)71f~1tu} v dme

e—0 €

= lim } |:(I — (int—l—e)_l(lit—i-e — At)(l — 5%115)_114 v dmo

e—0 €

= lim — [5 (ut,vt+€) €t+6(uf,vf+e)]

IN

— hm [g ut,ut + 5t+e(U?+€a U?-ye)}

< = hm [ u, 1) 4+ Epe(v, v)} = g [ét(u,u) +5~t(U,U)} :

Here we also used the fact that & (ul,ud) 7 E(ug,uz) as § — 0. O

Lemma 2.11. There exists a constant C such that for all 0 < s < 7 < T, for all solutions
u € Fsr) to the heat equation on (s,7) x X and for all § >0

T iv-127 . |? 2
/ / (1= 64) 2 A | dmedt < O [E0(0) + sl (27)
s X
Thus, in particular, if us € F then u, € Dom(A;) for a.e. t € (s,7) and

/S T /X v dmodt < C - [€4(0) + s 2] - (28)
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Proof. For any § > 0 and u € F

Es(us) Z c‘:’g(us) Z —/ 8t(9~f(ut) dt Z —2/ St‘s(ut, atut) dt — 01
s s
= 2/ / (I — 6f~lt)_1f~ltu . Atut dmo dt — 01
s X
= 2/ / (I - 5/~lt)71/~1tu . Atut dmo dt
s X

—2/ / (I — 514,5)71.4{& . Ft(ut, ft) dmo dt — 01
s X

v

T - _ 2
/ / ‘(I — 5At)*1/2Atu’ dme dt — 01 — 09.
s X

Here

r=

01 = /0T5f(ut)

according to the previous Lemma and

T . 2
0O = / / ’(I — 5At)_1/2ft(ut, ft)‘ dmo dt
s X

T L
tdt < L/S Er(ug)dt < §||u8||%2(ms)

T /
< C’/ / Dy (ug) et dme, dt < Q||u5||%2(m )
s JX 2 °
for C" = sup; [[T¢(f¢)e’t|| oo (my)- Moreover, Es(us) < C"Ey(us) for C” = sup, lle7t]| oo (m,)- Thus
the claim follows with C' = max{C", L+Tcl} O

Theorem 2.12. For all 0 < s <7 < T and for all solutions u € F(s 1) to the heal equation

(i) u € Dom(A;) for a.e. t € (s,7).
(ii) If the initial condition us € F then

u € L2((S,T) — Dom(A.) N Hl((S,T) — H).

More precisely,
e_gLTET(uT) + 2/T e 3Lt /X ‘Atut‘z dmy dt < e 355 Es(us). (29)
(iii) For all solutions v to the adjoint heat equation on (o,t) x X and all s € (o,t)
Ea(03) + 110532,y < € - [E0(0n) + 1oalFamyy |

Moreover, vs € Dom(As) for a.e. s € (o,t).

Proof. (i): In the case us € F, this follows from the previous Lemma and the fact that
Dom(A;) = Dom(A;). In the general case us € H, by the very definition of the heat equa-
tion it follows that u, € F for a.e. 0 € (s,7). Applying the previous argument now with o in
the place of s yields that u; € Dom(A;) for a.e. t € (0, 7) and thus the latter finally holds for
a.e. t € (s, 7).

(ii): The log-Lipschitz bound states |0y (.)| < 2L-T(.). Together with this implies
8353(ut)‘szt < 3L - &(ut). Therefore,

3y, [e_SLtgt(Ut)] < 6sgt(us)‘s:t = _2/Atut|2dmt
where the last equality is justified according to (i).

(iii) Similarly as we did in the previous Lemmas, we can construct a regularization for the
adjoint heat equation which will allow to prove that vy € Dom(As) for a.e. s € (o,t). Therefore,
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we may conclude

0sEs(vs) > 2/ ]ASUS|2dmS —3L- & (vs) — 2/1481)S g - Os fs dmy
> —3L-&(vs) —g/vg dmg
and thus
Ou[Ea(0a) + ealFany | = —3L.5s(vs)—§/v§dms
+2 [ [+ 02 0utdm, — [ 20, dm,

3L [Eu(w) + el

v

O

Remark 2.13. For fixed s and a.e. 0 > s the operator P, maps H into Dom(E) and then for
a.e. t > o the operator P;, maps Dom(E) into Dom(A;). Thus by composition, for a.e. t > s
the operator P; s maps H into Dom(A;).

A simple restatement of the assertions of the subsequent Proposition will yield that for
all s<tandall heH

e0<h<l = 0<P.,h<l
e P 1 =1 provided mq(X) < oo
o (Psh)” < Ppy(h?).

Proposition 2.14. The following holds true.
(i) For all solutions u to the heat equation on (s,7) x X and allt > s
us > 0 a.e. on X - us > 0 a.e. on X.
More generally, for any M > 0
us < M a.e. on X — ur < M a.e. on X.

If mo(X) < oo then this implication holds for all M € R.
(ii) For all solutions v to the adjoint heat equation on (o,t) x X and all s <t

vy > 0 a.e. on X == vs > 0 a.e. on X.
More generally, for any M > 0
v <M ae. on X — vs < eI qe. on X.

If mo(X) < oo then this implication holds for all M € R.
(iii) For all solutions u to the heat equation on (s,7) x X, allt > s and all p € [1, 0]

el 2o (myy < €527 lug |l 1o omy)-

In particular, fut dmy < elt=s) fus dmg for nonnegative solutions.
(iv) For all solutions u, g to the heat equation on (s,7) X X and allt > s

u? < gs ae. on X = ui < g a.e.on X.

Proof. (i) Assume that u solves the heat equation. Put w = (v — M),. Then for each t, strong
locality of the Dirichlet form &; implies

E(ur, (ue — M)1) = E((ur — M), (up — M)+).
The chain rule applied to ®(x) = (z)4+ implies that a.e on (s,7) x X
Otut . (Ut — M)+ = ﬁt(ut — M)Jr . (ut — M)+
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Therefore, for a.e. t
0 < = M)y, (ug — M)y) = & (uy, (wy — M)+)

= /8tut, Ut — )_,_e*ft dme = /at Up — M)+€*ft dm.

< _§€Lt a |: Lt/ (ut_M)?i-dmt]7
X

where we used in the last inequality. Thus us < M will imply u; < M for all ¢ > s.

In the case, mo(X) < oo, the constants will be in A and solve the heat equation. Thus the
previous argument can also be applied to u £ M which yields the claim.

(ii) Assume that v solves the adjoint heat equation. Then with a similar calculation as before
we obtain for a.e. s

8/115—6 (t—s) )idms

— /( — eI L By (vs — ePEIM) 4 dmy — ;/(Us — P UTINN2 0, £y dm
1

= /(vs - eL(t_S)M)+(0svs + LeL(t_S)M)+ dmg — 3 /(vs - eL(t_S)M)%r@sfs dmy

=Es(vs, (vs — eL(t_s)M)+) + /US(US - eL(t_S)M)-l—asfs dmg

1

+ /(1)5 — eL(t*S)M)jL(LeL(t*S)M)jL dmgs — 3 /(vS — eL(t*S)M)iBSfS dmg

> — ;)L/(Us - eL(t_S)M)%r dmg.
Applying Gronwall’s inequality yields

[ e dm, < U [ (w22 i,

which proves the claim.
(iii) Assume p € (1,00). (The case p = oo follows from (i), and the case p = 1 follows from
(ii) by duality.) Then, by the previous arguments the linear operator

Py g: L' (myg) 4+ L% (mg) — L' (my) + L (my)

maps L'(m;) boundedly into L'(m;) and L>(m;) boundedly into L>(m;). Then, by the Riesz-
Thorin interpolation theorem P; 3 maps LP(mg) boundedly into LP(m;) with quantitative esti-
mate

1P sl Lo () < " Pl ]| Lo,

(iv) Choose w = (u? — g)+. Then, again by the chain rule and since u and g are solutions to
the heat equation, we find for a.e. ¢

1
Zelt. g, |:€—Lt/ w?dmt}
2 X

IN

/6t(u? — gt)wt dmt

= /3tut(2utwt)dmt _/atgtwt dmy
= —&(u, 2ugwy) + E(ge, wy)

= —Et(u? —gt,wt) — 2/ I‘t(ut,ut)wt dmt
X

= —&(wy,wy) — 2/ Ty (ug, ug)wy dmy <0,
X

where we applied the strong locality in the last equation. Thus

/w?dmt < eL(t‘S)/wEdms
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for all ¢ > s. This proves the claim.

As a direct consequence we obtain the following corollary.

Corollary 2.15. For all s <t
(1) 1Ptsll oo (mg)— oo (me) < 1, P75l 2t mg)— 2 (my) < 1
(i) [1Psll 2 (me)srt (mey < €279, 1P\l oo (me) s Loo (ma) < €279,
(W) [1Prsllz2(m,) s r20m) < "9, NP l2n0) - 120m,) < €
The next result yields that the heat flow is a dynamic EVI(—L/2, co)-flow for % times the
Dirichlet energy & on L?(X,m;). For the definition of dynamic EVI-flows we refer to Section

Theorem 2.16. (i) Then the heat flow is a dynamic forward EVI(—L/2, 00)-flow for 1x
the Dirichlet energy on L?(X,my)ier, see Appendiz. More precisely, for all solutions
(ut)ie(s,r) to the heat equation, for all 7 <T and all w € Dom(E)

1 L 1 1
—50F s —wlS,| 47 e —wll] = GEw) = SE(w) (30)
where ||.||s¢ is defined according to Definition with dy(v,w) = [jv — wa, =([|v-
w]2dmy)'/?.

(ii) The heat flow is uniquely characterized by this property. For allt > s and all solutions
to the heat equation ||Jug||; < eX=9)/2||ug]s.

Proof. (i) Assumption implies atHva <L Hva as well as (following the argumentation
from Proposition

2
s

L
Osllollsl e < 5 N0l

for all v and ¢. Therefore, we can estimate

1 . 1
305 el < s o (= - o)

ls=t s—t

+ lim sup ‘Us—wuit_ HuS_wa)
s—t 7

1
2(s—1t) (‘
< <ut —w, atut>t + %Hut — ’LUH

L
= —&(u,u) + Ex(w,u) + 7 [lue —wl;

1
2
(ii) Uniqueness and the growth estimate immediately follow from the EVI-property. Indeed,
the distance HH , and the function & on the time-dependent geodesic space L?(X,my)er satisfy
all assumptions mentioned in the appendix on EVI-flows. In particular, the distance is log-
Lipschitz: 3tHva <L Hva and the energy satisfies the growth bound &; < Cy &;. O

2
e

IN

1 L
Er(u,u) + §€t(w,w) + ZHUt —w||

The next lemma states semicontinuity of the heat flow and the adjoint heat flow with respect
to the seminorm v/&.

Lemma 2.17. Let u,g € Dom(E), 0 <r <t <T. Then
h}% Ptfsg =g in (Dom(8>7 \/g)a
S

lim Py,u=u in (Dom(E),VE).

s\
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Proof. Since P/ g — g in L?(X) and the Dirichlet energy is lower semicontinuous we have
Ei(g) < liminf &(P/,g).
s/t ’
On the other hand from Theorem [2.12{(iii)

Es(Pro9) + 1Prsgll2omay < " (E(9) + N9l L2y

for every s < t. Hence, again since P/ g — u in L3(X),

E(9) = limsup e~ (E(P9) + 1P 9l 2(ma) — 11911 220me)

st
> limsup & (P ,g9) = limsup &(F;,g),
s,/ 7 s/ 7

where the last identity follows from the Lipschitz property of the metrics and the logarithmic
densities. Then, since & is a bilinear form, the parallelogram identity yields

lim;up E(Plsg—g) = lim;up(25t (9) +2&(P;sg) — E(u+ Pg))
s 't s 't

< 4&(g) - 1irsr>ig1f Ei(g + Plyg)) < 4&(g) — &(29)
=0,

where the last inequality is a consequence of the lower semicontinuity of &;.
The second assertion follows along the same lines replacing Theorem iii) by Theorem

212, O

2.4. The Commutator Lemma. In the static case, generator and semigroup commute. In
the dynamic case, this is no longer true. However, we can estimate the error

/ [Ap(Prsu) — Prs(Agu)] vdmy| .
X

To guarantee well-definedness of all the expressions, we avoid ‘Laplacians’ and use ‘gradients’
instead.

Lemma 2.18. For all o < 7, all solutions u € F(, ) to the heat equation, and all solutions
v € F(o,r) to the adjoint heat equation

|2 (ur, vr) = Es(us, v5)] < Clug,vy) - [t — [/ (31)

for a.e. s,t € (o,7) with s <t where
Clug,vr) = C - [E4(us) + Evr) + [0l | (32)
with C 1= Le3LADT
In other words, the commutator lemma states

’/ [At(Pt’sus) — Pt,s(Asus)] vedmy| < Clug,vp) - |t — 3\1/2. (33)
X

Proof. Obviously, the function r — &, (u,,v,) is finite (even locally bounded) and measurable
on (o, 7). Therefore, by Lebesgue’s density theorem for a.e. s,t € (o, 7)

1 t 1 s+0
gt(utavt) = }1\1‘%5 s ET(UT‘av’I") d’l“, gs(USavs) = (%1{(%5/5 gr(uravr) dr
and thus
t—0 1
gt(uta 'Ut) - gs(usa Us) = %1{% . g (57"4—6(”7"-‘,-(53 'Ur—l—&) - gr(ura Ur)) dr.
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To proceed, we decompose the integrand into three terms

1

5 [5’/‘—4—5 (u’/‘+57 Ur+§) - & (uTa Ur)] = [5r+5 (ur+57 U’I‘+6) - 5r+5 (’LLT, vr+5)]

5

o) £l
+% [ (ur, vrt6) — & (ur, vr)]
a,(8) + Br(8) + 7 (6).

Let us first estimate the second term

1

B’r((s) = @ [€r+§ (ur + Ur+6) + gr+5 (ur - Ur+6) -& (ur + Ur+5) - & (u'r - 'Ur+5)]
L

3? (3L

% 66L5

due to the fact that |0,&,(w)| < 3LE,(w) for each w € F. According to Theorem 2, the final
expressions can be estimated (uniformly in 0) in terms of Es(us) and & (vi) + ||ve] 12(my)- Thus

< [57" (ur + Ur—i—é) +&; (ur - 'Ur—l—é)]

< [Er(ur) + Erys(vris)]

we finally obtain

t—48 3L

I ,
s | Br(8) dr > /.

3L
(t — 3) 5 3L(t 5) [gs(us) + gt(vt) + ||’Ut||i2(mt)} :

(Er(ur) + & (vp)] dr

IN

IN

Now let us consider jointly the first and third terms
t—0 1 t—o
/ [QT<5) + 77“(5)] dr = s / [87"+5(<u7“+5 — ur), 'UrJré) + & (Ura (vr+6 - 'Ur))] dr

t—9
= =3 / [(Ur—i-&_ur)'Ar+6vr+5'e_fT+5
X

+Arup - (Vpgs — vp) - e_fT} dm, dr

t—6
= / / / r+eur+e' r+6vr+5 € ~frts +

Uy + ( ArpeVrye + fr+evr+e) fri| dm,, dr de

Integrability of |A,u,|* w.r.t. dm, dr implies that j;t_ 5 | Apuy)2dm,. dr — 0 as 6 — 0 as well as
fss+6 | Ayuy|2dm,. dr — 0. Thus together with Lipschitz continuity of ¢ — f; this implies

t—9
5/ / / |:Ar+eur+5 : Ar+6vr+6 ) eifﬂré + —Apuy - AT+EUT+€ : eifr} dme dr de — 0
0 X

as & — 0. Thus (since f is bounded by L and since r — ||v, || L2(m,) 18 non-decreasing)

1 1 t—0 .
< —/ / / ‘A'ru'r : fT+EUT'+€| dmy dr de
J 0 Js X

t 1/2
Lofe— 2. ( [ Vvl am, dr) el 22y
S

1 1/2
L- ‘t — S|1/2 . <2€3L(t8)gs(us)> : HthL2(mt)'

lim
6—0

t—4
[ @+ @nar

IN

IN
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To summarize, we have

|E (g, ve) — Es(us, vs)|

IN

IN

t—0
i | [ (0r(®) + 5,(6) +:0)) ar
3L

It — s| 5 e3L(t—s) |:(€s(us) + & (vy) + ||Ut”%2(mt)}

1 1/2
L[t - S|1/2_ <2€3L(t—8)gs(us)> . HthLQ(mt)

C-|t—s/?. [Ss(us) + Er(ve) + Hth%%mt)}

with C := Le3LHDT aecording to the energy estimates of the previous Theorem.
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3. HEAT FLOW AND OPTIMAL TRANSPORT ON TIME-DEPENDENT METRIC MEASURE SPACES

We are now going to define, construct, and analyze the heat equation on time-dependent

metric measure spaces (X, dy, mt)te['

3.1. The Setting. Here and for the rest of the paper, our setting is as follows:

The ‘state space’ X is a Polish space and the ‘parameter set’ I C R will be a bounded open
interval; for convenience we assume I = (0,7). For each ¢t under consideration, d; will be a
complete separable geodesic metric on X and m; will be a o-finite Borel measure on X. We
always assume that there exist constants C, K, L, N’ € R such that

e the metrics d; are uniformly bounded and equivalent to each other with

dt (SC, y)
ds(z,y)
for all s,t and all x,y (‘log Lipschitz continuity in ¢’);

e the measures m; are mutually absolutely continuous with bounded, Lipschitz continuous
logarithmic densities; more precisely, choosing some reference measure me the mea-

‘log <L-|t—s| (34)

sures can be represented as m; = e ftm, with functions f; satisfying |f;(z)| < C,
|fi(x) = fi(y)] < C - di(x,y) and
|[fs(@) = fe(x)| < L-|s — 1| (35)

for all s,¢ and all z, y;
e for each t the static space (X, d¢, m;) is infinitesimally Hilbertian and satisfies a curvature-
dimension condition CD(XK, N’) in the sense of [50], [38], [4].

