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Schrodinger operators and Feynman-Kac semigroups
with arbitrary nonnegative potentials

Karl-Theodor Sturm

Abstract. We give a brief survey on the analytic and probabilistic approach to Schrédinger
operators — % A+V with arbitrary potentials V > 0 and on the canonical generalizations to more
general “positive perturbations” of the free Hamiltonian. To be more precise, we investigate
generalized Schrédinger operators HY = u%A + p with measures p charging no polar sets
and compare them with generalized Feynman-Kac semigroups ( P,}A)t>0 derived from additive
functionals A. In fact, there is a canonical one-to-one correspondence between generalized

Schrodinger semigroups (e~ *#") t~0 and generalized Feynman-Kac semigroups (P/),_ .

Introduction

In order to investigate Schrodinger operators —3A +V with singular potentials V > 0,
there are two robust quantities to start with:
one is the symmetric form

(+) £'(1,9) = 5 [VIVgdm + [ foV dm,

the other is the Feynman-Kac semigroup
() PYf(a) = B [ehvi0u pix,)].

We shall see that for all potentials V > 0 both approaches lead to the same result, —
without any finiteness or integrability assumption on V. Both approaches also admit
to treat more general perturbations in the same way as perturbations by functions
V>0

In the analytic case, one can replace the measures V - m in the definition of the
symmetric form (%) by general measures y on IR?. The appropriate condition on
the measures u is that they do not charge polar sets. Starting with the symmetric
forms £* associated with such measures y, we obtain generalized Schrodinger operators
H* = —1A + p and generalized Schrédinger semigroups (e~*#");5. The reasons for
considering not only usual Schrodinger operators —%A + V with potentials V > 0 but
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also generalized Schrédinger operators —1A + p with measures y charging no polar
sets are that

o the class of these generalized Schrodinger operators turns out to be closed with
respect to strong resolvent convergence

o this class contains all the Dirichlet Laplacians on open subsets of /R?

e in this class, the set of usual Schrédinger operators —%A + V with smooth po-
tentials V € C°(IR?) is dense with respect to strong resolvent convergence.

In the probabilistic case, the additive functionals ¢ — [5 V(X,)ds in the definition
of the Feynman-Kac semigroup (**) can be replaced by general additive functionals
At A, which leads to generalized Feynman-Kac semigroups (P/!);s0. One aim of
this paper is to illustrate that there is a canonical one-to-one correspondence between
additive functionals A (or, which comes to the same thing, multiplicative functionals)
and measures p charging no polar sets. This equivalence extends to (or comes from)
a one-to-one correspondence between generalized Feynman-Kac semigroups (PA)is0
derived from additive functionals A and generalized Schrédinger semigroups (e™*")
derived from measures p.

From this correspondence one can deduce nice approximation results for these semi-
groups (via monotone convergence as well as via strong resolvent convergence). One
obtains, for instance, also a characterization of the form domains D(£*), in partic-
ular, criteria for (£#,D(£*)) being densely defined. Note that, in general, the form
(€#,D(E*)) is not densely defined on L?(JR?,m). Let us mention some results in terms
of the set E* C IR® of permanent points for x (see chap. 3) which plays a crucial rdle
in various places:

e D(E*) is dense in W'?(IR?) if and only if cap(/R* \ E*) =0
o D(£*) is dense in L*(JR?,m) if and only if m(R*\ E*) = 0.

It should be mentioned that many of the results presented in this paper actually
hold true in a much more general context. Several of them are valid for perturbations
of Dirichlet forms or symmetric Hunt processes on locally compact spaces, some of
them even for perturbations of right processes on general state spaces. For recent
generalizations in these directions, we refer to articles by S. Albeverio, Ph. Blanchard
and Z. M. Ma [2], R. K. Getoor [22], K. Kuwae [26] and P. Stollmann and J. Voigt [34].
In the present paper, we restrict ourselves to the most easiest (and most important)
case of perturbations of the classical Dirichlet form and the Brownian motion on R
The emphasis is on describing the most general kind of "positive perturbations” of
these objects.

