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The space of spaces:

curvature bounds and gradient flows on the space of

metric measure spaces

Karl-Theodor Sturm

Abstract

Equipped with the L2-distortion distance ∆∆, the space X of all metric measure spaces (X, d,m) is
proven to have nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are
characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on X̄ are
presented.

Introduction and Main Results at a Glance

I. The basic object of this paper is the space X of isomorphism classes of metric measure spaces. A metric
measure space is a triple (X, d,m) consisting of a space X , a complete separable metric d on X and a
Borel probability measure on it (more precisely, a probability measure on the Borel σ-field induced by

the metric d on X). We will always require that its L2-size
(∫

X

∫
X
d2(x, y)dm(x)dm(y)

)1/2
is finite. Two

metric measure spaces with full supports are isomorphic if there exists a measure preserving isometry
between them.
We will consider X as a metric space equipped with the so-called L2-distortion distance ∆∆ = ∆∆2 to be
presented below. One of our main results is that

◮ the metric space (X,∆∆) has nonnegative curvature in the sense of Alexandrov.

Both the triangle comparison and the quadruple comparison will be verified.

II. The Lp-distortion distance between two metric measure spaces (X0, d0,m0) and (X1, d1,m1) is defined
for p ∈ [1,∞) as

∆∆p

(
(X0, d0,m0), (X1, d1,m1)

)

= inf
m̄∈Cpl(m0,m1)

(∫

X0×X1

∫

X0×X1

∣∣∣d0(x0, y0)− d1(x1, y1)
∣∣∣
p

dm̄(x0, x1)dm̄(y0, y1)

)1/p

where the infimum is taken over all couplings of m0 and m1, i.e. over all probability measures m̄ onX0×X1

with prescribed marginals (π0)∗m̄ = m0 and (π1)∗m̄ = m1. There always exists an optimal coupling for
which the infimum is attained. Convergence w.r.t. the Lp-distortion distance can be characterized as
convergence w.r.t. the L0-distortion distance together with convergence of the Lp-size. The L0-distortion
distance induces the same topology as the L0-transportation distance (also known as Prohorov-Gromov
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metric) which in turn is equivalent to Gromov’s box metric �λ.
One of our fundamental results – with far reaching applications – is a complete, explicit characterization
of ∆∆p-geodesics in X:

◮ For each optimal coupling m̄, the family of metric measure spaces
(
X0 ×X1, (1− t) d0 + t d1, m̄

)
for t ∈ (0, 1)

defines a geodesic in X connecting (X0, d0,m0) and (X1, d1,m1).

◮ If p ∈ (1,∞), then each geodesic in X is of this form.

For each metric measure space (X, d,m), a geodesic ray through it is given by (X, t · d,m) for t ≥ 0. Its
initial point is the one-point space δ (= the equivalence class of metric measure spaces whose supports
consist of one point). In the particular case p = 2, (X,∆∆) is a cone with apex δ over its unit sphere.

III. X is quite a huge space: it contains all Riemannian manifolds, GH-limits of Riemannian manifolds
(cf. [CC97, CC00a, CC00b]), Finsler spaces (cf. [She01], [OS09]), finite dimensional Alexandrov spaces
(cf. [BGP92], [OS94]) , groups (cf. [Woe00]), graphs (cf. [Del99]), fractals (cf. [Kig01]) as well as many
infinite dimensional spaces (cf. [BSC05]) – provided the respective spaces, manifolds, graphs etc. have
finite volume (which then is assumed to be normalized). In particular, it contains all metric measure
spaces with generalized lower bounds for the Ricci curvature in the sense of Lott-Sturm-Villani [Stu06],
[LV09].

However, X is not complete w.r.t. ∆∆. Fortunately, each element in its completion X̄ again can be
represented as a triple (X, d,m) – more precisely, as an equivalence class (‘homomorphism class’) of such
triples – where X is a Polish space, m a Borel probability measure on X and d a symmetric, square
integrable Borel function on X ×X which satisfies the triangle inequality almost everywhere. That is,

◮ the completion of X is the space X̄ of pseudo metric measure spaces.

The ‘space of spaces’ (X̄,∆∆) is a complete, geodesic space of nonnegative curvature (infinite dimensional
Alexandrov space) and as such allows for a variety of geometric concepts including space of geodesic
directions, tangent cones, exponential maps, gradients of semiconvex functions, and (downward) gradient
flows.

IV. A deeper insight into the tangent structure of X̄ is obtained by regarding X̄ as a closed convex subset
of an ambient space Y which consists of equivalence classes of triples (X, d,m) – called gauged measure
spaces – with X being Polish, d a symmetric L2-function on X2 (no longer required to satisfy the triangle
inequality) and m a Borel probability measure on X . It turns out that

◮ the metric space (Y,∆∆) is isometric to the quotient space L2
s(I

2,L2)/ Inv(I,L)

where L2
s(I

2,L2) denotes the space of symmetric L2-functions on the unit square and Inv(I,L) denotes
the space of measure preserving transformations of the unit interval I = [0, 1]. Being isometric to the
quotient of a Hilbert space under the action of a semigroup (acting isometrically via pull back), it comes
as no surprise that (Y,∆∆) is again a complete, geodesic metric space of nonnegative curvature.

A more detailed analysis of the tangent structure allows to regard Y as an infinite dimensional
Riemannian orbifold. In fact, one always may choose a homomorphic representative (X, d,m) without
atoms. Then

◮ the tangent space of the triple (X, d,m) is given by

T(X,d,m)Y = L2
s(X

2,m2)/ Sym(X, d,m)

where Sym(X, d,m) denotes the symmetry group (or isotropy group) of (X, d,m).
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In particular, if the given space (X, d,m) has no non-trivial symmetries then its tangent space is Hilbertian
and for f ∈ L2

s(X
2,m2)

Exp(X,d,m)(f) = (X, d+ f,m).

These results are very much in the spirit of Otto’s Riemannian calculus [Ott01] on the L2-Wasserstein
space P2(R

n) which also leads to lower bounds on the sectional curvature (cf. [Lot08]) and quite detailed
structural assertions on the tangent space (cf. [AGS05]). The latter, however, is essentially limited
to ‘regular’ points (i.e. absolutely continuous measures) whereas the above results also provide precise
assertions on the tangent structure for ‘non-regular’ points (i.e. spaces with non-trivial symmetries).

V. For major classes of functionals on X̄ one can explicitly calculate directional derivatives (of any order)
and thus obtains sharp bounds for gradients and Hessians. For each Lipschitz continuous, semiconvex
U : X̄ → R there exists a unique downward gradient flow in X̄. Any lower bound κ for the Hessian of U
yields an

◮ Lipschitz estimate for the downward gradient flow

∆∆
(
(Xt, dt,mt), (X

′
t, d
′
t,m
′
t)
)
≤ e−κ t ·∆∆

(
(X0, d0,m0), (X

′
0, d
′
0,m

′
0)
)
. (0.1)

Among these functionals are ‘polynomials’ of order n ∈ N. They are of the form

U
(
(X, d,m)

)
=

∫

Xn

u

((
d(xi, xj)

)
1≤i<j≤n

)
dmn(x1, . . . , xn)

where u is some smooth function on R
n(n−1)

2 . Of particular interest will be polynomials of order n = 4
which allow to determine whether a given curvature bound (either from above or from below) in the sense
of Alexandrov is satisfied. For each K ∈ R, there

◮ exist Lipschitz continuous, semiconvex functionals GK and H0 : X̄ → [0,∞) with the property that
for each geodesic metric measure space (X, d,m)

GK

(
(X, d,m)

)
= 0 ⇐⇒ (X, d,m) has curvature ≥ K

H0

(
(X, d,m)

)
= 0 ⇐⇒ (X, d,m) has curvature ≤ 0.

VI. Given any ‘model space’ (X⋆, d⋆,m⋆) within X̄, we define a functional F : X̄ → R+ whose downward
gradient flow will push each pseudo metric measure space (X, d,m) towards the given model space. We
put

F
(
(X, d,m)

)
=

1

2

∫ ∞

0

∫

X

[∫ r

0

(
vt(x)− v⋆t

)
dt

]2
dm(x)ρrdr.

Here vr(x) = m(Br(x)) denotes the volume growth of balls in the space (X, d,m) whereas r 7→ v⋆r is the
volume growth in (X⋆, d⋆,m⋆) and r 7→ ρr is some positive (’weight’) function on R+.

◮ The functional F is λ-Lipschitz and κ-convex

with λ =
∫∞
0
rρr dr and κ = − supr>0[rρr ]. In particular, the downward gradient flow for F satisfies a

Lipschitz bound (0.1) with constant e|κ| t.
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◮ The functional F will vanish if and only if

vr(x) = v⋆r for every r ≥ 0 and m-a.e. x ∈ X.

If X is a Riemannian manifold and v⋆ denotes the volume growth of the Riemannian model space M
n,κ

for n ≤ 3 and κ > 0 then the previous property implies that X is the model space Mn,κ.

◮ The gradient of −F at the point (X, d,m) is explicitly given as the function f ∈ L2
s(X

2,m2) with

f(x, y) =

∫ ∞

0

(
vr(x) + vr(y)

2
− v⋆r

)
ρ̄
(
r ∨ d(x, y)

)
dr

where ρ̄(a) =
∫∞
a
ρrdr.

The infinitesimal evolution of (X, d,m) under the downward gradient flow for F on X̄ is given by (X, dt,m)
with

dt(x, y) = d(x, y) + tf(x, y) +O(t2)

and f as above. That is, d(x, y) will be enlarged if – in average w.r.t. the radius r – the volume of balls
Br(x) and Br(y) in X is too large (compared with the volume v⋆r of balls in the model space), and d(x, y)
will be reduced if the volume of balls is too small.

VII. In a broader sense, the downward gradient flow for F is related to Ricci flow. Indeed, on the space
of Riemannian manifolds, the functionals F (ǫ) for a suitable sequence of weight functions ρ(ǫ) (converging
to δ0) will converge to

1

2

∫

X

(s(x) − s⋆)2dm(x),

a modification of the Einstein-Hilbert functional which plays a key role in Perelman’s program [Per02],
cf. [MT07], [KL08].

Note that Ricci flow does not depend continuously on the initial data, in particular, no Lipschitz
estimate of the form (0.1) will hold. Also note that no “regularizing” gradient flow is known which respects
lower curvature bounds in the sense of Alexandrov (Petrunin [Pet07b]: “Please deform an Alexandrov’s
space”). Similarly, no “regularizing” gradient flow is known which respects lower Ricci bounds in the sense
of Lott-Sturm-Villani [Stu06], [LV09].

This paper provides a comprehensive and detailed picture of the geometry in the space X̄ of all pseudo
metric measure spaces. Nevertheless, many challenging questions remain open, e.g.

• For which pairs of Riemannian manifolds does the connecting ∆∆-geodesic stay within the space of
Riemannian manifolds?

• For which functionals U : X̄ → R does the gradient flow stay within the space of Riemannian
manifolds (if started there)?
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1 The Metric Space (Xp,∆∆p)

1.1 Metric Measure Spaces and Couplings

Throughout this paper, a metric measure space (briefly: mm-space) will always be a triple (X, d,m)
where

• (X, d) is a complete separable metric space,

• m is a Borel probability measure on X .

The latter means that m is a measure on B(X) – the Borel σ-field associated with the Polish topology
on X induced by the metric d – with normalized total mass m(X) = 1. In the literature, metric measure
spaces are also called metric triples.

The support supp(X, d,m) of such a metric measure space – or simply the support supp(m) of the
measure m – is the smallest closed set X0 ⊂ X such that m(X \ X0) = 0. Occasionally, it will also be
denoted by X♭. We say that (X, d,m) has full support if supp(X, d,m) = X . This, however, will not
be required in general. The diameter or L∞-size of a metric measure space (X, d,m) is defined as the
diameter of its support:

diam(X, d,m) = sup
{
d(x, y) : x, y ∈ supp(X, d,m)

}
.

For any p ∈ [1,∞), the Lp-size of (X, d,m) is defined as

sizep(X, d,m) :=

(∫

X

∫

X

dp(x, y)dm(x)dm(y)

)1/p

.

Obviously, sizep(X, d,m) ≤ sizeq(X, d,m) ≤ diam(X, d,m) for all 1 ≤ p ≤ q ≤ ∞.
Given two mm-spaces (X0, d0,m0) and (X1, d1,m1) and a map ψ : X0 → X1, we define

• the pull back of the metric d1 through ψ as the pseudo metric ψ∗d1 on X0 given by

(ψ∗d1)(x0, y0) = d1(ψ(x0), ψ(y0))
(
∀x0, y0 ∈ X0

)
;

• the push forward of the probability measure m0 through ψ – provided ψ is Borel measurable – as
the probability measure ψ∗m0 on (X1,B(X1)) given by

(ψ∗m0)(A1) = m0

(
ψ−1(A1)

)
= m0

({
x0 ∈ X0 : ψ(x0) ∈ A1

}) (
∀A1 ∈ B(X1)

)
.

Definition 1.1. Given two mm-spaces (X0, d0,m0) and (X1, d1,m1), any probability measure m̄ on the
product space X0 ×X1 (equipped with the product topology and product σ-field) satisfying

(π0)∗m̄ = m0, (π1)∗m̄ = m1 (1.1)

is called coupling of the measures m0 and m1. The measures m0 and m1 in turn will be called marginals
of m̄.

Here π0 and π1 denote the projections from X0 × X1 to X0 and X1, resp. Condition (1.1) can be
restated as:

m̄(A0 ×X1) = m0(A0), m̄(X0 ×A1) = m1(A1)

for all A0 ∈ B(X0), A1 ∈ B(X1). The set of all couplings of m0 and m1 will be denoted by Cpl(m0,m1).
The set Cpl(m0,m1) is non-empty: it always contains the product coupling m̄ = m0 ⊗ m1 (being

uniquely defined by the requirement m̄(A0 × A1) = m0(A0) · m1(A1) for all A0 ∈ B(X0), A1 ∈ B(X1)).
If one of the measures m0 and m1 is a Dirac then the product coupling is indeed the only coupling:
Cpl(δx0 ,m1) = {δx0 ⊗m1}.
Lemma 1.2. Given m0 and m1, the set of couplings Cpl(m0,m1) is a non-empty compact subset of
P(X0 ×X1), the set of probability measures on X0 ×X1 equipped with the weak topology.
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Proof. Obviously, Cpl(m0,m1) is a closed subset within P(X0×X1). (The projection maps are continuous
functions.) The relative compactness (‘tightness’) follows from a simple application of Prohorov’s theorem,
see [Vil09], Lemma 4.4.

For each measurable map ψ : X0 → X1 with ψ∗m0 = m1, a coupling of m0 and m1 is given by

m̄ = (Id, ψ)∗m0.

In the particular case X0 = X1, m0 = m1, the choice ψ = Id leads to the diagonal coupling

dm̄(x, y) = dδx(y) dm0(x).

More generally, for each mm-space (X, d,m) and measurable maps ψ0 : X → X0, ψ1 : X → X1 with
(ψ0)∗m = m0, (ψ1)∗m = m1, a coupling of m0 and m1 is given by

m̄ = (ψ0, ψ1)∗m.

Indeed, any coupling is of this form – and without restriction one may choose (X, d,m) to be the unit
interval X = [0, 1] equipped with the standard distance d(x, y) = |x− y| and the 1-dimensional Lebesgue
measure m = L1 on [0, 1], cf. Lemma 1.15.

Remark 1.3. The concept of coupling of mm-spaces extends and improves (in an ’optimal’ quantitative
manner) the concepts of correspondence and ε-isometries between mm-spaces.

• Every coupling m̄ of measures m0 and m1 induces a correspondence between the supports of
(X0, d0,m0) and (X1, d1,m1) by means of

R = supp(m̄) ⊂ X0 ×X1.

But of course, the measure m̄ itself bears much more information than its support.
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(a) Coupling
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(b) Correspondence

Figure 1: Coupling vs. Correspondence

• Every coupling dm̄(x0, x1) of measures dm0(x0) and dm1(x1) admits a disintegration dm̄x0(x1) w.r.t.
dm0(x0). That is there exist probability measures dm̄x0(.) on X1 s.t.

dm̄(x0, x1) = dm̄x0(x1) dm0(x0)

as measures on X0 ×X1. This Markov kernel (‘disintegration kernel’) dm̄x0(x1) may be regarded
as a replacement of ε-isometries ψ : X0 → X1. Instead of mapping points x0 in X0 to points ψ(x0)
in X1 – or to ε-neighborhoods in X1 – we now map points x0 in X0 to probability measures m̄x0(.)
on X1.
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Lemma 1.4 (Gluing lemma). Let X0, X1, . . . , Xk be Polish spaces and m0,m1, . . . ,mk probability mea-
sures, defined on the respective σ-fields. Then for every choice of couplings µi ∈ Cpl(mi−1,mi), i =
1, . . . , k, there exists a unique probability measure µ ∈ P(X0 ×X1 × . . .×Xk) s.t.

(πi−1, πi)∗µ = µi (∀i = 1, . . . , k). (1.2)

µ is called gluing of the couplings µ1, . . . , µk and denoted by

µ = µ1 ⊠ . . .⊠ µk.

In particular, µ has marginals m0,m1, . . . ,mk. That is, (πi)∗µ = mi for all i = 0, 1, . . . , k. Note,
however, that the latter (in contrast to (1.2)) does not determine µ uniquely.

Proof. The proof in the case k = 2 is well-known, see e.g. [Dud02], proof of Lemma 11.8.3, [Vil03], Lemma
7.6. For convenience of the reader, let us briefly recall the construction: disintegration of dµ1(x0, x1) w.r.t.
dm1(x1) yields a Markov kernel dpx1(x0) such that

dµ1(x0, x1) = dpx1(x0)dm1(x1).

Similarly, disintegration of dµ2(x1, x2) w.r.t. dm1(x1) leads to a kernel dqx1(x2). In terms of these kernels
the probability measure µ = µ1 ⊠ µ2 on X0 ×X1 ×X2 is defined as

dµ(x0, x1, x2) = dpx1(x0)dqx1(x2)dm1(x1).

The solution for general k is constructed iteratively. Assume that µ(i) := µ1 ⊠ . . . ⊠ µi is already
constructed. By definition/construction it is a coupling of µ(i−1) and mi whereas µi+1 is a coupling of
mi and mi+1. The previous step thus allows to construct the gluing of µ(i) and µi+1 which is the desired
µ(i+1) = µ(i) ⊠ µi+1.

Lemma 1.5. Let X0 and Xk, k ∈ N, be Polish spaces and m0 and mk, k ∈ N, probability measures,
defined on the respective σ-fields. Then for every choice of couplings µk ∈ Cpl(m0,mk), k ∈ N, there
exists a probability measure µ ∈ P

(∏∞
k=0Xk

)
s.t.

(π0, πk)∗µ = µk (∀k ∈ N). (1.3)

Proof. Let µk ∈ Cpl(m0,mk) for k ∈ N be given and define for each n ∈ N a probability measure µ(n) on
X = X0 ×X1 × . . . Xn by

dµ(n)(x0, x1, x2, . . . , xn) = dµ1,x0(x1) dµ2,x0(x2) . . . dµn,x0(xn) dm0(x0)

where dµk,x0(xk) denotes the disintegration of dµk(x0, xk) w.r.t. dm0(x0). The projective limit of these
probability measures µ(n) as n→ ∞ is the requested µ.

1.2 The Lp-Distortion Distance

Definition 1.6. For any p ∈ [1,∞), the Lp-distortion distance between two metric measure spaces
(X0, d0,m0) and (X1, d1,m1) is defined as

∆∆p((X0, d0,m0), (X1, d1,m1))

= inf

{(∫

X0×X1

∫

X0×X1

|d0(x0, y0)− d1(x1, y1)|p dm̄(x0, x1)dm̄(y0, y1)

)1/p

: m̄ ∈ Cpl(m0,m1)

}
.

Similarly, the L∞-distortion distance is defined as

∆∆∞((X0, d0,m0), (X1, d1,m1))

= inf

{
sup

{
|d0(x0, y0)− d1(x1, y1)| : (x0, x1), (y0, y1) ∈ supp(m̄)

}
: m̄ ∈ Cpl(m0,m1)

}
.
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Lemma 1.7. For each p ∈ [1,∞] and each pair of metric measure spaces (X0, d0,m0) and (X1, d1,m1),
the infimum in the definition of ∆∆p((X0, d0,m0), (X1, d1,m1)) will be attained. That is, there exists a
measure m̄ ∈ Cpl(m0,m1) such that

∆∆p((X0, d0,m0), (X1, d1,m1)) =

(∫

X0×X1

∫

X0×X1

|d0(x0, y0)− d1(x1, y1)|p dm̄(x0, x1)dm̄(y0, y1)

)1/p

(1.4)
in the case p <∞ and

∆∆∞((X0, d0,m0), (X1, d1,m1)) = sup

{
|d0(x0, y0)− d1(x1, y1)| : (x0, x1), (y0, y1) ∈ supp(m̄)

}
.

Proof. According to Lemma 1.2, Cpl(m0,m1) is a non-empty compact subset of P(X0 ×X1). Moreover,
for any p ∈ [1,∞) the function

disp(.) : m 7→
(∫

X0×X1

∫

X0×X1

|d0(x0, y0)− d1(x1, y1)|p dm(x0, x1)dm(y0, y1)

)1/p

is lower semicontinuous on P(X0×X1) due to the continuity of d0 and d1. Passing to the limit pր ∞, this
also yields the lower semicontinuity for the analogously defined function dis∞(.). Thus for any p ∈ [1,∞],
the function disp(.) attains its minimum on Cpl(m0,m1).

Definition 1.8. A coupling m̄ ∈ Cpl(m0,m1) is called optimal (for ∆∆p) if (1.4) is satisfied. The set of
optimal couplings of the mm-spaces (X0, d0,m0) and (X1, d1,m1) will be denoted by Opt(m0,m1).

Note that – despite this short hand notation – the set Opt(m0,m1) strongly depends on the choice of
the metrics d0, d1 and on the choice of p.

Lemma 1.9. For each p ∈ [1,∞] and each triple of metric measure spaces (X0, d0,m0), (X1, d1,m1) and
(X2, d2,m2),

∆∆p((X0, d0,m0), (X2, d2,m2)) ≤ ∆∆p((X0, d0,m0), (X1, d1,m1)) + ∆∆p((X1, d1,m1), (X2, d2,m2)).

Proof. Choose optimal couplings µ ∈ Opt(m0,m1) and ν ∈ Opt(m1 m2) and glue them together to obtain
a probability measure r = µ⊠ ν on X0×X1×X2 with (π0, π2)∗r ∈ Cpl(m0,m2). Thus in the case p <∞

∆∆p((X0, d0,m0), (X2, d2,m2))

≤
(∫ ∫ ∣∣∣d0(x0, y0)− d2(x2, y2)

∣∣∣
p

dr(x0, x1, x2)dr(y0, y1, y2)

)1/p

=

(∫ ∫
|d0(x0, y0)− d1(x1, y1) + d1(x1, y1)− d2(x2, y2)|p dr(x0, x1, x2)dr(y0, y1, y2)

)1/p

≤
(∫ ∫

|d0(x0, y0)− d1(x1, y1)|p dr(x0, x1, x2)dr(y0, y1, y2)
)1/p

+

(∫ ∫
|d1(x1, y1)− d2(x2, y2)|p dr(x0, x1, x2)dr(y0, y1, y2)

)1/p

= ∆∆p((X0, d0,m0), (X1, d1,m1)) + ∆∆p((X1, d1,m1), (X2, d2,m2)).

This is the claim. Here, the last inequality is a consequence of the triangle inequality for the Lp-norm.
Exactly the same arguments also prove the claim in the case p = ∞.

1.3 Isomorphism Classes of MM-Spaces

Lemma 1.10. For each p ∈ [1,∞] and each pair of metric measure spaces (X0, d0,m0) and (X1, d1,m1),
the following assertions are equivalent:
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(i) ∆∆p((X0, d0,m0), (X1, d1,m1)) = 0.

(ii) ∃m̄ ∈ Cpl(m0,m1) such that d0(x0, y0) = d1(x1, y1) for m̄2-a.e. (x0, x1, y0, y1) ∈ (X0 ×X1)
2.

(iii) There exist a metric measure space (X, d,m) – complete and separable, as usual – with full support
and Borel maps ψ0 : X → X0, ψ1 : X → X1 which push forward the measures and pull back the
metrics:

• (ψ0)∗m = m0, (ψ1)∗m = m1,

• d = (ψ0)
∗d0 = (ψ1)

∗d1 on X ×X.

(iv) There exists a Borel measurable bijection ψ : X♭
0 → X♭

1 with Borel measurable inverse ψ−1 between
the supports X♭

0 = supp(X0, d0,m0) and X♭
1 = supp(X1, d1,m1) such that

• ψ∗m0 = m1,

• d0 = ψ∗d1 on X♭
0 ×X♭

0.

Proof. Taking into account the existence of optimal couplings (Lemma 1.7), the equivalence of (i) and
(ii) is obvious. For the implication (ii) ⇒ (iii), one may choose m = m̄, restricted to its support X which
is some closed subset of X0 ×X1. On X , a complete separable metric is given by

d((x0, x1), (y0, y1)) =
1

2
d0(x0, y0) +

1

2
d1(x1, y1).

Finally, one may choose ψ0 and ψ1 to be the projection maps X → X0 and X → X1, resp. They are
Borel measurable and push forward m to its marginals m0 and m1. Moreover, di(ψi(x), ψi(y)) = di(xi, yi)
for i = 0, 1 and thus, according to assumption (ii), for m2-a.e. (x, y) = ((x0, x1), (y0, y1)) ∈ X2

d0(ψ0(x), ψ0(y)) = d0(x0, y0) = d1(x1, y1) = d1(ψ1(x), ψ1(y)).

However, d0 and d1 (more precisely, their pull backs via the projection maps) are continuous functions
on X2, and m has full support. Thus the previous identity holds without exceptional set on X2. This in
turn implies – according to our choice of d – that

d(x, y) = d0(ψ0(x), ψ0(y)) = d1(ψ1(x), ψ1(y))

for all x, y ∈ X .
(iii) ⇒ (iv): The maps ψi : X → X♭

i for i = 0, 1 are isometric bijections with Borel measurable
inverse. Indeed, since the maps ψi pull back the metrics, they are injective and isometries. For showing
surjectivity, note that any y ∈ X♭

i is the limit of a sequence {yk = ψi(x
k)}k∈N in the image of ψi since

ψ pushes forward the measures. Then {xk}k∈N is a Cauchy sequence in X and due to the completeness
of X it has a limit x ∈ X whose image ψi(x) coincides with y. Now ψ = ψ1 ◦ ψ−10 : X♭

0 → X♭
1 is the

requested bijective Borel map with Borel measurable inverse.
(iii) or (iv) ⇒ (i) and (ii): Choose m̄ = (ψ0, ψ1)∗m or m̄ = (Id, ψ)∗m0.

Definition 1.11. Two metric measure spaces (X0, d0,m0) and (X1, d1,m1) will be called isomorphic if
any (hence every) of the preceding assertions holds true. This obviously defines an equivalence relation.
The corresponding equivalence class will be denoted by [X0, d0,m0] and called isomorphism class of
(X0, d0,m0). The family of all isomorphism classes of metric measure spaces (with complete separable
metric and normalized volume, as usual) will be denoted by X0.

In the sequel, elements of X0 will be denoted by X , X ′, X0, X1 etc. Each of them is an equivalence
class of isomorphic mm-spaces, say

X = [X, d,m], X ′ = [X ′, d′,m′], X0 = [X0, d0,m0], X1 = [X1, d1,m1].

Representatives within these classes will be denoted as before by (X, d,m), (X ′, d′,m′), (X0, d0,m0) or
(X1, d1,m1), resp. Note that in each equivalence class there is a space with full support. Indeed, any
(X, d,m) is isomorphic to (supp(X, d,m), d,m).
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All relevant properties of mm-spaces considered in the sequel will be properties of the corresponding
isomorphism classes. (This also holds true for the quantities diam(.), sizep(.), ∆∆p(., .) defined so far.)
Thus, mostly, there is no need to distinguish between equivalence classes and representatives of these
classes and we simply call X0 the space of metric measure spaces. For any p ∈ [1,∞], the subspace of
mm-spaces with finite Lp-size will be denoted by

Xp = {X ∈ X0 : sizep(X ) <∞}.

Proposition 1.12. For each p ∈ [1,∞], ∆∆p is a metric on Xp.