In terms of the metric d; for given ¢, we define the L?-Kantorovich- Wasserstein metric Wy on
the space of probability measures on X:

1/2
Wtw,u):inf{ [ i qECpl(W/)}
XxX

where Cpl(u, ) as usual denotes the set of all probability measures on X x X with marginals u
and v. In general, it is not really a metric but just a pseudo metric. Denote by P = P(X) the
set of all probability measures p on X (equipped with its Borel o-field) with Wy(u,d,) < oo for
some/all z € X and t € I.

The log-Lipschitz bound implies that for all s,t € I and all y,v € P

Wt(,u7 V)
Wi (p,v)

see Corollary 2.2 in [5I]. Note that the latter is equivalent to weak differentiability of ¢ —
Wi, v) and [0.Wi(p,v)| < L - Wy(u,v) for all p,v € P.
A powerful tool is the dual representation of W7

32w = { [ [ o) +00) < 3w},

where the supremum is taken among all continuous and bounded functions ¢, v. Closely related
to this is the di-Hopf-Lax semigroup defined on bounded Lipschitz functions ¢ by

1
t := inf — 2 X.
aP() [nf {w(y) + 5, (x,y)p, a>0, z¢€

log <L-ft—s, (36)

The map (a, ) — Q' p(x) satisfies the Hamilton-Jacobi equation

1. .
BuQyp(x) = —i(hthZ@)Q(w), lim Qp(x) = (). (37)
In addition, since (X, d;) is assumed to be geodesic,

Lip(Q.¢) < 2Lip(p), Lip(Q'f(z)) < 2[Lip()]>.

See for instance [0, Section 3] for these facts.
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For p,v € P(X) the Kantorovich duality can be written as

1
§Wt2(uo,u1) = Sl;p{/QtiSOdﬂl - /wduo}~ (38)

We say that a curve p: J — P(X) belongs to ACP(J;P(X)) if

b
Wi (u®, 1% < / g(rydr Ya<belJ

for some g € LP(J). We will exclusively treat the case p = 2 and call p a 2-absolutely continuous
curve. Recall that there exists a minimal function g, called metric speed and denoted by |fial:
such that
We(pu®, 1)

b—a|
See for example [3, Theorem 1.1.2]. For continuous curves pu € C([0,1], P(X)) satisfying pu* =
um with u® < R, p belongs to AC?([0,1],P(X)) if and only if for each t € (0,T) there exists
a velocity potential (®¢), such that fol JTu(®¢)duda < co and

‘/'j,a|t = lim
b—a

al
/cpd,u‘“ — /goduao :/ /I‘t(gp,@?)dpada, for every ¢ € Dom(E). (39)
ao
Moreover we can express the metric speed in the following way
il = [ T (10)

See section 6 and 8 in [7] for a detailed discussion.
Occasionally, we have to measure the ‘distance’ between points z,y € X which belong to
different time sheets. In this case, for s,¢ € I and p,v € P(X) we define

n 1/2
— ; —1ly72 i i
Ws,t(:uJa l/) ;= inf }Lli% Ozaof.l'l'gan:L {Z(az - az’—l) Werai,l(tis) (ua 17Ma )}

a;—a;—1<h =1
where the infimum runs over all 2-absolutely continuous curves p: [0, 1] — P(X) with po = pu,
u1 = v. See Section 6.1 for a detailed discussion and in particular for the equivalent characteri-
zation

1 1/2
Wealpor) = int { [ i, .., , da (41)
’ 0 s+a(t—s)

where the infimum runs over all 2-absolutely continuous curves (p“)ae[o’l] in P(X) connecting
wand v.

In the following we will make frequently use of the concept of regular curves, which has already
been successfully used in [6l [I7, [7]. We use the refined version of [7].

Definition 3.1. For fized t € [0,T1], let p* = u®my € P(X), a € [0,1]. We say that the curve p
is reqular (w.r.t. my) if:

(1) u € C([0, 1], L*(X)) N Lip([0, 1], F¥),

(2) there exists a constant R > 0 such that u® < R m-a.e. for every a € [0,1],

(3) there exists a constant E > 0 such that &(v/us) < E for every a € [0,1].

Remark. Due to our assumptions on the measures, (p%), is a regular curve w.r.t m; if and only
if it is also a regular curve w.r.t mg. In this case, it is also a regular curve w.r.t my, where 9 is
a function belonging to C1([0, 1], R). So we will just say regular curve.

We will use the following approximation result which is a combination of [7, Lemma 12.2] and
[17, Lemma 4.11]. For this we define for a fixed time ¢ the semigroup mollification h! given by

hty = é /0 T g (g) da, (42)



HEAT FLOW ON TIME-DEPENDENT METRIC MEASURE SPACES AND SUPER-RICCI FLOWS 31

where (H!),>0 denotes the semigroup associated to the Dirichlet form &, and x € C2°((0, 00))
with > 0 and [ k(a)da = 1. Recall that for ¢ € L?(my) N L>®(my), hty, Ay(hiep) €
Dom(A¢) N Lip,(X). Moreover ||kt — || = 0 in Dom(E) as € — 0 for ¢ € Dom(€).

Lemma 3.2. Let X be a RCD(K, o0) space. Let p°, p* € P(X) and (p*)qeqo,1) be the Wi-geodesic
connecting them. Then there exists a sequence of regular curves (py;)acio], 7 € N, such that

Wilp8, p%) = 0 for every a € [0, 1], (43)
1
timsup [ Fda < W (oo, 1) (44)
n—oo Jo
If we additionally impose that p°, p' € Dom(S), then
Si(p2) — Si(p®) for every a € [0, 1], (45)
and
limsup sup Si(ph) < sup Si(p®) = max Si(p?). (46)
n—oo agl0,1] a€l0,1] a€[0,1]

Proof. We follow the argumentation in [7, Lemma 12.2] and approximate p°, p! by two sequences
of measures {o?}, with bounded densities. Then as in [6, Proposition 4.11] one employs a
threefold regularization procedure to the W;-geodesic (12), connecting o and ol: Given k € N,
we first define Prk1 = Hf/kyg, where H'! denotes the static semigroup. Then we set Prko =

Jz ngﬁ‘ﬁx;g(a’)da’, where xi(a) = kx(ka) for some smooth kernel x € C.(R). Finally we set
Po i = i 1P,z Where i )i, 1 given by (2). Then by a standard diagonal argument one
obtains a sequence of regular curves in the sense of Definition satisfying and ((44)).

In order to show and note that since X is a RCD(K, oo) space we have that a —
Si(p®) is K-convex, where (p®) denotes the W; geodesic. Together with the lower semicontinuity
of the entropy the map a — Sy(p®) is continuous. Using the convexity properties we follow the
argumentation in [I7, Lemma 4.11] and insert the explicit formulas of the regularization (p2) to
obtain

Si(p) < Sy(py) < / (@) 8o )
R , (47)
< 5,(p%) + /R X @) S (0% ) = y(p™)|da’.

Since a +— S¢(p®) is uniformly continuous by compactness, the last term vanishes as n — oo.
Thus we obtain limsup,,_, ., St(p%) < S¢(p”). The lower semicontinuity in turn implies (45)).

One obtains from by exploiting the uniform continuity of the entropy along geodesics
on compact intervals once more. O

Later on in this paper (Section [4.2), we will see that there is an easier construction of regular
curves based on the ‘dual heat flow’ to be introduced next.

3.2. The Heat Equation on Time-dependent Metric Measure Spaces. Due to the
CD(K, N')-condition for each of the static spaces (X, d;, m¢), the detailed analysis of energies,
gradients and heat flows on mm-spaces due to Ambrosio, Gigli and Savaré [3, 4 [5, [6] applies.
In particular, for each t there is a well-defined energy functional

Eu(u) = /X Vul2dm = liminf /X (lip,)2 dimy (48)

v—u in L2(X,my)
veLip(X,dt)
for v € L?(X,m;) where lip,u(z) denotes the pointwise Lipschitz constant (w.r.t. the metric
d;) at the point x and |Viu| denotes the minimal weak upper gradient (again w.r.t. d;). Since
(X,di,my) is assumed to be infinitesimally Hilbertian, for each ¢ under consideration & is a
quadratic form. Indeed, it is a strongly local, regular Dirichlet form with intrinsic metric d; and
square field operator

Ft(u) == |Vtu]2.
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In the sequel, we freely switch between these two notations of the same object.
The Laplacian A; is defined as the generator of &, i.e. as the unique non-positive self-adjoint
operator on L?(X,m;) with domain D(4;) C D(&) and

—/ Awvdmy = E(u,v) (Vu € D(Ay),v € D(&)).
X

Thanks to the RCD(K, co)-condition, for each ¢ the domain of the Laplacian coincides with the
domain of the Hessian [20], i.e. Dom(A;) = W?2(X,d;, m;). Indeed, the ‘self-improved Bochner
inequality’ implies that

Pa(u) > K [Vl + [ Viulhs

which after integration w.r.t. m;, integration by parts, and application of Cauchy-Schwarz in-
equality gives

IVl < (1 + K-/2) - (Al + Jull?) (49)

with K_ := max{—K,0} and ||.||? := H.HQLQ(mt).
Note that in general, Dom(A;) may depend on ¢, see Example

Due to our assumptions that the measures are uniformly equivalent and that the metrics are
uniformly equivalent, the sets L?(X,m;) and W12(X,dys, m;) := D(&) do not depend on t and
the respective norms for varying ¢ are equivalent to each other. We put H = L?(X,m,) and
F =D(&,) as well as

Flom) = L2((S,T) — ]:) NH! ((S,T) — .7:*) - C([s,ﬂ — H)

for each 0 < s < 7 < T'. For the definition of ‘solution to the heat equation’ and for the existence
of the heat propagator we refer to the previous chapter.

Theorem 3.3. (i) For each 0 < s < 7 < T and each h € H there exists a unique solution
u € Fsr) to the heat equation dyur = Ayuy on (s,7) x X with us = h.
(i1) The heat propagator Pi s : h — u; admits a kernel pys(x,y) w.r.t. ms, i.e.

Bdmﬂz/mA%mme%@) (50)

If X is bounded, for each (s',y) € (s,T) x X the function (t,x) — prs(x,y) is a solution to the
heat equation on (s',T) x X.

(7ii) All solutions w : (t,x) — wi(x) to the heat equation on (s,7) X X are Hélder continuous
i t and x. All nonnegative solutions satisfy a scale invariant parabolic Harnack inequality of
Moser type.

(iv) The heat kernel p s(z,y) is Hélder continuous in all variables, it is Markovian

/ptvs(a:,y) dms(y) =1 (Vs < t,Vr)

and has the propagator property

pt,r(xv Z) = /pt,s(x,y) ps,r(% Z) dms(y) (VT <s< t,VS, Z)'

Proof. (i) It remains to verify the boundedness and regularity assumptions on f; and I'; which
were made for Theorem Choose a reference point ¢ty € I and put I'y = I'y,. Then & (u) =
J T4 (u)e*ffo dm. The uniform bounds on f; and on T's(f;) are stated as assumption . The
log Lipschitz bound on d; implies the requested uniform bound on I';. The claim thus
follows from Theorem 2.2

(i), (iii), (iv) The RCD-condition with finite N’ implies scale invariant Poincaré inequalities
and doubling properties for each of the static spaces (X, dy, m;) with uniform constants. Together
with the uniform bounds on fi, I';(.) and I'¢( f;) this allows to apply results of [36] which provides
all the assertions of the Theorem. O
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Remark 3.4. The formula allows to give a pointwise definition for P sh(x) for each h €
L?(X,ms) (or, in other words, to select a ‘nice’ version) and, moreover, it allows to extend its
definition to h € L' U L.

Recall, however, that in general the operator P, is not symmetric w.r.t. any of the involved
measures (myg, mg or me) and that in general the operator norm in LP for p # oo will not be
bounded by 1.

3.3. The Dual Heat Equation. By duality, the propagator (P s)s<; acting on bounded con-
tinuous functions induces a dual propagator (P s)s<: acting on probability measures as follows

/ wd(Propt) = / (Poou)dp  (Yu € Co(X), Y € P(X)). (51)

It obviously has the ‘dual propagator property’ Pt,r = ]5377, o Pt,s. Whereas the time-dependent
function v(z) = P, su(x) is a solution to the heat equation

O = Ay, (52)
the time-dependent measure v,(dy) = P, su(dy) is a solution to the dual heat equation
—0sv = Ay
Here again A, is defined by duality: [ud(Asu) = [Agudp  (Yu,Yp).

If we define Markov kernels p; s(x, dy) for s <t by p;s(x,dy) = pr.s(z,y) dms(y) then

Py u(z) = / w(y)pes(z, dy) = / w(y)prs @, y) dma(y)

and the dual propagator is given by

(Prs)(dy) = / Prs(, dy) dp(x) = [ / Pts(2,y) du(x)] dms(y).

In particular, (P; 0,)(dy) = pr.s(x, dy). Note that P gu(X) = [ Ppsl(x)du(x) = 1.

Theorem 3.5. (i) For each 0 < o < t < T and each g € H there exists a unique solution
v € Foy) to the adjoint heat equation Osvs = —Asvs + (0sfs)vs on (0,t) x X with vy = g.
(ii) This solution is given as vs(y) = Pysg(y) in term of the adjoint heat propagator

Prog(y) = / proa(e, y)g(z) dma(z). (53)

If X is bounded, for each (t',z) € (0,t) x X the function (s,y) — pts(x,y) is a solution to the
adjoint heat equation on (0,t") x X.

(iii) All solutions v : (s,y) — vs(y) to the adjoint heat equation on (o,t) x X are Hélder
continuous in s and y. All nonnegative solutions satisfy a scale invariant parabolic Harnack
inequality of Moser type.

Proof. The assumption on Lipschitz continuity of ¢ — f; implies that all the regularity assump-
tions requested in [36] also hold for the time-dependent operators Ay — (9sfs) (which then are
just the operators Ag perturbed by multiplication operators in terms of bounded functions).
Thus all the previous results apply without any changes. O

Corollary 3.6. For all g,h € L'(X)

/h P ygdms = /Pt,sh - g dmy

and
Pys(g-my) = (Pf.g) - ms. (54)
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Lemma 3.7. (i) P, is continuous on P(X) w.r.t. weak convergence.

(i) The dual heat flow s — pus = Pt7su is uniformly Holder continuous (w.r.t. any of the
metrics Wr,r € I, see next section). More precisely, there exists a constant C' such that for all
5,8 <t, all T and all p

W2(j1g, ) < C - | — o). (55)
(ii3) If X is compact then for each s <t
Ps:P(X)—=D

where D ={p e P(X): p=umes, uc FNL®, 1/ue L*®}.
(iv) For p € P(X) such that pn € Dom(S), the dual heat flow (Pysp1)s<t belongs to
AC?([0,1], P(X)).

Proof. (i) For each bounded continuous v on X the function P; su is bounded continuous. Thus

n — @ implies
/udﬁt,spn = /Pt,sud,un — /Pt,sud,u: /udpmu

which proves the requested convergence Ptys,un — ]57575;1.
(ii) Given pus = P, spp and py = Py gp for s < ¢ < t. Then

Wepan) < [ [ @) pesoy) dma(y) duo (o).
According to [48] [36], the heat kernel admits upper Gaussian estimates of the form
C d(z,y)
, < : _ &Y )
ps ,S(x7y) — mT(BT(\/E, ﬂf)) eXp ( CO_
with o := |s — /| and B;(r,x) denoting the ball of radius r around x in the metric space (X, d;).

Moreover, Bishop-Gromov volume comparison in RCD (K, N)-spaces provides an upper bound
for the volume of spheres

N-1

A(R,z) < (E) CeBVIEIN=D L A(r, 1)

r

for R > r where A(r,z) = Or4+m.(B;(r,z)) and thus (by integrating from 0 to /o)
N-1

A(R,z) < N— RVIEIN=D .y (B (V7,x))

for R > \/o. Hence, we finally obtain

WE (Néh Ns’) < / / dz (1:, y) Ds’ s ($a y) dmg (y) dﬂs’ (33)

/X{mT Tcﬁ ) /d2(:6 y) - exp( dzg{;y)>me(y)}dus/(m~)
C’U+C’// R%. exp ga) RY eR\/ded,us/(x)

N2

IN

<

(iii) By definition of solution to the adjoint heat equation, the densities us of FA’t,S p (w.r.t. mg)
lie in Dom(&). Parabolic Harnack inequality implies continuity and positivity. Together with
compactness of X this yields upper and lower bounds (away from 0) for w.