In detail we proceed as follows: in the first chapter, we carry out the analytic
approach. The probabilistic approach is described in chapter 2. The third chapter is
devoted to the investigation of the set E* C IR* of permanent points for a measure
p. (Let us mention that parts of chapters 1 and 3 dealing with the analytic point of
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view already appeared in [38].) At the end of the paper, we add a brief appendix on
potential theoretic notions (like "regular”, "fine”, "quasi-", "polar”, "capacity”) which
we use in the text without explicit definition. These notions are always understood
with respect to the Laplace operator (or, equivalently, the Brownian motion) on IR®.
Throughout this paper, m denotes the Lebesgue measure on R?. If not specified
otherwise, measurable means measurable with respect to m. The Borel o-field in R?
is denoted by B(IR*). We recall that a measure y on (IR?, B(IR?)) is a Radon measure

iff u(K) < oo for all compact sets K C R°.

1 The Analytic Approach

1.1 Schrédinger Operators —3A + V with Arbitrary Poten-
tials V > 0.

The most reasonable analytic way to define a Schrodinger operator HY = —1A+V for
an arbitrary measurable potential V > 0 is to define H" as the form sum of the free
Hamiltonian H® = —-;-A and the operator of multiplication by V. Let us summarize
some of the main steps of this approach. The precise results will be stated in the sequel
in a more general context.

The quantity to start with is the nonnegative bilinear symmetric form

O %ijngm+jngdm

D(EY) := WY (RN LR,V - m).

Note that for every measurable function V > 0 this defines a closed form (€Y, D(EV))
on L*(IR%,m), — without any integrability or finiteness assumption on V!

In general, of course, this form will not be densely defined on L*(IR*,m). However,
there always exists a measurable set EV C IR? (set of permanent points for V) such
that

LYEY,m) := {f € L}(R*,m): f=0m-ae. on CE'V}

is the closure of D(£Y) in L?(JR%,m). Let us mention that if V is locally integrable on
IR? then m(R?\ EV) = 0 and, hence, (£Y,D(£")) is densely defined on L2(IR?, m).
For general potentials V > 0 we conclude that (€Y, D(£Y)) is a densely defined, closed
form on the Hilbert space LZ(EY,m).

Therefore, there always exists a unique nonnegative selfadjoint operator (H",D(H"))
on L}(EY,m) which corresponds to (€Y, D(EY)) in the sense that D(HY) C D(EY)
and for all f € D(H")

(¥) fH"f-gdm = £(f,g9) forall g € D(EY).

This operator H” is the form sum of H° = —1A and V and is called Schridinger
operator. It will also be denoted by —3A + V. Note that for f € D(H")NC?(IR*) one
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actually obtains from (%) by means of Green’s formula
jH"f-gdm - / (—é&f-{- Vf) .gdm . forall g e D(EY).

There also always exists a unique strongly continuous contraction semigroup (e~*# . Ji>o
on L3(EY,m) with generator —H V. This semigroup trivially extends to a contrzt’ction
semigroup on L2(IR?,m), called Schrédinger semigroup and also denoted by (e~ ),5o.

It turns out that for every measurable potential V' > 0 the Schrodinger semigroup
(=) 50 on L*(IR%,m) (defined analytically by means of the form sum H" = —-1A+
V) coincides with the extension to L?(IR?,m) of the probabilistically defined Feynman-
Kac semigroup (P,V)bo.

The alternative way to define —3A + V analytically is to define it as the operator
sum. If the potential V is locally integrable, this leads to the same selfadjoint operator
as defined above. In the general case, however, this alternative approach is not satis-
factory: one obtains neither the existence of a selfadjoint (extension of this) operator
nor the existence of a reasonable semigroup associated to it.

1.2 Symmetric Forms with Measures Charging No Polar
Sets.

If one wants to study "positive perturbations” of the free energy £° which are more
general than the above forms £€¥ with functions V > 0 one is lead in a natural way to
consider forms of the type

£(,0) = 5 [VVadm+ [ fqdu

where u is some measure on JR?. If u charges no sets of Lebesgue measure 0 (that is,
if ¢ = V - m with a measurable function V' > 0), this leads to the previous case. In
some sense the minimal assumption on p should be that it charges no polar sets.