Proof. Symmetry, finiteness and nonnegativity are obvious. By construction (see Lemma 1.10), ∆∆p

vanishes only on the diagonal of Xp × Xp. The triangle inequality was derived in Lemma 1.9.

Remark 1.13. For each p ∈ [1,∞), the metric space
(
Xp,∆∆p

)
will be separable but not complete.

The separability will follow from an analogous statement for (Xp,Dp), see Proposition 2.4, combined
with the estimate ∆∆p ≤ 2Dp from Proposition 2.6 below. Incompleteness will be proven in Corollary
5.18.

Remark 1.14. The Lp-distortion distance can also be interpreted in terms of classical optimal transporta-
tion with some additional constraint. Given p ∈ [1,∞) and metric measure spaces (X0, d0,m0), (X1, d1,m1),
put Yi := Xi ×Xi, µi = mi ⊗mi for i = 0, 1 and

c(y0, y1) = |a(y0)− b(y1)|p

with a(y0) = d0(x0, x
′
0), b(y1) = d1(x1, x

′
1) for y0 = (x0, x

′
0) ∈ Y0, y1 = (x1, x

′
1) ∈ Y1. Then

∆∆p(X0,X1)
p = inf

{∫

Y0×Y1

c(y0, y1)dµ(y0, y1) : µ ∈ Cpl�(µ0, µ1)

}
,

where

Cpl�(µ0, µ1) =
{
µ ∈ P(Y0 × Y1) s.t. dµ(x0, x

′
0, x1, x

′
1) = dm(x0, x1)dm(x′0, x

′
1)

for some m ∈ Cpl(m0,m1)
}

⊂ Cpl(µ0, µ1).

An alternative approach to (optimal) couplings and to the Lp-distortion distance is based on the fact
that every mm-space is a standard Borel space or Lebesgue-Rohklin space since by definition all (mm-)
spaces under consideration are Polish spaces. Thus all of them can be represented as images of the unit
interval I = [0, 1] equipped with L1, the 1-dimensional Lebesgue measure restricted to I. This leads to
a variety of quite impressive representation results. A drawback of these formulas, however, is that quite
often any geometric interpretation gets lost.

Lemma 1.15. (i) For every mm-space (X, d,m) there exists a Borel map ψ : I → X such that

m = ψ∗L
1.

Any such map ψ will be called parametrization of the mm-space (X, d,m). The set of all parametriza-
tions will be denoted by Par(X, d,m) or occasionally briefly by Par(m).

(ii) Given mm-spaces (X0, d0,m0) and (X1, d1,m1), a probability measure m̄ on X0 ×X1 is a coupling
of m0 and m1 if and only if there exist ψ0 ∈ Par(X0, d0,m0) and ψ1 ∈ Par(X1, d1,m1) with

m̄ = (ψ0, ψ1)∗L
1.

11



(iii) For any p ∈ [1,∞) and any X0 = [X0, d0,m0] and X1 = [X1, d1,m1]

∆∆p(X0,X1) = inf

{(∫ 1

0

∫ 1

0

|d0(ψ0(s), ψ0(t))− d1(ψ1(s), ψ1(t))|p ds dt
)1/p

:

ψ0 ∈ Par(X0, d0,m0), ψ1 ∈ Par(X1, d1,m1)

}
.

Proof. (i) is well-known, see e.g. [Sri98], Theorem 3.4.23.
(ii) Let parametrizations ψ0, ψ1 of m0,m1, resp. be given. If m̄ = (ψ0, ψ1)∗L1 then (πi)∗m̄ = (ψi)∗L1 =

mi for each i = 0, 1. Thus m̄ ∈ Cpl(m0,m1). Conversely, according to part (i) for every m̄ ∈ Cpl(m0,m1)
there exists a Borel map ψ : I → X0 ×X1 such that m̄ = ψ∗L1. Put ψi = πi ◦ ψ such that ψ = (ψ0, ψ1).
Then (ψi)∗L1 = (πi)∗m̄ = mi for each i = 0, 1.

(iii) is an obvious consequence of (ii).

Remarks 1.16. (i) Given an mm-space (X, d,m) without atoms (i.e. with m({x}) = 0 for each x ∈ X),
a Borel measurable map ψ : I → X with m = ψ∗L1 can be chosen in such a way that it is bijective
with Borel measurable inverse ψ−1 : X → I.

(ii) For a general mm-space (X, d,m), the measure m can be decomposed into a countable (infinite or
finite) weighted sum of atoms and a measure without atoms. That is,

m =
∞∑

i=1

αi δxi +m
′

for suitable xi ∈ X , αi ∈ [0, 1]. Put ᾱi =
∑i

j=1 αj for i ∈ N∪{∞}, I ′ =
[
ᾱ∞, 1

)
and X ′ = supp(m′).

Then there exists a Borel measurable map ψ : I → X such that m = ψ∗L1,

ψ :
[
ᾱi−1, ᾱi

)
→ {xi}

for each i ∈ N, and ψ|I′ : I ′ → X ′ is bijective with Borel measurable inverse (see Figure).
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Figure 2: Borel isomorphism ψ

(iii) Typically, the triple (I, ψ∗d,L1) will not be a mm-space in the sense of the previous section but
just a pseudo metric measure space in the sense of chapter 5.3 below. For every ψ ∈ Par(X, d,m),
it will be homomorphic to the mm-space (X, d,m) (see Definition 5.1 below).

For another canonical representation of elements X ∈ X in terms of matrix distributions, see Propo-
sition 5.29.

12



2 The Topology of (Xp,∆∆p)

2.1 Lp-Distortion Distance vs. L0-Distortion Distance

In order to characterize the topology on Xp induced by ∆∆p observe that it is essentially an Lp-distance
and recall that Lp-convergence for functions is equivalent to convergence in probability and convergence
of the p-th moments (or uniform p-integrability). Following [Dud02], convergence in probability is the
appropriate concept of ‘L0-convergence’. It is metrized among others by the Ky Fan-metric. Adopting
this concept to our setting leads to the following definition of the L0-distortion distance ∆∆0:

∆∆0(X0,X1) = inf

{
ǫ > 0 : m̄⊗m̄

({
(x0, x1, y0, y1) : |d0(x0, y0)−d1(x1, y1)| > ǫ

})
≤ ǫ, m̄ ∈ Cpl(m0,m1)

}
.

Proposition 2.1. For each p ∈ [1,∞), every point X∞ and every sequence (Xn)n∈N in Xp the following
statements are equivalent:

(i) ∆∆p(Xn,X∞) → 0 as n→ ∞;

(ii) ∆∆0(Xn,X∞) → 0 as n→ ∞ and

sizep(Xn) → sizep(X∞) as n→ ∞;

(iii) ∆∆0(Xn,X∞) → 0 as n→ ∞ and

sup
n∈N

∫ ∫

{dn(x,y)>L}
dn(x, y)

pdmn(x) dmn(y) → 0 as L→ ∞. (2.1)

Note that condition (2.1) is void for each sequence (Xn)n∈N with uniformly bounded diameter. Such
a sequence converges w.r.t. ∆∆p (for some, hence all p ∈ [1,∞)) if and only if it converges w.r.t. ∆∆0.

Proof. Given the sequence (Xn)n∈N in Xp, the point X∞ as well as optimal couplings m̄n of them, we can
model all the distances dn, d∞ as (suitably coupled) random variables on one probability space. That is,
there exists a probability space (Ω,A,P) and random variables ξn : Ω → R for n ∈ N ∪ {∞} s.t.

(
ξn, ξ∞

)
∗P =

(
dn, d∞

)
∗(m̄n ⊗ m̄n) (∀n ∈ N),

see Lemma 1.5. Then indeed ∆∆p(Xn,X∞) is the Lp-distance of the random variables ξn, ξ∞, and
∆∆0(Xn,X∞) is the Ky Fan-distance of them:

∆∆p(Xn,X∞) =

(∫

Ω

|ξn − ξ∞|pdP
)1/p

,

∆∆0(Xn,X∞) = inf
{
ǫ > 0 : P({|ξn − ξ∞| > ǫ}) ≤ ǫ

}
.

Moreover, the Lp-size of Xn is just the p-th moment of ξn. Hence, the claim of the Theorem is an
immediate consequence of the well-known and fundamental result from Lebesgue’s integration theory:
The following statements are equivalent:

• ξn → ξ∞ in Lp;

• ξn → ξ∞ in probability and
∫
|ξn|pdP →

∫
|ξ∞|pdP;

• ξn → ξ∞ in probability and (ξn)n∈N is uniformly p-integrable.

See e.g. [BB01], Theorem 21.7.
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m̄

m4

m2

Example 2.2. For each n ∈ N, let Xn = [Xn, dn,mn] be the complete graph with 2n vertices, unit distances
and uniform distribution, a representative of Xn is e.g. given by Xn = {1, . . . , 2n}, dn(i, j) = 1 for all

i 6= j and mn = 1
2n

∑2n

i=1 δi. Then (Xn)n∈N is a Cauchy sequence w.r.t. ∆∆p for each p ∈ {0} ∪ [1,∞).
More precisely, for any p ∈ [1,∞),

∆∆p(Xn,Xk)
p = ∆∆0(Xn,Xk) ≤ |2−n − 2−k| for all k, n ∈ N.

However, the sequence will not converge in X, see Lemma 5.17.

Proof. Since the distortion function dis(in, jn, ik, jk) = |dn(in, jn)− dk(ik, jk)| can attain only the values
0 and 1, for each coupling m̄ ∈ Cpl(mn,mk), independent of p and ǫ,

∫ ∫ ∣∣∣dn − dk

∣∣∣
p

dm̄ dm̄ = m̄
2
(
dis > ǫ

)
= m̄

2
(
dis 6= 0

)

=
∑

in,ik

m̄(in, ik)
[ ∑

jk 6=ik

m̄(in, jk) +
∑

jn 6=in

m̄(jn, ik)
∣∣∣.

Assume now that k > n. Then the choice

m̄ =
1

2n

2n∑

in=1

( 1

2k−n

2k∑

ik=1

δin,(in−1)2k−n+jk

)

leads to the upper estimate ∆∆p
p = ∆∆0 ≤ 1

2n
1

2k−n

(
2k−n − 1

)
.

2.2 Lp-Distortion Distance vs. Lp-Transportation Distance

The Lp-distortion distance is closely related to the Lp-transportation distance Dp introduced earlier by
the author [Stu06]. The definition of the latter requires to introduce some further concepts.

to symmetry

triangle inequality
as constraint

arbitrary,

fixed due

X0

X0

X1

X1

d0

d1

d̄

d̄

Given metric spaces (X0, d0) and (X1, d1), a symmetric
R+-valued function d̄ onX×X – whereX = X0⊔X1 denotes
the disjoint union of these spaces (with induced topology) –
will be called coupling of the metrics d0 and d1 if

• it satisfies the triangle inequality on X ×X

• it coincides with d0 on X0 ×X0

• it coincides with d1 on X1 ×X1.

Note that this implies that d̄ is continuous on X ×X since

|d̄(x0, x1)− d̄(y0, y1)| ≤ d0(x0, y0) + d1(x1, y1)

but it might vanish outside the diagonal. Thus, d̄ is a pseudo
metric on X .

Given metric measure spaces (X0, d0,m0) and (X1, d1,m1), the set Cpl(d0, d1) will denote the set of
all couplings of the metrics restricted to the supports, that is, couplings of the metric spaces (X♭

0, d0) and
(X♭

1, d1) where X♭
0 and X♭

1 denote the support of the measures m0 and m1, resp.
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The Lp-transportation distance between X0 and X1 is defined as

Dp(X0,X1) = inf

{(∫

X0×X1

d̄p(x0, x1)dm̄(x0, x1)

)1/p

: m̄ ∈ Cpl(m0,m1), d̄ ∈ Cpl(d0, d1)

}
.

The usual limiting argument leads to consistent definitions for p = ∞:

D∞(X0,X1) = inf

{
sup

{
d̄(x0, x1) : (x0, x1) ∈ supp(m̄)

}
: m̄ ∈ Cpl(m0,m1), d̄ ∈ Cpl(d0, d1)

}
.

One easily verifies that the distances Dp(X0,X1) only depend on the isomorphism classes of X0 and X1,
resp. (and not on the choice of the representatives within these equivalence classes). Obviously, all of
them can be estimated in terms of the Gromov-Hausdorff distance between the supports of the measures

Dp(X0,X1) ≤ dGH

(
supp(X0), supp(X1)

)
.

Remark 2.3. Taking into account that each isometric embedding leads to a coupling of the metrics d0, d1
and vice versa, each coupling d̄ defines an isometric embedding into (X♭

0

⊔
X♭

1, d̄), one easily verifies that

Dp(X0,X1) = inf

{
Ŵp

(
m̂0, m̂1

)
:
(
X̂, d̂

)
cpl. sep. metric space,

ı0 : X♭
0 → X̂, ı1 : X♭

1 → X̂ isometric embeddings, m̂0 = ı0∗m0, m̂1 = ı1∗m1

}

where Ŵp(., .) denotes the Lp-Wasserstein distance on the space of probability measures on (X̂, d̂). More-
over, in view of Lemma 1.15 we conclude

Dp(X0,X1) = inf

{(∫ 1

0

∫ 1

0

d̂p
(
ı0
(
ψ0(s)

)
, ı1
(
ψ1(t)

))
ds dt

)1/p

: ψ0 ∈ Par(m0), ψ1 ∈ Par(m1),

(
X̂, d̂

)
cpl. sep. metric space, ı0 : X♭

0 → X̂, ı1 : X♭
1 → X̂ isometric embeddings

}
.

The infimum in the above definition is always attained.

Proposition 2.4. Assume p ∈ [1,∞).

(i) For each pair
(
X0,X1

)
of metric measure spaces there exists an ‘optimal’ pair

(
m̄, d̄

)
of couplings

such that

Dp(X0,X1) =

(∫

X0×X1

d̄p(x0, x1)dm̄(x0, x1)

)1/p

.

(ii) Dp is a complete separable geodesic metric on Xp.

Proof. In the case p = 2, all the assertions are proven in [Stu06], Lemma 3.3 and Theorem 3.6. Their
proofs, however, apply without any change to general p ∈ [1,∞).

The corresponding L0-transportation distance D0 is defined – in the spirit of the Ky Fan metric – by

D0(X0,X1) = inf

{
ǫ > 0 : m̄

({
(x0, x1) : d̄(x0, x1) > ǫ

})
≤ ǫ, m̄ ∈ Cpl(m0,m1), d̄ ∈ Cpl(d0, d1)

}
.

Remark 2.5. Albeit the Lp-transportation distance and the Lp-distortion distance are closely related,
they measure quite different quantities. Both definitions rely on the choice of an optimal coupling m̄

which produces pairs (x0, x1), (y0, y1), . . . of matched points.

• Each such pair produces certain transportation cost, say d̄(x0, x1). The Lp mean of it yields the
Lp-transportation distance. It is the Lp-Wasserstein distance of the measures in an – optimally
chosen – ambient metric space. The relevant question here is how far the two spaces (or the two
measures) are from each other after they are brought into optimal position (i.e. after choosing the
best isometric embedding of the two spaces into some common spaces.)
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• For the Lp-distortion distance the relevant question is how much the distance between any pair of
points in one of the two spaces, say (x0, y0) ∈ X2

0 , is changed if one passes to the pair of matched
points in the other space, say (x1, y1) ∈ X2

1 . This is the distortion of the distance. This quantity is
independent of any embedding. Its Lp-mean defines the Lp-distortion distance.

X0

X1

d̄

d̄

d̄

d0 d1

d1
x0

y0

z0

x1

y1

z1

z′1

z′′1 = y′1

Figure 3: Dp = Lp-mean of d̄, ∆∆p = Lp-mean of |d0 − d1|

Let us summarize some of the elementary estimates for the metrics ∆∆p and Dp for varying p’s.

Proposition 2.6. (i) ∀p ∈ [1,∞] : ∆∆p ≤ 2Dp, ∆∆0 ≤ 2D0 and ∆∆∞ = 2D∞.

(ii) ∀1 ≤ p ≤ q ≤ ∞: ∆∆
1+1/p
0 ≤ ∆∆p ≤ ∆∆q, D

1+1/p
0 ≤ Dp ≤ Dq.

(iii) ∀1 ≤ p ≤ q <∞, restricted to the space {X ∈ X : diam(X ) ≤ L} for a given L ∈ R+:

Lp−q ·∆∆q
q ≤ ∆∆p

p ≤
(
1 + Lp

)
·∆∆0, (L/2)p−q · Dq

q ≤ D
p
p ≤

(
1 + (L/2)p

)
· D0.

Proof. (i) Let mm-spaces X0 and X1 be given. Without restriction, assume that the respective measures
have full support and put X = X0 × X1. If d̄ is a coupling of d0 and d1 then the function dis :
(x0, x1, y0, y1) 7→ |d0(x0, y0)− d1(x1, y1)| defined on X ×X satisfies dis(x, y) ≤ d̄(x) + d̄(y) and thus for
each ǫ > 0

{(x, y) : dis > ǫ} ⊂
(
{x : d̄(x) > ǫ/2} ×X

)
∪
(
X × {y : d̄(y) > ǫ/2}

)
.

This, in particular, implies for any m̄ ∈ P(X ×X)

m̄
2(dis > ǫ) ≤ 2m̄(d̄ > ǫ/2).

If we now assume in the case p = 0 that D0(X0,X1) < ǫ/2 then the right hand side of the previous
inequality will be less than ǫ which in turn proves that ∆∆0(X0,X1) < ǫ. This proves the claim for p = 0.

For p ∈ [1,∞), choosing the pair
(
m̄, d̄

)
of couplings optimal for Dp , the claim follows from

∆∆p(X0,X1) ≤
(∫

X

∫

X

|d0(x0, y0)− d1(x1, y1)|p dm̄(x0, x1)dm̄(y0, y1)

)1/p

≤
(∫

X

∫

X

∣∣d̄(x0, x1) + d̄(y0, y1)
∣∣p dm̄(x0, x1)dm̄(y0, y1)

)1/p

≤ 2

(∫

X

d̄(x0, x1)
pdm̄(x0, x1)

)1/p

= 2Dp(X0,X1).

Passing to the limit pր ∞ yields the upper estimate in the case p = ∞.
For the lower estimate, assume that ∆∆∞(X0,X1) = L and that m̄ is an optimal coupling w.r.t. ∆∆∞.

Then dis(x, y) ≤ L for m̄-a.e. x, y ∈ X . Continuity of dis implies that this holds for all x, y ∈ supp(m̄).
Therefore, a coupling d̄ of d0 and d1 can be defined by putting

d̄(x0, x1) = inf

{
d0(x0, y0) + L/2 + d1(y1, x1) : (y0, y1) ∈ supp(m̄)

}
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for arbitrary x0 ∈ X0 and x1 ∈ X1. For this coupling, obviously d̄(x0, x1) ≤ L/2 for all (x0, x1) ∈ supp(m̄).
Thus D∞ ≤ L/2.

(ii) Simple applications of Jensen’s inequality yield for each coupling as above and for all 1 ≤ p ≤
q ≤ ∞

(∫

X

∫

X

|d0(x0, y0)− d1(x1, y1)|p dm̄(x0, x1)dm̄(y0, y1)

)1/p

≤
(∫

X

∫

X

|d0(x0, y0)− d1(x1, y1)|q dm̄(x0, x1)dm̄(y0, y1)

)1/q

as well as (∫

X

d̄(x0, x1)
pdm̄(x0, x1)

)1/p

≤
(∫

X

d̄(x0, x1)
qdm̄(x0, x1)

)1/q

.

For the L0-Lp-estimates, recall that Markov’s inequality states that ǫp ·P(|ξ| > ǫ) ≤
∫
|ξ|pdP for each

random variable ξ and each ǫ > 0. Thus,

ǫp+1 ≤
∫

|ξ|pdP

for all ǫ > 0 satisfying P(|ξ| > ǫ) > ǫ. Moreover, note that inf
{
ǫ > 0 : P(|ξ| > ǫ) ≤ ǫ

}
= sup

{
ǫ > 0 :

P(|ξ| > ǫ) > ǫ
}
, where we define sup ∅ := 0. Applying this to ξ = dis(.) and to ξ = d̄, resp., yields the

stated L0-Lp-estimates.
(iii) To prove the Lq-Lp-estimate, let m̄ be an optimal coupling for ∆∆p. Then,

∆∆q(X0,X1)
q ≤

∫

X

∫

X

|d0(x0, y0)− d1(x1, y1)|q dm̄(x0, x1)dm̄(y0, y1)

≤ Lq−p ·
∫

X

∫

X

|d0(x0, y0)− d1(x1, y1)|p dm̄(x0, x1)dm̄(y0, y1) = Lq−p ·∆∆p(X0,X1)
p,

since |d0(x0, y0) − d1(x1, y1)| ≤ L for all x0, y0, x1, y1 under consideration. Moreover, it also follows
immediately that ∆∆∞(X0,X1) ≤ L and thus (according to (i)) that

D∞(X0,X1) ≤
L

2
.

This finally proves

Dq(X0,X1)
q ≤

∫

X

d̄q(x0, x1)dm̄(x0, x1) ≤
(L
2

)q−p
·
∫

X

d̄p(x0, x1)dm̄(x0, x1) =
(L
2

)q−p
· Dp(X0,X1)

p,

where m̄ is now an optimal coupling w.r.t. Dp. For the Lp-L0-estimate, recall the obvious estimate
∫
ξpdP =

∫

{ξ>ǫ}
ξpdP+

∫

{ξ≤ǫ}
ξpdP ≤ ǫLp + ǫp ≤ ǫ(Lp + 1)

provided 0 ≤ ξ ≤ L and P(ξ > ǫ) ≤ ǫ ≤ 1. Applying this to ξ = dis(.) and to ξ = d̄, resp., – in the latter
case with L/2 in the place of L – yields the asserted Lp-L0-estimates.

2.3 L0-Distortion Distance vs. L0-Transportation Distance and Gromov’s

Box Distance

Our next goal is to analyze the topologies induced by ∆∆0 and D0, resp. For this purpose, define the
modulus of mass distribution as a function on X× R+ by

ϑ(X , r) = inf

{
ǫ > 0 : m

({
x ∈ X : m(Bǫ(x)) ≤ r

})
≤ ǫ

}

and put Θ(X , r) = 24ϑ(X , r1/4) + 12r1/4.
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Lemma 2.7 ([GPW09], Prop. 10.1, Lemma 10.3). (i) For each X0 ∈ X0,

lim
r→0

Θ(X0, r) = 0.

(ii) For all X0,X1 ∈ X0,

D0

(
X0,X1

)
≤ Θ

(
X0, ∆∆0

(
X0,X1

))
.

Recall the corresponding lower bound D0

(
X0,X1

)
≥ 1

2∆∆0

(
X0,X1

)
from Proposition 2.6.

Corollary 2.8. For every sequence (Xn)n∈N in X0 and every X0 ∈ X0,

D0(Xn,X0) → 0 as n→ ∞ ⇐⇒ ∆∆0(Xn,X0) → 0 as n→ ∞.

In other words, D0 and ∆∆0 induce the same topology on X0, called Gromov-weak topology.

Note that the metric D0 is complete ([Gro99]) whereas ∆∆0 is non-complete (Example 2.2). Thus, in
particular, the two metrics are neither Lipschitz nor Hölder equivalent.

These metrics are closely related to Gromov’s box metric �λ defined by

�λ(X0,X1) = inf

{
ǫ > 0 : ∃ψ0 ∈ Par(m0), ψ1 ∈ Par(m1) :

∀s, t ∈ [0, 1− λǫ) :
∣∣∣d0(ψ0(s), ψ0(t))− d1(ψ1(s), ψ1(t))

∣∣∣ ≤ ǫ

}

for any λ > 0. Obviously, ∆∆0 admits a quite similar representation in terms of parametrizations:

∆∆0(X0,X1) = inf

{
ǫ > 0 : ∃ψ0 ∈ Par(m0), ψ1 ∈ Par(m1) :

L
2
({

(s, t ∈ [0, 1]2 :
∣∣∣d0(ψ0(s), ψ0(t))− d1(ψ1(s), ψ1(t))

∣∣∣ ≤ ǫ
})

≥ 1− ǫ

}
,

the main difference between both formulas being that the ‘exceptional set’ in the first case is the com-
plement of a square (of side length close to 1) within the unit square whereas in the second case it is any
subset of the unit square of small L2-measure.

Lemma 2.9 ([Löh11]). ∆∆0 = �1/2.

Together with the trivial estimate 1
2�1 ≤ �1/2 ≤ �1 this implies

∆∆0 ≤ �1 ≤ 2∆∆0.

Corollary 2.10. For every sequence (Xn)n∈N in X0 with uniformly bounded diameters, for every X∞ ∈ X0

and for all λ > 0 and p ∈ [1,∞), the following are equivalent:

(i) Xn → X∞ w.r.t. �λ;

(ii) Xn → X∞ w.r.t. ∆∆0;

(iii) Xn → X∞ w.r.t. D0;

(iv) Xn → X∞ w.r.t. ∆∆p;

(v) Xn → X∞ w.r.t. Dp.

If Xn = [Xn, dn,mn] with compact spaces Xn, n ∈ N ∪ {∞}, each of these properties will follow from

(vi) (Xn, dn,mn) → (X∞, d∞,m∞) in the measured Gromov Hausdorff sense (‘mGH’).
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Conversely, any of the properties (i)-(v) will imply (vi) provided the spaces (Xn, dn,mn) have full support
and satisfy uniform bounds for doubling constants and diameters.

Proof. For the relation between Dp- and mGH-convergence we refer to [Stu06], Lemma 3.18. The rest is
obvious by the previous discussions.

Remarks 2.11. • The history of mm-spaces essentially starts with Gromov’s monograph [Gro99], more
precisely, the famous Chapter 3 1

2 therein. He promoted very much the idea of focussing on properties
which are invariant under isomorphisms. He also introduced several distances on X, among others,
the box distance �λ. (Even before that, the topology of mGH-convergence on the space of mm-
spaces was introduced by Fukaya [Fuk87]. The concept of mGH-convergence, however, is not
compatible with the equivalence relation of isomorphism classes.)

• The Lp-transportation distance Dp was introduced and discussed in detail (mainly restricted to the
case p = 2) by the author in [Stu06].

• Both the L0-transportation distance and the L0-distortion distance ∆∆0 were introduced by Greven,
Pfaffelhuber and Winter [GPW09]. They called them Gromov-Prohorov metric and Eurandom
metric, resp. Indeed, they derived an equivalent formulation for ∆∆0 in the spirit of the usual
definition of the Prohorov distance. They also introduced the L1-distortion distance ∆∆1 (at least for
truncated d’s) and gave Example 2.2 (with non-optimal constants). The Gromov-Prohorov metric
and its relation to the so-called Gromov-Hausdorff-Prohorov metric were discussed in [Vil09].

• The space X serves as an important model in image analysis and shape matching. In a series of
papers, Memoli introduced and analyzed various distances (partly for finite, partly for compact
mm-spaces) with emphasis on computational aspects and in view of applications to shape matching
and object recognition. In [Mém11], he presented an exhaustive survey on the distances ∆∆p and
Dp (which he denoted by 2Dp and Sp, resp.), their mutual relations and applications in image
analysis. Among others, he deduced a slightly restricted version of Proposition 1.12 (i.e. restricted
to compact mm-spaces) as well as several estimates of Proposition 2.6 (partly with non-optimal
constants).

• In recent years, the concept of mm-spaces and related topological/metric issues on the space X found
surprising new applications in the study of random graphs and their limits, e.g. the continuum
random tree or the Brownian map, see e.g. [GPW09], [ADH12], [LG10] and [Mie07].

In none of the previous works, any geometric properties of the space X itself have been derived. (The
only exception might be [Stu06] where geodesics had been characterized.) From our point of view, the
emphasis of this paper is not on the ‘metric results’ from the previous chapters but on the ‘geometric
results’ (concerning geodesics, curvature, quasi-Riemannian tangent structure etc.) of the subsequent
chapters.

3 Geodesics in (Xp,∆∆p)

Recall that (as usual in metric geometry) a curve (Xt)t∈J – where J denotes some interval in R – is called
geodesic if ∀S, s, t, T ∈ J with S < s < t < T :

∆∆p(Xs,Xt) =
t− s

T − S
∆∆p(XS ,XT ).

Thus, by definition, geodesics are always distance minimizing and have constant speed.