(iv) In a similar calculation as in Proposition we find for p = vmy, pus = ]f’tys,u since the
dual heat flow is mass preserving,

¢
/ /Fr(logvT)d,urdr = Si(p) s(ls) / /UTB frdm,dr

< Se(p) +my(X) + L(t — s).
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Now choose ¢ € Dom(E) with ¢,T'(¢) € L>°(X). Then

‘ / purdmy — / Pvsdms

/: Er(b, vy )dr

1/2 1/2
< /: </ Fr(qﬁ)vrdmr> </ I (log Ur)demr) dr
1/2 1/2
< /: (/ Ft(qﬁ)vrme> <e2L(S_t)/F,«(logv,«)v,«dmr> dr

Then, Theorem 7.3 in [I] yields

il < 2470 [T Qogur)uvdm, € Li((0.0),

where the last conclusion is due to our previous calculation. O

Lemma 3.8. Let u,g € Dom(€) and t € (0,T) with g € L*(X,my). Then

.1 *
%{%E </ugdmt - /Upt,thgdmt—h> = /Ft(u,g)dmt

and for a.e. s <t

}Ll{r%)ﬁ (/ uP; s pgdmsp —/qugde) = /I“S(u,Ptysg)dmS

Proof. Without loss of generality assume that g > 0 and [ gdm; = 1. The general case can be
obtained by considering the positive and negative parts separately and normalization. We first
prove that for g € Dom(€) and u € Lip(X)

1 *k ! *
’ (/ ugdmy —/uPt7thgdmt_h> :/ /Ft_rh(u,PmThg)dmt_rhdr. (56)
0

Note that for 0 <r; <ry <1

< Lip(u)WQ(pt,tfrgh(gmt)a pt,tfrlh(gmt»a

* *
‘/upt,trghgdmtmh —/Upt,trlhgdmtnh

and hence, as a consequence of Lemma (ii), the map r — [ uPf,_ ,gdm;_,p is absolutely
continuous. Thus

1 1!
7 (/ ugdm; — /uPt’ft_hgdmt_h> = _h/ &/uP{ft_rhgdmt_rhdr
0

1 [t 1 [t
=— h/ /ue_ft—’“h&Pt’ft_rhgdmo - h/ /uPtft_Thgare_ff—Thdmodr
0 0

1 1
:/ gf—rh(PtTt—rh%ue_ft_m)dr+/ /Ptft—rhgue_ft_’“h3rft—rhdm<>d7“
0 0
1
—/ /Ptft_rhgue_ft—”8rft_rhdm<>dr
0

1 1
:/ & (P g, ue” f=rm)dr :/ Et—rn(Pry_ppg, w)dr,
0 0

where we used that r — Pf,_, g is a rescaled solution to the adjoint heat equation.
Since we assume that the space has a lower Riemannian Ricci bound, we obtain equation (56))
for every u € Dom/(€) by approximating with Lipschitz functions w,,, satisfying u,, — u strongly
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(Dom(& \/H 1325y +E(-)), see [5, Proposition 4.10]. Hence

1 N .
}111{%% (/ ugdmy —/uPtyt_hgdmt_h> = }111{(%/ /Ft rh (U Py ppg)dmy_ppdr

:/ }lli{‘%/l—‘t—rh(uvPtﬁjt—rhg)dmt—rhdr
0

= /Ft(u’g)dmta

where the third inequality directly follows from Lemma and the second equality follows
from dominated convergence.
Similarly for the second claim we write for h <t — s

1 1 s+h

h </ UPtTSJrhgdms-i-h - /uptfsgdms> = h/ ar/uptfrg dm. dr
1 s+h

= h/ /I‘r(u, P,.g)dmy dr,

which converges for a.e. s to [ T's(u, Pf,g) dms as h ™\, 0. O

To summarize:

> Given any h € L?(X, ms) the function (t,x) — ui(z) = P; sh(x) solves the heat equation
Opur = Apuy in (s,7) x X with initial condition ug = h. In Markov process theory, this
is the Kolmogorov backward equation (in reverse time direction).

> By duality we obtain the dual propagator Pt,s acting on probability measures. Given
any v € (P(X),W;), the probability measures (s,y) — s = P v solve the dual heat
equation —Ospts = Asus in [0,¢) x X with terminal condition p; = v.

> Their densities vy = jﬁ; solve the Fokker-Planck equation or Kolmogorov forward equa-
tion (in reverse time direction)

—0svs = Asvs—0s fs - Vs
in (0,¢) x X. The latter is also called adjoint heat equation.
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4. TOWARDS TRANSPORT ESTIMATES

In the sequel, N always will denote an extended number in (0,00]. The assumptions from
section [3.1) will always be in force (in particular, we assume RCD*(K, N') and the bounds
and (35])). Moreover, X will be assumed to be bounded (and thus compact).

4.1. From Dynamic Convexity to Transport Estimates.

Definition 4.1. We say that the time-dependent mm-space (X, dt’mt)tef is a super-N-Ricci
flow if the Boltzmann entropy S is dynamical N-convex on I X P in the following sense: for
a.e. t € I and every Wi-geodesic (u*)qe(o,1) in P with pl, ut € Dom(S)

2

1. 1
> =30 Wi(uo,ul)JrN’St(uo)—St(ul) . (57)

8;57&(/1/(1)‘(1:1_ - acjst(ua)‘a:0+ -

N -super Ricci flows in the case N = oo are simply called super Ricci flows.
Recall that D ={p € P(X): p=ume, u€ FNL>®, 1/ue L>}.

Proposition 4.2. Given probability measures pu,v € D C P, then the Wi-geodesic (n®)aco,1]

connecting pu and v has uniformly bounded densities 4 T < C and there exist Wi-Kantorovich
potentials ¢ from p to v and ¥ from v to p (both conjugate to each other) such that

8 St ‘ a=0+ = > gt((,b, )7 3a5t(77a)}a:1, < +gt(wav)’

Proof. This result uses only properties of the static mm-space (X, d;, m¢). It can be found as
estimate (6.19) in the proof of Theorem 6.5 in [2]. Note that due to our (upper and lower)
boundedness assumption on wu, v, no extra regularization is requested. O

Proposition 4.3. Given 7 < T and p,v € D C P, put yuy = Pm,u and vy = ]5”1/. For each
€ (0,7), let ¢y and ¢y be any conjugate Wy-Kantorovich potentials from py to vy and vice versa.
Then for every 0 <r <t <s<T

1
SOFWE (s vr) =t < Ex(r, ) + E(r, ), (58)
and

1. 1[5 s
B hgn\jglf 5/ (W2 (45, vigs) — Wi (e, )] dt > / Et(r, ue) + Ee(r, vy) dt. (59)

Here uy and vy denote the densities of py and vy, resp., w.r.t. my.

Proof. We closely follow the argumentation of the proof of Theorem 6.3 in [2]. According
to Proposition ug, vy € Dom(E). Moreover, due to boundedness of X, the Kantorovich
potentials ¢y and 1, are Lipschitz and thus also lie in Dom/(&). Since ¢ and 1y are conjugate
Wi-Kantorovich potentials from py to v4 and vice versa, we get

1
EWtQ(Mtvyt) =/¢>tdut+/¢td1/t

whereas

1

§Wt2(,ur7 Vr) > /(ybtdﬂr + /wthr
for r # t. Thus with the help of Lemma 3.8 and Theorem (ii)

1
fhmsup— [Wt (e, ) — WtZ(Mr,Vr)]
2 r 't -

< hmsupi [/ beldpy — dpe] + /@Dt [dvy — dVr]:|
r

= Et(gbt,ut) —|—5t(¢t711t)-
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This proves the first claim. With the same notation as before note that sup; & (¢:) < oo as well
as sup, & (¢;) < oo since each (X, d;) is bounded (Proposition 2.2 in [2]). We then find again by
Lemma [3.8 and Fatou’s Lemma

1. . .1 [°
211211\151f5/r [WE(MH&,VH&) —WtQ(Mtth)] dt

NS Y o
> llglifélf 5 /T [ / Geldppts — dpig] + / Vildvys — th]} dt

2/ E(d,ur) + E(y, vy) dt.
O

Theorem 4.4. Assume that (X, dy, mt)te(O T
are dual heat flows started in probability measures ., vy € D. Then for a.e. t € (0,T)

OWE (e, ) > 0.
Proof. The assumptions on the densities are preserved by the dual heat flow, that is, y; and

vy will have densities in Dom/(&E) which are bounded from above and bounded away from 0,
uniformly in ¢. Using the absolute continuity of ¢ — W2(us, ), we obtain for all r < s

. °1
WSQ(Ns’ Vs) — WE(MT‘? v) > 111;11\8‘8113/ 5 [WtZ(Mt—I—& Vits) — WtQ(Mt, vt)

) is a super-Ricci flow and that (pt)i<r and (Ve)i<r

+Wt2+5(ﬂt+5, Vits) — Wt2(ﬂt+6, Vt+6)} dt
. o1
> hgn\j(glf/T g(Wt2(Mt+5,Vt+6) - Wf(ﬂtﬂ/t))dt
<+mnmf{/sov2(m+5w+w—ﬂvaut5va)ﬁ
5\0 5 ; t+0 ) t +0>
> / 2<gt(uta¢t) +8t(Uta¢t))dt
+HHHMJL/SOV%MtW)—VVZAHtWndt
NO 6, tAT t=olT
> / 2<gt(ut7¢t) +gt(vt7¢t))dt
—/ 2<5t(ut, ¢¢) + Ei(vy, ¢t))dt >0,

where we used Proposition in the third inequality while the fourth inequality is due to
Proposition and the definition of super-Ricci flow, i.e.

1 B
=50 W ()|, < 0aS(0™) — 8aS (™)

for every Wi-geodesic (U?)be[o,l} connecting p; and 4. In the previous argumentation, we used
in the third and fourth inequality that %[I/Vf+ s — W#] is uniformly bounded, which is due to the

log-Lipschitz bound on the distances. O
Corollary 4.5. Assume that (X, dy, mt)te(o T

are dual heat flows started in points p, and v, € P, resp., for some 7 € (0,T]. Then for all
0<s<t<rt

) is a super-Ricci flow and that ()<, and (v¢)i<r

Wis(ps, vs) < Wi, vt). (60)

Proof. For measures jir, v, with densities in Dom (&) which are bounded from above and bounded
away from 0 the estimate immediately follows from the previous theorem and the fact that
the map ¢ — Wi (s, 1) is absolutely continuous (Lemma [3.7)).

The set of such probability measures is dense in P (w.r.t. weak topology) and according to

Lemma, Pt,s is continuous on P. Thus the estimate carries over to all u,, v € P. 0O
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Theorem 4.6 (“(Iny) = (IIyx)”). Assume that (X, dtvmt)te(o )

that probability measures pr,v; € P are given for some 7 € (0,T]. Then the dual heat flows
(1e)i<r and (vi)i<r starting in these points satisfy for all0 < s <t <rT

s a super-N -Ricci flow and

W) < Won) = 5 [ 18:00) = S, ) ar (61)

Proof. For measures i, v, within the subset D we follow the proof of the previous Theorem [.4]
line by line and finally use the enforcement of the super Ricci flow property to deduce

1. .1 _
—ihgn\%lfg Wt%ré(ﬂt+5;l/t+6) _Wt2(/1«t+67’/t+5)} < aaSt(ntl )_aaSt<777(t)+>

- [Sulp) = i)

Together with the other estimates from the proof of the previous theorem this gives

WE(e,) = Wenoon) < = [ 1S0lr) =, (0] dr.

For general p.,v; € P we apply the previous result to the pair g, 14 € D (cf. Lemma
which already yields the claim for all 0 < s < t < 7. The claim for ¢ = 7 now follows by
approximation
9 t
N

S W)~ o / 1S, () — S0 ()2 dr

as t T 7. Here the convergence of the integrals is obvious. The convergence of the first term on
the right-hand side follows from Lemma O

Wf(ﬂs» vs) < Wt (e, ) — [Sy-(pr) — ST(VT)]Q dr

4.2. From Gradient Estimates to Transport Estimates.

Theorem 4.7 (“(Illy) = (IIy)”). Assume that (X, dt>mt>te(o T) satisfies the Bakry-Ledoux

gradient estimate (Illy) for the primal heat flow. Then the dual heat flow starting in arbitrary
points 2, ut € P(X) satisfies for all0 < s <7 <T

T

W2 (S, 1s) < W20, ph) — [Su(uf) = Suud)]” dt. (62)

N

Proof. (i) Given 7 € I and a regular curve (see Chapter 3) (113)aco,1), define of each t < 7 the
Wi-action
k

At (pz) = sup {Z(I_chWt( P s kEN, 0:a0<a1<...<ak:1}

=1

of the curve a — uf = P. tpd. Let t € (0, 7] be given with A, (,u;g) < oo. In other words, such that
the curve a — puf is 2-absolutely continuous. (Obviously, this is true for ¢ = 7. The subsequent
discussion indeed will show that this holds for all t < 7.) Let (uf).e(0,1) and (®F)aelo, denote
the densities and velocity potentials for the curve (uf)qep0,1) (see [7, Theorem 8.2], ‘

in the static space (X, dy, m;). Then, in particular,

A (py z/ ’Mt‘w da—/ / ’Vt@a‘ dut da.

Given s € (0,t) and € > 0 choose bounded Lipschitz functions —?, ¢! which are in W-duality
to each other such that

W2l ul) < 2[/)(s0idui—/xwgdu8]+e(t—8)

and let (¢5)qe[o,1) denote the Hopf-Lax interpolation of ©% ol in the static space (X, ds, ms).
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Then applying the continuity equation and the Hamilton-Jacobi equation yields

€ + [Atwt) W2<us,us>}
[t~ [ ]
- t—s/ /‘th’?} dpif — 20, / Ptsﬁpsdut da

- // ‘vt@g_vtpt,s¢g‘2—‘Vth,sSOf;‘Q-i-Pt,s‘Vscps‘]d,u da
—SsJo JX

v

v

t—s

1
/ / ‘th’?—vtpt,s¢§‘2dﬂg da

/// P”APTS%} dytdadr >0
t—s

where for the second last inequality we have used the Bakry-Ledoux gradient estimate (ITIIy).
In the case N = oo this already proves the claim. Indeed, since € > 0 was arbitrary it states
that

W2(u2, 1) < Ar()

for any regular curve (uf).e01]- Given any p2 ul € P(X) we can choose regular curves
(12 1) aelo, 1] for n € N such that A-(u;,,) — W22, put) and Wr(p2,,12) — 0 as well as
We(pd  p1k) = 0 for n — oo. According to Lemma the latter also implies W (3 ,,, u3) — 0
as well as W (,usn,,us) — 0 for n — oo where ¢, = T,sﬂrn Together with the previous
estimate (apphed with ¢ = 7 to the regular curves (7uf_7n)ae[071]) we obtain

W (g, ) = i W (pd o ps,) < lim Ar (i) = W22, 7).

This is the claim.
Moreover, applying this monotonicity result to each pair uz' ™', u% of points on the initial
regular curve selected by an arbitrary partition (a;);=1,. 5 yields

As(p) < Ar(p)

for all s < 7. In particular, this implies that the previous argumentation is valid for all t < 7.

(ii) Moreover, the previous estimates for given s,t¢, e can be tightened up by choosing k € N
and (a;)i=1,.. as well as for i = 1,..., k suitable bounded Lipschitz functions —902’1, 4,0;’1 which
re in
2

z)z 1
are in Ws-duality to each other and which are ‘almost maximizers’ of the dual representation of
W2(ps'™", n%) such that
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ot [ A - A

t
o
> o2 [A) = Y W )
i=1 G — Qj—1
2 & 1
> da — { Lig 1_/ 0 o}
= t—S/ ‘t‘ a —S;Ql—azl \/)‘(()05 Hs XSOS Mg
1
= / [/ |V, *dug — 28/Pts</3§kd,u,t}d
t—s 0
1 1
= t—s/ / ‘thI’? —thts(pg,k‘? _ ‘tht,SQOg’k‘Q+Pt,s‘vs<,0?’k‘2} dutda
> / / ‘th) —thts(pgk‘ d}u,t da

t—s

2
S PTA,,PTS ok \"lda dr =
+N(t—3)/s/o/x t, ,903} Hida ar (@)

The function cp?’k here is obtained for a € (a;—1,a;) by Hopf-Lax interpolation of the Lipschitz

: aiat+k 1 ai—k._ 1 1
functions s = ai—ai_l% "and @5 = Tmag P

Now let us choose ¢ to be a Lebesgue density point of ¢ — fol Et(Prss, Pryug) da. Then for
S sufﬁciently close to t the commutator lemma (applied to time points r and t) implies that

2
t ///PMA Prscpskd,ufdadr > t // /AtPtsgos dutdadr| —e-N/2.
—s) —3)

Let us also briefly remark that the densities uf of the measures uf are bounded away from 0,
uniformly in a (due to the smooth dependence on a of the measures in the regularized curve we
started with) and locally uniformly in ¢ (due to the parabolic Harnack inequality for solutions
to the adjoint heat equation). In particular, in the subsequent calculations the singularity of the
logarithm at 0 does not matter. Thus applying Young’ inequality (a — b)? > 1 0 6(12 — 6b% where
0=NJe

1 1 ) 1 2
() = t—s/ / ’Vt@f—Vthcp?’k}QdufdajLN)/O /thPt,sga‘s”k-thogufdu?da —€
> N—{—e‘/ /th)t Vi loguf d,u?da‘ —€
1 2
-ﬂts—/meymdwmy/www—VJu%ﬂ%ﬁw
- b's

>

2
/ /th)t thogugd,u?da‘ —e =:(B)

provided s is sufficiently close to t. Finally, using the continuity equation for the curve (u)qeo,1]
(and its velocity potentials ®¢) we obtain

B) = ~—|sutuh) - 50| ~ e

Passing to the limit s 7 ¢ yields

N+€

2
€+ O Am) = )= S|~

and thus (since € > 0 was arbitrary)

O i) > | $:0ad) — u(u)

2
| (63)
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Recall that this holds for a.e. t € (0, 7). Moreover, note that ¢t — A;(u;) is absolutely continuous.
Indeed, by Lemma and the log-Lipschitz assumption

b b b b
WE e i) = WEGE D) < [WE L pites ) = WG, 1)

b b
"”WE(M?JF@ Mt+e) - Wtz(:u?a Mt)‘
2Lee® Wi (uf, )

2,/ 1 1
+WW3(M?7M?) + EWE(M?JWM?) + +%Wt2(/i?+a )

< CovVeW?(pi,uf) + Crve.