(1.1) Definition. We say that a measure u on (R*, B(R%)) charges no polar sets if

and only if
p(F)=0 for every polar set F' € B(IR%).

The set of all measures on (IR, B(JR*)) which do not charge polar sets will be denoted
by Mn.

For instance, the d-dimensional Lebesgue measure m and the é-dimensional Haus-
dorff measures for 6 > d — 2 are in My (cf. [3], [27]). For any measure u € M, and
any Borel function f > 0 on IR the measure f - u (having density f with respect to
p) is in My, too. Special attention should be given to the fact that measures in My
have neither to be regular nor to be o-finite, in particular, they are not assumed to be
Radon measures. A typical example is the measure

At ; 0, if F is polar,
&(.):=c0-cap(.): Fr { g e
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By this, My can be characterized as the set of all measures on ([R?, B(IR?)) which are
absolutely continuous with respect to 3.

We are now going to show that the condition p € M, suffices to define the form
&* on a reasonable domain D(£*). In order to see this, we make the following

(1.2) Remarks. a) Let B(JR") denote the completion of B(IR?) with respect to the
measure 50, the so-called o-field of nearly Borel sets. Then every measure u € Mg can
be extended in a trivial way to a measure on (IR?, B(IR%)). Note that every quasi-open
or quasi-closed (in particular, every polar) set belongs to B(IR?). Similarly, all quasi-
continuous functions on R* are B(IR)-measurable, hence, they are y-measurable for
every p € M.

_ b) Every element f in the Sobolev space W!?(JR?) has a quasi-continuous version
f. That is, there exists a quasi-continuous function f which coincides m-a.e. with 0
Such a function f is q.e. uniquely determined (and can be defined arbitrarily on a
polar set). Actually, one can choose f to be the Lebesgue mean of f, i.e.

f(z) = lim fy)dy

e~0 m(B,(z)) /B (z)
which converges for q.e. z € R* and coincides with f(z) for m-a.e. z € IR?.

(1.3) Definition. For any measure g € Mg we define the nonnegative symmetric
form

E4(f,9) = 5 [V Vgdm+ [ fqdu
D(e*) = {f e W'*(IRY): f € LR, p)}.

According to the previous remarks, this form is always well-defined. The main
observation ([33], Theorem 1.2) is

(1.4) Theorem. For every p € My the form (Q*, D(E*)) is a closed form on
L*(IR%,m).

(1.5) Remarks. a) In general, the form (£#, D(€*)) with 4 € M, is not densely
defined on L*(IR%), in particular, it is not regular. Concerning the question of being
densely defined, we note that, of course, the form is always densely defined on the
closure of D(£#) in L*(IR*, m), cf. section 1.3. Actually we will prove that this closure
coincides with the set

Ly(E*,m) := {f € L*(R*,m): f=0m-ae. on CE“}

where E* denotes the set of permanent points for , cf. chapter 3.
b) For a measure u € M, the form (£, D(£#)) is regular if and only if p is a
Radon measure ([4], Theorem 2.2.2). In this case, the set

C°(IR?) is a core for (£ D(E%)):
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In other words, the symmetric form (£#,C (IR?)) is closable on L*(IR?,m) with closure
(€%, D(&")).
c) Now let conversely p be an arbitrary Radon measure on IR?. In order that

(E*,C(IRY)) is closable on L*(R%,m)

it is necessary (and, as already stated, also sufficient) that u does not charge polar sets,
i.e. that g € Mo ([3]; [12]; [27] Theorem 12.4/1).

We close this section with an important

(1.6) Example. If u = l¢g - 50 with a nearly Borel set G C IR?, then

D(€*) = We*(G) = {f e W"*(R’): f=0qe. on CG}.