Theorem 3.1. For each p ∈ [1,∞],
(
Xp,∆∆p

)
is a geodesic space. More specifically, the following

assertions hold:

(i) For each pair of mm-spaces X0,X1 ∈ Xp and each optimal coupling m̄ of them (cf. Definition 1.8),
the family of metric measure spaces

Xt = [X0 ×X1, dt, m̄], t ∈ (0, 1),
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with
dt ((x0, x1), (y0, y1)) := (1− t)d0(x0, y0) + td1(x1, y1)

defines a geodesic (Xt)0≤t≤1 in Xp connecting X0 and X1.

(ii) If p ∈ (1,∞), then each geodesic (Xt)0≤t≤1 in Xp is of the form as stated in (i). That is, for each
geodesic (Xt)0≤t≤1 there exists an optimal coupling m̄ of the measures m0,m1, defined on the product
space of (X0, d0,m0) and (X1, d1,m1), representatives of the endpoints, such that for each t ∈ (0, 1)
a representative of the isomorphism class Xt is given by (X0 ×X1, dt,m) with dt := (1− t)d0 + td1.

Note that in the case p ∈ (1,∞) a conclusion from (ii) is that geodesics (Xt)0≤t≤1 in Xp do not branch
at times t 6= 0, 1. And they do not collapse to atoms at interior points. More precisely,

Corollary 3.2. If (Xt)t∈[0,1] and (X ′t)t∈[0,1] are two non-identical geodesics in Xp (for 1 < p <∞) with
identical initial and terminal points (i.e. X0 = X ′0,X1 = X ′1 and Xt 6= X ′t for some t ∈ (0, 1)) then none
of these geodesics can be extended to a geodesic beyond t = 0 or t = 1.

Corollary 3.3. If the initial point X0 of a geodesic (Xt)t∈[0,1] in Xp (for 1 < p <∞) has no atoms then
each inner point Xt, t ∈ (0, 1), of the geodesic has no atoms.

Proof of the theorem. (i) In order to prove that (Xt)0≤t≤1 is a geodesic in Xp, it suffices to verify that

∆∆p(Xs,Xt) ≤ |s− t|∆∆p(X0,X1)

for all s, t ∈ [0, 1]. We will restrict the discussion to the case p < ∞. For a given pair s, t ∈ (0, 1), note
that the ‘diagonal coupling’

d ¯̄m(x, y) := dδx(y)dm̄(x)

is one of the possible couplings of the measures of Xs and Xt (both being m̄). Thus, with X := X0 ×X1

∆∆p(Xs,Xt)
p ≤

∫

X×X

∫

X×X
|ds(x, y)− dt(x

′, y′)|p d ¯̄m(x, x′)d ¯̄m(y, y′)

=

∫

X

∫

X

|ds(x, y)− dt(x, y)|p dm̄(x)dm̄(y)

= |s− t|p
∫

X

∫

X

|d0(x0, y0)− d1(x1, y1)|p dm̄(x0, x1)dm̄(y0, y1)

= |s− t|p∆∆p(X0,X1)
p.

In the case s = 0 and t ∈ (0, 1), a slight modification of the argument is requested. Now we choose

d ¯̄m(x0, y) := dδy0(x0)dm̄(y)

(where y = (y0, y1)) as one of the possible couplings of the measures m0 of X0 and m̄ of Xt. Then the
argument works as before. Similarly, for the case s ∈ (0, 1) and t = 1.

(ii) Let a geodesic (Xt)0≤t≤1 in Xp be given. Fix a number k ∈ N and let µi (for i = 1, . . . , 2k) be
optimal couplings of the measures m(i−1)2−k and mi2−k . Glue together all these couplings to obtain a
probability measure

µ = µ1 ⊠ µ2 ⊠ . . .⊠ µ2k

on X0 ×X2−k × . . .×Xi2−k × . . .×X1. Put m̄ = (π0, π1)∗µ as well as m̄t = (π0, πt, π1)∗µ for all t ∈ (0, 1)
of the form t = i2−k (for i = 1, . . . , 2k − 1). Thus m̄ is a coupling of m0 and m1 (a priori not optimal).
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Let us now first restrict to the case p ≥ 2. Then for each t = i2−k (for some i = 1, . . . , 2k − 1),

∆∆p(X0,X1)
p

(∗)
≤

∫ ∫ ∣∣∣d0(x0, y0)− d1(x1, y1)
∣∣∣
p

dm̄(x0, x1)dm̄(y0, y1)

=

∫ ∫ ∣∣∣
[
d0(x0, y0)− dt(xt, yt)

]
+
[
dt(xt, yt)− d1(x1, y1)

]∣∣∣
p

dm̄t(x0, xt, x1)dm̄t(y0, yt, y1)

(∗∗)
≤

∫ ∫ [ 1

tp−1
∣∣d0(x0, y0)− dt(xt, yt)

∣∣p + 1

(1− t)p−1
∣∣dt(xt, yt)− d1(x1, y1)

∣∣p
]
dm̄t(x0, xt, x1)dm̄t(y0, yt, y1)

− 1

C[t(1 − t)]p−1

∫ ∫ ∣∣∣(1 − t)
[
d0(x0, y0)− dt(xt, yt)

]
− t
[
dt(xt, yt)− d1(x1, y1)

]∣∣∣
p

dm̄t(x0, xt, x1)dm̄t(y0, yt, y1)

= (I) − (II).

The last inequality (∗∗) is based on the estimate (ii) of Lemma 3.4 below, applied pointwise to the
integrand taking a = d0−dt

t and b = dt−d1
1−t . In the case p = 2, it is even an equality with C = 1.

Let us have a closer look on the first integral (I). Using estimate (i) of the Lemma below, it can be
bounded from above as follows

(I) = 2k(p−1)
∫ ∫ [

1

ip−1
∣∣d0(x0, y0)− di2−k(xi2−k , yi2−k)

∣∣p + 1

(2k − i)p−1
∣∣di2−k(xi2−k , yi2−k)− d1(x1, y1)

∣∣p
]

dµ(x0, . . . , xi2−k , . . . , x1)dµ(y0, . . . , yi2−k , . . . , y1)

≤ 2k(p−1)
2k∑

j=1

∫ ∫ ∣∣∣d(j−1)2−k(x(j−1)2−k , y(j−1)2−k)− dj2−k(xj2−k , yj2−k)
∣∣∣
p

dµ(x0, . . . , x(j−1)2−k , xj2−k , . . . , x1)dµ(y0, . . . , y(j−1)2−k , yj2−k , . . . , y1)

= 2k(p−1)
2k∑

j=1

∆∆p(X(j−1)2−k ,Xj2−k )p

= ∆∆p(X0,X1)
p.

This allows two conclusions: i) The coupling m̄ of m0 and m1 is optimal since the very first inequality (∗)
must be an equality. ii) The second integral (II) in the above derivation must vanish. That is,
∫

X0×Xt×X1

∫

X0×Xt×X1

∣∣∣(1− t)d0(x0, y0) + td1(x1, y1)− dt(xt, yt)
∣∣∣
p

dm̄t(x0, xt, x1)dm̄t(y0, yt, y1) = 0.

Since m̄t is a coupling of m̄ and mt, this implies that the mm-spaces (Xt, dt,mt) and (X0×X1, (1− t)d0+
td1, m̄) are isomorphic. This holds true for any t ∈ (0, 1) of the form t = i2−k for some i = 1, . . . , 2k − 1.

Now let us consider the case p ≤ 2 which requires a slightly modified argumentation. Here we consider
the Lp-distortion distance to the power 2. It yields

∆∆p(X0,X1)
2

≤
(∫ ∫ ∣∣∣

[
d0(x0, y0)− dt(xt, yt)

]
+
[
dt(xt, yt)− d1(x1, y1)

]∣∣∣
p

dm̄t(x0, xt, x1)dm̄t(y0, yt, y1)

)2/p

(∗∗∗)
≤ 1

t

(∫ ∫ [∣∣d0(x0, y0)− dt(xt, yt)
∣∣p
]
dm̄t(x0, xt, x1)dm̄t(y0, yt, y1)

)2/p

+
1

1− t

(∫ ∫ [∣∣dt(xt, yt)− d1(x1, y1)
∣∣p
]
dm̄t(x0, xt, x1)dm̄t(y0, yt, y1)

)2/p

− p− 1

t(1− t)

(∫ ∫ ∣∣∣(1− t)
[
d0(x0, y0)− dt(xt, yt)

]
− t
[
dt(xt, yt)− d1(x1, y1)

]∣∣∣
p

dm̄t(x0, xt, x1)dm̄t(y0, yt, y1)

)2/p

= (I′) − (II′).
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Now the last inequality (∗∗∗) is based on the estimate (iii) of Lemma 3.4 below, applied to the Lp-norms
(w.r.t. the measure m̄2

t ) of the involved functions.
The quantity (I′) can be estimated similarly as before, using the triangle inequality for the Lp-norm

and estimate (i) of Lemma 3.4 with p = 2:

(I′) =
2k

i

(∫ ∫ ∣∣d0(x0, y0)− di2−k(xi2−k , yi2−k)
∣∣p

dµ(x0, . . . , xi2−k , . . . , x1)dµ(y0, . . . , yi2−k , . . . , y1)

)2/p

+
2k

2k − i

(∫ ∫ ∣∣di2−k(xi2−k , yi2−k)− d1(x1, y1)
∣∣p

dµ(x0, . . . , xi2−k , . . . , x1)dµ(y0, . . . , yi2−k , . . . , y1)

)2/p

≤ 2k
2k∑

j=1

(∫ ∫ ∣∣∣d(j−1)2−k (x(j−1)2−k , y(j−1)2−k)− dj2−k(xj2−k , yj2−k)
∣∣∣
p

dµ(x0, . . . , x(j−1)2−k , xj2−k , . . . , x1)dµ(y0, . . . , y(j−1)2−k , yj2−k , . . . , y1)

)2/p

= 2k
2k∑

j=1

∆∆p(X(j−1)2−k ,Xj2−k )2

= ∆∆p(X0,X1)
2.

This allows the very same conclusions as before: i) the coupling is optimal and ii) the mm-spaces
(Xt, dt,mt) and (X0 ×X1, (1− t)d0 + td1, m̄) are isomorphic.

To indicate the dependence on k, let us now denote the optimal coupling m̄ (obtained via the above
construction) by m̄(k). According to Lemma 1.2, the family (m̄(k))k∈N has an accumulation point m̄(∞)

in Cpl(m0,m1). With this m̄(∞) in the place of the previous m̄(k) it follows that for all dyadic numbers
t ∈ (0, 1), the mm-spaces (Xt, dt,mt) and (X0 ×X1, (1− t)d0 + td1, m̄

(∞)) are isomorphic. Continuity of
both as elements in X in t finally allows to conclude this identification for all t ∈ (0, 1).

In the previous proof we used the following basic estimates between real numbers, partly known as
Clarkson’s inequalities.

Lemma 3.4. (i) ∀p ∈ (1,∞), ∀t0 < t1 . . . < tn, ∀a1, . . . , an ∈ R+

1

(tn − t0)p−1

( n∑

i=1

ai

)p
≤

n∑

i=1

1

(ti − ti−1)p−1
api .

(ii) ∀p ∈ [2,∞), ∀t ∈ (0, 1) : ∃C = C(p, t) > 0 : ∀a, b ∈ R

|ta+ (1− t)b|p ≤ t|a|p + (1− t)|b|p − t(1 − t)

C
|a− b|p.

(iii) For all p ∈ (1, 2], all t ∈ (0, 1), all probability spaces (Ω,A,P) and all f, g ∈ Lp(Ω,P),

‖tf + (1− t)g‖2p ≤ t‖f‖2p + (1− t)‖g‖2p − (p− 1)t(1− t)‖f − g‖2p.

Proof. (i) Consequence of Jensen’s inequality applied to numbers ai

ti−ti−1
and weights λi =

ti−ti−1

tn−t0 with∑
i λi = 1.
For (ii) and (iii), see e.g. Prop. 3 of [BCL94]. (ii) is the quantitative version of the uniform convexity

of r 7→ rp for p ≥ 2. (iii) is the 2-convexity of the Lp-norm for p ≤ 2. Actually, both inequalities are
stated only for t = 1

2 . However, a simple iteration argument allows to deduce them for arbitrary dyadic
t (with the optimal constant in case of (iii) and with some constant C(p, t) > 0 in case of (ii)).
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Remark 3.5. Given a mm-space X0 we say that another mm-space X1 is a regular target for X0 if there
exists a measurable map φ : X0 → X1 such that

m̄ = (Id, φ)∗m0

is a coupling of m0 and m1 which is optimal for ∆∆p. In other words, X1 is a regular target for X0 if there
exists a measurable map φ with φ∗m0 = m1 such that

∆∆p(X0,X1)
p =

∫

X0

∫

X0

|d0(x, y)− d1(φ(x), φ(y))|p dm0(x)dm0(y). (3.1)

A geodesic (Xt)0≤t≤1 emanating from X0 is called regular (for X0) if it connects X0 with some regular
target X1. Such a geodesic can be represented on the state space of X0 as

Xt =
[
X0, (1− t)d0 + t φ∗d1,m0

]

where φ∗d1 denotes the pull back of d1 from X1 to X0 through φ, that is, φ∗d1(x0, y0) = d1(φ(x0), φ(y0)).
This is in analogy to the ‘classical’ theory of optimal transportation where in ‘nice situations’ the

(unique) solution to the Kantorovich problem coincides with the solution to the Monge problem. Note,
however, that there is a significant difference to the ‘classical’ theory of optimal transportation on Eu-
clidean or Riemannian spaces.

• ‘Nice’ points µ0 of the Wasserstein space Pp(X) on a Riemannian manifold X have the property
that each target µ1 ∈ Pp(X) is regular for µ0. For instance, all probability measures µ0 which are
absolutely continuous with respect to the volume measure on X are ‘nice’.

• In contrast to that, even for ‘nice’ points in Xp like smooth compact Riemannian manifolds, e.g.
n-dimensional spheres Sn, we expect that there are plenty of non-regular targets, e.g. products
Sn × Sk.

Challenge 3.6. (i) Prove the existence (and uniqueness) of such a transport map φ between ‘nice’
spaces (e.g. smooth compact Riemannian manifolds of the same dimension) – i.e. Xp-version of
Brenier [Bre91] and McCann [McC01];

(ii) Derive regularity and smoothness results for this map – i.e. Xp-version of Ma, Trudinger, Wang
[MTW05].

(iii) Let X0 = (X0, d0,m0) and X1 = (X1, d1,m1) be smooth Riemannian manifolds equipped with their
Riemannian distances and with some weighted volume measures m0 and m1, resp. Assume that
there exists a diffeomorphism φ : X0 → X1 with m1 = φ∗m0 and satisfying (3.1). Prove or disprove:
each of the points

Xt =
[
X0, (1− t)d0 + t φ∗d1,m0

]

on the geodesic (Xt)0≤t≤1 connecting X0 and X1 is a smooth Riemannian manifold (with Rieman-
nian distance and weighted volume measure).

Why should this be true (and why is it not obvious)? Let gi denote the metric tensor on the manifold
Xi (i = 0, 1). Then the pull back metric tensor

φ∗g1

defines another metric tensor onX0, compatible with the pull back distance φ∗d1. Unfortunately, however,
the convex combination of the metric tensors g0 and φ∗g1 does not lead to a convex combination of the
Riemannian distances d0 and φ∗d1. It is unclear whether these latter convex combination is a Riemannian
distance (i.e. whether it is associated with some metric tensor).

Definition 3.7. A metric measure space (X, d,m) is called geodesic mm-space if for all x, y ∈ supp(m)
there exists a curve γ : [0, 1] → X with γ0 = x, γ1 = y and length(γ) = d(x, y).

(X, d,m) is called length mm-space if for all x, y ∈ supp(m)

d(x, y) = inf
{
length(γ) : γ0 = x, γ1 = y

}
.
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It is easy to see that being a geodesic (or length) mm-space is a property of the isomorphism class
[X, d,m]. The space of all isomorphism classes of geodesic mm-spaces will be denoted by Xgeo and the
space of all length mm-spaces by Xlength.

Proposition 3.8. Xgeo and Xlength are convex subsets of X.

Proof. Obviously, a mm-space (X, d,m) is a geodesic (or length) mm-space if and only if the metric space
(supp(m), d) is a geodesic (or length, resp.) space in the usual sense of metric geometry, see e.g. [BBI01].
To simplify the presentation, let us assume without restriction that m has full support. It is well-known
that (X, d) is a geodesic (or length, resp.) space if and only if for each pair (x, y) ∈ X2 there exists a
midpoint M(x, y) (or a sequence of 1/n-midpoints Mn(x, y), resp.) characterized by

d(x,M(x, y)) = d(y,M(x, y)) =
1

2
d(x, y)

(or d(x,Mn(x, y)) ≤ (12 + 1
n )d(x, y) and d(y,Mn(x, y)) ≤ (12 + 1

n )d(x, y), resp.).
Now let two geodesic mm-spaces [X0, d0,m0] and [X1, d1,m1] be given. Assume without restriction

that the chosen representatives have full support. Let

M0 : X
2
0 → X0, M1 : X2

1 → X1

be the midpoint maps and define

M :
(X0 ×X1)

2 → X0 ×X1(
(x0, x1), (y0, y1)

)
7→

(
M0(x0, y0),M1(x1, y1)

)
.

Then for each t ∈ (0, 1) and each m̄ ∈ Cpl(m0,m1), M is a midpoint map for (X0 × X1, dt, m̄) with
dt = (1 − t)d0 + td1. Indeed,

dt(x,M(x, y)) = (1 − t)d0(x0,M0(x0, y0)) + td1(x1,M1(x1, y1))

= (1 − t)
1

2
d0(x0, y0) + t

1

2
d1(x1, y1)

=
1

2
dt(x, y)

and also dt(y,M(x, y)) = 1
2dt(x, y).

Essentially the same argumentation applies to 1/n-midpoint maps in the case of length spaces.

Remarks 3.9. (i) Since the set of all possible midpoints is closed the measurable selection theorem
provides a Borel measurable map M : X2 → X such that for each x, y ∈ X2 the point M(x, y) is a
midpoint of x and y, provided of course X is a geodesic space. Similarly, for each n ∈ N it provides
a Borel measurable 1/n-midpoint map on a given length space.

(ii) Neither Xgeo nor Xlength is closed. An easy counterexample is provided by the sequence of geodesic
mm-spaces [[

I, |.|, 1
n
L
1 +

1

2
(1− 1

n
)δ0 +

1

2
(1− 1

n
)δ1

]]

which ∆∆p-converges to [[
I, |.|, 1

2
δ0 +

1

2
δ1

]]
.

4 Cone Structure and Curvature Bounds for (X,∆∆)

4.1 Cone Structure

From now on, for the rest of the paper we will restrict ourselves to the case p = 2. We simply write X

instead of X2, ∆∆ instead of ∆∆2, and size(.) instead of size2(.).
We begin with a reformulation of the L2-distortion distance which is analogous to the reformulations

of the classical transport problem for the cost functions |x − y|2 in terms of the transport problem for
the cost function −2xy. Indeed, such a result only holds for p = 2.
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Proposition 4.1. ∀X0,X1 ∈ X:

∆∆(X0,X1)
2 =size(X0)

2 + size(X1)
2

− 2 sup

{∫

X0×X1

∫

X0×X1

d0(x0, y0)d1(x1, y1)dm̄(x0, x1)dm̄(y0, y1) : m̄ ∈ Cpl(m0,m1)

}
.

Proof. Decompose the integrand |d0(x0, y0) − d1(x1, y1)|2 in the integrals used in the definition of ∆∆2

into two squares of distances and a midterm. Then observe that each of the integrals of a distance square
only depends on one of the marginals of m̄, e.g.

∫

X0×X1

∫

X0×X1

d0(x0, y0)
2dm̄(x0, x1)dm̄(y0, y1) =

∫

X0

∫

X0

d0(x0, y0)
2dm(x0)dm(y0) = size(X0)

2.

The space X0 has a distinguished element: the isomorphism class of metric measure spaces (X, d,m)
whose support consist of one point, say x ∈ X (and thus m = δx). This isomorphism class will be called
1-point space and denoted by δ. Note that for each X ∈ X0,

size(X ) = ∆∆(δ,X )

and thus
X

1 := {X ∈ X : size(X ) = 1}
is the unit sphere in (X,∆∆) around δ. Given any X1 = [X1, d1,m1] ∈ X, the unique unit speed geodesic
through X1 and emanating from δ is given by

Xt = [X1, td1,m1].

It is called ray through X1. Each element X 6= δ in X can uniquely be characterized as a pair (r,X1) ∈
(0,∞)×X1. The number r is the size of X , the element X1 ∈ X1 is the ‘standardization’ of X = [X, d,m]:

X1 := [X,
d

size(X )
,m].

A remarkable, quite surprising fact is that the L2-distortion distance between two spaces X = (r,X1)
and X ′ = (r′,X ′1) is completely determined by the sizes r = size(X ), r′ = size(X ′) and the distance
∆∆(X1,X ′1) of the standardized spaces.

Lemma 4.2. Let X1,X ′1 ∈ X1 and let (Xs)s≥0, (X ′t )t≥0 be the corresponding rays. Then the quantity

1

2st

[
∆∆2(Xs,X ′t )− s2 − t2

]

is independent of s, t ∈ (0,∞).

Proof. Let the rays be given as Xs = (X, sd,m) and X ′t = (X ′, td′,m′). Then for each m̄ ∈ Cpl(m,m′)
and all s, t ∈ (0,∞):

1

2st

[∫

X×X′

∫

X×X′

|sd(x, y)− td′(x′, y′)|2 dm̄(x, x′)dm̄(y, y′)− s2 − t2
]

=
1

2st

[
s2
∫

X

∫

X

d(x, y)2dm(x)dm(y)− s2

+ t2
∫

X′

∫

X′

d′(x′, y′)2dm′(x′)dm′(y′)− t2

−2st

∫

X×X′

∫

X×X′

d(x, y)d′(x′, y′)dm̄(x, x′)dm̄(y, y′)

]

=−
∫

X×X′

∫

X×X′

d(x, y)d′(x′, y′)dm̄(x, x′)dm̄(y, y′),

which obviously is independent of s and t. The last equality is due to the fact that size(X ) = 1 as well
as size(X ′) = 1.
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For X ,X ′ ∈ X1 put

∆∆(1)(X ,X ′) := 2 arcsin(
1

2
∆∆(X ,X ′)).

Of course, this is equivalent to saying that

∆∆(X ,X ′)2 = 2− 2 cos∆∆(1)(X ,X ′).

δ

X1

∆∆

∆∆(1)

sin(∆∆
(1)

2
) = ∆∆

2

X1

Xs

Xt

X ′1

δ ∡ = ∆∆(1)(X1,X ′1)
∆∆(Xs,X ′t )

Law of cosines: ∆∆2 = s2 + t2 − 2st∡

Figure 4: Cone structure

Thus we have proved the following:

Theorem 4.3. The space X is the cone over X
1. For each X1,X ′1 ∈ X

1 and for all s, t ∈ (0,∞):

∆∆(Xs,X ′t )2 = s2 + t2 − 2st cos∆∆(1)(X1,X ′1),

where Xs denotes the point with size s on the ray through X1 and, similarly, X ′t the point with size t on
the ray through X ′1.

4.2 Curvature Bounds

Theorem 4.4. (X,∆∆) is a geodesic space of nonnegative curvature in the sense of Alexandrov: both the
triangle comparison and the quadruple comparison property are satisfied. That is,

(i) for each geodesic (Xt)0≤t≤1 in X and each point X ′ in X,

∆∆2(Xt,X ′) ≥ (1− t)∆∆2(X0,X ′) + t∆∆2(X1,X ′)− t(1 − t)∆∆2(X0,X1); (4.1)

(ii) for each quadruple of points X0,X1,X2,X3 in X,

∑

i=1,2,3

∆∆2(X0,Xi) ≥
1

3

∑

1≤i<j≤3
∆∆2(Xi,Xj).

Note that for complete length spaces, properties (i) and (ii) are known to be equivalent [LP10].
However, due to lack of completeness this does not apply directly.

Proof. (i) According to Theorem 3.1, we may assume that the geodesic is given as Xt = [X, dt, m̄] with
X = X0 ×X1, dt = (1− t)d0 + td1, and some m̄ ∈ Opt(m0,m1).

Let X ′ = [X ′, d′,m′] and for fixed t ∈ [0, 1], let m̂ ∈ Cpl(m̄,m′) be a coupling which minimizes

∫ ∫
|dt(x, y)− d′(x′, y′)|2 dm̂(x, x′)dm̂(y, y′).
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X0

X1
Xt

X ′

Triangle comparison

a1
a2

a3

b1

b2

b3

Quadruple comparison:
∑

a2
i ≥

1
3

∑
b2i

Figure 5: Nonnegative curvature

In other words, m̂ is a probability measure on X̂ = X ×X ′ which couples m̄ and m′ in an optimal way
w.r.t. ∆∆. Then

∆∆2(Xt,X ′) + t(1− t)∆∆2(X0,X1)

=

∫

X̂

∫

X̂

|dt(x, y)− d′(x′, y′)|2 dm̂(x, x′)dm̂(y, y′) + t(1 − t)

∫

X

|d0(x, y)− d1(x, y)|2 dm̄(x)dm̄(y)

=

∫

X̂

∫

X̂

[
|(1− t)d0(x, y) + td1(x, y)− d′(x′, y′)|2 + t(1− t) |d0(x, y)− d1(x, y)|2

]
dm̂(x, x′)dm̂(y, y′)

=

∫

X̂

∫

X̂

[
(1 − t) |d0(x0, y0)− d′(x′, y′)|2 + t |d1(x1, y1)− d′(x′, y′)|2

]
dm̂(x0, x1, x

′)dm̂(y0, y1, y
′)

≥ (1 − t)∆∆2(X0,X ′) + t∆∆2(X1,X ′),

where the last inequality follows from the fact that (π0, π2)∗m̂ is a coupling of m0 and m′ - but not
necessarily an optimal one for ∆∆. Similarly, for (π1, π2)∗m̂ and m1, m

′.

(ii) Given points X0, . . . ,X3 ∈ X, choose m̄i ∈ Opt(m0,mi) and define (according to Lemma 1.5) a
measure µ on X = X0 ×X1 ×X2 ×X3 by

dµ(x0, x1, x2, x3) = dm̄1,x0(x1) dm̄2,x0(x2) dm̄3,x0(x3) dm0(x0)

where dm̄i,x0(xi) denotes the disintegration of dm̄i(x0, xi) w.r.t. dm0(x0). Then

3∑

i=1

∆∆2(X0,Xi) =

∫

X

∫

X

3∑

i=1

∣∣d0(x0, y0)− di(xi, yi)
∣∣2dµ(x) dµ(y)

≥
∫

X

∫

X

1

3

∑

1≤i<j≤3

∣∣di(xi, yi)− dj(xj , yj)
∣∣2dµ(x) dµ(y)

≥ 1

3

∑

1≤i<j≤3
∆∆2(Xi,Xj).

The last inequality here comes from the fact that for all i, j ∈ {1, 2, 3}

(πi, πj)∗µ ∈ Cpl(mi,mj)

but is not necessarily optimal. The first inequality follows from the quadruple inequality in the metric
space (R1, |.|) applied to the 4 points ξi = di(xi, yi), i = 0, 1, 2, 3, for each fixed pair (x, y) ∈ X2.

Corollary 4.5. The metric completion (X̄,∆∆) of (X,∆∆) is a complete length space of nonnegative cur-
vature in the sense of Alexandrov.

Obviously, also X̄ is a cone over its unit sphere X̄
1 (which is the completion of X1).

Proof. The quadruple inequality immediately carries over to the completion. According to [LP10], for
complete length spaces this characterizes nonnegative curvature in the sense of Alexandrov.

Corollary 4.6. (i) (X̄1,∆∆(1)) is a complete length space with curvature ≥ 1 in the sense of Alexandrov.
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(ii) (X1,∆∆(1)) is a geodesic space with curvature ≥ 1: both the triangle and the quadruple comparison
property are satisfied.

Proof. (i) It is a well-known fact from geometry of Alexandrov spaces, see e.g. [BBI01], Thm. 10.2.3.,
that cone structure together with nonnegative curvature implies that the unit sphere has curvature ≥ 1.
This result immediately applies to the completion X̄ and its unit sphere X̄1.

(ii) The fact that (X1,∆∆(1)) is a geodesic space follows from Theorem 4.3 (‘cone structure’) together
with the fact that (X,∆∆) itself is a geodesic space. The triangle and the quadruple inequality now both
follow from (i) by applying it to points in X1.