Thus we may integrate (63 from any s € (0,7) to 7 to obtain

) £ Acisy) = = [ [8100) = Sutud)) e (64)

Finally, given arbitrary p,ul € P(X) the subsequent lemma provides a construction of
2-absolutely continuous, regular curves (jig)qe[o,1] connecting pl, pl for ae. o < 1 with

Ao(fiy) = W23, 117)
as o /' 1. Carrying out the previous estimations, finally resulting in , with (jig)ae[o,1] in the
place of (u%)ae0,1) yields

IN

W2(pg,is) < As(iiy)
. 2 (7 2
< Aolie) — 5 [Se(pg) — Se(ud)] ™ dt
2 [T 2
— W22, pr) — N [Se(pg) — Se(py)]” dt.
This proves the claim. U

Lemma 4.8. (i) Assume (III) (with N = oc) and let (u*)qepo,1) be an arbitrary Wr-geodesic in
P(X). Let x be a standard convolution kernel on R. Then for a.e. t < T and every 6 > 0 the

measures
10 / ( P Mﬁ(awb)) x(b)db = P, < / ,uﬂ(aJréb)X(b)db)
R R

constitute a reqular curve (M?’é)ae[o,l} (in the sense of Definition ﬂ) Here 9(a) = 0 for a €
[0,6], ¥(a) =1 fora€[l—461], and ¥(a) = 1‘1—‘% fora € [0,1—4].

Choosing t, 7 7 and 6, \, 0 yields a sequence of reqular curves satisfying - . In
addition, for these approximations the endpoints are simply given by the dual heat flow:

(:L?(;TL _ >

pg, " = Pry,p®

for a =10 as well as a =1 and for all n.

Proof. The re-parametrization by means of ¥ forces the curve to be constant for some short
interval around the endpoints and squeeze it in-between. The latter leads to a moderate increase
of the metric speed. The former guarantees that the endpoints remain unchanged under the
convolution. The convolution w.r.t. the kernel y guarantees smooth dependence on a, i.e. (1)
of Def follows from Lemma Smoothness in a (thanks to the convolution) and
Holder continuity in (¢,2) (being a solution to the adjoint heat equation) guarantee uniform
boundedness of uf () for (a,t,z) € [0,1] x (0,¢] x X for each ¢t < 7, i.e. (2) of Def[3.1] Moreover,
uf(x) is uniformly bounded away from 0. Thus (3) of Def[3.1]is equivalent to a uniform bound
for the energy & (u®).
Boundedness of u¢ for » < 7 implies

1 r 1 1
/ / £,(ul) dt da < / 122,y < 0.
o Jo 2 Jo "
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Thus for a.e. t < 7

1
/ E(uf)da < oo and & (u?) < oo, &E(u}) < oco.
0

Convolution w.r.t. the kernel x thus turns the integrable function a — & (uf(a)> into a bounded

function: [, & (@ +b) x(b)db < C. Since the energy u — &;(u) is convex, Jensen’s inequality
R t

& < / uJe+d) X(b)db) < / & (uf(a+§b)) x(b)db < C.
R R

The action estimate follows from part (i) of the previous proof. Indeed, the dual heat

flow decreases the action. Also convolution in the a-parameter decreases the action. The re-
parametrization increases the action by a factor bounded by W.

The entropy estimates and follow as in the proof of Lemma O

implies

4.3. Duality between Transport and Gradient Estimates in the Case N = oco. In the
subsequent chapter, we will prove the implication (IIy) = (IIIy) by composing the results
(ITy) = (IVy) and (IVy) = (IIIy). Partly, these arguments are quite involved. (And
actually, for the last one, we freely make use of the subsequent Theorem [4.9)).

Here we present a direct, much simpler proof in the particular case N = oco. Indeed, this
proof will yield a slightly stronger statement: the equivalence of the respective estimates for
given pairs s,t. See also [31] for a related result.

Theorem 4.9 (“(II) < (III)”). For fired 0 < s <t < T the following are equivalent:
(I),s For all p,v € P
Ws(fjmu7 ]3,57SV) < We(p, v) (65)
(III); s For all w € Dom(E)

Li(Psu) < P s(T's(u)) m-a.e. on X. (66)

Proof. “(Il);s = (III);s”: Given a bounded Lipschitz function w on X, points z,y € X, and a
d¢-geodesic (’y“)ae[o’l] connecting x and y, put uf = 0y« and p? = P; suf. The transport estimate
Wi (g, pb) < Wi(pf, psf) implies that

|ﬂ5|Ws < ‘ﬂt|wt = Mdt = di(z,y).

Thus following the argumentation from [5], Theorem 6.4, we obtain

Pt,su(x)_Pt,su(y)‘ = )/Udpt,s(sm_/Udpt,s(sy‘
1 1/2
Voul2du®) " Jfis]y d
| (9alanz) ™ iy o
1 1/2
[ (Pt om) ] o

< dy(z,y) -sup{Pt7s|Vsu‘2(z) sodi(xyz) + di(z,y) = dt(x,y)}.

The Holder continuity of z Pt7s‘Vsu|2(z), therefore, allows to conclude that (B,s’vsU‘Q)l/Q
is an upper gradient for P u. This proves the claim for bounded Lipschitz functions. The
extension to u € Dom/(&) follows as in [5].

IN

IN

“(IIT)4,s = (II);s”: previous Theorem. O
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5. FROM TRANSPORT ESTIMATES TO GRADIENT ESTIMATES AND BOCHNER INEQUALITY

As before, for the sequel a time-dependent mm-space (X, d;, m)ier will be given such that

e foreacht € I the static space satisfies the RCD*(K, N') condition for some finite numbers
K and N’

e the distances are bounded and log-Lipschitz in ¢, that is, |0:d¢(z,y)| < L - d¢(x,y) for
some L uniformly in ¢, z,y (existence of 0;d; for a.e. t)

e f is L-Lipschitz in ¢ and z.

5.1. The Bochner Inequality.
The Time-Derivative of the I'-Operator.

Definition 5.1. Given an interval J C I and u € F; with I'y(u,)(z) < C uniformly in (r,z) €
J x X. Then we define f‘r (ur)(z) as (one of the) weak subsequential limit(s) of

o5 [Trssur) = Trs(u)] (@) (67)

in L?(J x X) for § — 0. That is, for a suitable 0-sequence (0,)n and all g € L*(J x X)

/ / Lris, ur —I's, (UT):| gr dmy. dr — / / f‘r (Ur) gr dmy- dr

Actually, thanks to Banach-Alaoglu theorem, such a weak limit always exists since —due
to the log-Lipschitz continuity of the distances — defines a family of functions in L?(J x X) with
bounded norm. Thus in particular we will have

hm 1nf— // Tyys(uy) — Fr,(;(ur)} gr dm,. dr

< /J /X Ly (ur) gr dmy dr (68)

< lim sup / / Crys(uy) — Fr_(;(ur)} gr dm,. dr.
6—0

as n — oQ.

Remark 5.2. All the subsequent statements involving l:r (u,) will be independent of the choice
of the sequence (8,), and of the accumulation point in L?(J x X). For instance, the precise
meaning of Theorem is that each of the properties (I), (II) or (III) will imply (IV) for

every choice of the weak subsequential limit 1.“T (uy). Conversely, if (IV) is satisfied for some
choice of the weak subsequential limit I.‘r (uy) then it implies properties (I), (II) and (III).
Indeed, the only property of I.‘r (ur) which enters the calculations is (68).

Note that the log-Lipschitz continuity of the distances also immediately implies that

{ Ty (up)] < 2L Ty (uy). (69)

Lemma 5.3. For every u € F; with sup, , I'y(u,)(x) < 0o and every g € L>(J x X)

/ / Ty (ur) grdmydr = lim — / / r+§n UT, ur+5n) Iy (urv ur+5n) gr dm,. dr.
JJX n—><>o n
In particular,

hgn\%lf 5 / / Ly s(Urss, ur) — Dr(trs, UT)] gr dmy dr

g// Iy (uy) gr dm, dr
JJx

. 1
< lim sup 35 / / |:FT+5(UT+57 ur) — Iy (Upgs, ur)} gr dmy. dr.
N0 JJX
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Proof.

[, B g dmear = i (5= [ [ O ) =Tt g i
/ [ [Potun) =T )] g dm ar)

= nh_)r{.lo E /J /X FT+5n ('U,/r-) — FT(UT):| gr dmr dr

55, ] [Frisn(uri) = Teturis,)] g dms ar)

= hm / / r+5n Ura u'r—l—én) I, (UT7 UT—HM)} gr dmy- dr

a5 / / Fr+5n (ur+6n - ur) - FT(UT+6n - UT)] gr dmr dT‘)
= lim // Ty, uraur—i-& ) — FT(uT7UT+5n):| gr dmy- dr.

Here for the second equality we used index shift and Lusin’s theorem (to replace g5, dmyis,
again by g.dm,). The last equality follows from the log-Lipschitz continuity of r — d, which
allows to estimate

H /J [ [Prsstiris = u) = Toturss = wo)] - dmr |

§2L‘// Uy (upys — ur) gr dm, dr
JJXx

<C. / Er(Upqs — up)dr — 0
J
as 0 — 0 since r — u,, as a map from J to F, is ‘nearly continuous’ (Lusin’s theorem). O

The Distributional I'y-Operator.

Definition 5.4. For r € (0,T) and u € Dom(A,) with |V,u| € L*>® we define the distribution
valued T's-operator as a continuous linear operator

Lop(u): FAL® - R
by
Par(u)(g) i= [ [ = 500 (D)) + ()% + T, 9)Aru] dor. (70)
Note that
Tor@)(9)| < 20Vrulloo - [92ulls - [ Vgl + lglloe - [1Avul3 + [Tl - [Vrglla - [ Arull
< lgllos - 1AM ll3 +C - [ Vitloo - [IVrgll2 - (1Arull2 + [lull2)

thanks to the fact that |[VZull3 < (1+ K_) - (|Aul3 + [[ull3), cf. ([@E9).

Also note that the assumptions on u will be preserved under the heat flow (at least for a.e. r)
and the assumptions on g are preserved under the adjoint heat flow. If u is sufficiently regular
(i.e. Au € Dom(&,) and |V,ul?> € Dom(A,)) then obviously

T, (u)(g) = / Ty (u) - g dim,

A

for all g under consideration where as usual I'y, (u) = 1A, |V, ul?> — Ty (u, Ayu).
On the other hand, if g € Dom(A,) then in (70)) we may replace the term —T', (I‘r(u),g) by
L (u)Arg.
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The Bochner Inequality.

Definition 5.5. (i) We say that (X,d, m¢)ier satisfies the dynamic Bochner inequality with
parameter N € (0,00] if for all 0 < s <t < T and for all us,g; € F with g > 0, g+ € L,
us € Lip(X) and for a.e. r € (s,1)

Loy (u)(90) > / v (ur)grdm, + - ( / Avuygodm, ) (71)

where u, = P sus and g, = P;:Tgt, cf. .

(ii) We say that (X, ds, my)ier satisfies property (IVy) if it satisfies the dynamic Bochner
inequality with parameter N as above and in addition the regularity assumption is satisfied,
i.e. u, € Lip(X) for all r € (s,t) with sup,. , lip,u,(z) < oc.

Note that in the case N = oo inequality simply states that

1 e
F2,r(ur) > 9 Iy (u'r)mr

as inequality between distributions, tested against nonnegative functions g, as above.

5.2. From Bochner Inequality to Gradient Estimates.

Theorem 5.6 (“(IVN) = (IIIN)”). Suppose that the mm-space (X,d:, m¢)icr satisfies the
dynamic Bochner inequality and the reqularity assumption from Deﬁm’tz’on (ii). Then
forae xe X

T1(Pygu)(z) — ProTs(u)(z) < —% / [Py Avu (2)) dr. (72)

Proof. Given s,t € (0,T) as well as u € Lip(X) and g € F N L*>® with g > 0, put v, = P, ,u,
gr = Pf,g for r € [s,t] and consider the function

hy = /gTI‘T(uT)dmr = /I‘r(uT)dur

with p, := g, my.
(a) Choose s < o < 7 <t such that

1 T 1 o+
h, <liminf = / h.dr and h, > limsup = / hydr. (73)
SN0 0 1) N0 4 o

T—

Note that by Lebesgue’s density theorem, the latter is true at least for a.e. ¢ > s and for a.e.
7 < t. (Moreover, at the end of this proof (as part (b)) we will present an argument which
allows to conclude that holds for o = s,7 = t.) Then

o 1 T—0
hy —hy < hgn\jélf 5 / [hr+5 — hr] dr

[

) 1 T—06
Y CTr——
N\0 o X

o 1 T—0
+ hgn\jglf g /J /X gr |:Fr+§ (Ur+§a ur) - I (ur+67 ur) dmy dr

) 1 T—0
+ h?\sup g / / gr [FT+5 (ur+5; Uprs — ur) + I (ur+5 — Uy, ur) dmr dr
0 o X

=:(I)+ (II)+ (I1I') + (111").
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Each of the four terms will be considered separately. Since r — ., is a solution to the dual heat
equation, we obtain

T—6
(1) = lllgl\s(l)lp 5 / / 6 (Upgs) / Aggq dmy dQ> dr

= — liminf L (uy)( = Aggee 11 dg)dm, d
o /M/X (ur) 5/,_5 agye” " da ) dm,dr
—/ /Fr(ur)-Argrdmrdr
o X

due Lebesgue’s density theorem applied to 7 — A,g,e 7. Note that the latter function is in L?
(Theorem [2.12)) and the function r + I';(u,) is in L® thanks to Deﬁnition (ii).

L]
The second term can easily estimated in terms I', according to Lemma

1 T—0
II zliminf/ /gr[Fr s(Upas, ur) — Dp(upps, uy }dmrdr
(0 =timint = [ | on[Crialrss. ) = Telirgs )

g/ / gr l:r (uy)dmydr.
o JX

The term (I11') is transformed as follows
1 T—0 r+d
! _ . . - .
(IIT") = hgn\}(l)qf / / Cris(gr, Urss) + gr Ar+5ur+5) (/T Aquy dq) dm, dr

1 T
:—liminf/ / oy Ur) + Gr Arur (/ Aju d)medr
BT, 45y Trlgrmos e 0o 5 Jys e
/ / g?”a uT’ + gr A U7~> . Arur dmr dr.

Here again we used Lebesgue’s density theorem (applied to 7 — A, u,) and the ‘nearly continuity’
of r = g, as map from (s,t) into L?(X,m) and as map into F (Lusin’s theorem). Moreover, we
used the boundedness (uniformly in r and z) of g, and of V,u, as well as the square integrability
of Ayu,.

Similarly, the term (/1I") will be transformed:

) r+6
(I11") = — hmmf / / r(Gryur) + gr Ay ur) . (/ Aquqdq>dmr dr

/ / r(grsur) + gr Ay ur) : (Arur>dmr dr.

Summarizing and then using , we therefore obtain

he — hy =(I) + (II) + (IIT') + (I11")
/ / ur : Tgr + g fr (UT) - Q(Fr(gm ur) + gr ATUT) Arur] dm, dr
< — A d 2d 2 [ P, A d 2d
= / rUr gr mr:| = _N . |:/X TrRrlUr g mT:| T.
Thus

2 [T 2
/ FT(PTpu)gme—/ P, ;T5(u) gdm, < —/ [/ PTvrArurgme} dr. (74)
X X N Js Lx

(b) Recall that, given u and g, this holds for a.e. 7 and a.e. 0. Now let us forget for the
moment the term with V. Choosing ¢’s from a dense countable set one may achieve that the
exceptional sets for o and 7 in do not depend on g. Next we may assume that o, 7 € [s, ]
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with ¢ < 7 is chosen such that with N = oo simultaneously holds for all u from a dense
countable set C; in Lip(X). Approximating arbitrary u € Lip(X) by u,, € C; yields

/ ' (Prou)g me—/ P, ;Ty(u) gdm, < liminf/ T,
X X n

(Protn)g dm.r—lim/ P ;T5(up) gdm, <O0.
X n X

due to lower semicontinuity of the weighted energy on L?. In other words, we have derived the
gradient estimate (IIT) for almost all times o and 7. Thanks to Theorem this implies the
transport estimate (II) for these time instances. But both sides of the transport estimate are
continuous in time (thanks to the continuity of » — W, and the continuity of the dual heat flow).
This implies that the transport estimate holds for all o, 7 € [s,t] with ¢ < 7. In particular, it
holds for ¢ = s and 7 = t. Again by Theorem it yields the gradient estimate for given s and
t and thus our initial assumption is satisfied for the choice ¢ = s and 7 = t.

(c) Taking this into account, we may conclude that (for given N) holds with the choice
o = s and 7 = t. Finally, choosing sequences of ¢g’s which approximate the Dirac distribution at
a given z € X then implies that for all u € Lip(X)

Ly(Psu)(z) — PsTs(u)(z) < —— / [P Ay (z ] dr (75)

for a.e. x € X. This proves the claim for bounded Lipschitz functions. The extension to
u € Dom/(€) follows as in [5]. O

5.3. From Gradient Estimates to Bochner Inequality. In the previous chapter and the
previous sections of this chapter, we have proven the implications (IIIy) = (IIy) and (IVy)
= (IIIy). Taking the subsequent section into account, where we show (IIy) = (IVy), we
already have proven that (IIIy) = (IVy). In the sequel, we will present another, more direct
proof for this implication.

Theorem 5.7 (“(IlIx) = (IVN)”). Suppose that the mm-space (X,d:, m¢)ier satisfies the
gradient estimate . Then the dynamic Bochner inequality holds true as well as the
regularity assumption from Definition[5.5 (ii).