For more details concerning the Sobolev spaces Wy*(G) for not necessarily open
sets G C IR? we refer to [19]. We restrict ourselves to the following

(1.7) Remarks. a) If G is an open set, then this definition of the Sobolev space
W2*(G) coincides with the usual one, namely to be the closure of C3°(G) in W2 (R?).

b) For arbitrary nearly Borel sets G C IR, the Sobolev space W;?(G) coincides
with Wy"*(reg(G)). Note that in general G\ reg(G) need not to be polar. For instance,
if G = B,(r) then reg(G) = B, (z).

c) For quasi-open sets G C IR?, the measure u = l¢g - & can be used to produce
complete absorption on the complement of G. In particular, it can be used to simulate
homogeneous Dirichlet "boundary” conditions on CG.

d) One might be tempted to simulate Dirichlet "boundary” conditions on CG also
by a potential V which is = co on CG and = 0in G, i.e. by g = V-m with V = l¢g-co.
This, however, leads to

D(€*) = {f € W'*(R*): f=0m-ae. on cG}

which in general is a proper superset of Wa*(G), even if G is assumed to be open. It
coincides with Wg*(G) (and produces the right boundary condition) if and only if the
measures lcg - 30 and leg - 00 - m are equivalent (cf. section 1.4 and [23]).

1.3 Schrodinger Operators and Schrodinger Semigroups

We recall that for arbitrary g € M, the closed form (£*,D(£*)) is in general not
densely defined on L*(IR?). One goal will be to characterize the closure D(&*) of D(E*)
in L2(IR*,m) and to state necessary and sufficient criteria for D(£*) = L*(IR?, m), that
is, for (€#,D(€*)) being densely defined on L*(IR*,m). For instance, in chapter 3 we
will prove that this is the case if y is a Radon measure on IR® (or more generally a
Radon measure on an open set G C IR with m(IR? \ G) = 0). In general, D(£*) will
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turn out to coincide with the set
LYE* m) := {f € L*(R*,m): f=0m-ae. on CE""}

where E* denotes the set of permanent points for s.

At the moment we restrict ourselves with the fact that (£#,D(£*)) is always a
densely defined, closed form on the Hilbert space D(£*) (equipped with the inner
product of L2(JR¢, m)).

Since there is a one-to-one correspondence between closed symmetric forms and
self-adjoint operators (cf. [25] and [30]) we obtain

(1.8) Theorem. For every p € My there erists a unique nonnegative selfadjoint
operator (H*,D(H")) on D(£*) which corresponds to (£*, D(&*)) in the sense that
D(H*) C D(€*) and

JH*S-gdu = €f,g) ¥ [eDEH), g€ D).

This operator H* is the form sum of the free Hamiltonian H® = —1A and of the
operator of integration with respect to u. It will also be denoted b —3A 4 p and is
called the (generalized) Schrédinger operator associated with .

(1.9) Examples. a) If u =V .m with V € L} _(IR% m) then H* is the usual
Schrodinger operator —3A+V. In other words, (H*, D(H*)) is the Friedrichs extension
of the operator (—3A + V, C°(IR?)).

b) If u = leg - 00 with an open set G C R® then H* is (—3 times) the Dirichlet
Laplacian on G. In other words, (H*, D(H*)) is the Friedrichs extension of the operator
(=34, C(G)).

There is also a one-to-one correspondence between self-adjoint operators and strongly
continuous semigroups (resp. strongly continuous resolvents). That yields

(1.10) Corollary. a) For every u € M, there exists a unique strongly continuous
contraction semigroup (e™*#"),50 on D(E*) with generator —(HP, D(H")). Defining
e~*H" to be 0 on the orthogonal complement of D(E*) in L*(IR?*, m) this semigroup tri-
vially eztends to a contraction semigroup on L*(IR%, m), called Schrédinger semigroup
and also denoted by (e=*H"),5,.

b) Similarly, one obtains the existence of a unique strongly continuous resolvent

- (H*+a)™, a >0, on D(E*) which in an analogous way will be extended to a resolvent

on L}(IR*,m).