4.3 Space of Directions, Tangent Cone, and Gradients on X̄

According to the previous Corollary 4.6, (X̄,∆∆) is a complete length space of nonnegative curvature.
Indeed, we will see in Theorem 5.21 that (X̄,∆∆) is even a geodesic space (not just a length space). As
consequences of general results on Alexandrov spaces this implies a variety of existence and structural
results on tangent cones, exponential maps and gradients. We present some of the basic concepts and
results, following mainly [Pla02]. We formulate these definitions and assertions for the particular space
(X̄,∆∆). Actually, however, they will be true for arbitrary complete geodesic spaces of lower bounded
curvature. The crucial point is that no (local) compactness is required.

The space of geodesic directions at X0 – denoted by T̊ 1
X0
X̄ – consists of equivalence classes of unit

speed geodesics emanating from X0 where two such geodesics (Xt)0≤t≤τ and (X ′t )0≤t≤τ ′ are regarded as
equivalent if one of them is an extension of the other one, say e.g. τ ′ ≥ τ and

Xt = X ′t for t ≤ τ.

The space of geodesic directions is a metric space with a metric ∡ given by

∡(X•,X ′•) = lim
s,tց0

arccos

[
1

2st

(
s2 + t2 −∆∆2(Xs,X ′t )

)]
.

The limit always exists. Indeed, as a consequence of the curvature bound, the quantity arccos[.] in the
above formula is non-increasing in s and in t. The space of directions at X0 – denoted by T 1

X0
X̄ – is the

completion of the space of geodesic directions at X0 w.r.t. the metric ∡. The tangent cone TX0X̄ at X0 is
the cone over the space of directions at X0.

Definition 4.7. (i) Given a number λ ∈ R, a function U : X̄ → R will be called λ-Lipschitz continuous
if

|U(X0)− U(X1)| ≤ λ ·∆∆(X0,X1)

for all X0,X1 ∈ X̄. In this case, we briefly write Lip(U) ≤ λ. The function U is called Lipschitz
continuous if it is λ′-Lipschitz continuous for some λ′.

(ii) Given a number κ ∈ R, the function U : X̄ → R is called κ-convex if for all geodesics (Xt)0≤t≤1 in
X̄ and for all t ∈ [0, 1],

U(Xt) ≤ (1− t)U(X0) + tU(X1)−
κ

2
t(1− t)∆∆2(X0,X1).

(Note that if U is continuous, then the latter is equivalent to d2

dt2U(Xt) ≥ κ ·∆∆2(X0,X1) in distri-
butional sense on the interval (0, 1) for each given geodesic.) The function U is called semiconvex
if it is κ′-convex for some κ′.

(iii) The function U is called κ-concave (or semiconcave) if −U is (−κ)-convex (or semiconvex, resp.),
that is, if U(Xt) ≥ (1 − t)U(X0) + tU(X1) − κ

2 t(1 − t)∆∆2(X0,X1) for all geodesics (Xt)0≤t≤1 in X̄

and all t ∈ [0, 1].
Note that functions which we call κ-concave are called by some other authors (−κ)-concave. The sign

convention is not consistent in the literature.
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Example 4.8. The function X 7→ −∆∆2(X ,X0) is −2-convex for each X0. The same is true for the function

X 7→ max
{
−∆∆2(X ,Xi) : i = 1, . . . , k

}

for any given set of points X1, . . . ,Xk ∈ X̄.

For every Lipschitz continuous, semiconcave function U : X̄ → R the ‘ascending slope’ of U at X ∈ X̄

is
∣∣D+U(X )

∣∣ := lim sup
X ′→X

[U(X ′)− U(X )]
+

∆∆(X ′,X ).

A point X ∈ X̄ is called critical for U if |D+U(X )| = 0. The set X̄U of critical points for U is a closed
subset of X̄. Each local maximizer (as well as each local minimizer) is critical for U .

For each geodesic direction Φ ∈ TX0X̄, say Φ = (Xt)0≤t≤τ , the directional derivative of U in direction
Φ

DΦU = lim
tց0

1

t
[U(Xt)− U(X0)]

exists and depends continuously on Φ ∈ TX0X̄ (and thus extends to all of TX0X̄).

Lemma 4.9. For every Lipschitz continuous, semiconcave function U on X̄ and each point X ∈ X̄:

(i) |D+U(X )| = sup
{
DΦU : Φ ∈ TX X̄, ‖Φ‖TX X̄ = 1

}

(ii) If |D+U(X )| 6= 0 then there exists a unique unit vector Φ ∈ TX X̄ such that

∣∣D+U(X )
∣∣ = DΦU . (4.2)

The gradient of U at X ∈ X̄, denoted by ∇U(X ) or more precisely by ∇X̄U(X ), is now defined as an
element in TX X̄ as follows:

• if X is critical for U , put ∇U(X ) = 0,

• otherwise, put ∇U(X ) := tΦ where Φ ∈ TX X̄ is the unique unit tangent vector satisfying (4.2) and
t := |D+U(X )|.

Note that by construction,
‖∇U(X )‖TX X̄

=
∣∣D+U(X )

∣∣ .

4.4 Gradient Flows on X̄

Definition 4.10. A curve X• : [0, L) → X̄ (with L ∈ (0,∞]) is called ascending gradient curve of U or
solution of the (‘upward gradient flow’) differential equation

Ẋt = ∇U(Xt)

if for all t ∈ [0, L):

lim
sց0

1

s
∆∆(Xt+s,Xt) =

∣∣D+U(Xt)
∣∣ (4.3)

and

lim
sց0

1

s
[U(Xt+s)− U(Xt)] =

∣∣D+U(Xt)
∣∣2 . (4.4)

Theorem 4.11. Let U : X̄ → R be Lipschitz continuous and κ-concave.

(i) Then for each X0 ∈ X̄ there exists a unique ascending gradient curve (Xt)0≤t<∞ of U .
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(ii) For all X0,X ′0 ∈ X̄ and every t > 0

∆∆
(
Xt,X ′t

)
≤ eκ t ·∆∆

(
X0,X ′0

)
.

The uniqueness in particular implies that Xt = Xτ for all t ≥ τ where τ = inf{s ≥ 0 : Xs ∈ X̄U}.

Proof. If X0 ∈ X̄U , then one possible solution to the gradient flow equation (as defined above) is always
given by

Xt = X0 (∀t ≥ 0).

For X0 6∈ X̄U , Plaut [Pla02] as well as Lytchak [Lyt05], based on (unpublished) previous work of Perelman
and Petrunin [PP], proved the existence of gradient flow curves. (The concept of gradient-like curves
used in [Pla02] leads to re-parametrizations of gradient flow curves – at least as long as they do not hit
the closed set X̄U .) The crucial point is that this existence result does not require any compactness of the
underlying space X̄. The uniqueness result and exponential Lipschitz bound is taken from [Lyt05].

Remark 4.12. In analysis (PDEs, mathematical physics), instead of the upward gradient flow mostly the
downward gradient flow for a given function U on X̄ is considered.

Ẋt = ∇(−U)(Xt).

It is just the upward gradient flow for −U . (Note that in metric geometry we have to distinguish between
∇(−U) and −∇U .)

This requires the function U now to be semiconvex. The relevant quantity then is the descending
slope

|D−U(X )| = |D+(−U)(X )| = lim sup
X ′→X

[U(X ) − U(X ′)]+
∆∆(X ′,X ).

5 The Space Y of Gauged Measure Spaces

5.1 Gauged Measure Spaces

In order to analyze and characterize elements X in the completion X̄ of the space of mm-spaces, and to
obtain a more explicit representation of tangent spaces TX and exponential maps ExpX , we embed the
space of mm-spaces into a bigger space Y which in the sense of Alexandrov geometry is more regular. (In
particular, it has less boundary.)

Definition 5.1. A gauged measure space is a triple (X, f,m) consisting of a Polish space X , a Borel
probability measure m on X , and a function f ∈ L2

s(X
2,m2). The latter denotes the space of symmetric

functions f on X ×X which are square integrable w.r.t. the product measure m⊗m. Any such function
f is called gauge.

This extends the concept of metric measure spaces in two respects: i) the function f replacing the
distance d is no longer requested to satisfy the triangle inequality; ii) even if it did so, it is no longer
requested to induce the (Polish) topology on X . Metric (or gauge) and topology are decoupled to the
greatest possible extent. The only remaining constraint is that f should be measurable w.r.t. the σ-field
induced by the topology. To abandon the triangle inequality will make the space of all gauged measure
spaces ‘more linear’.

The size of a gauged measure is simply defined as the L2-norm of its gauge function, i.e.

size
(
X, f,m

)
=
( ∫

X

∫

X

f2(x, y)dm(x) dm(y)
)1/2

.
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Definition 5.2. (i) The L2-distortion distance between two gauged measure spaces (X0, f0,m0) and
(X1, f1,m1) is defined by

∆∆
(
(X0, f0,m0), (X1, f1,m1)

)

= inf

{(∫

X0×X1

∫

X0×X1

|f0(x0, y0)− f1(x1, y1)|2 dm̄(x0, x1)dm̄(y0, y1)

)1/2

: m̄ ∈ Cpl(m0,m1)

}
.

(ii) Every minimizer m̄ of the above RHS will be called optimal coupling of the given gauged measure
spaces. In other words, a coupling m̄ ∈ Cpl(m0,m1) is optimal if

∆∆
(
(X0, f0,m0), (X1, f1,m1)

)
=

(∫ ∫
|f0 − f1|2 dm̄ dm̄

)1/2

.

(iii) Two gauged measure spaces (X0, f0,m0) and (X1, f1,m1) are called homomorphic if

∆∆
(
(X0, f0,m0), (X1, f1,m1)

)
= 0.

Obviously, this defines an equivalence relation.

Lemma 5.3. (i) Every gauged measure space (X, f,m) is homomorphic to the space (I, f′,L1) for a
suitable f′ ∈ L2

s(I
2,L2). Indeed, one may choose f′ = ψ∗f for any ψ ∈ Par(m).

(ii) An optimal coupling of (X, f,m) and (I, ψ∗f,L1) is given by (ψ, Id)∗L1.

Proof. Define m̄ = (ψ, Id)∗L1 for ψ ∈ Par(m). Then obviously m̄ is a coupling of m = ψ∗L1 and L
1.

Moreover,
∫

X×I

∫

X×I
|f − f′|2 dm̄ dm̄ =

∫

I

∫

I

|ψ∗f − f′|2 dL1 dL1 = 0

according to our choice f′ = ψ∗f.

Proposition 5.4. For every pair of gauged measure spaces (X0, f0,m0) and (X1, f1,m1) there exists an
optimal coupling, i.e. a measure m̄ ∈ Cpl(m0,m1) which realizes the L2-distortion distance.

Proof. (i) Let us first prove the claim in the particular case X0 = X1 = I and m0 = m1 = L1. As
before in the proof of Lemma 1.7 the claim will follow from compactness of the set Cpl(m0,m1) and lower

semicontinuity of the functional m 7→
( ∫ ∫ ∣∣f0 − f1

∣∣2dm dm
)1/2

on Cpl(m0,m1). The former remains true
in this more degenerate setting, i.e. Lemma 1.2 applies without any change. The latter requires more
care and will be the content of the next lemma.

(ii) The case of general X0, X1 and m0,m1 can be reduced to the previous case as follows. Choose
ψi ∈ Par(mi) for i = 0, 1 and put f′i = ψi

∗fi. Apply the previous part (i) to deduce the existence of a
coupling m̃ ∈ Cpl(L1,L1) which minimizes

(∫

I2

∫

I2

∣∣f′0(x0, y0)− f′1(x1, y1)
∣∣2dm̃(x0, x1) dm̃(y0, y1)

)1/2

.

Put m̄ = (ψ0, ψ1)∗m̃. This defines a coupling of m0 and m1 and satisfies
(∫

X0×X1

∫

X0×X1

∣∣f0 − f1
∣∣2dm̄ dm̄

)1/2

=

(∫

I2

∫

I2

∣∣ψ∗0 f0 − ψ∗1 f1
∣∣2dm̃ dm̃

)1/2

= ∆∆
(
(I, f′0,L

1), (I, f′1,L
1)
)

≤ ∆∆
(
(I, f′0,L

1), (X0, f0,m0)
)
+∆∆

(
(X0, f0,m0), (X1, f1,m1)

)
+∆∆

(
(X1, f1,m1), (I, f

′
1,L

1)
)

= ∆∆
(
(X0, f0,m0), (X1, f1,m1)

)

according to the previous lemma. This proves the optimality of m̄.

31



Lemma 5.5. Given two functions f0, f1 ∈ L2
s(I

2,L2), the functional

m 7→ Ξ(m) :=

(∫

I2

∫

I2

∣∣f0(x0, y0)− f1(x1, y1)
∣∣2dm(x0, x1) dm(y0, y1)

)1/2

is continuous on Cpl(L1,L1), the latter being regarded as a subset of P(I2) equipped with the topology of
weak convergence.

Proof. Every f ∈ L2
s(I

2,L2) can be approximated in L2-norm by continuous symmetric functions on I2.
(Just apply the heat kernel or any mollifier to f, see e.g. the construction in the proof of Theorem 5.19.)
Thus there exist fi,n ∈ L2

s(I
2,L2) ∩ C(I2) for i = 0, 1 and n ∈ N such that

(∫

I

∫

I

∣∣fi(s, t)− fi,n(s, t)
∣∣2ds dt

)1/2

≤ 1

n
.

For each n ∈ N the functional

m 7→ Ξn(m) :=

(∫

I2

∫

I2

∣∣f0,n(x0, y0)− f1,n(x1, y1)
∣∣2dm(x0, x1) dm(y0, y1)

)1/2

is continuous on Cpl(m0,m1) due to the fact that the integrand |f0,n − f1,n|2 is continuous and bounded
on I2 × I2. Moreover, by a simple application of the triangle inequality in L2(I2 × I2),

∣∣∣Ξ(m)− Ξn(m)
∣∣∣ ≤

(∫

I2

∫

I2

∣∣f0(x0, y0)− f0,n(x0, y0)
∣∣2dm(x0, x1) dm(y0, y1)

)1/2

+

(∫

I2

∫

I2

∣∣f1,n(x1, y1)− f1(x1, y1)
∣∣2dm(x0, x1) dm(y0, y1)

)1/2

=

(∫

I

∫

I

∣∣f0(s, t)− f0,n(s, t)
∣∣2ds dt

)1/2

+

(∫

I

∫

I

∣∣f1,n(s, t)− f1(s, t)
∣∣2ds dt

)1/2

≤ 2

n

for each n ∈ N. This proves the continuity of m 7→ Ξ(m) on Cpl(m0,m1).

Proposition 5.6. For any pair of gauged measure spaces (X0, f0,m0) and (X1, f1,m1),

∆∆
(
(X0, f0,m0), (X1, f1,m1)

)
= 0 ⇐⇒ ∃(X, f,m), ∃ψi : X → Xi measurable s.t.

(ψi)∗m = mi, (ψi)
∗fi = f (∀i = 0, 1).

In particular,

∆∆
(
(X0, f0,m0), (X1, f1,m1)

)
= 0 ⇐= ∃ψ : X0 → X1 measurable s.t. ψ∗m0 = m1, ψ

∗f1 = f0.

Here and in the sequel, identities like (ψi)
∗fi = f or ψ∗f1 = f0 have to be understood as equalities

m2-a.e. on X2 or m2
0-a.e. on X2

0 , resp.

Proof. Assume the existence of the space (X, f,m) and the maps ψ0, ψ1 with given properties. Put
m̄ = (ψ0, ψ1)∗m. Obviously, this is an element of Cpl(m0,m1) satisfying

∫

X0×X1

∫

X0×X1

∣∣∣f0 − f1

∣∣∣
2

dm̄ dm̄ =

∫

X

∫

X

∣∣∣ψ∗0 f0 − ψ∗1 f1
∣∣∣
2

dm dm = 0.

Now, conversely, assume that ∆∆(., .) = 0. Then according to Proposition 5.4 there exist m̄ ∈ Cpl(m0,m1)
with

∫ ∫
|f0 − f1|2dm̄ dm̄ = 0. Then

f0(x0, y0) = f1(x1, y1) for m̄
2-a.e.

(
(x0, x1), (y0, y1)

)
∈ X2

for X := X0 ×X1. Thus (X, f, m̄) with f := 1
2 f0 +

1
2 f1 will do the job together with ψi = πi : X → Xi

being the projections (i = 0, 1).

32



Remarks 5.7. (i) If m0 has atoms and m1 has no atoms then there exists no map ψ : X0 → X1 with
ψ∗m0 = m1.

(ii) For each gauged measure space (X0, f0,m0) there exist gauged measure spaces (X1, f1,m1) without

atoms and with ∆∆
(
(X0, f0,m0), (X1, f1,m1)

)
= 0. This follows from Lemma 5.3.

Equivalence classes of homomorphic gauged measure spaces will be denoted by

X0 = [[X0, f0,m0]], X1 = [[X1, f1,m1]], X ′ = [[X ′, f′,m′]] etc.

and their respective representatives as before by (X0, f0,m0), (X1, f1,m1), (X
′, f′,m′) etc. The space of

equivalence classes of homomorphic gauged measure spaces will be denoted by Y.

Theorem 5.8. (Y,∆∆) is a complete geodesic space of nonnegative curvature in the sense of Alexandrov.
More specifically, the following assertions hold:

(i) For each pair of gauged measure spaces (X0, f0,m0) and (X1, f1,m1), there exists an optimal coupling
m̄ ∈ Cpl(m0,m1).

(ii) For each choice of optimal coupling m̄ ∈ Cpl(m0,m1), a geodesic in Y connecting [[X0, f0,m0]] and
[[X1, f1,m1]] is given by

Xt = [[X0 ×X1, (1− t)f0 + tf1, m̄]], t ∈ (0, 1). (5.1)

(iii) Every geodesic (Xt)t∈[0,1] in Y is of this form. That is, given representatives (X0, f0,m0) and
(X1, f1,m1) of the endpoints of the geodesic, there exists an optimal coupling m̄ ∈ Cpl(m0,m1)
defined on X0 ×X1 such that (5.1) holds.

(iv) (Y,∆∆) satisfies the triangle comparison and the quadruple comparison properties.

(v) (Y,∆∆) is a cone over its unit sphere

Y
1 = {X ∈ Y : size(X ) = 1}.

(vi) Y1 with the induced distance ∆∆(1) is a complete geodesic space with curvature ≥ 1 in the sense of
Alexandrov.

Proof. • Obviously, (Y,∆∆) is a metric space. (Same proof as for Lemma 1.9.)

• The existence of optimal couplings was already stated as Proposition 5.4. The assertions on exis-
tence and uniqueness of geodesics thus follow exactly as in Theorem 3.1. None of the arguments
used in the proof required that d is continuous or satisfies the triangle inequality.

• The proof of the cone property from Theorem 4.3 applies without any change.

• All assertions on curvature bounds for Y and Y1 follow with exactly the same arguments as for X

and X1, see Theorem 4.4 and Corollary 4.6.

• It remains to prove the completeness of (Y,∆∆):

Let a sequence of gauged measure spaces (Xn, fn,mn), n ∈ N, be given with

∆∆
(
(Xn, fn,mn), (Xk, fk,mk)

)
→ 0 as k, n→ ∞.

Passing to a subsequence if necessary, we may assume that

∆∆
(
(Xn, fn,mn), (Xn+1, fn+1,mn+1)

)
≤ 2−n
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for all n ∈ N which (according to Proposition 5.4) implies the existence of a coupling µn ∈
Cpl(mn,mn+1) satisfying

(∫

Xn×Xn+1

∫

Xn×Xn+1

∣∣∣fn − fn+1

∣∣∣
2

dµn dµn

)1/2

≤ 2−n. (5.2)

Gluing together all these measures for n = 1, . . . , N − 1 yields a measure

µ̂N = µ1 ⊠ . . .⊠ µN−1 on X̂N =

N∏

n=1

Xn.

For N → ∞, the projective limit
µ̂ = lim

←−
µ̂N

of these measures is a probability measure on X̂ =
∏∞

n=1Xn with the property

(πn, πn+1)∗µ̂ = µn

for each n ∈ N. Define functions f̂n ∈ L2
s(X̂

2, µ̂2) by

f̂n(x, y) = fn(xn, yn)

for x = (xi)i∈N, y = (yi)i∈N ∈ X̂ . Then

‖f̂n − f̂n+1‖L2
s(X̂

2,µ̂2) = ∆∆
(
(Xn, fn,mn), (Xn+1, fn+1,mn+1)

)
≤ 2−n

for all n ∈ N. Therefore, (̂fn)n is a Cauchy sequence in the Hilbert space L2
s(X̂

2, µ̂2) and thus there

exists f̂ ∈ L2
s(X̂

2, µ̂2) with

‖f̂n − f̂‖L2
s(X̂

2,µ̂2) → 0.

The triple (X̂, f̂, µ̂) is the gauged measure space we are looking for. Indeed,

∆∆
(
(Xn, fn,mn), (X̂, f̂, µ̂)

)
≤ ‖f̂n − f̂‖L2

s(X̂
2,µ̂2) → 0.

This proves the claim.

5.2 Equivalence Classes in L2

s
(I2,L2)

The space Y admits a remarkable and very instructive representation in terms of parametrizations. For
this purpose, let us consider the semigroup Inv(I,L1) of all Borel measurable maps φ : I → I which leave
L1 invariant, i.e. which satisfy φ∗L1 = L1. This semigroup, call it G for the moment, acts on the linear
space H = L2

s(I
2,L2) via pull back

G×H → H

(φ, f) 7→ φ∗f

with
(
φ∗f

)
(s, t) = f

(
φ(s), φ(t)

)
.

Lemma 5.9. G acts isometrically on H.

Proof.

‖φ∗f‖2H =

∫ 1

0

∫ 1

0

∣∣∣f
(
φ(s), φ(t)

)∣∣∣
2

ds dt
(∗)
=

∫ 1

0

∫ 1

0

∣∣∣f
(
s, t
)∣∣∣

2

ds dt = ‖f‖2H

where (∗) holds due to the L1-invariance of φ.

34



The semigroup G induces an equivalence relation ≃ in H :

f ≃ g ⇐⇒ ∃φ, ψ ∈ G : φ∗f = ψ∗g.

The set of equivalence classes for this relation ≃ will be called quotient space and denoted by

L = H/G = L2
s(I

2,L2)/ Inv .

It is a pseudo metric space with pseudo metric dL = dH/G = dL2/ Inv given by

dH/G([[f ]], [[g]]) = inf
{
‖f ′ − g′‖H : f ′ ∈ [[f ]], g′ ∈ [[g]]

}

= inf
{
‖φ∗f − ψ∗g‖H : φ, ψ ∈ G

}
.

Here [[f ]] and [[g]] denote the equivalence classes of f, g ∈ H .

Theorem 5.10. (i) (L, dL) is a metric space.

(ii) The metric spaces
(L, dL) and (Y,∆∆)

are isometric. An isometry is given by

Θ :
L2
s(I

2,L2)/ Inv → Y

[[f ]] 7→ [[I, f,L1]].

The inverse map Θ−1 assigns to each representative (X, f,m) of a gauged measure space [[X, f,m]] ∈
Y the function f′ = ψ∗f ∈ L2

s(I
2,m2) where ψ is any element in Par(m).

(iii) L2
s(I

2,L2)/ Inv is a complete geodesic space of nonnegative curvature in the sense of Alexandrov.

Proof. (i), (ii) Let [[f ]], [[g]] ∈ L2
s(I

2,L2)/ Inv with representatives f, g in L2
s(I

2,L2). Then

dL2/ Inv([[f ]], [[g]]) = inf
{
‖φ∗f − ψ∗g‖L2 : φ, ψ ∈ Inv

}

≥ ∆∆

(
(I, f,L1), (I, g,L1)

)
= ∆∆

(
[[I, f,L1]], [[I, g,L1]]

)

since each pair (φ, ψ) ∈ Inv× Inv defines a coupling of L1 with itself via (φ, ψ)∗L1.
Conversely, given any coupling m̄ of L1 with itself, there exists φ ∈ Par(m̄), i.e. φ = (φ0, φ1) : I → I2

such that φ∗L1 = m̄. Thus

∫

I2

∫

I2

∣∣f(x0, y0)− g(x1, y1)
∣∣2dm̄(x0, x1) dm̄(y0, y1) =

∫

I

∫

I

∣∣f(φ0(s), φ0(t))− g(φ1(s), φ1(t))
∣∣2ds dt

= ‖φ∗0f − φ∗1g‖2L2

with φ0, φ1 ∈ Inv(I,L1). Hence, ∆∆
(
(I, f,L1), (I, g,L1)

)
≥ dL2/ Inv([[f ]], [[g]]).

Nondegeneracy of dL2/ Inv follows from Proposition 5.4. Indeed,

dL2/ Inv([[f ]], [[g]]) = 0

implies ∆∆
(
(I, f,L1), (I, g,L1)

)
= 0 which in turn implies the existence of an optimal coupling m̄ with∫ ∫

|f−g|2 dm̄ dm̄ = 0. Any such coupling m̄ can be represented as (φ, ψ)∗L1 for suitable φ, ψ ∈ Inv(I,L1).
Thus

φ∗f = ψ∗g.

It remains to prove that Θ is surjective. This simply follows from the fact that for each gauged
measure space (X, f,m) there exists a parametrization ψ ∈ Par(m) of its measure and that the function
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f′ = ψ∗f defined in terms of this parametrization lies in L2
s(I

2,m2). Moreover, the gauged measure space
(I, f′,L1) will be homomorphic to the originally given (X, f,m):

∆∆

(
(I, f′,L1), (X, f,m)

)
= 0,

see Lemma 5.3.
(iii) All assertions follow immediately from (ii) together with the analogous statements of Theorem

5.8.

Remark 5.11. If Inv(I,L1) was a group (instead just a semigroup) then assertion (iii) of the previous
Theorem (together with all the assertions from Theorem 5.8) would be an immediate consequence of
standard results in Alexandrov geometry. Indeed, ifH is a complete length space of nonnegative curvature
and if G is a group which acts isometrically on H then the quotient space H/G again is a length space
of nonnegative curvature, [BBI01], Prop. 10.2.4.

5.3 Pseudo Metric Measure Spaces

Definition 5.12. Given a gauged measure space (X, d,m), we say that the gauge d satisfies the triangle
inequality m2-almost everywhere if there exists a Borel set N ⊂ X2 with m2(N) = 0 such that

d(x1, x2) + d(x2, x3) ≥ d(x1, x3)

for every (x1, x2, x3) ∈ X3 with (xi, xj) 6∈ N for all {i, j} ⊂ {1, 2, 3}.
Any such function d ∈ L2

s(X
2,m2) will be called pseudo metric on X . In particular, a pseudo metric

is not required to be continuous but merely measurable on X × X . And of course it may vanish also
outside of the diagonal.

Remarks 5.13. (i) Any pseudo metric d is nonnegative m2-a.e. on X2. Indeed, combining the esti-
mates d(x1, x3) ≤ d(x1, x2) + d(x2, x3) and d(x2, x3) ≤ d(x2, x1) + d(x1, x3) – both valid for every
(x1, x2, x3) ∈ X3 with (xi, xj) 6∈ N for all {i, j} ⊂ {1, 2, 3} – yields d(x1, x3) ≤ 2d(x1, x2)+d(x1, x3)
which proves the claim.

(ii) The triangle inequality m2-almost everywhere (as defined above) obviously implies that the gauge
function d satisfies the triangle inequality m3-almost everywhere in the sense that

d(x1, x2) + d(x2, x3) ≥ d(x1, x3)

for m3-a.e. triple (x1, x2, x3) ∈ X3. For the converse, see Corollary 5.20 below where it is shown
that the latter implies that the given gauged measure space is homomorphic to a pseudo metric
measure space (i.e. a gauged measure space which satisfies the m2-a.e.-triangle inequality).

See also recent work of Petrov, Vershik and Zatitskiy [ZP11], [VPZ12] where it is shown that the
validity of the m3-a.e.-triangle inequality for a separable gauged measure space (X, d,m) implies
that there exists a correction of d which satisfies the triangle inequality everywhere and coincides
m2-a.e. on X2 with d (and thus in particular d is a pseudo metric in our sense).

Lemma 5.14. (i) Let (X, d,m) be a gauged measure space and ψ ∈ Par(m) a parametrization. Then

d is a pseudo metric on X ⇐⇒ ψ∗d is a pseudo metric on I.

(ii) Let (Xk, dk,mk), k ∈ N, be a sequence of gauged measure spaces with

∆∆
(
(Xk, dk,mk), (X∞, d∞,m∞)

)
−→ 0 as k → ∞

for some gauged measure space (X∞, d∞,m∞). If for each k ∈ N, dk is a pseudo metric on Xk then
d∞ is a pseudo metric on X∞.