Proof. Assume that the gradient estimate (IIIy) holds true. It immediately implies the reg-
ularity assumption . To derive the dynamic Bochner inequality, let s,t € (0,7) as well as
u € Lip(X) and g € F N L* with g > 0 be given. Put u, = P, su, g, = P, g for r € [s,?] and
as before consider the function

h, = /gTFT(uT)dmr.

Then (IIIy) implies that for all s <o <7 <t

1 T—0
he = hy <liminf ; /g [hyss — Bo]dr
T—08
~liminf 5 / / Ly5(tr8) = Pros Do (ur) | gy dr

T—08
2
<- *hr;l\sgp / / / Py 5q0qug) " dq grysdmy s dr

2
< - / hgn\%lf / / Pr+6,quuq dqgr+6dmr+5>

r+6
= — N hm mf / / Aqug ggdmy dq) dr

[

=_ — / JANR T gTme> dr
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according to Lebesgue’s density theorem. On the other hand, similarly to the argumentation in
the previous section, we have

1 T
h; — hy > limsup — / [hr+5 h ]dr
oN\0 0 o—0

>hm1nf /5/ 8 (Urg5)d(prys — por) dr

+ lim sup 5 / / Gr | Drgs(Urgs, ur) — Dr(urgs, ur)} dmg dr
ON\0 o—0

+ liminf - / / Gr | Drgs(Urgs, Upgs — ur) + Dr(Upps — up, ur)] dm. dr
6N\0 o—3§
=:(I)+ (II)+ (III") + (I11").
Each of the four terms can be treated as before which then yields

—he > (I)+ (II)+ (IIT") + (111")

/ / ur . rgr + 9r fr (Ur) - 2(Fr(gra ur) + gr Afrufr) Aruri| dm, dr

-/ [—2rzr<ur><gr> [ ) gom]

Combining this with the previous upper estimate and varying ¢ and 7, we thus have proven the
dynamic Bochner inequality

° 2 2
>
22 (ur)(gr) > / I (ur) gr my + N </ Ay, grdm,,)

for a.e. r € (s,1). O

5.4. From Transport Estimates to Bochner Inequality.

Theorem 5.8 (“(IIx) = (IVN)”). Suppose that the mm-space (X, d, mi)er satisfies the trans-
port estimate @:. Then the dynamic Bochner inequality : with parameter N holds
true as well as the regularity assumption .

Proof of the regularity assumption. Thanks to Theorem [4.9] we already know that the transport
estimate (IIy) implies the gradient estimate (IIIy) in the case N = oo. This proves the
requested regularity. O

Proof of the dynamic Bochner inequality. We follow the argumentation from [12] with signifi-
cant modifications due to time-dependence of functions, gradients, and operators and mainly
because of lack of regularity.

Let 0 < s <t<Tand gt € FNL>® with ¢ > 0, g+ Z 0 as well as us; € Lip(X) be given
and fixed for the sequel. Without restriction f gtdmy = 1. For 7 € (s,t), put u, = Prsus and
gr = P{;g+. Note that — thanks to the parabolic Harnack inequality — g is uniformly bounded
from above and bounded from below, away from 0, on (s,t') x X for each s < s’ <t <t. In
the beginning, let us also assume that ||us||ec < 1/4.

For each 7 € (s,t), define a Dirichlet form & on L?(X,g,m,) with domain Dom(&Y) :=

Dom(&) by
Ed(u) = /FT(u)gTme for u € Dom(E).
Associated with the closed bilinear form (££, Dom (7)) on L?(X, grm.), there is the self-adjoint
operator A? and the semigroup (Hg?)o>0, i-e. uq = Hg'?u solves
Ogttg = Adu, on (0,00) X X Uy = u
where Afu = Aru+T';(log gr,u). For fixed o € (s,7), we define the path (¢7"*),>0 to be
92" =g (1 +us — HYuy). (76)
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Note that these are probability densities w.r.t. m,. Indeed, for alla >0 and all s <o <7 <t
[ozim, =1+ [uo1 = H791) g =1

thanks to conservativeness and symmetry of H;? w.r.t. the measure g,m,. Moreover, g7'* > 0
for all a, o and 7 since the uniform bound ||us||oc < 1/4 is preserved under the evolution of the
time-dependent heat flow, thus ||us||leo < ||Prsts||loo < 1/4, as well as under the heat flow in
the static mm-space at fixed time 7, thus ||Hg s ||co < [|tio]|oo < 1/4.

Now let us assume that the transport estimate (IIy) holds true and apply it to the probability
measures g,m, and g7 “m,. Then for all s <o <7 <t and all a > 0

Wo2' (Pr,s(g’rm”r)a pT,O’ (g?amT)) < W'z? (ngT7 gg7am7)

2 (7 N A
N [ST(PTW(ngT)) - ST(PTvr(gg’amT))]er.

Dividing by 2a? and passing to the limit a \, 0, the subsequent Lemmata, and
allow to estimate term by term. We thus obtain
1
- 5 / PT,O'(FU(UU)>gTme + /FT(PT,Uuaa ua)g‘rdmf
1 17 2
<— — — [T dm,; — — I (Pr,(log PF d dr.
< sy J redrane = 5 [P tog Py )|

Replacing us by nus for n € Ry sufficiently small, we can get rid of the constraint ||us||eo < 1/4.
Then Lemma Lemma and Lemma [5.11] applied to nu instead of us gives us

2
- % / PT,U(FU(UU))gTme + 772 / FT(PT,JUm uU)gTme

2 2 T 2
1 / n *
< ' (ug)grdm, — / {/ ' (Prr(log Pf,gr), us gTme] dr.
2(1 - 277”“0”00) ( ) N J, ( ( ' ) )

Dividing by n? and letting n — 0 this inequality becomes

1
B 5 /PT,U(FU(UU))gTme + /PT(PT,UUU’UU>gTme

1 17 2
< 2/I‘T(ug)gTme - N/ [/ I, (PT7T(10gP:7rgT),uU) gTme] dr.

This can be reformulated into

1
Q/FT(UT)gTme -
1

1
- 2/Fr(ua)grdm7'_ 2/FT(UT)gTdm’T+/FT(UT7UU)gTme (77)

1 [7 % ?
< _N /o- |:/ r; <P7-77»(10g PT,T‘gT)7 U’U) gTme:| dr.

Now let us try to follow the argumentation from the proof of Theorem and consider again
the function

1
B / Ly (tg)godmy

hy = /gTFT(u,«)dmr

for r € (s,t). Recall that we already know from Theorem |4.9| that the transport estimate (IIy)
implies the gradient estimate (IIT) (‘without N’). Thus forall s <o <7 <t

T—0

1 /7 1
lim su / hros — hy)dr < hy — hy < liminf / hros — hy)dr
5\0 P o6 (r+s ) N0 6 Sy (hr+s )
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Arguing as in the proof of Theorem [5.7 we get

he=ho > [ [~ 2astu)on) + [ F ) gom]av

On the other hand, applying the previous estimate (with » + 0, r and ¢ in the place of T,
o and r) we obtain

2

1 [T—©° 2 r+6
hy —hs < hgn\%lf 5 / [ N |:/ Lits (Pr+5,q(10gp +6 qgr-i-é) ur) Gr+sdmeys| dg
o r

+ /Fr-i—é(ur-i-é - ur)gr-i-édmr-i-é} dr.

We estimate the term with the square from below using Young’s inequality

2
{/ | ) <Pr+6,q(10gp 46 qgr+5) ur) gr+6dmr+6:|

>

1 2
S |:/ I, <Pr,q(10ggq)7u7") grdmr:|

1 2
- E |:/ Fr+6 (Pr+6,q(10gp 46 qgr+6) ur) grdmr+6 - /Fr (Pr,q(IOg gq)a ur) grme:| )

where € > 0 is arbitrary. Further estimating and using the log-Lipschitz continuity r — I',. yields

2
[/ F’r—i—é (Pr—i-&,q (log +6 qgr+§) Ur) gr+5dmr+6 - /Fr (Pr,q(IOg gq)a UT) grdmr:|
2

<2 |:/ Lrys (Pr+6,q (log gq)v ur) gr+6dmr+§ - /Fr (Pr+5,q(log gq)7 ur) gr+§dmr+6:|

2
+2 |:/ r, (Pr—i-&,q (IOg gq)7 Ur) gr+5dmr+5 - /Fr (Pr,q (lOg gq)a ur) gr+6dmr+6:|

2
|:/ P, log gq ur) Grysdm, 5 — /Pr (Pr,q(log gq)a UT’) grdmr:|
2

< 16L252 r+5 r+6 q(log gq) UT) gr+6dmr+§ + C/ r—+48 (Pr+6 q(log gq) u?") gr+§dmr+5:|

(P
{ / ( +6,4(108 gq) Pr,q(loggq),ur) gr+5dmr+5:|2
(Pra

w2/

which, after integration over [r,r + ¢] and division by ¢ > 0, converges to 0 as ¢ goes to 0.
Indeed,

2
Prvq log gq ) d(gr—l-(sdmr—&—ﬁ - grmr):| s

2
K

)
J / ‘ / Crys <Pr+5,q(logP+5 09r+6)5 ur> Grr6dmy s
T

r+0

and Lemma [2.17] and Lebesgue differentiation theorem

r+0 5
5 / ‘ / Frisq loggq) T:Q(loggCI)’ u?”) g’f‘+5dm7‘+6‘ dq ?—TO_) 0,



52 EVA KOPFER, KARL-THEODOR STURM

while

1 r+6 )
(5/74 |:/ Fr (Pr,q(loggq)vur> d(gr+§dm,,+5 — g,’,mr):| dq m} 0.

Thus, since € is arbitrary, and from the Lebesgue differentiation theorem we get

r+§ 2
hm lnf 5 / |:/ r+5 r+§ q(lOg +5 qu—O—é) ur) gr+§dmr+6:| dr

> U Fr(loggq,ur) grdmr:|2 = U(Arur)grdmrr-

Finally, with Corollary [2.15] the log-Lipschitz continuity of r — I';, Lemma [2.17, and Lebesgue
differentiation theorem applied to r + A,u,., which is in L?((s,t),H) thanks to Theorem [2.12) .

. 1 T—0
lim sup — / /Fr+§ (Ur+§ - uT)gT+5me+§ dr
0—0 4 o

' 1 T—0
<timsup [ llgrrollo [ TrosCies = e, trss)dm s dr
60—0 o

. 170 _
< hI;l S(l)lp 5 / 6L\r+6 f | ’gtHoo ( / Lrys (ur—i-& — Up, ur+6)dmr+6 - /Pr+§ (ur+5 - Up, ur)dmr—i-S) dr
— o

. 1 T—0 B r+6
= hr;l S(l)lp g / eL‘T—HS ! | ’gtHoo( - // Aquqqur+5ur+6dmr+5 - /Fr (ur-i-é — Uy, ur)dmr> dr
— g T

T 1 T
zlimsup</ —eLT_tHgtHoo/é/ AqugdgArupdm,dr
6—0 o+d r—¢&
T st 1o
+ € [g¢l]oo F; AqugdgApuydm, dr)
- / eLlr—tIHgth(— / (Ayuy)dm, + / (Arur)Qdmr) — 0.

Combining the previous estimates we get

hy — hy < —% /UT(/ATUT grdm,n)an

N /Arurgrdmr> dr >/ [_QFQ,T(UT)(QT)+/fT (Ur) gr my- | dr,

which proves the claim. O

and then

Lemma 5.9. For every s <o <71 <t,

.. W 2(1A70(957a7n7') f’r U(gT”LT)) 1
g s ) ) > — | m- + I .
hgn I(I)lf 22 = / 2P’T,0’( a(ua))grd T / ’T(uT7 uO’)g’T’d”L’T

Proof. We denote by (7 the Hopf-Lax semigroup with respect to the metric d,. Note that
aQf(p) = Q7 (ag), so the Kantorovich duality can be written as

2
M — isgp |:/ ngbdl/l — /¢dy2:| .

2a2
We deduce
W2(Pr s (97%my), Pro(grmy)) QGus P, ( )— Us P} 5gr
2a? dms

_ _ P* ag,a _
/Qaua G :a(gg—’a - g‘r)dma + / Qauga to P:a' rdmg + /ua 7,0(97'797') dm,.

a
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Note that, since uy is a Lipschitz function, u, is a Lipschitz function as well. Indeed, from the
dual representation of the Kantorovich-Rubinstein distance W} with respect to the metric ds,
we deduce

o) — 10| = | [ 0P a(62)2) — [ 02152
< Lips(US)Wsl(PJ,S(éx)u Pm(%)) < Lips(us)Ws(Pms(%), Pt,8(5y))
< Lips(US)W0(5x75y) = Lipg(us)dy(,y),

where the last inequality is a consequence of Theorem
Since 0 > (Q%us(z) — us(x))/a > —2Lip(u0)2 and g7 — g, in L?(X) the first integral
vanishes. For the second integral we use and estimate by Fatou’s Lemma

1
hmlnf/ (ato ~ Yop P;,grdmg > —2/lipg(ug)2PT*7ggTdma.

For the last integral an argument similar to Lemma (3.8 for H;Y (compare Lemma 4.14 in [6])
yields

a—0

: P, (97" — gr)

lim [ ¢g———————dms = | I'7(Pr Uy, us)grdm..
a

Combining the last two estimates we obtain

W2(P; . (g2" P 1
lim inf U( T7U(gT 7;;2)7 TVU(ngT)) > _2/hpa(uU)QP:,agTdmo"‘/FT(PT,UUmUU)gTme

a—0

1
= _5 /Fa(ua)PjyggTdma + /FT(PT,chr’uU)gTme7

where the last inequality follows from our static RCD (K, N') assumption, which implies Poincaré
inequality and doubling property for the static space (X,ds,m), and the fact that u, is a
Lipschitz function (cf. [14]). O

Lemma 5.10. For every s < o <7 <'t,

W2(gg,am‘r ngT) 1
lim sup —~ ! < /F Ug ) grdm,.
e 22 20— 2l J LI

Proof. Let (QF)a>0 be the d; Hopf-Lax semigroup and fix a bounded Lipschitz function ¢. Note
that

S
—
Q
3
B
IS
3
5
VAN

1
— [ Stipe(@z0)gzdm, + [ T2(Q56. Hug)gedm,

1
- / [_21@7(@;@2(1 + g = Hylug) + Tr(Qad, Hyug) | grdme,

where the inequality follows from [3, Lemma 4.3.4] and dominated convergence. Applying the
Cauchy-Schwartz inequality and that I'-(¢) < lip,.(¢) m,-a.e., we find

/ QLo H 9 us ) g-dm, < \/8 (Qr)Ey(Hg uy) < \// lip,(Q7¢)%2g-dm,Ey(Hg s ).
Then, since 1+ uy — Hg%uy > 1 — 2||ty |0, we obtain using Young’s inequality

1 1
2, / QU()godm, <~ E(HTu,) < £,
(@) 20— 2y oy e 1e) < S g oy S )
1

=———— | I'-(uyp)g-dm;.
2(1 = 2|Juo]loo) /

Integrating over [0, a],

- a
/Q b9y me—/¢gTme < M_QW/FT(UU)QTdmn
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and dividing by a > 0 proves the claim since the Kantorovich duality can be written as

2
Wrv,ve) _ isgp [ / Qi — / W?]

2a2
and ¢ was an arbitrary bounded Lipschitz function. O

Lemma 5.11.

T rpfrr g’aT _TPTTTT 2 T 2
liminf/ [S( rlgrme)) = S (Prr(grm ))] er/ [/FT(PT,T(loggr),ug)gTme} dr.

a—0 a

Proof. With the same estimates as in [12] we have
[Sr(pf,r(ggﬂm‘r)) - S’r(me(ngT))]Q

1 S| (P:ng,a - 9r)2
> P* ,a ) 1 ” . - )
=1 +9) [/( T,T(QT ) — 9r)log grdm } 5 [/gT

Next we apply Jensen’s inequality to the convex function a: R x Ry — R U {400} defined by
0, ifr=0=s,
a(r,s) = g, if s #0,

+o00, if s=0and r # 0.
Recall that the map dx — pr,(x,y)dm,(z) is not Markovian, but Lemma implies

0< M‘F,T(y) = / pT,r(xa y)dm.(x) < ek,
X

2
me} .

Hence we can write
[ atPrgze = Plyge, Piygryim,

O‘((gg’a(x) — gT(ZB))MT,T‘(y)7gT('r)MT,T'(y))
</ My,

Drr(x,y)dm, (x)dm,(y)
- / / o((97°(2) — g (@), g (2))rr (2, y) i () di ()
— [ (@2 @) = 9:(@). g7 @) dmo(a) = [ 970 ~ HI 00,

where we applied Jensen’s inequality in the second, Fubini in the third, and the definition of
g>* in the last line. Dividing by a and taking the lim sup we end up with

1 [ (Prg?" — PrLgr)? 1
limsup/( r.rd - 7.9 ) dm, < limsup/gT(uU—H;’guU)Qme
a—0 @ PT,TQT a—0 @
HTvg _
< lim sup 2HuaHoo/gT <a Yo ug> dm, = —2HuUHOO/gTI‘T(uU, 1)dm, = 0.
a—0 a

The first equality follows from the fact that < (Hg%u, — ug) = Afu, weakly in F* (cf. Lemma
and [6, Lemma 4.14)).
Since § > 0 is arbitrary it suffices to show
1
i o [ P (g0, — ) log Prgdin, = [ T (P08 P2, 9), 00 g

a—0 a

This, indeed, follows from the fact that Py, (log Pf,g) € F = Dom(E;) = Dom(£7) (thanks to
uniform boundedness of P, g from above and away from 0) and from the fact that L(Hu, —
uy) — Adu, weakly in F* as a \ 0, more precisely (cf. Lemma

1
- /(Hc?gua — Uy )Pgrdm, — _/FT(UO" })grdm

a
for all ¢ € F as a (0. (]
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6. FROM GRADIENT ESTIMATES TO DyNAMIC EVI

In this section we will prove that the dual heat flow is a dynamic backward EVI-gradient flow
presumed that the Bakry-Emery gradient estimate (III) holds for the (‘primal’) heat equation.
We will present the argument only in the case N = oco. That is, we now assume that for all
u€ Dom(E) and 0 <s<t<T

I'(Psu) < P g(Tg(u)) m-ae. on X. (78)

For the notion of dynamic backward EVI*-gradient flow we refer to the Appendix.