(1.11) Remark. According to [7] (Prop. 2.1), for every f € L*(JR%,m) the function
(H* + a)7' f is given as the unique minimal point of the functional

g+ Eg,9) - Q/fgdm
on W2(R?*, m).
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An essential observation now is that the symmetric form (£#, D(E*)) as well as the
Schrédinger operator (H*, D(H*)) associated with a measure u € Mg only depends
on the equivalence class (g, ~) of u under a certain equivalence relation ~, — and not
on the particular choice of the representant u in (g, ~). Of course, the same is then
also true for the associated semigroup and resolvent.

(1.12) Definition. Two measures p,v in My are called equivalent (u ~ v) iff
(£, D(&)) = (£",D(E")).
The set of equivalence classes in My is denoted by (Mp, ~).

This equivalence relation ~ and the induced set of equivalence classes (Mg, ~)
will be investigated in more details in the next section. At the moment we turn our
attention to a quite natural notion of convergence in (Mg, ~) which makes this set to
a nice topological space.

(1.13) Definition. Let (gn)nen be a sequence in My and let u € My. We say that
the sequence of Schrodinger operators (H*" ),en converges in the strong resolvent sense
to H* iff for some (hence all) & > 0 the sequence of resolvent operators ([H*"+a] ™! )nen
on L*(IR%,m) converges strongly to [H* + a]™".

In this case, we also say that the sequence of measures (gn)nen is y-convergent
to u (or, more precisely, that the sequence of equivalence classes ((fn,~))nen is ¥-
convergent to (g, ~)).

For equivalent characterizations and many interesting properties of the y-convergence
we refer to [7] and literature cited there. We restrict ourselves to the follwing important
result from [14].

(1.14) Theorem.

a) Under the y-topology the set (Mo,~) is compact and metrizable.

b) Theset {V-m: V € CP(IRY)} as well as the set {1x-55: K C R* compact)
is y-dense in (Mo, ~)

One of the reasons to consider generalized Schrodinger operators —1A + u with
measures g € My is that this class of operators is closed with respect to strong resolvent
convergence.

(1.15) Corollary. The strong resolvent limit of any sequence of Schrédinger
operators (—31A + pin)nen with measures p, € Mo, n € N, is (if it ezists) again a
Schridinger operator —3 A + p with a measure p € Mo.

Actually, the above mentioned set of generalized Schrédinger operators is the smal-

lest set which is closed with respect to strong resolvent convergence and which contains
the usual Schrédinger operators —3A + V with smooth potentials V' € eRY.
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(1.16) Corollary.

a) Every generalized Schrédinger operator —3A + p with a measure u € My is
the limit in the strong resolvent sense of a sequence of usual Schrédinger operators
(=34 + Vo)nen with smooth potentials V,, € C°(R?), n € IN.

b) On the other hand, every generalized Schrodinger operator -%& + p with a
measure p € My is also the limit in the strong resolvent sense of a sequence of Dirichlet
Laplacians (times —3) on open sets G, C R (with R?\ G, being compact), n € IN.

1.4 Equivalence of Measures in M,

According to [7], the equivalence ~ can also be expressed in terms of the fine topology.
(1.17) Theorem. Two measures p,v in My are equivalent if and only if

w(F) = v(F)  for all finely open sets F € B(IR?).

(1.18) Remarks. a) Obviously, always the following implications hold:

o if the measures y,v are identical (i.e. p(F) = v(F) for all Borel sets F C IR%),
then they are equivalent

o if they are equivalent, then they satisfy u(F) = v(F) for all open sets F C IR®.

In general, however, none of the converse implications holds: An example of measures,
which are equivalent but not identical, is given by the measures 55 and oc - m. On the
other hand, let G be an open set which is dense but not finely dense in IR* (cf. [36],
chap. 9). Then the measures 55 and l¢ - 5 obviously coincide for all open sets, but
not for all finely open sets.

b) We emphasize that the equivalence of the measures u and v, in general, does
not imply that for a given Borel set G C IR’ the measures l¢g - ¢ and l¢cg - v are
equivalent. For instance, consider the equivalent measures co - m and &5 and the open
set G = IR*\ 8B,(0). Then l¢g -c0-m =10 (zero measure) but leg - 30 £ 0.