36



Proof. (i) Assume that d satisfies the triangle inequality m2-a.e. with ‘exceptional set’ N ⊂ X2. Put
d′ = ψ∗d and N ′ = (ψ, ψ)−1(N) ⊂ I2. Then L2(N ′) = m2(N) = 0 and d′ satisfies the triangle inequality
for every (t1, t2, t3) ∈ I3 with (ti, tj) 6∈ N ′ for all {i, j} ⊂ {1, 2, 3}.

Conversely, assume that d′ satisfies the triangle inequality L2-a.e. with ‘exceptional set’ N ′ ⊂ I2. Put
M ′ = I2 \N ′ and

M = (ψ, ψ)(M ′), N = X2 \M = (ψ, ψ)(N ′).

Then L2(M ′) = 1 and thusm2(M) = 1. Moreover, d satisfies the triangle inequality for every (x1, x2, x3) ∈
X3 with (xi, xj) ∈M for all {i, j} ⊂ {1, 2, 3}.

(ii) Following the argumentation in the proof of Theorem 5.8 (completeness assertion), we may assume
without restriction that Xk = X∞, mk = m∞ for all k ∈ N and, moreover,

‖dk − d∞‖L2
s(X

2
∞

,m2
∞

) → 0

as k → ∞. Passing to a subsequence, the latter implies

dk → d∞ m
2
∞-a.e. on X2

∞.

Thus the m2
∞-a.e. triangle inequality carries over from dk to d∞.

Applied to two gauged measure spaces (X0, d0,m0) and (X1, d1,m1) which are homomorphic, i.e.
∆∆
(
(X0, d0,m0), (X1, d1,m1)

)
= 0, the previous Lemma in particular implies that d0 satisfies the triangle

inequality m
2
0-almost everywhere if and only if d1 satisfies the triangle inequality m

2
1-almost everywhere.

Thus the ‘almost everywhere triangle inequality’ is a property of homomorphism classes.

Definition 5.15. A (homomorphism class of) gauged measure space(s) X = [[X, d,m]] is called pseudo
metric measure space if the gauge d satisfies the triangle inequality m2-almost everywhere.

The space of homomorphism classes of pseudo metric measure spaces is denoted by X̂.

Corollary 5.16. The space X̂ of pseudo metric measure spaces is a closed, convex subset of Y. It contains
the space X of metric measure spaces and its closure X̄.

Proof. Closedness of X̂ follows from part (ii) of the previous Lemma. Since it obviously contains X it
therefore also contains X̄.

To see the convexity, let a geodesic (Xt)0≤t≤1 in Y be given. It is always of the form

Xt = [[X0 ×X1, (1− t)d0 + td1, m̄]].

Thus if the endpoints lie in X̂, the gauges d0 and d1 satisfy the triangle inequality on X0 × X1 with
suitable exceptional sets N0, N1 of vanishing m̄2-measure. But then also the convex combinations of d0
and d1 satisfy the triangle inequality with exceptional set N0 ∪N1.

Lemma 5.17. (i) Let (X,m) and (X ′,m′) be arbitrary standard Borel spaces without atoms (i.e. X
is a Polish space and m a probability measure on B(X) with m({x}) = 0 for all x ∈ X; similarly
X ′ and m′). Equip X as well as X ′ with the discrete metric

d(x, y) = d′(x, y) =

{
0, x = y
1, else

Then (X, d,m) and (X ′, d′,m′) are homomorphic. The equivalence class [[X, d,m]] will be called the
discrete continuum.

(ii) The pseudo metric measure space X = [[X, d,m]] from (i) is the limit of the sequence of metric
measure spaces Xn = [Xn, dn,mn], n ∈ N, considered in Example 2.2. More precisely,

∆∆(Xn,X ) ≤ 2−n/2 for all n ∈ N.
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(iii) For each n ∈ N, the geodesic (Xn,t)0≤t≤1 connecting Xn = Xn,0 and X = Xn,1 instantaneously
leaves the set X. That is, for each t > 0,

Xn,t 6∈ X.

Proof. (i) For every coupling m̄ ∈ Cpl(m,m′)

∫ ∫ ∣∣∣d− d′
∣∣∣
2

dm̄ dm̄ =

∫

X×X′

[
m̄({(x, x′) : x = y, x′ 6= y′}) + m̄({(x, x′) : x 6= y, x′ = y′})

]
dm̄(y, y′)

≤
∫

X×X′

[
m({y}) +m

′({y′})
]
dm̄(y, y′) = 0.

(ii) Decompose X into 2n disjoint subsets of equal volume

X =

2n⋃

i=1

Xi, m(Xi) = 2−n.

Indeed, by Remark 1.16 (i), we can find a Borel measurable bijection ψ : I → X with m = ψ∗L1 and
Borel measurable inverse. Now perform the decomposition on I.
Define a coupling m̄ of mn and m by

dm̄(j, x) =

2n∑

i=1

1Xi(x)dm(x) dδi(j).

Then

∆∆2(Xn,X ) ≤
∫ ∫ ∣∣∣dn − d

∣∣∣
2

dm̄ dm̄

=
2n∑

i,j=1

∫ ∫ ∣∣∣dn(i, j)− d(x, y)
∣∣∣
2

1Xj (y) 1Xi(x) dm(x) dm(y)

=

2n∑

i=1

m(Xi)
2 = 2−n.

This yields the asserted upper estimate.
(iii) The geodesic (Xn,t)0≤t≤1 connecting Xn = Xn,0 and X = Xn,1 is given by

Xn,t = [[Xn ×X, dt, m̄]]

with dt = (1− t)dn + td. For each t > 0, the pseudo metric dt is not a metric which generates the Polish
topology of Xn ×X .

Corollary 5.18. X is not closed. Even more, it is not open in X̄.

To obtain at least a vague geometric interpretation of the convergence Xn → X in the previous Lemma
5.17(ii), think of Xn being the tree consisting of 2n edges ei = (0, vi) of length 1/2, glued together at the
origin. The vertices vi may be regarded as points on the circle with radius 1/2, connected to each other
only via the origin. The limit space X then may be regarded as the circle with radius 1/2 equipped with
the uniform distribution (= Haar measure) and the discrete metric (which amounts to say that each pair
of points is connected only via the origin).

Theorem 5.19. X̂ = X̄.

Proof. Given any pseudo metric measure space (X, d,m), we have to find metric measure spaces (Xn, dn,mn)
with

∆∆
(
(Xn, dn,mn), (X, d,m)

)
→ 0.
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We will modify the given pseudo metric step by step to transform it into a complete separable metric.
(i) According to Lemma 5.3 and Lemma 5.14(i), we may assume without restriction that X = I,

m = L1. We then also will choose Xn = I, mn = L1 for all n. Let d be the given pseudo metric on I.
That is, d is a symmetric L2-function on I × I which satisfies the triangle inequality L2-a.e. in the sense
of Definition 5.12.

(ii) Without restriction d is bounded, say bounded by L. Indeed, d is square integrable on I2 and
thus can be approximated in L2-norm by dk = min{d, k} for k ∈ N. Obviously, dk is again a pseudo
metric and now in addition bounded. The convergence dk → d in L2 implies (I, dk,L

1) → (I, d,L1) in
∆∆-distance.

(iii) We extend d to a pseudo metric d′ on R by

d′(x, y) =





d(x, y), if x, y ∈ I
L/2, if x ∈ I, y 6∈ I or y ∈ I, x 6∈ I
0, if x, y 6∈ I.

(iv) Let ηn for n ∈ N be a smooth mollifier kernel on R, i.e. ηn ≥ 0 on R, ηn = 0 outside of [− 1
n ,+

1
n ]

and
∫
ηn(t) dt = 1, say ηn(t) = n · η(nt) with

η(t) =

{
C · exp

(
1

t2−1

)
, t ∈ (−1, 1)

0, else.

Put

d′n(x, y) =

∫

R

∫

R

d′(x+ s, y + t) ηn(s) ηn(t) ds dt. (5.3)

For each n ∈ N, this defines a pseudo metric on R. The triangle inequality holds for each triple of points
x, y, z ∈ R. Indeed,

d′n(x, y) + d′n(y, z)− d′n(x, z)

=

∫

R

∫

R

∫

R

[
d′(x + s, y + t) + d′(y + t, z + u)− d′(x+ s, z + u)

]
ηn(s) ηn(t) ηn(u) ds dt du

which is nonnegative since the integrand [. . .] is nonnegative for L3-a.e. triple (s, t, u).
Hence, d′n is continuous and satisfies the triangle inequality. Moreover,

‖d′n − d‖L2(I2) → 0

as n→ ∞.
(v) Finally, we put

dn(x, y) = d′n(x, y) +
1

n
|x− y| (5.4)

for x, y ∈ I. Then dn is a complete separable metric which induces the standard Euclidean topology on
I. In particular, (I, dn,L

1) is a metric measure space. Moreover, ‖dn−d‖L2(I2) ≤ ‖d′n−d‖L2(I2)+
1
n → 0

as n→ ∞. This proves the claim.

The proof of the previous theorem in particular leads to the following

Corollary 5.20. For a gauged measure space (X, d,m), the following assertions are equivalent:

(i) d satisfies the triangle inequality m2-a.e.

(ii) d satisfies the triangle inequality m
3-a.e.

Note that in contrast to [ZP11], our result does not require the pseudo metric to be separable.

Proof. Let us briefly sketch the arguments for "(ii) ⇒ (i)". (The converse implication is obvious.) Given
(X, d,m), we choose a parametrization ψ ∈ Par(m) to transfer everything from X to I. In particular, the
pull back d′ = ψ∗d will satisfy the triangle inequality L3-a.e. on I. We approximate d′ by convolution
with the mollifier kernels ηn (as in the previous proof) and obtain pseudo metrics d′n on I which satisfy
the triangle inequality everywhere. For n → ∞ we obtain, at least along subsequences, that d′n → d′

L
2-a.e. on I2. Thus d′ satisfies the triangle inequality L

2-a.e. Back to the space X , this amounts to say
that the original d satisfies the triangle inequality m2-a.e.
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Corollary 5.21. X̄ is a complete geodesic space of nonnegative curvature in the sense of Alexandrov.
It is a convex (‘totally geodesic’) subset of Y and it contains X as a convex subset.

5.4 The n-Point Spaces

For each n ∈ N, let M(n) be the linear space of real-valued symmetric (n× n)-matrices vanishing on the
diagonal. Equipped with the re-normalized l2-norm

‖f‖M(n) :=

(
2

n2

∑

1≤i<j≤n
f2
ij

)1/2

for f = (fij)1≤i<j≤n ∈ M(n)

it is a Hilbert space (and as such of course a very particular example of an Alexandrov space of nonnegative

curvature). It is isometric to R
n(n−1)

2 equipped with a constant multiple of the Euclidean metric.
The permutation group Sn acts isometrically on M(n) via

(σ, f) 7→ σ∗f with (σ∗f)ij := fσiσj .

It defines an equivalence relation ∼ in M(n) by

f ∼ f ′ ⇐⇒ ∃σ ∈ Sn : fij = f ′σiσj
(∀i, j ∈ {1, . . . , n}).

Theorem 5.22. (i) The quotient space M(n) := M(n)/ ∼ equipped with the metric

dM(n)(f, f ′) = inf{‖f − f ′σ‖M(n) : σ ∈ Sn}

is a complete geodesic space of nonnegative curvature. Its Hausdorff dimension is n(n−1)
2 .

(ii) (M(n), dM(n)) is isometric to a cone in R
n(n−1)

2 (with the induced inner metric in the cone). This
cone can be regarded as fundamental domain for the group action of Sn.

(iii) M(n) is a Riemannian orbifold. The tangent space at f ∈ M(n) is given by

TfM
(n) = R

n(n−1)
2 /Sym(f)

where
Sym(f) =

{
σ ∈ Sn : σ∗f = f

}

is the symmetry group (or stabilizer subgroup or isotropy group) of f .

Proof. (i) According to general results on geometry of Alexandrov spaces, lower curvature bounds are
preserved under passing to quotient spaces w.r.t. any isometric group action, cf. [BBI01], Proposition
10.2.4. The remaining claims in (i) and (ii) are straightforward. For (iii), we refer to [Thu80], chapter
13.

r1

r2
r3

t = 0 t = 1 t = 2

Figure 6: Triangles r(t) = expr(tg) for r = (3, 4, 5) ∈ M(3), g = (0, 12 ,− 1
2 ) ∈ TrM

(3) and t = 0, 1, 2.

Note that for the equilateral triangle r(1) ∈ M(3): expr(1)(tg) = expr(1)(−tg) (∀t ∈ R).
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r1 r2

r3

Figure 7: For r = (1, 1, 2) and g = (0, 0, 1): g ∈ TrM
(3) but g 6∈ TrM

(3)
≤ .

Now let us consider the subset M
(n)
≤ in M(n) consisting of those symmetric (n×n)-matrices (fij)1≤i<j≤n

which ‘satisfy the triangle inequality’ in the following sense:

fij + fjk ≥ fik (∀i, j, k ∈ {1, . . . , n}). (5.5)

Note that this constraint is compatible with the equivalence relation ∼ induced by the action of the
permutation group Sn:

∀f, f ′ ∈ M(n) with f ∼ f ′ : f ∈ M
(n)
≤ ⇐⇒ f ′ ∈ M

(n)
≤ .

Hence, the space M
(n)
≤ := Mn

≤/ ∼ coincides with the subset of M(n) of equivalence classes of f which
satisfy (5.5).

Example 5.23. The simplest non-trivial case is n = 3. Here

M(3) =








0 r1 r2
r1 0 r3
r2 r3 0


 : r = (r1, r2, r3) ∈ R

3





and
M

(3)
≤ =

{
r ∈ R

3 : r1 ≤ r2 + r3, r2 ≤ r3 + r1, r3 ≤ r1 + r2

}
.

A fundamental domain of the quotient space M(3)/S3 is for instance given by

M̃(3) =
{
r ∈ R

3 : r1 ≤ r2 ≤ r3

}
.

r2 r3

r1

(a) The domain bounded by the blue lines is

M
(3)
≤ ∩ S

2.

(b) The red colored area is
M̃

(3)
∩ S

2.
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Figure 8: The green vectors illustrate elements in TfM
(3)
≤ which are mutually identified, whereas the

black vector is in TfM
(3), but not in in TfM

(3)
≤ .

Corollary 5.24. (i) M
(n)
≤ is a closed convex subset of M(n). It is itself an Alexandrov space of non-

negative curvature with dimension n(n−1)
2 .

(ii) For f ∈ M
(n)
≤ the tangent space TfM

(n)
≤ consists of those g ∈ TfM

(n) for which expf (tg) = f + tg

stays within M
(n)
≤ at least for some t > 0.

Now let us consider the injection

Φ :
M(n) → Y,

f = (fij)1≤i<j≤n 7→ X = [[{1, . . . , n}, f, 1
n

∑n
i=1 δi]].

Elements in the image Y(n) := Φ
(
M(n)

)
are called n-point spaces. They are characterized as gauged

measure spaces for which the mass is uniformly distributed on n (not necessarily distinct) points. For
convenience, we also require that the gauge functions vanish on the diagonal. The image

X
(n) := Φ

(
M

(n)
≤

)

of M
(n)
≤ consist of those mm-spaces with mass uniformly distributed on n points.

Proposition 5.25. For each n ∈ N, Φ is a 1-Lipschitz map:

∆∆
(
Φ(f),Φ(g)

)
≤ dM(n)(f, g) (∀f, g ∈ M

(n)).

Moreover,
size

(
Φ(f)

)
= ‖f‖M(n).

Proof. Obviously, size2
(
Φ(f)

)
= 1

n2

∑n
i,j=1 f

2
ij = ‖f‖2

M(n). Moreover, (cf. Proposition 4.1)

−∆∆2
(
Φ(f),Φ(g)

)
+ size2

(
Φ(f)

)
+ size2

(
Φ(g)

)
= sup

p∈P(n)

2

n2

n∑

i,j=1

n∑

k,l=1

fij · gkl · pik · pjl

where P(n) denotes the set of doubly stochastic (n× n)-matrices, i.e. set of all p = (pij)1≤i,j≤n ∈ R
n×n
+

satisfying
∑n

i=1 pil =
∑n

j=1 pkj = 1 for all k, l = 1, . . . , n. Particular examples of such doubly stochastic
matrices are given for each σ ∈ Sn by

pij = δiσj .
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The claim thus follows from the fact that

−d2
M(n)

(
f, g
)
+ ‖f‖2

M(n) + ‖g‖2
M(n) = sup

σ∈Sn

2

n2

n∑

i,j=1

fij · gσiσj .

Remark 5.26. The injection

Φ : M
(n)
≤ → X̄

is an embedding. Indeed, assume that

∆∆
(
Φ(dk),Φ(d∞)

)
→ 0 as k → ∞

for some d∞ ∈ M
(n)
≤ and some sequence (dk)k∈N in M

(n)
≤ . Assume for simplicity that d∞ and all the dk

are metrics on {1, . . . , n}. (All d∞, dk ∈ M
(n)
≤ can be approximated by metrics.) The dk are uniformly

bounded. Thus according to Corollary 2.10

D2

(
Φ(dk),Φ(d∞)

)
→ 0 as k → ∞.

According to the union lemma ([Gro99], [Stu06]) this implies that there exists a metric space (X, d) and
isometric embeddings ηk :

(
{1, . . . , n}, dk

)
→ (X, d) for all k ∈ N ∪ {∞} such that

d2

(
(ηk)∗

( 1
n

n∑

i=1

δi
)
, (η∞)∗

( 1
n

n∑

j=1

δj
))

→ 0 as k → ∞

where d2 now denotes the L2-Wasserstein distance for probability measures on (X, d), i.e.

d2

(
(ηk)∗

( 1
n

n∑

i=1

δi
)
, (η∞)∗

( 1
n

n∑

j=1

δj
))

= inf
{ 1

n

n∑

i,j=1

d2
(
ηk(i), η∞(j)

)
pij :

∑

l

pil =
∑

l

plj = 1 for all i, j
}1/2

.

For this ‘classical’ transport problem, however, it is known that the infimum is attained (among others)
on the set of extremal points within the set of doubly stochastic matrices. Hence,

d2

(
(ηk)∗

( 1
n

n∑

i=1

δi
)
, (η∞)∗

( 1
n

n∑

j=1

δj
))

= inf
{ 1

n

n∑

i=1

d2
(
ηk(i), η∞(σi)

)
: σ ∈ Sn

}1/2

.

Moreover, the triangle inequality for d implies

2 inf
{ 1

n

n∑

i=1

d2
(
ηk(i), η∞(σi)

)
: σ ∈ Sn

}1/2

≥ inf
{ 1

n2

n∑

i,j=1

∣∣∣d
(
ηk(i), ηk(j)

)
− d
(
η∞(σj), η

∞(σi)
)∣∣∣

2

: σ ∈ Sn

}1/2

= inf
{ 1

n2

n∑

i,j=1

∣∣∣dkij − d∞σjσi

∣∣∣
2

: σ ∈ Sn

}1/2

= dM(n)

(
dk, d∞

)
.

This finally implies dM(n)

(
dk, d∞

)
→ 0 as k → ∞ which is the claim.

Challenge 5.27. Prove or disprove that the injections

Φ : M
(n) → Y

and
Φ : M

(n)
≤ → X̄

are isometric embeddings.
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Proposition 5.28.
⋃

n∈N X(n) is dense in X̄ and
⋃

n∈N Y(n) is dense in Y.

Proof. The density assertion (w.r.t. ∆∆) concerning X or X̄ is an immediate consequence of the analogous
density statement for X w.r.t. D in [Stu06], Lemma 3.5, and the estimate ∆∆ ≤ 2D of Lemma 2.6.

To see the density assertion concerning Y, let a gauged measure space X be given. We always
can choose a representative (X, f,m) without atoms. The gauge function f ∈ L2

s(X
2,m2) then can be

approximated in L2-norm by piecewise constant functions f(n) ∈ L2
s(X

2,m2), n ∈ N. Even more, these

functions f(n) on X ×X can be chosen to be constant on X
(n)
i ×X

(n)
j for 1 ≤ i < j ≤ n for a suitable

partition of X into sets X
(n)
i of volume 1

n (∀i = 1, . . . , n). That is, for each n ∈ N the gauged measure

space (X, f(n),m) is homomorphic to the n-point space
(
{1, . . . , n}, f (n), 1

n

∑n
i=1 δi

)
for

f
(n)
ij := f(n)

∣∣∣
X

(n)
i ×X(n)

j

(∀1 ≤ i < j ≤ n).

The spaces M(n) also play a key role in the ‘reconstruction theorem’ of Gromov [Gro99] and Vershik
[Ver98] based on ‘random matrix distributions’. For each n ∈ N and each gauged measure space (X, f,m),

let ν
(X,f,m)
n denote the distribution of the matrix

(
f(xi, xj)

)
1≤i<j≤n ∈ M(n)

under the measure dmn(x1, . . . , xn). Here mn = m⊗n denotes the n-fold product measure of m. Let
m∞ = m⊗N denote the infinite product of m defined on X∞ = {(xi)i∈N : xi ∈ X}, put

M(∞) =
{(
fij
)
1≤i<j<∞ : fij ∈ R

}

and let ν
(X,f,m)
∞ denote the distribution of

(
f(xi, xj)

)
1≤i<j<∞ ∈ M(∞)

under the measure dm∞(x1, x2, . . .).

Proposition 5.29. For the following assertions, the implications (i) ⇒ (ii) ⇔ (iii) hold true for all
gauged measure spaces (X, f,m) and (X ′, f′,m′):

(i) (X, f,m) and (X ′, f′,m′) are homomorphic (as elements in Y)

(ii) For each n ∈ N: ν
(X,f,m)
n and ν

(X′,f′,m′)
n coincide (as probability measures on M(n))

(iii) ν
(X,f,m)
∞ and ν

(X′,f′,m′)
∞ coincide (as probability measures on M(∞)).

For metric measure spaces (X, f,m) and (X ′, f′,m′), the assertions (i), (ii) and (iii) are equivalent.

Proof. (i) ⇒ (ii) Assuming the spaces to be homomorphic amounts to assume that there exists a measure
m̄ ∈ Cpl(m,m′) on X ×X ′ such that f(x, y) = f′(x′, y′) for m̄2-a.e. ((x, x′), (y, y′)). Thus

distr. of
(
f(xi, xj)

)
1≤i<j≤n

under dmn
(
x1, . . . , xn

)

= distr. of
(
f(xi, xj)

)
1≤i<j≤n

under dm̄n
(
(x1, x

′
1), . . . , (xn, x

′
n)
)

= distr. of
(
f′(x′i, x

′
j)
)
1≤i<j≤n

under dm̄n
(
(x1, x

′
1), . . . , (xn, x

′
n)
)

= distr. of
(
f′(x′i, x

′
j)
)
1≤i<j≤n

under dm′n
(
x′1, . . . , x

′
n

)
.

(ii) ⇔ (iii): Straightforward consequence of the fact that the Borel field in M(∞) is generated by pre-
images under projections into M(n), n ∈ N.

(iii) ⇒ (i): Reconstruction theorem [Gro99], 3 1
2 .5.
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6 The Space Y as a Riemannian Orbifold

6.1 The Symmetry Group

Let Polish spaces X1, X2, X3 with Borel probability measures m1,m2,m3 be given as well as couplings
µ′ ∈ Cpl(m1,m2) and µ′′ ∈ Cpl(m2,m3). Recall the gluing construction from Lemma 1.4 which yields a
measure µ̂ = µ′ ⊠ µ′′ on X1 ×X2 ×X3 with (π1, π2)∗µ̂ = µ′ and (π2, π3)∗µ̂ = µ′′.

Definition 6.1. The melting of µ′ and µ′′ is the probability measure µ ∈ Cpl(m1,m3) defined as

µ = (π1, π3)∗(µ
′
⊠ µ′′).

It will be denoted by µ′ ⊡ µ′′.

Lemma 6.2. Let a gauged measure space (X, f,m) be given.

(i) Cpl(m,m), the space of all self-couplings of m, is a group with composition ⊡. The neutral element
is the diagonal coupling

dν(x, y) = dδx(y) dm(x).

The element inverse to µ is given by

dµ−1(x, y) = dµ(y, x).

(ii) A norm is given on this group by

‖µ‖f =

(∫

X

∫

X

∣∣∣f(x0, y0)− f(x1, y1)
∣∣∣
2

dµ(x0, x1) dµ(y0, y1)

)1/2

.

Proof. (i) is obvious: the gluing of µ and µ−1 for instance is given by (π1, π2, π1)∗µ. Projecting this onto
the first and third factor yields

(π1, π1)∗µ = (π1, π1)∗m

which is the diagonal coupling.
(ii) The inequality to be verified

‖µ′ ⊡ µ′′‖f ≤ ‖µ′‖f + ‖µ′′‖f

follows exactly in the same way as the triangle inequality for ∆∆.

Definition 6.3. The symmetry group of (X, f,m) is the subgroup of Cpl(m,m) of elements with vanishing
norm:

Sym(X, f,m) =
{
µ ∈ Cpl(m,m) : ‖µ‖f = 0

}
.

In other words, Sym(X, f,m) is the set of all optimal couplings of (X, f,m) with itself.
We say, that (X, f,m) has no symmetries if Sym(X, f,m) only contains the neutral element (diagonal

coupling).

The symmetry group Sym(X, f,m) will depend on the choice of the representative within the equiva-
lence class [[X, f,m]]. For different choices of representatives, the groups will be obtained from each other
via conjugation and thus in particular will be isomorphic to each other.

Lemma 6.4. Let two homomorphic gauged measure spaces (X, f,m) and (X ′, f′,m′) be given with ν ∈
Opt(m,m′) being a coupling which realizes the vanishing ∆∆-distance. Then

Sym(X ′, f′,m′) = ν−1 ⊡ Sym(X, f,m) ⊡ ν

=
{
µ′ = ν−1 ⊡ µ⊡ ν : µ ∈ Sym(X, f,m)

}
.
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Proof. The fact that µ is in Sym(X, f,m) implies that f(x0, y0) = f(x1, y1) for µ2-a.e. ((x0, x1), (y0, y1)) ∈
X2 × X2. The fact that ν realizes the (vanishing) distance of (X, f,m) and (X ′, f′,m′) implies that
f(x0, y0) = f′(x′0, y

′
0) for ν2-a.e. ((x0, x

′
0), (y0, y

′
0)) ∈ (X ×X ′)2. Thus

f′(x′0, y
′
0) = f(x0, y0) = f(x1, y1) = f′(x′1, y

′
1)

for (ν−1 ⊠ µ ⊠ ν)2-a.e. ((x′0, x0, x1, x
′
1), (y

′
0, y0, y1, y

′
1)) ∈ (X ′ ×X × X ×X ′)2. Projecting the measure

ν−1 ⊠ µ⊠ ν from X ′ ×X ×X ×X ′ onto X ′ ×X ′ yields the claim:

f′(x′0, y
′
0) = f′(x′1, y

′
1)

for (ν−1 ⊡ µ⊡ ν)2-a.e. ((x′0, x
′
1), (y

′
0, y
′
1)) ∈ (X ′ ×X ′)2.

If the underlying space is not just a gauged measure space but a metric measure space, then the
symmetry group admits an equivalent representation in more familiar terms.

Definition 6.5. Given a metric measure space (X, d,m), let

sym(X, d,m) =
{
φ : X♭ → X♭ : m = φ∗m, d = φ∗d

}

where X♭ denotes the support of m.

Note that any φ which preserves the metric is Lipschitz continuous and thus in particular Borel
measurable. If moreover it is measure preserving, then according to the proof of (iii) ⇒ (iv) in Lemma
1.10 it is necessarily bijective with Borel measurable inverse.

Lemma 6.6. Let (X, d,m) be a metric measure space.

(i) sym(X, d,m) is a group (with composition of maps as group operation)

(ii) The groups sym(X, d,m) and Sym(X, d,m) are isomorphic. For any φ ∈ sym(X, d,m) the corre-
sponding measure in µ ∈ Sym(X, d,m) is given by

µ := (Id, φ)∗m.

(iii) Let (X ′, d′,m′) be another metric measure space, isomorphic to the first one with ψ : X♭ → X ′♭

being a Borel measurable bijection which pushes forward the measure and pulls back the metric.
Then

sym(X ′, d′,m′) = ψ ◦ sym(X, d,m) ◦ ψ−1.