As in the previous chapters, the assumptions from section will always be in force, in
particular, we assume the RCD*(K, N')-condition for each static mm-space (X,d;, m;) as well
as boundedness and L-Lipschitz continuity (in ¢) for log d;(z,y) and (in ¢ and x) for fi(x).

6.1. Dynamic Kantorovich-Wasserstein Distances. For the subsequent discussions let us
fix a pair (s,t) € I x I and — if not stated otherwise — let 9 : [0,1] — R denote the linear
interpolation

Y a)=(1—a)s+ta (79)
starting in s and ending in ¢.
In the following we introduce dynamic notions of the distance between two measures ‘living

in different time sheets’. The first notion seems to be natural and is defined via the length of
curves, while the second one uses the approach of Hamilton Jacobi equations.

Definition 6.1. For s <t and a 2-absolutely continuous curve (u*)qep0,1] we define the action

As(n) = lim sup { > (@i —aia) W, (e )

=1

O=ay < - <ap=1,a; —a;_1 Sh}
For two probability measures p,v € P(X) we define
W2, (s, v) = inf {As,t(u)]u & AC([0,1), P(X)) with o = p, i = v},

Lemma 6.2. The following holds true.

i) The action p— Agi(p) is lower semicontinuous, i.e. if u? — u for every a as j — oo we
have

-As,t (,LL) S hm inf -As,t (,u])
Jj—00

i1) For every absolutely continuous curve

M:

Ag (@) = lim 1nf{

-1 i [0 = —
h—0 i = ai-1) T Wi,y (1 l,ua)]()—a0<---<an_1,ai—ai,1gh},

z:l
Proof. Since ,ug — g for every a € [0,1] in the Wasserstein sense we have for every partition
O=agy<--<ap=1

n

n
o) W) = i Do) W05 )
i=1 i=1

and hence
n
D (@ — @) W (et ) < liminf Ag ().
i=1 J—reo
Taking the supremum over each partition and letting A — 0 proves

As,t (,u) § hm inf As,t (/LJ)
j—00
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We prove the second assertion by contradiction. Assume that there exists a sequence h; — 0,
and a partition 0 = aj < --- < a; = 1 such that

j j —1yx/2 a{7 a{
a; —a;_; <h and Jlggoz al — a Wﬁ(a 71)(M L) < Asp(p).

For every j € N we define the curve (Mj)ae[o 1) by

M _HJ J’lfae[zl’az]

a;_1,a

where (u® % )ae[ ] denotes the Wﬁ(agil)—geodesic connecting uag—l and uaz. Note that for

aj_1,@

every partltlon {a;}Y | with @; — a;,-1 < h;
N o
q A -1 i— 2Lh —1 2 J J
> (@ = ai) T Wi, (G ng ) < Z (a7 = al_ )75 ),

i=1
since for every a! ;| < ap_1 < ay < al

(ar —ax-1)* 2 o i
7W a] (/’L 1—17/1/0’71).
(a] —al_y)? V)

IN

2 GK—1
Wi 1)(“3 Y
Hence
J4d
As(pg) < €M Z (o] —al )" W3 ().

This is a contradiction since uf — pq for every a and hence

liminf Ag ¢ (p5) > As ().
j—00

Proposition 6.3. Fors <t c I and u°, u* € P we have

W2 G ) = it { [y (50)

where the infimum runs over all 2-absolutely continuous curves (/ﬂ)ae[o’l] in P connecting p°
and pt.

Proof. Choose an arbitrary partition 0 = a9 < a1 < -+ < ap, = 1 with a; — a;—1 < h. Let
(1) aelo, 1] € AC’2([O 1], P(X)). Then, from the absolute continuity of (u%), and the log Lipschitz

property (34]) we deduce
. ai-1 2
(a; —ai—1)~ (/ |ﬂa!ﬁ(ai_1)da>
a;

ai—1 5
> [ il o
2Lh/ 1[5 a)

Taking the supremum over all partitions and letting A — 0 we obtain

1
As () S/o |ﬂa|§(a)da,

n

Z(ai _ 0171)_1W5(a1. 1)(,uai_17,uai) <
=1

||M: NgE

and consequently

Ws t(HOaM) < inf {/ |M ’s—l—a t— s)da} :
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To verify the other inequality, we fix again a curve (ta)qepo,1] € AC?([0,1], P(X)) with finite
energy Ag(p). For each h > 0 we consider the partition 0 = ap < a1 < --- < ap <1 < apq1
with a; = ih and nh < 1. We extend u, by 1 whenever a > 1. We define u to be the
W(a;_,)-geodesic connecting pq, , with p,, whenever a € [a;—1,a;]. Then we clearly have that

p € AC?([0,1],P(X)) and since u is absolutely continuous, for each a € [0,1], u — pg in
(P(X),W). Note that ||y is a uniformly bounded function in L2([0, 1])

n+1

/ |ua‘19 a)da < eQLh Z/ ‘/”La|19 (ai—1)

n+1
2Lhz i — ;1) IWﬂ(al ) (Bai 15 Ha;) < 00,

since u is a piecewise geodesic and As+(p) < oo. Then, by the Banach-Alaoglu Theorem there
exists a subsequence (not relabeled) h — 0, and a function A € L?(]0, 1]) such that | /lh|19(.) — A
in L2(]0,1]). Hence from the convergence of u* — p, we get

Wﬁ(a) (,uaa Ma+5) = }ILIL% Wﬁ(a) (#37 ,UZ+§)

a+9d a+9d
< liminf / |t g(aydb < liminf =) / |2t} (5 b
a h—0

h—0 a
a+d
= (t=5) / A(b)db,

and hence
lftal9(a)y < A(a) for ae. a € [0,1].

Consequently,

1 1 1
. 2 2 . . - h12
o2 mda < [ A%(a)da < lim inf d
/0 |i1al(a) a_/ (a)da < lim in / |ty da
n+1 n+1

.o 9Lh 2Lh
< hzn_:(l)lfe Z/ ]ua|ﬂ (a;_pda < hm mfe Z —ai—1)" Wﬁ( ) (Bai_ys Ha;)

S As,t( )7

which proves the claim.
O

To conclude this section we define a dynamic ‘dual distance’ inspired by the dual formulation
of the Kantorovich distance. We introduce the function space H LSy defined by

HLSy = {gp € Lipy([ag, a1] x X)

1
Oatpa < —if‘ﬁ(a)(cpa) L' x m a.e. in (ag,a1) X X}.

In particular for all nonnegative ¢ € L'(X) and ¢ € HLSy

[ vudm— [ spuam < - / [ T (arima

Definition 6.4. Let s <t and let U: [ap,a1] — [s,t] denote the linear interpolation. Define for
two probability measures g, pi1

Wg(l’m)ﬂl) = 2Sllp {/@aldﬂl - /@aodﬂﬂ}7
©

where the supremum runs over all maps ¢(a,x) = pq(x) € HLSy.

Note that Wy does not necessarily define a distance. It does not even have to be symmetric.
The next Lemma collects two essential properties of Wy.

Lemma 6.5. The following holds true.
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(1) Wy is lower semicontinuous with respect to the weak-*topology on P(X) x P(X).
(2) For every po, 1

W2 (o, 1) < M5 (ay — ag) W3 (o, ). (81)
Proof. To show the first assertion, let ug, u1 € P(X) and choose ¢ € HLSy almost optimal, i.e.

1 -

§W19(u0,,u1) < /sﬁald,ul - /%od,uo — &

where € > 0. Let pug — po, uf — p be two sequences converging in duality with continuous
bounded functions on X. then, since ¢4, and ¢4, belong to Cy(X),

1 -
§Wq9(l£07#1) < /@aldﬂal —/%o — €

ZJLH;O{/%dM?—/%UdMG} —€

1 -
< I b : n ny _ .
< 5 liminf Wy (ug, 1) — &

This proves, since € > 0 was arbitrary, that Wy is lower semicontinuous with respect to the
weak-*topology on P(X) x P(X). The second statement follows from the Kantorovich duality.
Indeed, let ¢ € Lipy(X). As already mentioned above the Hopf-Lax semigroup ¢ = Qj(¢)
solves

%@b < —%Fs(sob) < —%e*"'L'*t‘P(l,b)Hbt(%) L' x m ae. in(0,1) x X. (82)
Set @, := e_QL‘S_“(al — ao)_lgo,y(a), where 7: [ag,a1] — [0,1] with y(a) = ﬁ. Then ¢ solves
0 <~ ST (@a) i (a0, 1) x X,
and
e MM (ay — ag) ™! (/ prdps — /<Poduo> = /<ﬁa1du1 - /%oduo-
Hence

— S— —_ 1 T
e~ 2L 1t'(al —ap) ! </801d/ﬁ1 —/SOOdM(J) < §W3(M07#1)-

Taking the supremum among all ¢ the Kantorovich duality for the metric Wy implies

W2 (o, 1) < X5 (ay — ag) Wi (o, ).
0

Proposition 6.6. Let 9: [0,1] — [s,t] be the linear interpolation. Then we have Wy < Wi,.

Proof. Fix ¢ € HJSy and (1) ,¢[0,1) 2-absolutely continuous curve. We subdivide [0, 1] into [ in-
tervals [(k—1)/1, k/l] of length . On each interval [(k—1)/l, k/I] we approximate (a)|[(k=1)/1,k/1)
by regular curves (pZ’k)ae[(k,l)/lvk/l]. Obviously, for each k,n the map [(k — 1)/l,k/l] 2 a —

/ Padpt™ is absolutely continuous;

/ Pathdpa+h — / Padpa < LiD(@atn)W (path; pa) + [Pa+h — Palloo-
Let u®™ be the density of the regular curve p&™. Hence for fixed k,n

d n . n 1 n
da/goaul;’ dm < /%u’; dm — Q/UZ’ Fﬁ(a)(gpa)dm

From Lemma 84 we deduce
) 1. 1 )
/Ulé’n%dm < 5\05’”@(#1/1) + 3 /(1lp19(k_1/l)90a)2d0’2’n-

Adding these two inequalities, integrating over [(k — 1)/l, k/l] and noting that

[t—s]

e T (lipge1/(0a))? < Ty (0a)  mace,
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we obtain
/SDk/zU]Zﬁdm—/‘Pk—l/lu’;ﬂ/ldm
L 1 e S‘ k)l "
<3 188" 5 ge—1 pyda+ 5(1—e (lipy(e—1/1)%a) dpy " da
k—1/1 k—1/1

1 /k/l C _L|t*3|
< = o da+—(1—e 1
2 S 9% |19(k 1/1) o (1 )

Taking the limit n — oo (and taking the scaling into account) gives

1 _rlt=sl
/ﬁpk/ld,uk/l/@k 118011 < lWﬁ(}g 10 (171, 1) + 21( —e ).

Summing over each partition and noting that the left hand side is a telescoping sum yields

!
1 C _pli=sl
/¢1dﬂl - /Woduo < 5 E le(k—l/l)(Nk—l/l,Nk/l) + 71(1 —e ).
k=1

Letting | — oo we obtain the desired estimate. U

Corollary 6.7. Let s <t and [0,1] > a+— ¥(a) = (1 — a)s + at. Then for every ug, u1 € P(X)
we have

Wit (110, 1) = W (1o, 1)

Proof. We already know from Propositionthat Wt (po, 1) > W= (tto, pr1). Hence it remains
to prove the other inequality.
For this let (¢,) € HLSy, and (pg) an absolutely continuous curve connecting po and pg.
Consider the Partition 0 = ag < a1 < ...a, = 1 with a; — a;_1 < h for some h > 0. Set

a; — a — a;—1

e V(ai—1) +

[ai—1,a;] D a 0i(a) = ——
aj — Qi1 aj — Gi—1

J(a;)

and @l = @alg, ,,a,]- Notice that (¢}), is in HLSy,. Hence

ng (:U'ai—lauai) < 2 {/(paid/‘ai - /@ai—lduai—l} .

Then summing over the partitions and taking the scalings into account we end up with

n

n
Z(ai - ai—l)ilwg(ai,l) (Iuai—l ) Mai) < 62Lh|87t| Z ngz (/j’ai—l ’ :U’ai)
i=1 i=1

n
262Lh|5_t| Z {/@aiduai - /(pailduail}
i=1
— 92Lhls—1| {/gpld,ul - /Wodﬂo},

where we made use of Lemma (ii) in the first inequality. Taking the supremum over all
(pa) € HLSy we deduce

n

Y (@i = @) Wi,y (Haiys o) < €W (g, o), (83)
i=1
We conclude

WSQ,t(MO? /J'l) < Wg(:“’(): ,ul)7

from taking the supremum in over the partition 0 = ag < a1 < --- < a, = 1 with
a; — a;—1 < h and subsequently letting h \, 0.
O
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6.2. Action Estimates. Let us recall the following estimate about the oscillation of a — [ ¢dp®
from [0, Lemma 4.12]. For fixed t > 0, let (p*), be a 2-absolutely continuous curve in P with
p® = umy and u € C1((0,1), L}(X,my)). Then for any Lipschitz function ¢ we have

- 1 - 1 a
[atoan < gl + 5 [T (8)

Actually, we have inequality for each ¢ € Dom(E) since we assume that each (X, d;, my)
is a static RCD(K, 00) which implies that Lipschitz functions are dense in the domain of the

quadratic form £ with respect to the norm /||¢||? + £(¢) (Proposition 4.10 in [3]).
Moreover we will use the following result about difference quotients and concatenations of
functions in Fg p).
Lemma 6.8. Let 0 < s < T.
(1) Let uw € F(sy. Then for almost every a € (s,t)
1

E(U(H_h — Uq) — Oguq weakly™ in F*,

i.e. for every v € F and for almost every a € (s,t)

1

/h<ua+h — Ug)vdme — (OgUg, V).

(2) For u € Fsp and 9 € C'([0,1]) the linear interpolation from s to t, we have that
(uo) € F,) with distributional derivative

Oa(uov)(a) = (t — 5)0aty(a)-
Proof. From Corollary 5.6. in [36] it follows for u € F(, ;) and v € F

a+h
/ua+hvdmo — /uavdm<> :/ (Opup, v)db.

Since b+ (Opup, v) is in L(s,t) we apply the Lebesgue differentiation theorem and obtain that
for almost every a € (s, t)

) 1 ) 1 a+h
ilzlg%) 7 Ug HUA M, — /uavdm<> = }lllg%) h/a (Opup, v)db = (Ogug, V).

This proves the first assertion. To show the second recall that we can approximate each u € F(; 1

by smooth functions (u") C C*([s,t] — F) by virtue of [36, Lemma 5.3]. So for each n € N and
for each smooth compactly supported test function ¢ : (0,1) — F we have that

1 1
/ /(u” 0 9)(a)0admeda = —/ /ﬁ(a)@aug(a)d}admoda.
0 0
Note that the term on the left-hand side converges to fol [(uo¥)(a)dupedmoda as n — oo since

1 t
/ /(u” 09 — 10 0)datadmodal < (1 — 5)~! / 4 — a7 Batbg—1 oy 7
0 s

where we applied integration by substitution. Similarly for the right-hand side

1 t
/0 9(@) (Battl ey — Dattoay, Vo) dmeodal < / 104t? — Battal |7+ [$9-1(a | 7l

and consequently as n — oo

/01 /(u 0 9)(a)duedmeda = — /Ol(t — 5)(Oaty(a), La)da,

which is the assertion. O
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For the following lemmas let (pa)qepo,1) be a regular curve and let 9J: [0, 1] — [0, 00)

Y(a) := (1 — a)s + at, where s < t.