(1.19) Proposition.  Let u,v € My and let F,G € B(RR?).

a) If p is a Radon measure, then: i e R T

b) If G C R is quasi-closed, then: p~v = leg-p~leg: .

c) reg(G) =reg(F) <= leg 0~ lef- .

d) reg(G) =reg(G) = 1leg T~ leg-00-m.

Proof. a) - c) follows from [36]. In order to see d), note that, according to c), the
assumption implies l¢g - 30 ~ 1.5 - 5. But the measures 50 and oo - m are equivalent.
Applying b) to these measures and to the set G yields 1.z - 3 ~ 1.7 - oo - m, hence,
lego0 ~ 1pg-00-m. This proves the claim since always 1.5-00-m < l¢g-oom < 1¢g-30.

0
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(1.20) Remarks. a) Let us call a measure p € Mgy mazimal (with respect to ~)
iff all measures ¥ € M, equivalent to p satisfy v < p. According to (1.19.a), every
Radon measure is maximal. In Lemma (3.5) below, we shall see that for every measure
p there exists a unique mazimal measure 7 equivalent to g. For instance, the measure
o0 is the unique maximal measure equivalent to the measure co - m. Thus there is a
one-to-one correspondence between the set My C M, of maximal measures and the
set (Mo, ~) of equivalence classes in M.

b) Another way to obtain a unique, canonical representative in each equivalence
class of (Mg, ~) is to look at quasi-regular measures. Here a measure p € My is
called quasi-regular (from outside) iff u(F) = inf{u(G) : G D F, G quasi-open} for
all F € B(IR?). 1t is easy to see that for any measure y € My there exists a unique
quasi-regular measure u* € My equivalent to g, namely

p*(F) :=inf{u(G) : G D F, G quasi-open}  for F € B(R%).

Since any maximal measure is immediately proved to be quasi-regular, one actually
obtains

W =F
We add parenthetically that any quasi-regular measure p € M is not only quasi-
regular from outside (as our definition states) but by itself also regular from inside, i.e.

u(F) = sup{u(K) : K C F, K compact} for every F € B(IR*) ([13], Theorem 4.4).
This justifies our usage of "quasi-regular” instead of ”quasi-regular from outside”.

For 7 > 0 let us define the kernel

1 ifd=1
k(r) ;=< sup{—Inr,0} ifd=2
r2-¢ ifd>3

(1.21) Definition. We say that a measure x on (RR?, B(IR%)) belongs to the Dynkin
class (p € Ko ) iff for some (hence all) r > 0

sup [ k(llz - yll) uldy) < co.
z€R4 ¥ Br(z)

In the case d > 2, p is said to belong to the Kato class (u € Ko) iff

lim su k(l|lz - dy) = 0.
g sup [ k(e — i) (d)

In the case d = 1, the Kato class coincides by definition with the Dynkin class.

Of course, we always have Ky C Ko C M. According to the following result
([7], Prop. 2.5), every measure p € Mg can be approximated monotonically by Kato
measures, at least up to equivalence.
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(1.22) Theorem. For any measure u € M, there exist a Borel function f > 0 and
a Kato measure v € Ky satisfying

p~fv
Note that in this case, the measure f - v is the strong limit of the increasing sequence
of Kato measures f, - v (where f, denotes the bounded function z — inf{f(z),n}).

(1.23) Corollary.  For every measure u € M, there exists an increasing sequence
of Kato measures p,, n € IN, such that the form (£*,D(E*)) is the increasing limit of
the forms (¥, D(E")), n € IN. Similarly, the'semigroup (resolvent, resp.) associated
with H* is the decreasing limit of the semigroups (resolvents, resp.) associated with
H¥, ne N.

Dynkin measures (in particular, Kato measures) g € M, play an important réle
since the associated symmetric forms £* have the same domain D(£*) as the unper-
turbed form £° (cf. [5], [25], [40]). For an entirely different situation, recall Example
(1.6).

(1.24) Proposition.  For every Dynkin measure p € Ko, we have

DiE*y= W RY).