Proof. Most properties are obvious. Let us briefly comment on the inverse of the isomorphism in (ii).
Let a measure µ ∈ Sym(X, d,m) be given. It is an optimal coupling of (X, d,m) with itself with vanishing∫ ∫

|d − d|2dµdµ. According to Lemma 1.10 this implies that there exists a bijective Borel map (with
Borel inverse) φ : X♭ → X♭ satisfying m = φ∗m and d = φ∗d.

6.2 Geodesic Hinges

A geodesic hinge is a pair of geodesics (Xt)0≤t≤τ and (X ′t )0≤t≤τ ′ emanating from a common point X0 = X ′0
in Y. To simplify the presentation, we assume τ = τ ′ = 1. (Since the geodesics are not required to have
unit speed, this is no restriction.)

We fix representatives (X0, f0,m0), (X1, f1,m1) and (X ′1, f
′
1,m

′
1) of the endpoints as well as optimal

couplings m̄ ∈ Cpl(m0,m1) and m̄′ ∈ Cpl(m0,m
′
1). We are now looking for couplings of m̄ and m̄′, that

is, for µ ∈ Cpl(m̄, m̄′) being measures on X = X0 ×X1 ×X0 ×X ′1. The projections onto the respective
factors will be denoted by π0, π1, π

′
0, π
′
1. Note that the factor X0 shows up twice in the definition of µ.

For t ∈ (0, 1], we define the functional

Ct(µ) =
1

t2

∫

X

∫

X

∣∣∣∣(1 − t)
[
f0(x0, y0)− f0(x

′
0, y
′
0)
]

+t
[
f1(x1, y1)− f′1(x

′
1, y
′
1)
]∣∣∣∣

2

dµ(x0, x1, x
′
0, x
′
1) dµ(y0, y1, y

′
0, y
′
1)

46



on Cpl(m̄, m̄′). Moreover, we put

C0(µ) = sup
t>0

Ct(µ).

Lemma 6.7. (i) For each t ∈ (0, 1], there exists a measure µt ∈ Cpl(m̄, m̄′) which minimizes Ct(.), an
’optimal’ coupling of m̄ and m̄

′ w.r.t. the cost function |ft − f′t|2.

(ii) The quantity

C∗t = Ct(µt) =
1

t2
∆∆2(Xt,X ′t )

is non-increasing in t.

(iii) For each µ with
(
π0, π

′
0

)
∗µ ∈ Sym(X0, f0,m0),

t 7→ Ct(µ) is independent of t ∈ (0, 1]

and thus C0(µ) = Ct(µ) = C1(µ). In particular,

C0(µ) =

∫

X

∫

X

[
f1(x1, y1)− f′1(x

′
1, y
′
1)
]2
dµ(x0, x1, x

′
0, x
′
1) dµ(y0, y1, y

′
0, y
′
1) <∞.

(iv) For each µ with
(
π0, π

′
0

)
∗µ 6∈ Sym(X0, f0,m0),

C0(µ) = ∞.

(v) The functional C0 is lower semicontinuous on Cpl(m̄, m̄′).

(vi) Every accumulation point µ0 of (µt)t>0 satisfies
(
π0, π

′
0

)
∗µ0 ∈ Sym(X0, f0,m0).

Proof. (i) follows from the existence result in Proposition 5.4 and the fact that

C∗t = inf
{
Ct(µ) : µ ∈ Cpl(m̄, m̄′)

}
=

1

t2
∆∆2(Xt,X ′t ).

(ii) is a general consequence of nonnegative curvature in Alexandrov geometry.
(iii), (iv) are obvious: If the condition

(
π0, π

′
0

)
∗µ ∈ Sym(X0, f0,m0) was not satisfied then obviously

C0(µ) = ∞. On the other hand, the previously mentioned condition
(
π0, π

′
0

)
∗µ ∈ Sym(X0, f0,m0) implies

Ct(µ) = C1(µ) <∞ independent of t and thus C0(µ) = C1(µ) <∞.
(v) According to Lemma 5.3, we may assume without restriction that X0 = X1 = X ′1 = I and

m0 = m1 = m′1 = L1. With the same argument as in the proof of Lemma 5.5 (approximating f0, f1, f
′
1 ∈ L2

by bounded continuous f0,i, f1,i, f
′
1,i), Ct(.) is proven to be continuous on Cpl(m̄, m̄′). As a supremum of

continuous functionals Ct, the functional C0 is lower semicontinuous.
(vi) Assume that

(
π0, π

′
0

)
∗µ0 6∈ Sym(X0, f0,m0) for an accumulation point µ0 of the family (µt)t>0.

Then ∫

X

∫

X

[
f0(x0, y0)− f0(x

′
0, y
′
0)
]2
dµ0(x0, x1, x

′
0, x
′
1) dµ0(y0, y1, y

′
0, y
′
1) ≥ 2ǫ > 0

and thus for a converging (sub)sequence (µtn)n,

∫

X

∫

X

[
f0(x0, y0)− f0(x

′
0, y
′
0)
]2
dµtn(x0, x1, x

′
0, x
′
1) dµtn(y0, y1, y

′
0, y
′
1) ≥ ǫ

uniformly in n. This implies
Ctn(µtn) ր ∞

which contradicts the minimality of µtn .

Proposition 6.8. Let a geodesic hinge (Xt)0≤t≤1 and (X ′t )0≤t≤1 be given as above with speeds R =
∆∆(X0,X1), R

′ = ∆∆(X0,X ′1) and representatives (X0×X1, f0+ t(f1− f0), m̄), (X0×X ′1, f0+ t(f′1− f0), m̄
′),

resp. Then there exists a probability measure µ̄ on X := X0 ×X1 ×X0 ×X ′1 with
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• µ̄ ∈ Cpl(m̄, m̄′), more precisely, (π0, π1)∗µ̄ = m̄ and (π′0, π
′
1)∗µ̄ = m̄′

• (π0, π
′
0)∗µ̄ ∈ Sym(X0, f0,m0)

and

C0(µ̄) = inf
{
C0(µ) : µ ∈ Cpl(m̄, m̄′), (π0, π

′
0)∗µ ∈ Sym(X0, f0,m0)

}
.

Equivalently,

〈
f1 − f0, f

′
1 − f0

〉
L2(X2,µ̄2)

= sup
{〈

f1 − f0, f
′
1 − f0

〉
L2(X2,µ2)

: µ ∈ Cpl(m̄, m̄′),

(π0, π
′
0)∗µ ∈ Sym(X0, f0,m0)

}
.

Moreover,

cos∡
(
X•,X ′•

)
≥ 1

RR′
〈
f1 − f0, f

′
1 − f0

〉
L2(X2,µ̄2)

.

Proof. The existence of µ̄ follows from the lower semicontinuity of C0 proven in the previous Lemma.
Moreover,

C0(µ̄) = lim
t→0

Ct(µ̄) ≥ lim
t→0

C∗t .

On the other hand, nonnegative curvature of Y implies that the angle between the geodesics always exists.
Indeed, it is a monotone limit

cos∡
(
X•,X ′•

)
= lim

t→0

1

2RR′

[
R2 +R′2 − 1

t2
∆∆(Xt,X ′t )

]

=
1

2RR′

[
R2 +R′2 − lim

t→0
C∗t

]
.

Finally, since f0(x0, y0) = f0(x
′
0, y
′
0) for µ2-a.e.

(
(x0, x1, x

′
0, x
′
1), (y0, y1, y

′
0, y
′
1)
)
∈ X2 we may rewrite the

previous expressions for each coupling µ (with the required properties of its pairwise marginals) as follows

R2 +R′2 − C0(µ)

=

∫

X

∫

X

([
f1(x1, y1)− f0(x0, y0)

]2
+
[
f′1(x

′
1, y
′
1)− f0(x

′
0, y
′
0)
]2

−
[
f1(x1, y1)− f′1(x

′
1, y
′
1)
]2)

dµ(x0, x1, x
′
0, x
′
1) dµ(y0, y1, y

′
0, y
′
1)

= 2

∫

X

∫

X

[
f1(x1, y1)− f0(x0, y0)

]
·
[
f′1(x

′
1, y
′
1)− f0(x

′
0, y
′
0)
]
dµ(x0, x1, x

′
0, x
′
1) dµ(y0, y1, y

′
0, y
′
1).

This is the claim.

Conjecture 6.9. For each geodesic hinge as above,

cos∡
(
X•,X ′•

)
=

1

RR′
〈
f1 − f0, f

′
1 − f0

〉
L2(X2,µ̄2)

.

6.3 Tangent Spaces and Tangent Cones

Definition 6.10. The tangent space at X ∈ Y is defined as

TX =
⋃

[[X,f,m]]=X
L2
s(X

2,m2)/ ∼

with union taken over all gauged measure spaces (X, f,m) in the homomorphism class [[X, f,m]]. Here
g ∈ L2

s(X
2,m2) and g′ ∈ L2

s(X
′2,m′2) are regarded as equivalent, briefly g ∼ g′, if they are defined on

48



two representatives (X, f,m) and (X ′, f′,m′) of X for which there exists a coupling µ ∈ Cpl(m,m′) such
that f = f′ and g = g′ µ2-a.e. on (X ×X ′)2. More precisely, the latter means that

f(x, y) = f′(x′, y′) and g(x, y) = g′(x′, y′)

for µ2-a.e.
(
(x, x′), (y, y′)

)
∈ (X ×X ′)2.

Remarks 6.11. (i) This, indeed, is an equivalence relation: g ∼ g′ and g′ ∼ g′′ implies g ∼ g′′.

(ii) For g, h defined as symmetric L2-functions on the same representative (X, f,m) of X , the above
equivalence means that g = h µ2-a.e. for some µ ∈ Sym(X, f,m).

(iii) Given a gauged measure space (X, f,m), a probability space (X ′,m′) (for consistence, with X ′ being
a Polish space) is called “enlargement” of (X,m) if there exists a measurable map φ : X ′ → X with
m = φ∗m′. In this case, the map

Φ : g 7→ φ∗g

defines an isometric embedding of the Hilbert space L2
s(X

2,m2) into the Hilbert space L2
s(X

′2,m′2).
Put f′ = φ∗f. Then

g ∼ φ∗g

for each g ∈ L2
s(X

2,m2). Indeed, µ := (φ, Id)∗m′ defines a coupling of m and m′ with the property
f = f′, g = φ∗g µ2-a.e.

Therefore, for all g, h ∈ L2
s(X

2,m2),

g ∼ h ⇐⇒ φ∗g ∼ φ∗h.

(iv) For each gauged measure space (X, f,m), the “standard” space (I,L1) together with some parametriza-
tion φ ∈ Par(m) can be regarded as an enlargement. Hence, each tangent vector admits a represen-
tative in L2

s(I
2,L2). In other words, the tangent space can be considered as subspace of L2

s(I
2,L2),

see section 6.4 below.

Definition 6.12. A metric dTX will be defined on the tangent space TX as follows: for g, h ∈ TX , say
g ∈ L2

s(X
2,m2), h ∈ L2

s(X
′2,m′2) with [[X, f,m]] = [[X ′, f′,m′]] = X , we put

dTX (g, h) = inf
{
‖g − h‖L2((X×X′)2,µ2) : µ ∈ Cpl(m,m′), f = f′ µ2-a.e. on (X ×X ′)2

}
.

Remarks 6.13. (i) dTX is symmetric and satisfies the triangle inequality.

(ii) dTX (g, h) = 0 if and only if g ∼ h.

(iii) Given g, h ∈ TX , say g ∈ L2
s(X

2,m2), h ∈ L2
s(X

′2,m′2) with [[X, f,m]] = [[X ′, f′,m′]] = X , choose
a common enlargement (X̄, m̄) of (X,m) and (X ′,m′) with embeddings φ : X̄ → X , φ′ : X̄ → X ′.
Since the spaces (X, f,m) and (X ′, f′,m′) are homomorphic we may assume without restriction that
φ∗f = φ′∗f′ =: f̄. Put ḡ = φ∗g, h̄ = φ∗h. Then g ∼ ḡ, h ∼ h̄ and

dTX (g, h) = dTX (ḡ, h̄) = inf
{
‖ḡ − h̄‖L2(X̄4,µ2) : µ ∈ Sym(X̄, f̄, m̄)

}
.

Lemma 6.14. dTX is a cone metric on TX .

Proof. The claim will follow from the fact that for each g ∈ L2
s(X

2,m2), h ∈ L2
s(X

′2,m′2) with ‖g‖L2 =
‖h‖L2 = 1, the quantity

1

2st

[
dTX (sg, th)

2 − s2 − t2
]

is independent of s and t ∈ (0,∞). The latter can be seen as follows

1

2st

[
dTX (sg, th)

2 − s2 − t2
]

= inf
{ 1

2st

[
‖sg − th‖2L2((X×X′)2,µ2) − s2 − t2

]
: µ ∈ Cpl(m,m′), f = f′ µ2-a.e.

}

= − sup
{
〈g, h〉L2((X×X′)2,µ2) : µ ∈ Cpl(m,m′), f = f′ µ2-a.e.

}
.
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Definition 6.15. The exponential map ExpX : TX → Y is defined by

g 7→ [[X, f + g,m]]

for g ∈ L2
s(X

2,m2).

Remark 6.16. This definition is consistent since g ∼ g′ implies [[X, f + g,m]] = [[X ′, f′ + g′,m′]]. Indeed,
given g ∈ L2

s(X
2,m2), g′ ∈ L2

s(X
′2,m′2) with [[X, f,m]] = [[X ′, f′,m′]], we know that g ∼ g′ if and only if

there exists a measure µ ∈ Cpl(m,m′) such that f = f′ and g = g′ µ2-a.e. This implies f + tg = f′ + tg′

µ2-a.e. for every t ∈ R which in turn implies

[[X, f + tg,m]] = [[X ′, f′ + tg′,m′]]

for every t ∈ R. In other words,
ExpX (tg) = ExpX (tg

′)

for every t. Thus Exp is well-defined.

Definition 6.17. For X ∈ Y we define the map τYX : TX → [0,∞] by

τYX (g) = sup
{
t ≥ 0 :

(
ExpX (sg)

)
s∈[0,t] is geodesic in Y

}
.

Analogously, for X ∈ X̄, we define

τ X̄X (g) = sup
{
t ≥ 0 :

(
ExpX (sg)

)
s∈[0,t] is geodesic in X̄

}
.

Recall that TXY, the tangent cone at X in the sense of Alexandrov geometry (cf. section 4.3.), is
defined as the cone over its unit sphere T 1

XY which in turn is the completion of the space of geodesic

directions T̊ 1
XY. Equivalently, TXY can be considered as the completion of T̊XY which in turn is the cone

over T̊ 1
XY. Denote the metric on TXY by dYX .

Theorem 6.18. (i) The set
{
g ∈ TX : τYX (g) > 0

}
can be identified with the cone T̊XY via g 7→(

ExpX (sg)
)
s∈[0,τY

X
(g))

.

(ii) For each g ∈ TX , say g ∈ L2
s(X

2,m2), with τYX (g) > 0,

dYX (g, 0) = ‖g‖TXY = ‖g‖L2(X2,m2) = dTX (g, 0).

(iii) For all g, h ∈ T̊XY,
dYX (g, h) ≤ dTX (g, h).

Proof. (i),(ii) By definition, for each g ∈ TX with τYX (g) > 0,
(
ExpX (sg)

)
s∈[0,τY

X
(g))

is a geodesic in

Y. Hence, g is an element of the cone T̊XY. Conversely, each geodesic (Xs)s∈[0,t] in Y emanating from
X = X0 can be represented as Xs = ExpX (sg) for suitable g ∈ L2

s(X
2,m2) and suitable representative

(X, f,m) of X .
(iii) To prove the inequality between the distances on TXY and TX it suffices to verify the analogous

inequality between the induced distances on the respective unit spheres T 1
XY and T

1
X (since both spaces

are cones over their respective unit spheres). Let representatives (X, f,m) and (X ′, f′,m′) of X be given
as well as unit tangent vectors g ∈ L2

s(X
2,m2) and g′ ∈ L2

s(X
′2,m′2). Then

dY,1X (g, g′) = ∡

((
ExpX (sg)

)
s≥0,

(
ExpX (tg

′)
)
t≥0

)

whereas
cos dT,1X (g, g′) = sup

{
〈g, g′〉L2((X×X′)2,µ2) : µ ∈ Cpl(m,m′), f = f′ µ2-a.e.

}

According to Proposition 6.8 (with f, f′ in the place of f0, f0 and g, g′ in the place of f1 − f0, f
′
1 − f0)

cos dT,1X (g, g′) ≤ cos dY,1X (g, g′).

This proves the claim.
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Corollary 6.19. (i) The set
{
g ∈ TX : τ X̄X (g) > 0

}
can be identified with the cone T̊X X̄.

(ii) For all g, h ∈ T̊X X̄ ⊂ T̊XY,

dX̄X (g, h) = dYX (g, h) ≤ dTX (g, h).

6.4 Tangent Spaces – A Comprehensive Alternative Approach

Recall the fact (sect. 5.2) that the space Y of gauged measure space is isometric to a quotient space L of
L2
s(I

2,L2). The tangent spaces TX for X = [[X, f,m]] ∈ Y, therefore, will be in one-to-one correspondence
with the tangent spaces Tf (to be defined below) for f ∈ L.

Given a function f ∈ L2
s(I

2,L2), we put

Sym(f) =
{
(ψ0, ψ1) ∈ Inv(I,L1)2 : ψ∗0 f = ψ∗1 f

}
.

Note that this will be a group, isomorphic to the previously introduced Sym(I, f,L1), provided we identify
all (ψ0, ψ1) ∈ Sym(f) which satisfy ψ0 = ψ1. (The latter should be understood as identity L2-a.e. as
usual.) We say that f has no symmetries if

∀ψ0, ψ1 ∈ Inv(I,L1) : ψ∗0 f = ψ∗1 f =⇒ ψ0 = ψ1.

Definition 6.20. The tangent space

Tf = L2
s(I

2,L2)/ Sym(f)

is the quotient space of L2
s(I

2,L2) with respect to the equivalence relation

g ∼ h ⇐⇒ ∃(ψ0, ψ1) ∈ Sym(f) : ψ∗0g = ψ∗1h.

It is a metric space with metric

df(g, h) = inf
{
‖ψ∗0g − ψ∗1h‖L2(I2,L2) : (ψ0, ψ1) ∈ Sym(f)

}
.

If f has no symmetries then Tf = L2
s(I

2,L2). In particular, then Tf is a Hilbert space.

This definition justifies to regard the tangent spaces Tf (and thus also the previously defined tangent
spaces TX ) as infinite dimensional Riemannian orbifolds.

Definition 6.21. The exponential map Expf : Tf → L is defined by

g 7→ [[f + g]].

Equivalently, it may be considered as map Expf : Tf → Y with

g 7→ [[I, f + g,L1]].

Indeed, however, the measure space (I,L1) does not play any particular role. It is just one of many
possible enlargements of a given space. It can be replaced by any other standard Borel space without
atoms. Thus for any gauged measure space (X, f,m) without atoms we may define

T(X,f,m) = L2
s(X

2,m2)
/
Sym(X, f,m)

where two elements g and h in L2
s(X

2,m2) are identified if there exists a measure µ ∈ Sym(X, f,m) – a
self-coupling of m which leaves f invariant – such that

g(x, y) = h(x′, y′) for µ2-a.e.
(
(x, x′), (y, y′)

)
∈ X4.

For g ∈ T(X,f,m) we put
Exp(X,f,m)(g) = [[X, f + g,m]].

Corollary 6.22. For each gauged measure space (X, f,m) without atoms, the space T(X,f,m) may be iden-
tified with the tangent space TX where X denotes the homomorphism class of (X, f,m). The exponential
maps Exp(X,f,m) and ExpX are defined consistently.
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6.5 Ambient Gradients

Definition 6.23. A function U : Y → R is called strongly differentiable at X ∈ Y

• if the directional derivative

DhU(X ) := lim
tց0

1

t

[
U(ExpX (th))− U(X )

]

exists for every h ∈ TX and

• if there exists a tangent vector g ∈ TX such that

DhU(X ) = 〈g, h〉L2((X×X′)2,µ2)

for every h ∈ TX and every µ ∈ Cpl(m,m′) with f = f′ µ2-a.e. on (X ×X ′)2.

Here we assumed g ∈ L2
s(X

2,m2) and h ∈ L2
s(X

′2,m′2) with (X, f,m) and (X ′, f′,m′) being two
representatives of X .

The tangent vector g ∈ TX is then called ambient gradient of U at X . It is denoted by

g = ∇∇U(X ).

Lemma 6.24. For any function U : Y → R which is strongly differentiable at X ∈ Y, the ambient
gradient is unique and satisfies

‖∇∇U(X )‖ = sup
{
DhU(X ) : ‖h‖ = 1

}
.

Here ‖h‖ = ‖h‖L2(X′2,m′2) = dTX (h, 0) for h ∈ L2
s(X

′2,m′2) and ‖g‖ = ‖g‖L2(X2,m2) = dTX (g, 0) for
g = ∇∇U(X ) ∈ L2

s(X
2,m2) with representatives (X, f,m) and (X ′, f′,m′) of X .

Proof. Uniqueness. In order to be the ambient gradient ∇∇U(X ), a function g ∈ L2
s(X

2,m2) in particular
has to satisfy

DhU(X ) = 〈g, h〉L2(X2,µ2) for every h ∈ L2
s(X

2,m2).

(Indeed, choose X ′ = X and µ to be diagonal coupling.) The latter property determines g (if it exists)
uniquely within L2

s(X
2,m2). Two ambient gradients g and g′ defined on two representatives of X may

always be extended (via pull back) to functions on a common enlargement. Thus the ambient gradient
is unique (if it exists).

Norm identity. For each h and each coupling µ (which leaves f invariant) as above

DhU(X ) = 〈g, h〉L2((X×X′)2,µ2)

≤ ‖g‖L2((X×X′)2,µ2) · ‖h‖L2((X×X′)2,µ2)

= ‖g‖L2(X2,m2) · ‖h‖L2(X′2,m′2).

Thus DhU(X ) ≤ ‖g‖ for each h ∈ TX with ‖h‖ = 1. On the other hand, assume without restriction that
‖g‖ > 0 and choose h = 1

‖g‖g and µ = diagonal coupling of m to obtain

DhU(X ) =
1

‖g‖〈g, g〉L2((X×X)2,µ2) = ‖g‖.

Theorem 6.25. Let U : Y → R be Lipschitz continuous, semiconcave and strongly differentiable in
X ∈ Y. Assume that the ambient gradient ∇∇U(X ) lies in T̊XY or, in other words, assume that τYX (g) > 0
for g = ∇∇U(X ). Then

∇∇U(X ) = ∇YU(X ).

Here ∇Y denotes the gradient in the sense of Alexandrov geometry as introduced e.g. in section 4.3, see
[Pla02].
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Proof. Put g = ∇∇U(X ). According to the argumentation in the proof of the previous Lemma, g1 = 1
‖g‖g

is the maximizer of
h 7→ DhU(X )

in T
1
X . Therefore, assuming that g ∈ T̊XY, the normalized g1 in particular is the maximizer of h 7→

DhU(X ) in T̊ 1
XY. Up to a multiplicative constant, this already characterizes the gradient of U at X in

the sense of Alexandrov geometry. The previous Lemma finally yields the equivalence of the norms (=
lengths of tangent vectors) in both spaces.

Corollary 6.26. Let U : Y → R be defined on all of Y and assume that its restriction to X̄ is Lipschitz
continuous and semiconcave. Assume furthermore that U is strongly differentiable in X ∈ X̄ and that the
ambient gradient ∇∇U(X ) lies in T̊X X̄. Then

∇∇U(X ) = ∇X̄U(X ).

7 Semiconvex Functions on Y and their Gradients

7.1 Polynomials on Y and their Derivatives

A striking consequence of the detailed knowledge of the geometry of Y is that for major classes of functions
on Y one can explicitly calculate sharp bounds for derivatives of any order. Of particular interest will be
bounds for first and second derivatives.

An important class of ‘smooth’ functions on Y is given by polynomials of order n ∈ N. These are
functions U : Y → R of the form

U(X ) =

∫

Xn

u

((
d(xi, xj)

)
1≤i<j≤n

)
dmn(x) (7.1)

for X = [[X, d,m]] where u : R
n(n−1)

2 → R is any Borel function which grows at most quadratically.
Mostly, u will be differentiable with bounded derivatives of any order. For our purpose, derivatives of
order 1 and 2 are sufficient. Here and in the sequel, mn = m ⊗ . . .⊗ m denotes the n-fold product of m

and x = (x1, . . . , xn) ∈ Xn whereas ξ = (ξij)1≤i<j≤n ∈ R
n(n−1)

2 . Deviating from the convention of the
previous Chapter, the gauge function will be denoted by d. In most cases of application, indeed, it will
be a pseudo metric.

Note that all these functions U are functions of homomorphism classes, i.e. the definition of U(X )
does not depend on the choice of the representative (X, d,m) of X , see Proposition 5.29. Moreover, it
might be worthwhile to mention that the set of polynomials of any order separates points in X ([Gro99],
cf. also [GPW09], Prop. 2.6)

Recall that each geodesic (Xt)0≤t≤1 in Y can be represented as

Xt = [[X0 ×X1, d0 + t(d1 − d0), m̄]] (7.2)

for given representatives of X0 and X1 and a suitable choice of m̄ ∈ Opt(m0,m1). Thus U is represented
along the geodesic (Xt)0≤t≤1 as

U
(
Xt

)
=

∫

(X0×X1)n
u

((
d0(x

i
0, x

j
0) + t

(
d1(x

i
1, x

j
1)− d0(x

i
0, x

j
0)
))

1≤i<j≤n

)
dm̄n(x0, x1) (7.3)

where (x0, x1) now stands for the n-tuple ((xi0, x
i
1))1≤i≤n of points (xi0, x

i
1) ∈ X0 ×X1.

Lemma 7.1. Assume that U : Y → R is given by formula (7.1) with u ∈ C2(R
n(n−1)

2 ,R+) with bounded
derivatives. Then for each geodesic (Xt)0≤t≤1 in Y (represented as in (7.2)):

d

dt
U(Xt) =

∑

1≤i<j≤n

∫

(X0×X1)n

∂

∂ξij
u

((
d0(x

p
0 , x

q
0) + t

(
d1(x

p
1, x

q
1)− d0(x

p
0, x

q
0)
))

1≤p<q≤n

)
·

·
(
d1(x

i
1, x

j
1)− d0(x

i
0, x

j
0)

)
dm̄n(x0, x1)
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and

d2

dt2
U(Xt) =

∑

1≤k<l≤n

∑

1≤i<j≤n

∫

(X0×X1)n

∂

∂ξkl

∂

∂ξij
u

((
d0(x

p
0, x

q
0) + t

(
d1(x

p
1, x

q
1)− d0(x

p
0, x

q
0)
))

1≤p<q≤n

)
·

·
(
d1(x

i
1, x

j
1)− d0(x

i
0, x

j
0)

)
·
(
d1(x

k
1 , x

l
1)− d0(x

k
0 , x

l
0)

)
dm̄n(x0, x1)

for all t ∈ (0, 1) and as a right limit for t = 0.

Proof. These formulae are straightforward consequences of the representation of (7.3): interchanging
order of differentiation (w.r.t. t) and integration (w.r.t. xi0, x

i
1) and application of chain rule.

Note that at t = 0 the previous formulas simplify, e.g.

d

dt
U(Xt)

∣∣
t=0

=
∑

1≤i<j≤n

∫

(X0×X1)n

∂

∂ξij
u

((
d0(x

p
0 , x

q
0)
)
1≤p<q≤n

)
·
(
d1(x

i
1, x

j
1)− d0(x

i
0, x

j
0)

)
dm̄n(x0, x1).

Theorem 7.2. Let n ∈ N as well as numbers λ, κ ∈ R be given and let u : R
n(n−1)

2 → R be continuous
and bounded (or with at most quadratic growth).

(i) If u is λ-Lipschitz continuous on R
n(n−1)

2 then U is λ′-Lipschitz continuous on Y for λ′ = λ · n(n−1)2 .

(ii) If u is κ-convex on R
n(n−1)

2 then U is κ′-convex on Y for κ′ = κ · n(n−1)
2 .

Proof. (i) Approximating u by uk ∈ C2 (with bounded derivatives), we may apply the estimates of the
previous Lemma. Thus for any geodesic (Xt)t in Y

∣∣∣ d
dt
U(Xt)

∣∣∣ ≤ λ ·
∑

1≤i<j≤n

∫

(X0×X1)n

∣∣∣d1(xi1, xj1)− d0(x
i
0, x

j
0)
∣∣∣dm̄n(x0, x1)

≤ λ ·
∑

1≤i<j≤n

(∫

X0×X1

∫

X0×X1

∣∣∣d1(xi1, xj1)− d0(x
i
0, x

j
0)
∣∣∣
2

dm̄(xi0, x
i
1)dm̄(xj0, x

j
1)

)1/2

= λ · n(n− 1)

2
·∆∆(X0,X1).