Set Pa,y ‘= Pt,ﬂ(a) (pa) = Uq9MMY(a)-
Lemma 6.9. The curve (ua,9)qco,) belongs to Lip([0,1], F*) with uq9 € L*([0,1] — F) and
distributional derivative Oquqy € L*°([0,1] — F*) satisfying

Oatla,p = —(t — 8)Ay(a)Ua,0 + afo(a)Uap — Ppp(a) (Ta)-

Proof. First we show that (u, ) is in L?([0,1] — F). For this recall that, since (p,) is regular,
uqe < R and &(\/u,) < E for all a € [0,1] and hence by Lemma we get

1 1 1
| sl < € [l yda < R [l da = ReH0),

and by Theorem [2.12

1
‘/@@WWMSéWﬂ/mm»Hmﬁmﬂm
0
1

< 3=9)\/R] / 2, (\/ug)da + R] < 39V R(2E + R).
0
This shows that (ugy) is in L2([0,1] — F).
Next we show that (uq ) is contained in Lip([0, 1], 7*). For this let 1) € F. Then, for almost
every ap,aj € (0,1), we obtain with Lemma since Pt*ﬁ(a)uao € Fo,1)

/1/}Ua1,19dm<> - /d’uao,ﬂdmo
:/w(P:ﬁ(al)uao - Pi?jﬁ(ao)uao)ahn<> + /w'P;:ﬁ(al)(ual = Uqg )dms

ay ai .
=(t - S)/ E5(a)(Prig(a)ttao> ¥)da + (& — 3)/ /fﬂ(a)Ptfﬂ(a)uaowdmoda
ao

ag

+/QMMWMWW%—%MW
al
<(t-— S)/ Ea(a) (P p(aytiar)*Eg(ay (el 7 @) 2 da
ap

a1
+(t - 5)/ Hfﬂ(a)||OO||PtT19(a)ua0HLQ(mﬁ(a))Hd}efﬁ(a)||L2(m<>)da

ao

+ e oo (Prg(ar) (el?@0)) /2 sup ||| 7 (a1 — ao)

<(t— S)Sﬁ(a)(¢)1/2/ Lip(£3(a))€0(a) Py g(aytao) "/ *dar

ag

a1
+ (t - 5)/ Hfﬂ(a)||oo||P{f19(a)uaoHL?(mM))H%/)efﬁ‘“)||L2(m<>)da

ao

+ €7 |aoEo (Prgay (el @) sup [[iig] | 7+ (a1 — ao).
a
Due to our assumptions on f we have that
iD(fo() < C, 1ol < L, |l fillos < C,
Lip(fo(a) < O, [fo@lloe < L [l filloo <€
while the energy estimate Theorem and Corollary yields
En(a)(Prroaytiar) < €M [Ex(uay) + [[uaol |2 (m,));

L(t—s)/2

1P (ayUaoll L2 (my(0y) < € |[waol£2(me)-
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Note that the last two expressions are bounded since u is a regular curve. Moreover from ,
the gradient estimate and Corollary we find

go(pw(al)(wefmn)) < CeL(tfs)Lip@fﬁ(m)Qgﬁ(al)(w)
Applying once more we find that there exists a constant A such that
[ oo~ [ uagodime < (@1 = a1, (85)

and thus

Hual - Uao‘ Fr <A

Note also that holds for every ag, a1 by approximating with Lebesgue points. This implies
the existence of O, uq9 € L([0,1], F*) such that

al
/wu(lhﬁdmo_/wu(zg,ﬁdmo :/ <8aua,197¢>]:*,}—da-

ag

Fix ¢ € Lipy(X). By a similar calculation as above it ultimately follows that

1
lim h(/ wua—&-h,ﬁdmo - //‘,/)Ua,ﬁdmo)

h—0

= (t— 5)513((1)(});19(@)“(17 V) +(t—s) / fﬁ(a)ngﬁ(a)Uud}dmo

. F9(atn) (Ua+h - Ua)
+}£%/Pt,ﬂ(a+h)(we )7]1 dmy

almost everywhere. To determine the last integral recall that u € C1([0, 1], L*(X)). Then since
¥ € Lipy(X)

. Ug+h — Uq .
iy [ Proaenyeloesm =) gy = [ by weloigamg

= /(¢€fﬂ(a>)Ptfﬁ(a)ﬂaqu9(a) = (P} y(q)tta V) F= F-
From the Lipschitz continuity of (uq9) we deduce that for almost every a € [0, 1]
(Oatia,9, ) 7+ 7 = (=t = 8) Dp(a)Ua,0 + Oafo(a)ytian — P/ ya)(Ua), V) Fr F-
We conclude the proof by approximating 1) € F with bounded Lipschitz functions. O
Lemma 6.10. For any map ¢ € HLSy the map a — [ padpag is absolutely continuous and

1 1
/%dpw _/SOOd,OD,ﬂ </0 [— 2/ ﬁ(a)(‘pa)dpa,ﬁ+/1Dt,19(a)(90a)8aua dmy

+(t =) /Fﬁ(a)(‘;aavua,ﬁ)dmﬂ(a)}dw

Proof. Let us begin by showing that a — p, ¢ is 2-absolutely continuous. Indeed, let ag < aq,
we have with the equivalence of the gradient estimate and the Wasserstein contraction ({65

W(ao) (Pag, 95 Par,0) < Wﬁ(ao)(—pt,ﬁ(ao)paoa pt,ﬁ(ao)pm) + Wﬁ(ao)(Pt,ﬁ(ao)paly Pt,ﬁ(al)pal)
S Wt(paoa Pal) + Wﬂ(ao)(Pt,ﬂ(ao)pa1 ’ Pt,ﬁ(al)pal)-

By virtue of Lemma[3.7{(iv) we have that 5o = B, y(a)par = Gammy(a) is in AC?([0,1], P(X)). This
proves that a — p, ¢ is 2-absolutely continuous.
To conclude that a — [ padp, s is absolutely continuous we write

/(Paldpal,ﬂ_/SandPao,ﬁ

= /(9004 ¢a0)dpa1,ﬁ+/<10aodpa1,’l9 - /@aodl)ao,ﬁ
< |lpar = Paglloo + Lip(ao)W (Par,95 Pao,0)-
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To compute its derivative we consider difference quotients. Since ¢ € Lip([0, 1], L*°(X)) is in

HLSy and ugipy — Ugw in L'(X) we have

. _ 1
ti b [ (on = eaddpasno < =5 [ Vool dpan. (56)
—0 2

Now we need to determine

.1 _
lim / Pa 17 (Uqpng — Uq)dmo + / Pallath9d(My(atn) — Mo(a)))-

The expression on the right hand side clearly converges to

—’19(61) /Soafﬁ(a)ua,ﬂdmﬂ(a)’ (87)
while from Lemma [6.9] we deduce
1
lim [ e @0~ (Ugtng — Uap)dMo =(Datiag, e 7@ p,) F 7+,
h—0 h ' ’ ’ ’

and after inserting
(Oatta, e @) 5 e =(t — 5) ( / fotaytampae™ 7@ dme + E5 1) (a0, %efﬁ’(“))) (88)
=(t—s) ( / Fo(ayUa,0%admpa) + /Fﬁ(a) (Uq,9, Soa)dmﬂ(a))' (89)

Then from the absolute continuity of a — [ @qdp,s together with , and , we
obtain

1
/ p1dpre — / wodpo,y = / O / Padpq9da
0

1 1 . .
S/O [— 2/Wﬂ(a)%\zdﬂa,ﬁJr/Pt,ﬁ(a)wauadmt— (t—S)/%fﬂ(a)ua,ﬂdmﬁ(a)
+ (t - S)/fﬂ(a)ua,ﬁ‘padmﬂ(a) +(t—s) /Fﬁ(a) (tta,, %)dmﬂ(a)]da

1 1 )
S/O [— 2/|V19(a)§0a|2dpa,19+/Pt,19(a)‘;0auadmt+(t_S)/Fﬁ(a)(ua,ﬁaQpa)dmﬂ(a)]da'

O
We regularize the entropy functional by truncating the singularities of the logarithm. Define

e: [0,00) by setting e.(r) = log(e +r) + 1 and e.(0) = 0. Then e, is still a convex function and
el € Lipy([0, R]). For any t and p = um; € P(X) we define

Si(o) = [ etudm.

Note that for any p € Dom(S) we clearly have S¢(p) — S(p)as € — 0.
As in [6] we introduce

pe(r) = eL(r?) — loge.
Lemma 6.11. With the same notation as in Lemma[6.10 we find for any € > 0

1
S5 (pra) — S(png) > / / 1Py g0y (€ (tta.0) s + At — 5) / ¢ (ua9)Co(a) (v/Tag)dpad
0

+ (t—s) / f,g(a) (Uq,9€.(Uaw) — €(ta,p))dmyqg)da.
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Proof. From the convexity of e. we get for every ag,a; € [0,1] by virtue of Lemma

S;(al) (pal,ﬁ) - Sf?(ao) (paoﬁ)

:/ea(ual,,g) — ee(uaoﬂg)e*ﬂ”atﬁdm<> + /eg(ualﬂg)(efﬁ(%) — e*fmo))alm<>
>/e;(ua0,,9)(ualﬂg — uawg)e_fwao)dmo + /eg(ualﬂg)(e_fﬂ(“l) - e‘fﬂ(ao))dm<>

al . .
— [ @t 0 e tag0)) = [ €t )0 o 0 dmo)da

ao

al . . .
—/ ((—ﬁ(a)Aﬁ(a)uaﬂg + ﬁ(a)fg(a)uaﬂg + Ptfﬁ(a) (ua), e’fﬁ(ao)elg(uao’ﬁ»
ag
- [ eclton0)3(@ fogoye ™ dme)do

al . . .
:/ (_ﬁ(a)<A19(a)ua,z97 e—fﬂ(ao)eé(uaoﬂg» + /ﬁ(a)fﬁ(a)ua,ﬁe_fﬂ(’m)eé(uao,ﬁ)dmo

ao

+/Ptfﬁ(a)(ua)e_fﬂ(a())e/e(uao,ﬁ)dmo_/es(ual,ﬂ)ﬁ(a)fﬂ(a)e_fﬁ(a)dmo)da'

Now fix A > 0 and choose a partition of [0, 1] consisting of Lebesgue points {a;}-, such that
0 S Aj+1 — Q4 S h. Then

n

St (p1,9) — S5(pow) = Z(Sf?(ai)(pai,ﬁ) - Sé(ai,l)(pai,l,ﬂ))
i=1

ZZ/ (—19(61)<A19(a)ua,197e_fﬂ(ai_l)e;(uai—17ﬂ)> + /ﬁ(a)fﬁ(a)uaﬂe_fﬂ(ai—ne’s(uai_hﬁ)dmo
i=1 vV di—1
+/Pt’f19(a)(ua)efﬂ(“iﬂela(u%“g)dmo —/eg(uaiyg)ﬁ(a)fﬁ(a)e_fﬂa)dmo)da
1
2/ (—9(a) (Ap(ayUa,, o) +/19(a)f19(a)ua,19ggdm<>
0

+/Ptfﬁ(a)(ﬂa)§fdm<>/Wgﬁ(a)fﬂ(a)e_f“(“)dmo)da,

where

¢h = e_fm"i—l)els(uai_wg), for a € (ai—1,a]

wZ = e-(Uq,9), for a € (a;—1, a;l.
Letting h — 0 we obtain

b e fowel (uy9), in LN(X) for a.e. a € (0,1)
Wl = ec(uqp), in L'(X) for a.e. a € (0,1),
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and thus from dominated convergence
St (p1w) — S5(po.w)

1
Zlimsup[/ (—0(a)<Aﬁ(a)uaﬂg,§£‘> +/19(a)f19(a)ua719§gdmo
h—0 0

+/P{f19(a)(%)§gdm<>—/wgﬁ(a)fﬂ(a)e_fﬁ(a)dmo)da}

1
> lim sup[/ (—0(a)(Ay(a)Ua,s, gf;)da]
h—0 0

1
+/0 (/ 19(@)fﬁ(a)uaﬂge*fﬂ(a)ef_:(uaﬂg)alm<>

+ / P} 0y (ita)e ™17 e (t1q,9)dm / e (t0,9)9(a) fogaye "7 dmo)da.

To see that (Ay)ta,0, shy — (Ay(a)Ua,, e o e.(uq,)), recall that from Theorem it suf-
fices to show that
st e fr@el (ug,9) in L2(X).

This is a consequence of the boundedness of u,y and fy(,). Then again by dominated conver-
gence we have

Si(p1,9) — S5 (pov)
1
>/ [9(a)E5 0 (ttag, €7@ e (uq,9)) /’19 ) fo(aytiape™ 7@ e (uq9)dme
/ t,9(a) (ta)e fﬁ(a)e,e(ua,ﬁ)dmo_/es(ua,ﬁ)ﬂ(a)fﬂ(a)e_fﬁ(a)dmo]da
:/ [9(a )&9(@(%,%62(%,&))+/19(a)f19(a)ua,ﬂelg(ua,ﬂ)dmﬁ(a)

0

+ / Py (ta) e (ta,0)dmga) — / €= (Ua,0)9(a) fo( dmg(a)da.

O
6.3. The Dynamic EVI~-Property.
Proposition 6.12. Let p® = u®m; be a reqular curve. Then setting pq, 9 = ]—f’tﬂg(a)pa, it holds
*Wﬁ pro; pow) = (t = 8)(St(prv) — Ss(po.v))
(90)

1
< 2/ |pal?da — ( —3)2/0 /flg(a)dpaﬂda.

Proof. Applying Lemma [6.10] and Lemma we find
[ erdora— [ evdomo — (¢~ 5)(55(pr0) — Si(p00)

1
= /0 [/aan(a)(% — (t — s)ec(ua,p))dmy
1
-3 /Fﬁ(a)(@a)dpa,ﬁ +(t—s) /Fﬂ(a)(@a, Ua,ﬁ)dmﬂ(a) —4(t — 5)2 / eg(ua,ﬂ)rﬁ(a)(M)dpaﬂg

—(t—s)? /(65(%,19) — €L (ta,9)Ua,0) fo() dmo(a) | da.
(91)

Then since
Arel(r) > 4r2(el(r))? = r (V)2

(3 (3
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we can estimate

— g g€l (ta,9)To(a) (v/Uap) < a9 (PL(vUaw)) Toa) (v/Uaw) = —UaoTo(a) (P (v/Uap)),
and while, with ¢.(r) := /(2 — \/rpL(\/7)),
Fﬁ(a)(ua,% ‘Pa) = QMFﬂ(a)(\/ua,ﬁy ‘Pa) = ua,ﬂr‘ﬂ(a) (pa(\/m)a Soa) + QE(ua,ﬂ)Fﬁ(a)(\/ma Cpa)
we find
[ oo [ ovdomo = (¢ = )i 010) ~ 00)

< [ Pt~ (¢ = ekGuaa)ram

- é /Fﬁ(a)(%)dpa,ﬁ +(t—s) /Fﬁ(a)(tpmpe(\/m»dpa,ﬂ —(t— S)Q/Fﬂ(a) (Pe(/Uia,9))dpa,9

+ (t - 5)/Q5(“a,ﬁ)rﬂ(a)(\/ua,197 Pa)dmg gy — (t — s)° /(65(%,79) - 62(ua,ﬂ)ua,ﬂ)fﬁ(a)dmﬁ(a)]da~

(92)
Hence, by means of , the gradient estimate , and Young inequality 2zy < dz2 + 32/6
this yields

/ ordpry — / codpo.s — (t — 5)(S(p1.9) — 5(00.9)

b1 1
< /O [§|pa|g + 9 /Ft(Pt,ﬁ(a)((Pa - (t — 8)6/5(ua719))dpa

1
—5 /Pt,ﬁ(a)Tﬂ(a)(@a — (t = 5)pe(\/Uaw))dpa + (t — 5) /QE(ua,ﬂ)Fﬁ(a)(\/ua,ﬁa ©a)dmy(q)

(0= 9 [ (ecltan) — L lta)tno) foadmaio | da

-
S/O [2|Pa|?++(t—s)/\qg(uaﬁ)]\l“ﬂ(a)(m,%)|dm0(a)

—(t—s)? /(ee(ua,ﬁ) - e;(ua,ﬂ)ua,ﬂ)fﬁ(a)dmﬁ(a)} da

Lr1 . t—s t—s)o
</0 [§|palf+( 5 )/(QE(ua,ﬂ))ZFﬂ(a)((Pa)dmﬁ(a) +(2)/Fﬂ(a)(m)dmﬂ(a)

- (t - 5)2 /(es(ua,ﬁ) - ele(ua,ﬁ)ua,ﬁ)fﬁ(a)dmﬁ(a)} da.
We first pass to the limit € — 0,

: 2 — 2 — —
;E}%qs (7“) - 07 qc (T) - 4T(1 cedr

tim (ex(r) — re(r) = -,
le<(r) —rel(r)| < 2(e +7)|log(e + )| +r+eloge <2ve+r+r+eloge,
and then, § — 0,

/‘Pldpw - /SOodPo,ﬁ — (t = 5)(St(p1,0) — Ss(po.w))
Yl 2 [
< [§\Pa\t +(t—s) fﬁ(a)dpa,ﬁ} da.
0

Taking the supremum over ¢ we obtain the desired estimate . O
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Theorem 6.13. Assume that the gradient estimate holds true for the time-dependent metric
measure space (X, dy, mi)eo,r)- Then for every u € Dom(S) and every T € (0,T] the dual heat

flow py = ng,u emanating in p we have

1
Su(1a) — Sy(0) < (W1, 0) — W24(p1s, 0)) — (£ — 3) /0 / Fowdpagda  (93)

T2t —s)
for all s € (0,7) and all o, € Dom(S). Here (pa)aejo,1] denotes the Wi-geodesic connecting

po = fit, p1 =0 and pap = Pry(a)(pa)-
In particular py is a dynamic upward EVI -gradient flow, i.e. for every t € (0,7) and every
o € Dom(S) we have

1,
20 W2 (pss 0)jsmi— > Si(pe) — Si(o).