2 The Probabilistic Approach

2.1 Additive Functionals and Subordinated Semigroups

The probabilistic way to define a Schrédinger operator HY = —1A+V for an arbitrary
Borel function V > 0 is to define HY as the negative generator of the Feynman-Kac
semigroup

(%) P'f(z) = E [C—J:V(X.}ds : f(X:)] :

more precisely, as the negative generator of the extension (7))o to L*(IR?, m) of the
Feynman-Kac semigroup (P, )s5o. It will actually turn out that this always leads to the
same operator as defined before by means of the symmetric form (€Y, D(£Y)), namely,
to the form sum of H® and V.

In order to treat more general perturbations of the heat semigroup (P, )¢»o one has to
replace the Feynman-Kac functional exp — f; V(X,) ds in (*) by a general multiplicative
functional or, in other words, to replace the additive functional f} V(X,) ds by a general
additive functional.

(2.1) Definition. A process A : Ry x Q0 — [0,00] is called additive functional (of
Brownian motion) iff it is adapted and right continuous and if for all ¢,s > 0:
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(i) Arps = At + A, 00, a.s.
(ii) t~— A,_,0©, is a.s. right continuous on [0, s[.

The set of additive functionals is denoted by A,. Two additive functionals A and A’
are identified if they are indistinguishable, i.e. if there exists a set Q; C Q of full
measure (that is, P(;) = 1 for all z € IR?) such that A;(w) = Aj(w) for all ¢ > 0 and
all w € Q. In this case we write A = A’ a.s.

(2.2) Examples. a) For any Borel function V > 0 on IR?, an additive functional
V - I is defined by

;i t4e d
V.I: (t,w)H%fD V(X,(w))ds.

(More generally, for any real-valued, continuous additive functional A, the product
V - A of the function V > 0 and the additive functional A, defined by (V - A)(t,w) :=
lim_o fi** V(X,(w)) dA,, is again an additive functional, [35], Lemma 1.3.)
b) If V = lp - co with a Borel set ' C IR* then the additive functional V - I is
indistinguishable from the additive functional
g b w
00 - L{isp,00ff * (t,w) { (D)o, if ; g;gwg,

where Sp(w) := inf{s > 0: Lebesgue measure of {t € [0,s] : X;(w) € F'} > 0} is the
penetration time of F'
¢) For any Borel set F C IR®, a similar additive functional 0o - Ijjre,cff is defined
by
ciodo0, sl e Tl
oo 1[[TF.°°[{(tsw) s { oo, if t2> Tr(w),

where Tr(w) := inf{t > 0 : X,(w) € F} is the hitting time of F.

(2.3) Remarks. a) Note that the condition (ii) in the definition of additive func-
tionals may fail if we replace in the above Example c) the first hitting time Tr of F' by
the debut T = inf{t > 0: X; € F} of F. The process 00 - {9 oo satisfies condition
(ii) if and only if it is indistinguishable from the processes co - 1[iry,cof Which is the case
if and only if F' is regular (cf. [29]).

Also note that, in general, the additive functionals co « 1[iT; coff @and 00 * 1{[5p cof aT€
not indistinguishable. We shall see that they are indistinguishable if and only if the
measures 1p - 50 and 1f - co - m are equivalent.

b) Additive functionals A € A, need not to be continuous. However, along a.e.
path w the only discontinuity of s — A,(w) is at most one jump to infinity which may
occur at the debut of the set R? \ E# (cf. chapter 3). But for every fixed t > 0 the
map s — A, is a.s. continuous at s = t. Hence, for every fixed ¢ > 0 we have in the
situation of Example (2.2.a)

e /;V(X,)ds as.
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c¢) Our definition of additive functionals differs in some respects from the usual
one. The most striking difference is that we do not impose any finiteness condition on
A. According to our definition, A is an additive functional if and only if

=Ae(w)

et (Lw e (with the convention e™* = 0)

is an (adapted, right continuous, decreasing and exact) multiplicative functional (cf.
[11], [29)).

(2.4) Definition. For an additive functional A € A, we define the generalized
Feynman-Kac semigroup (P{*);>q as a semigroup of kernels on (/R?, B(IR?)) by

PAf(z) := E* [e™* f(X,)]

for Borel functions f > 0 on IR* (again with the convention e™* :=0).