Since ∆∆(X0,X1) is the speed of the geodesic (Xt)t, this implies

LipU ≤ λ · n(n− 1)

2
.

(i’) A more direct proof, avoiding any approximation argument, is based on the explicit representation
formula (7.3). It immediately yields

|U(X1)− U(X0)| ≤
∫

(X0×X1)n

∣∣∣∣u
((

d1(x
i
1, x

j
1)
)
1≤i<j≤n

)
− u

((
d0(x

i
0, x

j
0)
)
1≤i<j≤n

)∣∣∣∣ dm̄
n(x0, x1)

≤ λ ·
(∫

(X0×X1)n

∣∣∣∣
(
d1(x

i
1, x

j
1)− d0(x

i
0, x

j
0)
)
1≤i<j≤n

∣∣∣∣
2

dm̄n(x0, x1)

)1/2

=
n(n− 1)

2
λ ·
(∫

(X0×X1)2

∣∣∣∣d1(x
1
1, x

2
1)− d0(x

1
0, x

2
0)

∣∣∣∣
2

dm̄2(x0, x1)

)1/2

=
n(n− 1)

2
λ ·∆∆

(
X1,X0

)
.

(ii) Recall that for smooth u, κ-convexity is equivalent to

∑

1≤k<l≤n

∑

1≤i<j≤n

∂

∂ξkl

∂

∂ξij
u(ξ) · Vij · Vkl ≥ κ ·

∑

1≤i<j≤n
|Vij |2 (∀ξ, V ∈ R

n(n−1)
2 ).
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Thus, similarly to the previous argumentation, Lemma 7.6 in the case of κ-convex u now yields

d2

dt2
U(Xt) ≥ κ ·

∑

1≤i<j≤n

∫

(X0×X1)n

∣∣∣d1(xi1, xj1)− d0(x
i
0, x

j
0)
∣∣∣
2

dm̄n(x0, x1)

= κ · n(n− 1)

2
·∆∆2(X0,X1).

This proves the claim.
(ii’) Again, a more direct proof (without approximation) is possible, based on (7.3). It implies

U(Xt)− tU(X1)− (1− t)U(X0)

=

∫

(X0×X1)n

[
u

((
t d1(x

i
1, x

j
1) + (1− t) d0(x

i
0, x

j
0)
)
1≤i<j≤n

)

−t u
((

d1(x
i
1, x

j
1)
)
1≤i<j≤n

)
− (1− t)u

((
d0(x

i
0, x

j
0)
)
1≤i<j≤n

)]
dm̄n(x0, x1)

≤ −κ
2
· t(1− t) ·

∫

(X0×X1)n

∣∣∣∣
(
d1(x

i
1, x

j
1)− d0(x

i
0, x

j
0)
)
1≤i<j≤n

∣∣∣∣
2

dm̄n(x0, x1)

= −κ
2
· t(1− t) · n(n− 1)

2
·
∫

(X0×X1)2

∣∣∣∣d1(x
1
1, x

2
1)− d0(x

1
0, x

2
0)

∣∣∣∣
2

dm̄2(x0, x1)

= −κ
2
· n(n− 1)

2
· t(1 − t) ·∆∆2

(
X1,X0

)
.

This proves the κ′-convexity of U for κ′ = κ · n(n−1)
2 .

Remark 7.3. The formulas in Lemma 7.6 for derivatives of t 7→ U(Xt) not only hold for geodesics (Xt)t∈[0,1]
but for all curves (Xt)t≥0 in Y induced by exponential maps:

Xt = ExpX (tg) for some g ∈ TX .

For instance, the directional derivative of U at X = [[X, d,m]] in direction g ∈ L2
s(X

2,m2) is given by

DgU(X ) =
∑

1≤i<j≤n

∫

Xn

∂

∂ξij
u
((

d(xp, xq)
)
1≤p<q≤n

)
· g(xi, xj) dmn(x) (7.4)

This leads to an explicit representation formula for the ambient gradient of U at X .

To this end, given u and (X, d,m) as above, put

udij(x) =
∂

∂ξij
u
((

d(xp, xq)
)
1≤p<q≤n

)
, (7.5)

for x = (x1, . . . , xn) ∈ Xn.

Theorem 7.4. The ambient gradient ∇∇U(X) of the function U at the point X = [[X, d,m]] ∈ Y is the
function f ∈ L2

s(X
2,m2) given by f(y, z) = 1

2 f̃(y, z) +
1
2 f̃(z, y) with

f̃(y, z) =
∑

1≤i<j≤n

∫

Xn−2

udij

(
x1, . . . , xi−1, y, xi+1, . . . , xj−1, z, xj+1, . . . , xn

)

dmn−2(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , . . . , xn).

Moreover, ∇∇(−U)(X) = −∇∇U(X).
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Proof. For a given representative (X, d,m) of X put f as above. Now in addition, let g ∈ TX be given.
Let us first consider the particular case that g is given on the same representative, i.e. g ∈ L2

s(X
2,m2).

Then

DgU(X ) =
∑

1≤i<j≤n

∫

Xn

∂

∂ξij
u
((

d(xp, xq)
)
1≤p<q≤n

)
· g(xi, xj) dmn(x)

=
∑

1≤i<j≤n

∫

Xn

udij(x
1, . . . , xn) · g(xi, xj) dmn(x)

=
∑

1≤i<j≤n

∫

X2

∫

Xn−2

udij

(
x1, . . . , xi−1, y, xi+1, . . . , xj−1, z, xj+1, . . . , xn

)
· g(y, z)

dmn−2(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , . . . , xn) dm2(y, z)

=

∫

X2

f(y, z) · g(y, z) dm2(y, z) = 〈f, g〉L2(X2,m2).

Now let us consider the general case: g ∈ L2
s(X

′2,m′2) for some representative (X ′, d′,m′) of X . Put
X̄ = X × X ′ and let m̄ be any coupling of m and m′ such that d = d′ m̄2-a.e. on X̄2. Choose d̄

on X̄2 which coincides a.e. with d (and d′) and define f̄ , ḡ ∈ L2
s(X̄

2, m̄2) by ḡ(ȳ, z̄) = g(y′, z′) for
ȳ = (y, y′), z̄ = (z, z′) ∈ X ×X ′,

f̄(ȳ, z̄) =
∑

1≤i<j≤n

∫

X̄n−2

1

2

[
ud̄ij

(
x̄1, . . . , x̄i−1, ȳ, x̄i+1, . . . , x̄j−1, z̄, x̄j+1, . . . , x̄n

)

+ud̄ij

(
x̄1, . . . , x̄i−1, z̄, x̄i+1, . . . , x̄j−1, ȳ, x̄j+1, . . . , x̄n

)]

dm̄n−2(x̄1, . . . , x̄i−1, x̄i+1, . . . , x̄j−1, x̄j+1, . . . , . . . , x̄n).

Then f̄(ȳ, z̄) = f(y, z) for ȳ = (y, y′), z̄ = (z, z′) ∈ X × X ′ since d̄ = d m̄
2-a.e. on X̄2. Repeating the

previous calculation with X̄, f̄ , ḡ and m̄ in the place of X, f, g and m yields

DgU(X ) = 〈f̄ , ḡ〉L2(X̄2,m̄2). (7.6)

Remark 7.5. • Polynomials of degree 2 are of the form
∫
X

∫
X u(d(x, y)) dm(x) dm(y). They had been

used e.g. to define the Lp-size of X = [[X, d,m]].

• Polynomials of degree 3 can be used to determine whether a space X ∈ Y satisfies the triangle
inequality, at least in a certain weak sense. For instance,

U(X ) =

∫

X

∫

X

∫

X

[
d(x, z)− d(x, y)− d(y, z)

]−
dm(x) dm(y) dm(z)

vanishes if and only if X ∈ Y satisfies the triangle inequality m3-a.e., cf. Remark 5.13.

• Polynomials of degree 4 allow to determine whether a given curvature bound (either from above or
from below) in the sense of Alexandrov is satisfied. This will be achieved through the functionals
GK and HK to be considered below.

7.2 Nested Polynomials

Besides polynomials, there are many other functions on Y for which derivatives (of any order) can be
calculated explicitly. Among them are functions

U : Y → R+
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of the form

U(X ) =

∫

X

U

(∫

X

η(d(x, y))dm(y)

)
dm(x) (7.7)

for given functions U : R+ → R+ and η : R+ → R+. Any functional of this type will be called nested
polynomial of order 2. The F -functional to be considered in the next chapter will be of this type.

Note, however, that analogous Lipschitz continuity and semiconvexity results can be easily obtained
along the same lines of reasoning for more general classes of nested polynomials including for instance

U(X ) =

∫

X

U

(∫

X

η(d(x, y))dm(y),

∫

X

ϑ(d(x, z))dm(z)

)
dm(x)

or

U(X ) =

∫

X

∫

X

U

(∫

X

∫

X

θ
(
d(x, y), d(x, z), d(x,w), d(y, z), d(y, w), d(z, w)

)
dm(w)dm(z)

)
dm(y)dm(x).

Lemma 7.6. Assume that U : Y → R+ is given by formula (7.7) with U ∈ C2(R+,R+) and η ∈
C1(R+,R+), both with bounded derivatives.

(i) Then for each geodesic (Xt)0≤t≤1 in Y and represented as in (7.2):

d

dt
U(Xt) =

∫

X0×X1

[
U ′
(∫

X0×X1

η
(
d0(x, z) + t(d1(x, z)− d0(x, z))

)
dm̄(z)

)

·
∫

X0×X1

η′
(
d0(x, y) + t(d1(x, y)− d0(x, y)

)
·
(
d1(x, y)− d0(x, y)

)
dm̄(y)

]
dm̄(x)

for all t ∈ (0, 1) and as a right limit for t = 0.

(ii) Moreover,

d2

dt2
U(Xt) =

∫

X0×X1

[
U ′′
(∫

X0×X1

η
(
d0(x, z) + t(d1(x, z)− d0(x, z))

)
dm̄(z)

)

·
(∫

X0×X1

η′
(
d0(x, y) + t(d1(x, y)− d0(x, y)

)
·
(
d1(x, y)− d0(x, y)

)
dm̄(y)

)2
]
dm̄(x)

+

∫

X0×X1

[
U ′
(∫

X0×X1

η
(
d0(x, z) + t(d1(x, z)− d0(x, z))

)
dm̄(z)

)

·
∫

X0×X1

η′′
(
d0(x, y) + t(d1(x, y)− d0(x, y)

)
·
(
d1(x, y)− d0(x, y)

)2
dm̄(y)

]
dm̄(x),

again for all t ∈ (0, 1) and as a right limit at t = 0.

Proof. As in the case of polynomials, these formulae are straightforward consequences of the representa-
tions (7.7) and (7.2) which provide an explicit formula for the dependence of U(Xt) on t:

U(Xt) =

∫

X0×X1

U

(∫

X0×X1

η
(
d0(x, y) + t(d1(x, y)− d0(x, y))

)
dm̄(y)

)
dm̄(x).

Now again, interchanging the order of differentiation and integration and applying the chain rule leads
to the asserted formulas for the directional derivatives.

Remarks 7.7. (i) In the case t = 0, using the abbreviation w0(x) =
∫
X0
η(d0(x, z))dm0(z), the previous

formulas yield

d

dt
U(Xt)

∣∣∣
t=0

=

∫

X0×X1

∫

X0×X1

U ′(w0(x)) · η′(d0(x, y)) ·
(
d1(x, y)− d0(x, y)

)
dm̄(y)dm̄(x), (7.8)

d2

dt2
U(Xt)

∣∣∣
t=0

=

∫

X0

U ′′(w0(x))

[∫

X0×X1

η′(d0(x, y)) ·
(
d1(x, y) − d0(x, y)

)
dm̄(y)

]2
dm̄(x)

+

∫

X0×X1

∫

X0×X1

U ′(w0(x)) · η′′(d0(x, y)) ·
(
d1(x, y)− d0(x, y)

)2
dm̄(y)dm̄(x),
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(ii) More generally, for each X0 = [[X0, d0,m0]] = [[X1, d1,m1]] ∈ Y, each g ∈ L2
s(X

2
1 ,m

2
1) and each

m̄ ∈ Cpl(m0,m1) with d0 = d1 m̄2-a.e.

DgU(X ) =

∫

X0×X1

∫

X0×X1

U ′(w0(x0)) · η′(d0(x0, y0)) · g(x1, y1) dm̄(y0, y1)dm̄(x0, x1).

Corollary 7.8. The ambient gradient of U at the point X = [[X, d,m]] is given by the function f =
∇∇U(X ) ∈ L2(X2,m2) defined as

f(x, y) =
1

2

(
U ′(w(x)) + U ′(w(y))

)
· η′(d(x, y)) (7.9)

where w(.) :=
∫
X η(d(., z))dm(z). In particular,

‖∇∇U(X )‖ =
1

2

[∫

X

∫

X

[
U ′(w(x)) + U ′(w(y))

]2
· η′(d(x, y))2dm(y)dm(x)

] 1
2

.

Theorem 7.9. (i) If U and η are Lipschitz functions on R+, then U is a Lipschitz function on (Y,∆∆)
with

Lip(U) ≤ Lip(U) · Lip(η).

(ii) Assume that U, η ∈ C2(R+) with

U ′ ≥ −L, U ′′ ≥ −λ and |η′| ≤ C1, η′′ ≤ C2

for some numbers L, λ, C1, C2 ∈ R+. Then U is κ-convex on (Y,∆∆) with

κ ≥ −λ · C2
1 − L · C2.

Proof. (i) For Lipschitz continuous U and η, the formula in Lemma 7.6 (i), yields
∣∣∣∣
d

dt
U(Xt)

∣∣∣∣ ≤ Lip(U) · Lip(η) ·
∫

X0×X1

∫

X0×X1

|d1(x, y)− d0(x, y)|dm̄(y)dm̄(x)

≤ Lip(U) · Lip(η) ·∆∆(X0,Xt)

and thus
Lip(U) ≤ Lip(U) · Lip(η).

(Indeed, a more direct estimation is possible without any t-differentiation.)
(ii) The given bounds on derivatives of U and η allow to estimate the right hand side in Lemma 7.6 (ii)
as follows:

d2

dt2
U(Xt) ≥− λ · C2

1 ·
∫

X0×X1

(∫

X0×X1

|d1(x, z)− d0(x, z)|dm̄(y)

)2

dm̄(x)

− L · C2 ·
∫

X0

∫

X0

|d1(x, z)− d0(x, z)|2dm(y)dm(x)

≥− (λ · C2
1 + L · C2) ·∆∆(X0,X1)

2.

That is, d2

dt2U(Xt) ≥ κ ·∆∆(X0,X1)
2 for each geodesic (Xt)0≤t≤1 in Y. This is the κ-convexity of U on the

geodesic space (Y,∆∆).

A straightforward generalization yields analogous assertions for functionals Ū : Y → R+ of the form

Ū(X ) =

∫ ∞

0

Ur(X )ρrdr

for some probability density ρ on R+ and a one-parameter family of functionals Ur, r ∈ R+, of the form
(7.7) with appropriate Ur and ηr (depending in a measurable way on r ∈ R+):

Ur(X ) =

∫

X

Ur

(∫

X

ηr(d(x, y))dm(y)

)
dm(x).
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Corollary 7.10. (i) If Ur and ηr are Lipschitz (∀r ≥ 0) then so is Ū with

Lip(Ū) ≤
∫ ∞

0

Lip(Ur) Lip(ηr)ρrdr.

(ii) If Ur and ηr are C2 (∀r ≥ 0) then Ū is κ-convex for

κ = −
∫ ∞

0

[
‖(U ′′r )‖∞ · ‖η′r‖2∞ + ‖(U ′r)‖∞ · ‖η′′r ‖∞

]
ρrdr

7.3 The G-Functionals

Throughout this section, let

ζ(r) =





−2r − 1, r ≤ −1
r2, −1 ≤ r ≤ 0
0, 0 ≤ r.

Given a number K > 0 and a gauged measure space (X, d,m), we say that m
3-a.e. triangle in (X, d) has

perimeter ≤ 2π/
√
K if

d(x1, x2) + d(x2, x3) + d(x3, x1) ≤ 2π/
√
K

for m3-a.e. (x1, x2, x3) ∈ X3. Put

Y
per
K =

{
X = [[X, d,m]] ∈ Y : m3-a.e. triangle in (X, d) has perimeter ≤ 2π/

√
K
}
.

For K ≤ 0 we put Y
per
K = Y.

Lemma 7.11. For each K ∈ R, Yper
K is a closed convex subset of Y.

Proof. Convexity: the inequalities d0(x1, x2)+d0(x2, x3)+d0(x3, x1) ≤ 2π/
√
K and d1(x1, x2)+d1(x2, x3)+

d1(x3, x1) ≤ 2π/
√
K carry over from given spaces (X0, d0,m0) and (X1, d1,m1), resp., to the product space

(equipped with any coupling measure) and they are preserved under convex combinations.
Closedness: the inequalities dn(x1, x2) + dn(x2, x3) + dn(x3, x1) ≤ 2π/

√
K on a sequence of spaces

carry over to the limit space. In detail, this stability result is based on the same arguments as the stability
of the triangle inequality, see proof of Corollary 5.16.

Definition 7.12. (i) The G0-functional is defined on Y by

G0(X ) =

∫

X4

ζ

(
3
∑

1≤i≤3
d2(x0, xi)−

∑

1≤i<j≤3
d2(xi, xj)

)
dm4(x0, x1, x2, x3).

(ii) For any K ∈ (0,∞) we define the GK -functional by

GK(X ) =

∫

X4

ζ

(
− 1

K

[ ∑

1≤i≤3
cos
(√

Kd(x0, xi)
)]2

+
3

K
+

2

K

∑

1≤i<j≤3
cos
(√

Kd(xi, xj)
))

dm4(x0, x1, x2, x3)

provided X ∈ Y
per
K and GK(X ) = ∞ otherwise.

(iii) For any K ∈ (−∞, 0) we define the GK-functional by

GK(X ) =

∫

X4

ζ

(
− 18

K
log
[1
3

∑

1≤i≤3
cosh

(√
−Kd(x0, xi)

)]

+
9

K
log
[1
3
+

2

9

∑

1≤i<j≤3
cosh

(√
−Kd(xi, xj)

)])
dm4(x0, x1, x2, x3).

Note that GK(X ) → G0(X ) for K ր 0 as well as for K ց 0.
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Theorem 7.13. (i) For each K ∈ R the function GK is semiconvex and locally Lipschitz continuous
on Y

per
K . If K 6= 0 it is globally Lipschitz continuous; if K = 0 it satisfies ‖∇∇GK(X )‖ ≤ 36 ·size(X ).

(ii) Moreover, ∇∇GK is given explicitly, e.g. for K = 0 at the point X ∈ Y as the symmetrization of the
function f ∈ L2(X2,m2) defined by

f(z, z′) = 6d(z, z′) ·
∫

X2

[
3ζ′
(
3
(
d2(z, z′) + d2(z, y) + d2(z, y′)

)
−
(
d2(z′, y) + d2(z′, y′) + d2(y, y′)

))

−2ζ′
((

d2(y, z) + d2(y, z′) + d2(y, y′)
)
−
(
d2(y′, z) + d2(y′, z′) + d2(z, z′)

))]
dm2(y, y′).

(iii) For each K ∈ R and X ∈ Xgeo:

GK(X ) = 0 ⇐⇒ X has curvature ≥ K in the sense of Alexandrov.

Here an isomorphism class X of mm-spaces is said to have curvature ≥ K (or ≤ K) in the sense
of Alexandrov if for some (hence any) of its representatives (X, d,m) the metric space (supp(m), d) has
curvature ≥ K (or ≤ K, resp.) in the sense of Alexandrov.

Proof. (i), (ii) Differentiability (weakly up to order two) and semiconvexity follow from the previous
Theorem 7.2 applied to suitable functions u on R6. In the case K = 0, the appropriate choice is

u
(
ξ01, . . . , ξ23

)
= ζ

(
3
∑

1≤i≤3
ξ20i −

∑

1≤i<j≤3
ξ2ij

)
.

Approximating ζ by

ζǫ = Φǫ(ζ) :=
ζ

1 + ǫ
√
ζ

and analogously u by uǫ = Φǫ(u) we obtain Lipschitz continuous, semiconvex functions uǫ on R6 which
approximate u (which itself is locally Lipschitz and semiconvex). According to Theorem 7.4, this also
yields the formula for the gradient ∇∇G.

The formula for ∇∇G(X ) together with the estimate −2 ≤ ζ′ ≤ 0 implies

|∇∇G(X )(z, z′)| ≤ 36 · |d(z, z′)|

and thus ‖∇∇G(X )‖ ≤ 36 · size(X ).
The general case of K ∈ R is treated analogously. For instance, in the case K = −1 one has to choose

u
(
ξ01, . . . , ξ23

)
= ζ

(
18 log

(1
3

∑

1≤i≤3
cosh ξ0i

)
− 9 log

(1
3
+

2

9

∑

1≤i,j≤3
cosh ξij

))
.

Again it is easily verified that this function is Lipschitz continuous and semiconvex on R6.

(iii) We first discuss the case K = 0. Obviously, G0(X ) = 0 is equivalent to

3
∑

1≤i≤3
d2(x0, xi) ≥

∑

1≤i<j≤3
d2(xi, xj) (7.10)

for m4-a.e. quadruple (x0, x1, x2, x3) ∈ X4. Since d is continuous the latter is equivalent to (7.12) for
all quadruples (x0, x1, x2, x3) ∈ X4. According to a recent characterization by Lebedeva and Petrunin
[LP10], for a geodesic mm-space this in turn is equivalent to nonnegative curvature in the sense of
Alexandrov.

Analogously, in the case K < 0 the condition GK(X ) = 0 is obviously equivalent to the condition

( ∑

1≤i≤3
cosh

(√
−Kd(x0, xi)

))2

≥ 3 + 2
∑

1≤i<j≤3
cosh

(√
−Kd(xi, xj)

)
(7.11)
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for all quadruples (x0, x1, x2, x3) ∈ X4. In the case K > 0 it is equivalent to the facts that all triangles
in X have perimeter ≤ 2π/

√
K and that

( ∑

1≤i≤3
cos
(√

Kd(x0, xi)
))2

≤ 3 + 2
∑

1≤i<j≤3
cos
(√

Kd(xi, xj)
)

(7.12)

for all quadruples (x0, x1, x2, x3) ∈ X4.
Again in both cases, within geodesic mm-spaces, the latter characterizes the spaces of curvature ≥ K

in the sense of Alexandrov [LP10].

7.4 The H-Functionals

Definition 7.14. (i) The H0-functional is defined on Y by

H0(X ) =

∫

X4

ζ

(
d2(x1, x2) + d2(x2, x3) + d2(x3, x4) + d2(x4, x1)

−d2(x1, x3)− d2(x2, x4)

)
dm4(x1, x2, x3, x4)

with ζ as before in Definition 7.12.

(ii) For K ∈ (0,∞) we define the HK-functional by

HK(X ) =

∫

X4

ζ

(
− 2

K

4∑

i=1

cos∗
(√

Kd(xi, xi+1)
)

+
8

K
cos
(1
2

√
Kd(x2, x4)

)
· cos

(1
2

√
Kd(x1, x3)

))
dm4(x1, x2, x3, x4)

with x5 := x1 and cos∗(r) := cos(r) for r ∈ [−π/2, π/2] and cos∗(r) = −∞ else.

(iii) For any K ∈ (−∞, 0) we define the HK-functional by

HK(X ) =

∫

X4

ζ

(
− 8

K
log
[1
4

4∑

i=1

cosh
(√

−Kd(xi, xi+1)
)]

+
8

K
log
[
cosh

(1
2

√
−Kd(x2, x4)

)
cosh

(1
2

√
−Kd(x1, x3)

)])
dm4(x1, x2, x3, x4).

Note that HK(X ) → H0(X ) for K ր 0 as well as for K ց 0.

Theorem 7.15. (i) For each K ∈ R the function HK is semiconvex and locally Lipschitz continuous
on Y. It is globally Lipschitz if K 6= 0.

(ii) Moreover, ∇∇HK is given explicitly, e.g. for K = 0 at the point X ∈ Y as the symmetrization of
the function f ∈ L2(X2,m2) defined by

f(z, z′) = 4d(z, z′) ·
∫

X2

[
2ζ′
(
d2(z, z′) + d2(z′, y) + d2(y, y′) + d2(y′, z)− d2(z, y)− d2(z′, y′)

)

−ζ′
(
d2(z, y) + d2(y, z′) + d2(z′, y′) + d2(y′, z)− d2(z, z′)− d2(y, y′)

)]
dm2(y, y′).

(iii) For each X ∈ Xgeo and each K ∈ R:

X has curvature ≤ K in the sense of Alexandrov =⇒ HK(X ) = 0.

In particular, in the case K = 0

X has curvature ≤ 0 in the sense of Alexandrov ⇐⇒ H0(X ) = 0.
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Proof. (i), (ii) The proof of (local/global) Lipschitz continuity and semiconvexity is almost identical to
the previous one for GK . Also the formula for ∇∇H is derived in completely the same way.

(iii) Obviously, H0(X ) = 0 is equivalent to

d2(x1, x2) + d2(x2, x3) + d2(x3, x4) + d2(x4, x1)− d2(x1, x3)− d2(x2, x4) ≥ 0 (7.13)

for all quadruples (x1, x2, x3, x4) ∈ X4. According to a recent characterization by Berg and Nikolaev
[BN08], for a geodesic mm-space this in turn is equivalent to nonpositive curvature in the sense of
Alexandrov. The claim for general K ∈ R follows from the next lemma.

Lemma 7.16. Let (X, d) be a geodesic metric space of curvature ≤ K and in the sense of Alexandrov
for some K ∈ R \ {0}. Then if K < 0

4 cosh
(1
2

√
−Kd(x2, x4)

)
· cosh

(1
2

√
−Kd(x1, x3)

)

≤ cosh
(√

−Kd(x1, x2)
)
+ cosh

(√
−Kd(x2, x3)

)
+ cosh

(√
−Kd(x3, x4)

)
+ cosh

(√
−Kd(x4, x1)

)

for every quadruple (x1, x2, x3, x4) ∈ X4. Analogously, if K > 0

4 cos
(1
2

√
Kd(x2, x4)

)
· cos

(1
2

√
Kd(x1, x3)

)

≥ cos
(√

Kd(x1, x2)
)
+ cos

(√
Kd(x2, x3)

)
+ cos

(√
Kd(x3, x4)

)
+ cos

(√
Kd(x4, x1)

)

for every quadruple (x1, x2, x3, x4) ∈ X4 with d(xi, xi+1) ≤ π
2
√
K

for each i = 1, . . . , 4.

Proof. To simplify notation, we first assume K = 1. Let a quadruple (x1, . . . , x4) ∈ X4 be given with
d(xi, xj) ≤ π

2
√
K

for all i, j and let z be a midpoint of x1 and x3. Then by triangle comparison, applied

to the triangle (x1, x2, x3)

cos
(
d(z, x2)

)
· cos

(1
2
d(x1, x3)

)
≥ 1

2
cos
(
d(x1, x2)

)
+

1

2
cos
(
d(x3, x2)

)
.

Considering the triangle (x1, x4, x3) we obtain similarly

cos
(
d(z, x4)

)
· cos

(1
2
d(x1, x3)

)
≥ 1

2
cos
(
d(x1, x4)

)
+

1

2
cos
(
d(x3, x4)

)
.

Since r 7→ cos(r) is decreasing and concave on the interval [0, π/2],

cos
(1
2
d(x2, x4)

)
≥ cos

(1
2
d(x2, z) +

1

2
d(z, x4)

)
≥ 1

2
cos
(
d(x2, z)

)
+

1

2
cos
(
d(z, x4)

)
.

Altogether this implies

cos
(1
2
d(x2, x4)

)
· cos

(1
2
d(x1, x3)

)

≥ 1

4
cos
(
d(x1, x2)

)
+

1

4
cos
(
d(x3, x2)

)
+

1

4
cos
(
d(x1, x4)

)
+

1

4
cos
(
d(x3, x4)

)
.

In the case K = −1, the same formulas hold true with all cos replaced by cosh and all ≥ replaced by ≤.
The general case follows by re-scaling.