Proof. Let (pa)ae[m” be a Wi-geodesic connecting u; and o, which exists and is unique. We
approximate the geodesic (pa)aco,1] Dy regular curves (p}).e(o,1- Proposition states that

for each (pf;)qefo,1]

—_

5 plﬂap019) (t— )(St(Pw) Ss(Pg,ﬂ))

<3 / o 2da — (¢ — s) / [ Fotwydstgia
0

Since for every a € [0, 1] pl converges to p, in duality with bounded continuous functions, p}! ,
converges to p, ¢ in duality with bounded continuous functions as well. By virtue of Lemma
we obtain

\V)

(94)

lim inf W3 (o1 y, p5.9) = Wi (p1,0, po.9)-
n—oo

Note that (pl) also converges to p, in duality with L functions, since Lemma provides
sup,, S¢(py) < oo. The same argument applies then to ply. Hence

Jim / Foydpiy = / Fo(ay@Pay0-

Then we end up with

1 -
W) — (1= 5)(Su(0)  Su(u)
< §Wt2(ﬂt70) —(t— 8)2/0 /fﬁ(a)dpa,ﬁda'
Applying Corollary [6.7] we obtain
Lo o Lo o o [N [
(t = 5)(Ss(ps) = Sil0)) = SWi (e, 0) = Wiy (ps, 0) = (t = 5) ; fo(aydpa,vda.
Dividing by t — s and letting s * t we find
St(ue) — Si(o) < liminf 1 (W(ue, o) — W2i(ps, o))
- s/‘t 2(t — S) t ’ st ’
8 W t(MSﬂ )\s:t—'
O

6.4. Summarizing. The precise integrated version of the EVI~-property indeed also im-
plies a relaxed version of the EVI*-property which then in turn allows to prove uniqueness of
dynamic EVI-flows for the entropy.
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Corollary 6.14. The gradient estimate (III) implies the EVIT(—2L, c0)-property. More pre-
cisely, for every p € Dom(S) and every T < T the dual heat flow p; := Py p emanating in p
satisfies

1
505 Wealptss @)s=e = Si(a) = Su(0) = LW (1 0)
forallt <7 and all 0 € P(X).
Proof. Given uy; := lf’wu for t7, consider for fixed s < 7 and with s \ ¢. Then
Ss(ps) — Ss(o) = 1}{% Ss(ps) — Si(o)

. 1
< lim o WP, 0) = W2 (1,0

s\t 2(t — S) s
: 1 2 2
< - —
< (h{g 3 —5) [Wt,s(ut,a) W (s, 0)}

+§ [Wf(% o) + W2 (us, O')D

1,
= 50 W (pt, 0)i=ss + LWZ (s, 0)
where the last estimate follows from (98)). O

Corollary 6.15. Assume that (III) holds true and that (y)ic(o,r) is a dynamic upward EVI -
or EVI' gradient flow for S emanating in some p € P. Then

Mt = Pt,‘r,u
for all t € (o,7). That is, the dual heat flow is the unique dynamic backward EVI~ -flow for the
Boltzmann entropy.

Proof. Corollary [7.8| together with Corollary and Theorem O

Theorem 6.16. The gradient estimate (II1y) implies the dynamic N -convexity of the Boltz-
mann entropy (In).

Proof. According to Theorem and Theorem the gradient estimate (ITIy) implies both
e the transport estimate (IIy) and
e the EVI~ (0, co)-property
According to Theorem [7.11] and Remark both properties together imply dynamic N-
convexity. ([
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7. APPENDIX

7.1. Time-dependent Geodesic Spaces. For this chapter, our basic setting will be a space
X equipped with a 1-parameter family of complete geodesic metrics (d;)ie;r where I C R is a
bounded open interval, say for convenience I = (0,7"). (More generally, one might allow d; to be
pseudo metrics where the existence of connecting geodesics is only requested for pairs z,y € X
with dy(z,y) < 00.) We always request that there exists a constant L € R (‘log-Lipschitz bound’)
such that

0g
ds(2,y)
for all s,t and all x,y (‘log Lipschitz continuity in ¢’);

dt(SU,y)‘ <L ‘t— S‘ (96)

Let us first introduce a natural ‘distance’ on I x X.

Definition 7.1. Given s,t € I and x,y € X we put

1/2
doa(o,y) : f{/ 42, ey da } (o7)

where the infimum runs over all absolutely continuous curves (~* )ae[o,l] in X connecting x and
Y.
Proposition 7.2. (i) The infimum in the above formula is attained. Each minimizer (v*)aepo,1
is a curve of constant speed, i.e. |¥*|siq@—s) = dst(z,y) for all a € [0,1].

(i) A point z € X lies on some minimizing curve v with z =~ if and only if

ds,t(xa y) = ds,?“ (.T, Z) + dr,t(zy y)

with r = s+ a(t — s).

(i1i) For all s,t € I and x,y € X

1— e—L|t—s| - d57t($,y) - eL\t—s| -1
Lit—s| = ds(x,y) — L|t—s|

Thus in particular,
L
2

’@ds,t(%y)‘tzs < —ds(z,y). (98)

(iv) For all s <tel and x,y € X

. 1/2
t _
dst(z,y) = lim inf {Z T di (i, i) } (99)

=0 (ts,24)s ] ti —ti—1

where the infimum runs over all k € N. all partitions (t;)i=o,.. r of [s,t] with to = s,t, =t and
|ti —ti—1] < 0 as well as over all z; € X with zg = z,x = y.

Proof. (i) For each absolutely continuous curve (v)ae(o,1]

1/2
</ ’7 ‘s+a(t s) > / h’ ‘s+a(t s)da

with equality if and only if the curve has constant speed.

(ii) Restricting the minimizing curve for ds; to parameter intervals [0, a] and [a, 1] provides
upper estimates for ds (2, z) and d,+(z,y), resp., and thus yields the “>”-inequality. Conversely,
given any pair of minimizers for ds,(x, z) and d,+(z,y) by concatenation a curve connecting x
and y can be constructed with action bounded by the scaled action of the two ingredients. This
proves the “<”-inequality.

(iii) The log-Lipschitz continuity of the distance implies that for each absolutely continuous

curve . 1 n . 1
e~ Lalt=sl / [¥*|sda < / ‘;Ya|s+a(t—s)da <e aft=s| / 7% |sda.
0 0 0

(iv) see section (6.1 for the argument in the case of Wi ;. O
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7.2. EVI Formulation of Gradient Flows. For the subsequent discussion, a lower semi-

bounded function V' : I x X — (—o0, oo] will be given with Vy(x) < Cy-Vi(x)+C; for all s,t € T

and x € X (thus, in particular, Dom (V) = {z € X : Vi(z) < oo} is independent of ) and such

that for each ¢t € I the function x — Vi(z) is k-convex along each di-geodesic (for some k € R).

We also assume that minimizing d;-geodesics between pairs of points in Dom (V') are unique.
In previous chapters, the following results will be applied

e to the Boltzmann entropy S; on the time-dependent geodesic space (P, Wy)icr as well as
e to the Dirichlet energy & on the time-dependent geodesic space L(X,my)er

in the place of the function V; on the time-dependent geodesic space (X, dy)er.

Definition 7.3. Given a left-open interval J C I, an absolutely continuous curve (x¢)iey will
be called dynamic backward EVI~-gradient flow for V' if for all t € J and all z € Dom(V;)

505 d (s, 2) > Vi) = Vi(2) (100)

s=t—

where d ¢ is defined in Definition 7.1}
A curve (z¢)ieg with a right-open interval J C I will be called dynamic backward EVITt-
gradient flow for V if instead

1,_
-0 dit(ﬂvs, 2)

S0 > Vi) — Vi(2)

s=t+

forallt e J.

It is called dynamic backward EVI-gradient flow if it is both, a dynamic backward EVIT-
gradient flow and a dynamic backward EVI~-gradient flow.

We say that the backward gradient flow (x¢)ic; emanates in 2’ € X if limy sgup g ¢ = x'.

Being a dynamic backward EVIT-gradient flow for V obviously implies that z; € Dom(V})
for all t < 7.

Remark. Note that these definitions are slightly different from a previous one presented in [51].
If ds depends smoothly on s then

-2 -2 )
as ds,t(x& Z)‘Szt_ - 83 dy (335, Z)‘Szt_ + 85 ds,t(xt7 Z)‘S:t_
and always 05_d§7t(:nt, z)‘s:t_ > bY(y) for any ds-geodesic y connecting z; and z.

Often, we ask for an improved notion of dynamic backward EVI-gradient flows, involving pa-
rameters N € (0, 00| (regarded as an upper bound for the ‘dimension’) and/or K € R (regarded
as a lower bound for the ‘curvature’). The choices N = oo and K = 0 will yield the previous
concept.

Definition 7.4. We say that an absolutely continuous curve (mt)te((m) s a dynamic backward
EVI(K, N)-gradient flow for V' if for all z € Dom(V;) and all t € (o, T)

1,_ K 1 /! W)\ 2
30 Bulons)| =5 ) = Vi) Vi) + [ (06m) (1 —ada on)

where v denotes the dy-geodesic connecting x; and z.

Analogously, we define dynamic backward EVI* (K, N)-gradient flows for V.

In the case, K = 0, dynamic backward EVI(K, N)-gradient flows will be simply called dynamic
backward EVIy-gradient flows.

The concept of ‘backward’ gradient flows is tailor-made for our later application to the dual
heat flow. This flow is running backward in time and on its way it tries to minimize the
Boltzmann entropy. Regarded in positive time direction, it follows the ‘upward gradient’ of the
entropy.

On the other hand, in calculus of variations mostly the ‘downward’ gradient flow will be
considered where a curve tries to follow the negative gradient of a given functional.
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Definition 7.5. We say that an absolutely continuous curve (xt)te(aﬁ) is a dynamic forward
EVI(K, N)-gradient flow for V' if for all z € Dom(V;) and all t € (o, T)

s=t

1
SO 2)| B 2) 2 Vile) —Vil) + /0 (9.%:67) (1~ a)da (102)

where v denotes the dy-geodesic connecting x; and z.
We say that a forward gradient flow emanates in a given point ' € X if limp , 2, = 2.

We will formulate all our results for ‘backward’ gradient flows and leave it to the reader to
carry them over to the case of ‘forward’ gradient flows.

Lemma 7.6. For each dynamic backward EVIF(K,c0)-gradient flow (x4)e(or) for V

/ Vi(ze)dt < oo.

Proof. Choose z € Dom(V'), apply the EVI(K, oo)-property at time ¢, and then integrate w.r.t.
time ¢

[TT%(xt)dt < /UT |:‘/t( )+ 8dst($s, )]S:t—gdf(xt,z)}dt

1 T
< (CoVi(z)+Ci)(t—0)+ 2/ [atdf(a:t, 2) + (L — K)d? (x4, z)}dt
1 L-K [T
— (Vi) + O =)+ 5 ) — )+ [ )
Obviously, the right hand side is finite which thus proves the claim. O

7.3. Contraction Estimates.

Theorem 7.7. Given two curves (Tt)ic(or) and (Yt)ie(o,r), one of which is an is a dynamic
backward EVI (K, N)-gradient flow for V and the other is a dynamic backward EVIT (K, N)-
gradient flow for V, then for allc < s <t <T

2 [t 2
A (w5, y5) < KD B y) — 55 [ 0T Vo) = Valyo) | dr (103)

Proof. Assume that the curve (¢)ie (o, is a dynamic backward EVI~-gradient flow for V' and
(Yt)te(o,r] is @ dynamic backward EVIt-gradient flow for V. It implies that r — d.(z,,y,) is
absolutely continuous since

|dt(33t,yt) - ds(l's, ys)| < ds(l‘s,l‘t) + dS(yS7yt) + L(t - S)dt(xhyt)‘
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Thus by the very definition of EVI flows

) ) 1 t ) 1 s+46 )
di (x4, y;) — ds(vs,ys) = limsup [* / dy(Tr, yr) dr — < / d(zr, yr) dr}
SO L0 Jis 0 Js

1 t
= limsup - / |:d72» (wra yr) - d?_(s (xr—éa yr—6):| dr
6N\0 5+0

1 t
> h%n\jglf 5 /s+5 [dg(xm Yr) — dz,r—6(xr7 yrfc?)] dr
S B L 2
+ h%n\%lf 5 510 [dr,r—é(xrv yr—5) - dr—&(‘rr—& yr—5)] dr
= liminfl/t [d2(zr, yr) — d2, (T, yr—s)] dr
N0 O fps T rr ORI
NP R L S 2
+ hgn\jélf g /s [dr+6,r(xr+57 yr) - dr (xra yr)] dr
Q) t 1 5
> /s hgl\mf 5 (&2 (2, yr) — d7 o 5(2r, yr—s)] dr

t
1
+/s hgn\}élf 5 [d%+5’r(xr+5,y7«) — dg(xr,yr)] dr
t 1
K , 1 2
> — _ - a
> 2 [ (G + Vitw) Vil + 7 [ (0i60) adda]dr
LK
#2 [ [Giar) + Valer) ~ Vito) + N/ (9%,(59)) (1~ ) da] dr

= QK/ (Try Y dr—l—N// 6V ’yr dadr

> QK/ (r, Yr) dr+ d.

Vi (yr)

Dividing by t — s and passing to the limit ¢ — s \ 0 ylelds

9 2
Oy (x4, ye) > 2K d7 (x4, 1) + N’Vt(ﬂ?t) - Vt(yt))

for a.e. t. The claim now follows via ‘variation of constants’.

It remains to justify the interchange of lim infg\o and [...dr in (x) which requires quite

some effort. Recall from Proposition that | e ( ’y) — 1| < 2L - |t — s for all z,y,s,t with

|t — s| < 1. Thus we can estimate

Bl &yl )]

1
< -3 [df(xm Yr) — di,g(xr,yr—a)} +o1
1 T
= —/ agdg(mﬁys) ds + 01
d r—0
1 T
< - 8td§t($rvyt)‘ ds + 01 + 02
1) r—§ ’ t=s
2 T
< S [Vel@) = Valwo)ds + o1 + 02+ 0g
r—o

< 2C) - Vi(zy) +2C1 +C + 01 + 02 + 03

where for the last inequality we used the growth estimate of s — V;(z) and the lower boundedness
of V and where we put with oy (r,§) = 2L d%(zy, y,—s), 02(r,8) = 2L § [T < d(2,,y,) do, 03(r) =
K d*(z,,y,). Continuity of 7 + d,. and of r + x, as well as of 7 — y, imply that for any fixed
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z € X the function r + d?(z,, 2) is bounded as well as r — d2(y,_s, z) for r € (s,t), uniformly
ind € (0,1). Thus 01(r, )+ 02(r,§) +03(r,§) < C’ which finally justifies the interchange of limit
and integral.

Similarly, we can estimate

1
—= [dz—i—d,r ($r+57 yr) - dz (CCT, yr)

)
1 r+d
< —5/ Dsd® (x4, y,) ds + 0}
< 20 - Vi (yr) +2Co + C + 0 + 0 + 0f.

In both cases, the final expression is integrable w.r.t. r € [s, | according to Lemma since by
assumption Vi(z:) < oo as well as Vi(y;) < oo. O

Corollary 7.8. Assume that (v¢)ie(q,r) s @ dynamic backward EVI(K, N)-gradient flow for V
and that (Yi)ie(o,r) s a dynamic backward EVI~(K,N)- or EVIY (K, N)-gradient flow for V
emanating in the same point xr = y.. Then

Ty =Yt
forallt <.

Corollary 7.9. Assume that for given T, a dynamic upward EVI(K,co)-gradient flow termi-
nating in x' exists for each x’ in a dense subset D C X. Then this flow can be extended to a
flow terminating in any ¥’ € X and satisfying

dy(s,ys) < e KU dy (g, ) (104)
forany s <t <.
7.4. Dynamic Convexity. Let us recall the notion of dynamic convexity as introduced in [51].
Definition 7.10. We say that the function V : I x X — (—o00,00] is strongly dynamically
(K, N)-convex if for a.e. t € I and for every di-geodesic (v*)qe(0,1] with 72, vt € Dom(V;)
OFViIT) — B Vi) 2 307 (00,0 + B 00N + 5 V6% VG (108)

Theorem 7.11. Assume that for eacht € I and each ' € Dom(V;) there exists a dynamic back-
ward EVI(K, N)-gradient flow (xs)sc(o,y for V. emanating in @' and such that lim, ~ Vs(xs) =
Vi(z). Then V is strongly dynamically (K, N)-convez.

Remark 7.12. To be more precise, we request the inequality (100)) at the point ¢ and the in-
equality (101]) at all times before t.

Proof. Fix t € I and a di-geodesic (7*)qe0,1) With 7,4t € Dom(V;). The a priori assumption
of k-convexity implies v* € Dom(V;) for all @ € [0,1]. For each a, let (7¢)s<¢ denote the
EVIy-gradient flow for V emanating in v = ~¢. Then for all a € (0, 3)

Vir) - Vi) < 268d2 (1,7

s=t—

< SO0 LR

(due to the log-Lipschitz continuity of s +— d) and

—a L —a
V(') =i < 500di ()|
1

IN

iasidz(’ygiaa ’71)




74 EVA KOPFER, KARL-THEODOR STURM

Moreover, the previous Theorem implies
1 71 1 1 [t

0 < lim inf [7d2(,ya7,ylfa) o 7d2(,ya7,ylfa) o KdQ(’ya,’ylia) _ /
st t—s 2 e ¢ N J,

1,._ a —a a —a 1 a —a 2
= 585 dg(%ﬂ; ) 7_Kd%(7 7’71 >_N’V2(’Y )_‘/15(71 )
(Here we used the requested continuity V,.(y¢) — Vi(v®) for r 7 t.)

Adding up these inequalities (the last one multiplied by ﬁ and the previous ones by %)
yields

2
V(v = V(v )| dr

[0 = ) + v - Vi)
1
1—2a

—a 1 —a
(5575 + —di (s ,71)])

1 1 1
< liminf *dQ 0 _a d2 a l—a *d2 l—a 1
< 11;11}{1 72@_8)([& s, %) + (v )+a (v ,’7)}

1
—*d2 0 ~a
[a 2(v%,79) +

1
1—2a

K 1 2
2.0 1y _ 2/ a 1—ay _ ay l1-a
+2aLdi (v, 7)) = 75 di (V) N(l_Qa))Vt('v ) = Vi(vy' ™)
o 1 2,0 1 2,0 1
< I _
1 2
o o o 320 Ay o &~ ay l—a
(1~ 20)K —2aL] - d{ (3. 7") = Frg—qy V00 = V(2T

In the limit @ — 0 this yields the claim. O
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