8 The F-Functional

8.1 Balanced spaces

Given a gauged measure space (X, d,m), we define its volume growth function v : R+ ×X → R+ by

vr(x) := m(Br(x))

where Br(x) = {y ∈ X : |d(x, y)| < r}.
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Definition 8.1. A gauged measure space (X, d,m) is called balanced if there exists a function v⋆ : R+ →
R+ such that for every r > 0

vr(x) = v⋆r for m-a.e. x ∈ X.

Remarks 8.2. (i) Being balanced is invariant under homomorphisms of gauged measure spaces (see
Proposition 5.6).

(ii) A metric measure space (X, d,m) is balanced if and only if for all r ∈ R+

x 7→ vr(x) does not depend on x ∈ supp(m) ⊂ X.

Proof. (i) as well as the “if”-implication in (ii) are obvious. For the converse, note that v⋆ has at most
countably many discontinuities. Choose r > 0 in which v⋆ is continuous. By the triangle inequality, for
all x and all y ∈ Bǫ(x)

vr−ǫ(x) ≤ vr(y) ≤ vr+ǫ(x).

Hence,
y 7→ vr(y) is continuous on supp(m).

Thus
vr(y) = v⋆r for all y ∈ supp(m). (8.1)

Recall that this holds for all r > 0 in which v⋆ is continuous. Since r 7→ vr(y) is left continuous for each
y ∈ X , (8.1) extends to all r > 0.

Proposition 8.3. Assume that a gauged measure space (X, d,m) is homogeneous in the sense that for
each pair (x, y) ∈ X2 there exists a map ψ : X → X which sends x to y and which preserves measure
and gauge. Then (X, d,m) is balanced.

Proof. The fact that ψ preserves measure and gauge implies vr(x) = vr(ψ(x)).

Example 8.4. Discrete Circles. For n ∈ N, let X =
{
ek2πi/n ⊂ C : k = 1, . . . , n

}
, let m be the uniform

distribution on the n points ofX and let d be the graph distance onX (which – up to a multiplicative
constant – coincides with the induced distance within the unit circle of C). Then (X, d,m) is
balanced.

The volume growth v⋆ is a step function with values in 2k−1
n for k = 1, . . . , ⌊n+1

2 ⌋ and (in addition
if n is even) 1.

Platonic Solids. Each platonic solid (regarded as a metric measure space with uniform distribution on
the vertices and induced graph distance or, alternatively, with distance of ambient Euclidean space)
is a balanced space.

Discrete Continuum. The discrete continuum (see 5.17) is balanced with volume growth

v⋆r =

{
0, r ≤ 1
1, r > 1.

Proposition 8.5. For X ∈ Xlength the following are equivalent:

(i) X is balanced with v⋆r = r ∧ 1

(ii) X is the circle of length 2 (with uniform distribution).

Proof. Without restriction, assume that m has full support. A first consequence of the volume growth is
the doubling property for m and thus the compactness of X (cf. [Gro99], [BBI01]). Since X was assumed
to be a length space, we conclude that it is a geodesic space.

Let γ : [0, 1] → X be a geodesic of length L = d(γ0, γ1) ≤ 1. Then for each n ∈ N

m

(
B L

2n
(γ)
)
≥ m

(
n⋃

i=1

B L
2n

(
γ i

n

))
=

n∑

i=1

m

(
B L

2n

(
γ i

n

))
= n · v⋆L

2n
=
L

2
.
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Thus m(γ) ≥ L
2 .

According to the volume growth, the diameter is 1. Thus there exists a pair (x, y) ∈ X2 such that
d(x, y) = 1. Let γ be a connecting geodesic. Then

m(γ) ≥ 1

2
.

(Hence, there exist at most two such geodesics which are ‘disjoint’ in the sense that the restrictions to
the open interval (0, 1) are disjoint. If there exist two ‘disjoint’ geodesics then we are done: they will
support all the mass.)

Let z = γ1/2 be the midpoint of γ. Then

1

2
≤ m (γ) ≤ m

(
B 1

2
(z)
)
=

1

2
.

Thus within B 1
2
(z) all the mass is supported by γ. There is no branching. But at x and y, the boundary

points of B 1
2
(z), other geodesics α, β (of length 1) must start. Otherwise, vr(x) = r/2 and vr(y) = r/2

for all r ∈ (0, 1). The diameter bound requires that γ composed with these geodesics α and β emanating
from x and y, resp., constitute a closed curve. This yields the claim.

Example 8.6. Let X = I∞ be the infinite dimensional torus, i.e. the infinite product of I = R/Z, the
circle of length 1. The 1-dimensional Lebesgue measure L1 on I induces a Borel probability measure
m = L∞ on the Polish space X . Given a sequence of positive real numbers (an)n∈N, we define a metric
d on X by

d(x, y) = 2 sup
n∈N

d1(xn, yn)

an

where d1 denotes the standard metric on I, i.e. d1(s, t) = infk∈Z |s− t+ k|.

(i) Then (X, d,m) is balanced with

v⋆r =
∏

n∈N
(r an ∧ 1).

(ii) If an = 1 for all n then m(Br(x)) = 0 for all x ∈ X and all r ∈ [0, 1). That is, (X, d,m) is balanced
with v⋆r = 0 for r < 1 (and of course v⋆r = 1 for r ≥ 1).

(iii) If an = en then (X, d,m) is balanced with

v⋆r = r−
1
2 log r+O(1) as r → 0.

Indeed, for each x ∈ X and r > 0

m(Br(x)) =
∏

an<1/r

(r · an) = exp


 ∑

n<− log r

(log r + n)


 = exp

(
−(log r)2 +

1

2
(log r)2 +O(log r)

)
.

Now let us have a closer look on Riemannian spaces which are balanced. We will consider the volume
growth (r, x) 7→ vr(x) for triples (X, d,m) where X = M is a Riemannian manifold (which always
is assumed to be smooth, complete and connected) equipped with its Riemannian distance d and its
Riemannian volume measure m. To avoid confusing normalization constants, for the rest of this section
we will not require that the measure m is normalized. Even more, we will not require that it is finite (i.e.
we will also allow spaces of infinite volume). The manifold M will be called balanced if its volume growth
function m(Br(x)) is independent of x.

The favorite examples here are the simply connected n-dimensional Riemannian manifolds M
n,K of

constant sectional curvature K ∈ R. The model spaces Mn,K for K > 0 are rescaled versions of the
standard n-sphere Sn = Mn,1 whereas for K < 0 they are rescaled versions of the hyperbolic space
Hn = Mn,−1. The space form for K = 0 is the Euclidean space Rn = Mn,0.
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Example 8.7. For each n ∈ N and K ∈ R, the space Mn,K is balanced with volume growth

v⋆r =
2πn/2

Γ(n/2)

∫ r

0

(
sinh(

√
−Kt)√

−K

)n−1

dt (8.2)

if K < 0; if K > 0, sinh(
√
−Kt)√
−K must be replaced by sin(

√
Kt∧π)√
K

and if K = 0 by t.

Besides model spaces, there exist many other Riemannian examples of balanced spaces.

Example 8.8. • Product of spheres, e.g. M = S2 × S2:

Here vr(x) = v⋆r = (2π)2 ·
(
1− cos(r ∧ π)

)2
for all x ∈M and r > 0.

• Torus M = Rn/Zn = In with I = R/Z circle of length 1:
Here vr(x) = v⋆r for all (r, x) ∈ R+ ×M for some function v⋆ : R+ → R+ satisfying

v⋆r =

{
cnr

n for 0 ≤ r ≤ 1
2

1 for r ≥ 1.

Lemma 8.9 (Gray, Vanhecke [GV79]). For any n-dimensional Riemannian manifold (M, g) – equipped
with its Riemannian distance d and its (non-normalized) Riemannian volume measure m – the volume
growth function admits the following asymptotic expansion

vr(x) = cnr
n ·
(
1 + b2(x)r

2 + b4(x)r
4 + b6(x)r

6 +O(r8)
)

(8.3)

as r ց 0 locally uniformly in x ∈ X with cn = πn/2

Γ(n/2+1) and explicitly given coefficients b2, b4, b6. In

particular,

• b2(x) = − s(x)
6(n+2) where s(x) denotes the scalar curvature at x ∈M

• b4(x) =
1

360(n+2)(n+4)

(
− 3‖R‖2(x) + 8‖Ric‖2(x) + 5s2(x)− 18∆s(x)

)

with R denoting the Riemannian curvature tensor and Ric the Ricci tensor.

In dimension n = 2, the coefficient b4 is explicitly given as

b4(x) =
1

1440

(
s2(x) − 3∆ s(x)

)
.

In n = 3, it is given as

b4(x) =
1

6300

(
4s2(x) − 2‖Ric‖2(x)− 9∆ s(x)

)
.

In dimensions n ≥ 3, the coefficient b4 can also be expressed as

b4(x) =
1

360(n+ 2)(n+ 4)

(
− 3‖W‖2(x) + C′n ‖R̊ic‖2(x) + C′′n s

2(x) − 18∆s(x)
)

(8.4)

with C′n = 8− 3
(n−2)2 and C′′n = 5− 3

[2n(n−1)]2 + 8
n2 in terms of the traceless Ricci tensor

R̊ic = Ric− s

n
g (8.5)

and the Weyl tensor

W = R− 1

n− 2
R̊ic ◦ g − s

2n(n− 1)
g ◦ g. (8.6)

Indeed (see [Pet07a]),

‖Ric‖2 = ‖R̊ic‖2 + 1

n2
s2

and

‖R‖2 = ‖W‖2 + 1

(n− 2)2
‖R̊ic‖2 + 1

[2n(n− 1)]2
s2.

65



• If M is conformally flat then the Weyl tensor vanishes [Pet07a].

• Conversely, if the Weyl tensor vanishes and n ≥ 4 then M is conformally flat.

• If the traceless Ricci tensor vanishes and n ≥ 3 then M is Einstein (i.e. Ric = λg for some λ ∈ R).

Corollary 8.10. Every balanced Riemannian manifold has constant scalar curvature.

Proof. If vr(x) is independent of x then so are the coefficients bk(x) in the above asymptotic expansion.
For k = 2 this is the claim.

The converse implication is not true. Even worse: constant sectional curvature does not imply that
M is balanced.

Example 8.11. Consider the Riemannian manifold

M = H/G

obtained as the quotient space of H under the action of a discrete subgroup G of isometries of H, acting
freely on it. Then M has constant curvature −1.
Hence, for each x ∈M there exists R > 0 such that

vr(x) = v⋆r for all r ∈ [0, R].

On the other hand, if M is non-compact for each r > 0

vr(x) → 0 as x→ ∞.

Note that there also exist such examples M = H/G which are non-compact but have finite volume, see
e.g. Example 5.7.4 in [Dav90].

Conjecture 8.12. Let v⋆ be the volume growth of a given model space Mn,K and let v denote the volume
growth of another, arbitrary Riemannian manifold M .

(I) Gray, Vanhecke (1979):

∀x as r → 0 : vr(x) = v⋆r + o(rn+4) ⇐⇒ M has sectional curvature K and dimension n

(II) Moreover:

∀x, ∀r > 0 : vr(x) = v⋆r ⇐⇒ M = M
n,K .

Theorem 8.13. The Conjectures (I) and (II) are true in each of the following cases

(i) n ≤ 3

(ii) M is conformally flat

(iii) M is an Einstein manifold

(iv) M satisfies the uniform lower bound Ricx ≥ (n− 1)K

(v) M satisfies the uniform upper bound Ricx ≤ (n− 1)K.

Proof. Conjecture (I) has been proven by Gray and Vanhecke in [GV79]. Being unaware of this result,
an independent proof of it as well as a proof of Conjecture (II) has been proposed to the author by
Andrea Mondino (personal communication, May 2012). For the convenience of the reader, we sketch the
arguments for both conjectures.

According to the asymptotic formula for the volume growth (up to order 2), the assumption on the
local coincidence of the volume growth of M and MK,n implies

• dimM = n
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• s(x) = s⋆ = n(n− 1)K for all x.

Taking into account the 4th-order term of the volume growth, it yields

−3‖R‖2(x) + 8‖Ric‖2(x) = −3‖R⋆‖2 + 8‖Ric⋆‖2

or equivalently

− 3‖W‖2(x) +
(
8− 3

(n− 2)2

)
‖R̊ic‖2(x) = −3‖W⋆‖2 +

(
8− 3

(n− 2)2

)
‖R̊ic⋆‖2. (8.7)

Now assume (iii), (iv) or (v). Since s(x) = n(n − 1)K, each of these assumptions implies that R̊ic = 0.

Anyway, W⋆ = 0 and R̊ic
⋆
= 0. Hence, according to (8.7), W = 0 and thus R = R⋆ = s

⋆

2n(n−1)g ◦ g.
Next assume (ii), i.e. M is conformally flat. Then W = 0. Since W⋆ = 0 and R̊ic

⋆
= 0, it implies

R̊ic = 0 and thus R = R⋆ = s
⋆

2n(n−1)g ◦ g.
The case (i) follows from the explicit formulas for the coefficient b4 in dimensions 2 and 3.

To prove the validity of Conjecture (II) in all these cases, finally, assume that M has constant sectional
curvature K and dimension n. Then by the Bishop-Gromov volume comparison theorem

vr(x) ≤ v⋆r

for all r and x. Moreover, equality (for all r and x) holds true if and only if M is the model space
Mn,K .

Remark 8.14. Within the larger frame of Finsler manifolds M , Conjectures (I) and (II) are wrong. In
fact, every n-dimensional normed space equipped with a multiple of the n-dimensional Lebesgue measure
is balanced – and after appropriate choice of the normalizing constant – has the same volume growth as
the Euclidean space Rn.

8.2 The F-Functional and its Gradient Flow

Now let us fix a balanced space X ⋆ ∈ X̄ (with volume growth v⋆) as well as a Borel function ρ : R+ → R+

with ρr > 0 for all r and
∫∞
0

(r2 + r4)ρrdr < ∞. We regard X ⋆ as a “model space” within the category
of pseudo metric measure spaces. The downward gradient flow for the F -functional to be defined below
– either on X̄ or on Y – will push any other space X towards X ⋆.

Define F : Y → R+ by

F(X ) =
1

2

∫ ∞

0

∫

X

[∫ r

0

(
vt(x)− v⋆t

)
dt

]2
dm(x)ρrdr

where vr(x) = m(Br(x)) for X = [[X, d,m]]. Recall that Br(x) = {y ∈ X : |d(x, y)| < r}.

Theorem 8.15. (i) Each global minimizer X of F is balanced with

m(Br(x)) = v⋆r for all r ∈ [0,∞) and m-a.e. x ∈ X.

(ii) The function F : Y → R+ is Lipschitz continuous and semiconvex. More precisely, it is κ-convex
with κ = − supr>0

[
r ρr

]
and Lipschitz continuous with Lip(F) ≤

∫∞
0 r ρrdr.

(iii) The ambient gradient of −F at a point X = [[X, d,m]] ∈ X̄ is given by ∇∇(−F)(X ) = f ∈ L2
s(X

2,m2)
with

f(x, y) =

∫ ∞

0

(
vr(x) + vr(y)

2
− v⋆r

)
ρ̄
(
r ∨ d(x, y)

)
dr

where ρ̄(a) =
∫∞
a ρrdr.
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Proof. (i) Since we assumed that v⋆r is the volume growth of X ∗, the function F will attain its global
minimum 0 at least at the point X ∗. For any other minimizer X , it immediately follows that

wr(x) = w⋆
r

for m-a.e. x ∈ X and a.e. r ≥ 0 where

w⋆
r :=

∫ r

0

v⋆t dt, wr(x) =

∫ r

0

vt(x)dt.

Indeed, this actually holds for each r > 0 since for every x ∈ X the function r 7→ wr(x) is continuous.
(It is obtained as the anti-derivative of a function r 7→ vr(x) which itself is non-decreasing and left con-
tinuous.) With the same argument, r 7→ w⋆

r is seen to be continuous.
(ii) Note that F can be written as F(X ) =

∫∞
0

Fr(X )ρrdr with Fr(X ) =
∫
X
Ur

(∫
X
ηr(d(x, y))dm(y)

)
dm(x)

as in (7.7) if one chooses

Ur(a) =
1

2
(a− w⋆

r )
2, ηr(a) = (r − |a|)+ .

For each geodesic (Xt)0≤t≤1 emanating from X
d

dt
F(Xt)

∣∣∣
t=0

=

∫ ∞

0

∫

X

∫

X

(
wr(x)−w⋆

r

)
·
(
1(−r,0](d(x, y))−1[0,r)(d(x, y))

)
·
[
d1(x, y)−d(x, y)

]
dm(y) dm(x) ρr dr

and thus

|∇F(X )| ≤



∫

X

∫

X

[∫ ∞

|d(x,y)|
|wr(x)− w⋆

r | ρrdr
]2
dm(y)dm(x)




1
2

≤
∫ ∞

0

r ρrdr.

For the last inequality, note that |wr(x) − w⋆
r | ≤ r (since 0 ≤ vr(x) ≤ 1 and 0 ≤ v⋆r ≤ 1) for all gauged

measure spaces.
A similar calculation yields

d2

dt2
F(Xt)

∣∣∣
t=0

=

∫ ∞

0

∫

X

[∫

X

(
1(−r,0](d(x, y)) − 1[0,r)(d(x, y))

)
·
(
d1(x, y)− d(x, y)

)
dm(y)

]2
dm(x)ρrdr

+

∫ ∞

0

∫

X

∫

X

(
wr(x) − w⋆

r

)
·
(
d1(x, y)− d(x, y)

)2
dm(y)dm(x)ρr d

(
δd(x,y) + δ−d(x,y) − 2δ0

)
(r)

≥ − sup
r>0

[
r ρr

]
·
∫

X

∫

X

(
d1(x, y) − d(x, y)

)2
dm(y)dm(x)

= κ ·∆∆(X1,X )2

provided κ is chosen as in the claim.
(iii) According to Corollary 7.8

∇∇(−Fr)(X )(x, y) = −1

2

[
U ′(wr(x)) + U ′(wr(y))

]
η′r(d(x, y)).

Since X ∈ X̄ we may assume that d(x, y) ≥ 0. Integrating w.r.t. ρr dr yields

∇∇(−F)(X )(x, y) = −
∫ ∞

0

1

2

[
U ′(wr(x)) + U ′(wr(y))

]
η′r(d(x, y))ρrdr

=

∫ ∞

0

(
wr(x) + wr(y)

2
− w⋆

r

)
· 1[0,r)(d(x, y)) ρrdr

=

∫ ∞

0

∫ ∞

0

(
vt(x) + vt(y)

2
− v⋆t

)
· 1{t≤r} · 1{d(x,y)<r}dt ρr dr

=

∫ ∞

0

(
vt(x) + vt(y)

2
− v⋆t

)
ρ̄(t ∨ d(x, y))dt

with ρ̄(a) =
∫∞
a
ρrdr.
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Corollary 8.16. (i) For each X0 ∈ X̄ the gradient flow equation

Ẋt = ∇(−F)(Xt) (8.8)

has a unique solution X• : [0,∞) → X̄ starting in X0. For all X0,X ′0 ∈ X̄ and all t > 0

∆∆(Xt,X ′t ) ≤ e|κ| t ·∆∆(X0,X ′0) (8.9)

with κ from assertion (ii) of the above Theorem.

(ii) Similarly, for each X0 ∈ Y, there exists a unique solution to the gradient flow equation (8.8) in Y.
It also satisfies the Lipschitz estimate (8.9).

Remark 8.17. (i) The concept of ambient gradients (see Section 6.5) allows a quite intuitive inter-
pretation of the evolution driven by (8.8). According to this calculus, ∇∇(−F)(X ) is the function
f ∈ L2(X2,m2) given by

f(x, y) =

∫ ∞

0

(
vr(x) + vr(y)

2
− v⋆r

)
ρ̄(r ∨ d(x, y))dr. (8.10)

This fact should be interpreted as follows:
the function f is positive for those pairs of points (x, y) ∈ X2 for which - in average w.r.t. the
distribution ρ̄(r ∨ d(x, y)) dr of the radius - the volume of the balls Br(x) and Br(y) is too large
compared with the volume v⋆r of balls in the model space; and vice versa, if the volume of Br(x)
and Br(y) is too small (in average w.r.t. r) then f(x, y) < 0.
The infinitesimal evolution of X under the gradient flow is given by

dt(x, y) = d(x, y) + tf(x, y) +O(t2)

with f as above. That is, d(x, y) will be enlarged if the volume of balls centered at x and y is too
large, and d(x, y) will be reduced if the volume of balls is too small.

(ii) The gradient flow for −F gets stuck if it enters the set of critical points. Obviously, X is critical
for −F if and only if

∇∇(−F)(X ) = 0.

In view of (8.10) this yields: X is critical if and only if for m2-a.e. (x, y) ∈ X2

vr(x) + vr(y)

2
= v⋆r

in average w.r.t. the measure ρ̄(r ∨ d(x, y))dr.

(iii) The above identification of the ambient gradient leads to an even more intuitive formula if we
dispense with smoothing the volume growth, i.e. if in the definition of U we replace the functions
wr and w⋆

r by the original vr and v⋆r , resp. Let

F̃(X ) =
1

2

∫ ∞

0

∫

X

(vr(x)− v⋆r )
2dm(x)ρrdr

for a Borel function ρ ≥ 0 on R+ as above. Then a direct calculation as above yields

∇∇(−F̃)(X )(x, y) =
[vd(x,y)(x) + vd(x,y)(y)

2
− v⋆

d(x,y)

]
· ρd(x,y).

Remark 8.18. For each n ∈ N, the F -functional induces a functional

F (n) = F ◦ Φ : M(n) → R+

on the space M(n) of symmetric (n × n)-matrices (dij)1≤i<j≤n with vanishing diagonal entries via the
injection Φ : M(n) → Y, see section 5.4. This functional F (n) again is Lipschitz continuous and κ-convex
(with the same bounds as F). It admits a unique downward gradient flow in M

(n). This flow (d(t))t≥0
can be characterized in a very explicit way as follows:
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• As long as dt does not reach points d ∈ M(n) with non-trivial symmetries, the flow is simply given

by the first order ODE in R
n(n−1)

2

d

dt
d(t) = −∇F (n)

(
d(t)

)

with

∇ijF (n)
(
d
)
=

∫ ∞

0

(
vr(i) + vr(j)

2
− v⋆r

)
ρ̄(r ∨ dij) dr for 1 ≤ i < j ≤ 1

and vr(i) =
1
n ♯
{
k = 1, . . . , n : dik < r

}
.

• If d admits symmetries, say σ∗1d = d, . . . , σ∗l d = d for σ1, . . . , σl ∈ Sn, then smoothness of F (n) on

R
n(n−1)

2 , invariance under actions of Sn, and uniqueness of ∇F (n) imply that the evolution remains

within the subspace M
(n)
σ1,...,σl of elements in M(n) which are invariant under all these permutations

σ1, . . . , σl. Within this linear subspace, the downward gradient flow for F (n) again solves a first
order ODE until it reaches a point with additional symmetries.

The functional F is closely related to the famous Einstein-Hilbert functional of Riemannian geometry.
To explore this link, for given n ∈ N let us consider a one-parameter family F (ε), ε > 0, of such functionals

F (ε)(X ) =
1

2

∫ ∞

0

∫

X

(wr(x)− w⋆
r )

2dm(x)ρ(ε)r dr

defined in terms of weight functions ρ
(ε)
• : R+ → R+ satisfying as before

sup
r>0

[r ρ(ε)r ] <∞,

∫ ∞

0

rρ(ε)r dr <∞ (∀ε > 0)

and now in addition with c′n =
[

cn
6(n+2)(n+3)

]2
(where cn = πn/2

Γ(n/2+1) , see Lemma 8.9)

c′n ·
∫ ∞

0

r2n+6 · ρ(ε)r dr → 1 as ε→ 0

and

∫ ∞

0

r2n+8 · ρ(ε)r dr → 0 as ε→ 0.

Theorem 8.19. Let n ∈ N be given and let r 7→ v⋆r be the volume growth of some balanced Riemannian
manifold of dimension n and volume 1. Let s⋆ be its scalar curvature. Then for each compact Riemannian
manifold of dimension n and volume 1, regarded as a metric measure space (X, d,m)

lim
εց0

F (ε)(X ) =
1

2

∫

X

(s(x)− s⋆)2dm(x)

where s(x) denotes the scalar curvature at x ∈ X.

Proof. The asymptotic expansion

vr(x) = cn · rn
(
1− s(x)

6(n+ 2)
r2 +O(r4)

)
.

of the volume growth implies

wr(x) =
cn

n+ 1
· rn+1

(
1− s(x)(n+ 1)

6(n+ 2)(n+ 3)
r2 +O(r4)

)
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and thus

Fr(X ) :=
1

2

∫

X

(wr(x)− w⋆
r )

2dm(x)

=
1

2
c′n · r2n+6

∫

X

(
s(x) − s⋆ +O(r2)

)2
dm(x)

=
1

2
c′n · r2n+6

[∫

X

(s(x) − s⋆)2dm(x) +O(r2)

]
.

Integrating w.r.t. ρ
(ε)
r dr therefore yields

F (ε)(X ) =

∫ ∞

0

Fr(X )ρ(ε)r dr

=
1

2

∫

X

(s(x) − s⋆)2dm(x) · c′n ·
∫ ∞

0

r2n+6ρ(ε)r dr + c′n ·
∫ ∞

0

O(r2)r2n+6ρ(ε)r dr.

This proves the claim.

Remark 8.20. In Riemannian geometry, the canonical interpretation (and construction) of gradient flows
for

F(X) =
1

2

∫

X

(s(x)− s⋆)2dm(x)

is to regard it as a functional on the space Met(X) of metric tensors on a given Riemannian manifold
X , cf. [CK04]. The downward gradient flow then is characterized as the evolution of metric tensors
determined by

d

dt
g(x) = (s(x)− s⋆) · Ricg(x).

This evolution is different from the evolution governed by the downward gradient flow induced by the
L2-distortion distance on the space of pseudo metric measure spaces and also different from the induced
flow within the space of Riemannian manifolds.

Finally, we will study combinations of the F - and the G-functionals. Let n ∈ N be given and choose
K > 0 such that the model space Mn,K has volume 1. This amounts to K = [(n + 1)cn+1]

2/n. Put
X⋆ = Mn,K ,

v⋆r =

∫ √Kr∧π

0

sinn−1(t) dt
/∫ π

0

sinn−1(t) dt,

choose any strictly positive weight function ρ : R+ → R+ and define the F -functional on Y as before in
terms of these quantities by

F(X ) =
1

2

∫ ∞

0

∫

X

[∫ r

0

(vt(x) − v⋆t ) dt

]2
dm(x)ρrdr.

Moreover, let GK as introduced in Definition 7.12 and put

U = F + GK : Y → R+.

Theorem 8.21. (i) The functional U is Lipschitz continuous and semiconvex. It admits a unique
downward gradient flow in Y as well as in X̄.

(ii) For all X ∈ Xgeo

U(X ) = 0 ⇐⇒ X = M
n,K .

Proof. (i) follows from Theorems 7.13 and 8.15.
(ii) Let X be a representative of X with full support. According to Theorem 7.13, U(X ) = 0 implies

that X has curvature ≥ K in the sense of Alexandrov, and according to Theorem 8.15 it implies that
the volume growth of X is given by v⋆. Thus in particular, X has Hausdorff dimension n. The lower
curvature bound implies a Bishop-Gromov volume comparison estimate with equality if and only if X
coincides with the model space Mn,K , [BBI01], Thm. 10.6.8 and Exercise 10.6.12.
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gluing, 8

HK , 61
homomorphism class [[X, f,m]], 33

I, 11
Inv(., .), 34
isomorphism class [X, d,m], 10

L, 35
L
1, 11

M(n), M
(n)
≤ , 40

M(n), M
(n)
≤ , 40

M(∞), 44
matrix distribution, 44
melting, 45
mm-space (X, d,m), 6

Opt(., .), 9
optimal coupling, 9

Par(.), 11

pseudo metric, 36
pull back, 6
push forward, 6

Sym(.), 45
sym(.), 46
size, 6
space of gauged measure spaces, 33
space of mm-spaces, 11
space of pseudo metric measure spaces, 37

TX , 48
Tf , T(X,f,m), 51

T̊ 1
X , T 1

X , TX , 28
tangent cone, 28
transportation distance Dp, 14

τYX , τ
X̄

X , 50

vr, v
⋆
r , 63

volume growth, 62

X1, 25
Xgeo,Xlength, 24
Xp, 11
X(n), Y(n), 42
X̂, 37

Y, 33
Y

per
K , 59
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