This is always a subordinated semigroup in the sense of the following

(2.5) Definition. A semigroup (Q:):>o of kernels on (IR¢, B(IR?)) is called subordi-
nated (to the heat semigroup (P:)i>o) if

Q:f(z) < Pf(z)
for all Borel functions f > 0 on IR%, all z € R® and all ¢ > 0.

If (@¢):>0 is a subordinated semigroup, then for all bounded Borel functions f > 0
and all @ > 0 the functions

[ es-@upea

are a-supermedian. If they are even a-excessive, then the semigroup (Q:)iso is called
ezactly subordinated (to the heat semigroup (P;);50). From [11] or [29] we quote

(2.6) Theorem. There is a one-to-one correspondence between additive functionals
and ezactly subordinated semigroups. In particular, every generalized Feynman-Kac
semigroup (P)iso with A € Ay is ezactly subordinated and, conversely, every ezactly
subordinated semigroup (Q:)eo 1s actually a generalized Feynman-Kac semigroup, that
is, there ezists a (unique) additive functional A such that Q; = P for allt > 0.

(2.7) Remark. a) We recall that our definition of additive functionals differs
from the usual one because we do not require them to be finite. Usually, one requires
that A, is finite for all ¢ or, at least, that A, is finite a.s. (A slightly more general
definition is used by Fukushima [21] who allows A to be infinite P*-a.s. for a polar
set of starting points z.) For additive functionals in the usual sense the property (ii)
in our definition (called exactness) is an immediate consequence of the additivity (i)
and the right continuity. In our general case, however, one has to require this as an
additional property.
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b) There are several weaker versions of exactness (= property (ii)). These properties
would also be sufficient for our purposes. However, we do not want to go into details
here since there is no essential difference between all these notions, according to a
suitable perfection procedure, cf. [29)].

¢) Let us mention the following useful effect of the exactness condition in the
definition of additive functionals ([36), Lemma (2.5)): If two additive functionals A
and A’ in A, coincide P*-a.s. for q.e. = € IR?, then they coincide a.s. (i.e. they are
indistinguishable and can be identified).

2.2 Additive Functionals and Measures Charging No Polar
Sets

Additive functionals on the path space correspond to measures on the state space. In
order to make this assertion more precise, let us first of all turn to two special classes
of "nice” additive functionals which will play a major réle in the sequel. These classes
of additive functionals will be compared with corresponding classes of measures on

(IR?, B(IRY)).

(2.8) Definition. An additive functional A € A, is called Dynkin functional
(A € Ky) iff

sup E” [4,] < o0

z€RY

for some (hence all) ¢ > 0. It is called Kato functional (A € Ko) iff

lim sup E* [A¢] = 0.
t—»OzeRg

As our definitions suggest, there is a one-to-one correspondence between Dynkin
functionals and Dynkin measures (which induces a similar correspondence between
Kato functionals and Kato measures). This correspondence was established by E. B.
Dynkin ([18], Theorem 8.4, cf. also [11], [21], [28]).

(2.9) Proposition. There is a bijective map A from the set of Dynkin measures
Ko onto the set of Dynkin functionals K, specified by the relation

t
A= Ap) = E* [A] = / fp(s,:c,y)p(dy) ds fort>0 and z € R°.
o
The inverse map assigns to each additive functional A € A, its Revuz measure u(A).

(2.10) Remarks. a) It is evident that the subset of Kato measures Ko is mapped
by A onto the set of Kato functionals Ko.

b) The class K, of additive functionals and the class K of measures have been
studied in detail by E. B. Dynkin [18]. Therefore, we called them Dynkin classes. The
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Kato class of additive functionals (resp. measures) is the canonical generalization of
the so-called Kato class of functions (cf. [1]).

c) Obviously, an additive functional (measure, resp.) belongs to the Dynkin class
if and only if for some (hence all) @ > 0 its a-potential is a bounded function on IR®.
Similarily, one can show that it belongs to the Kato class if and only if its a-potential
is a bounded and uniformly continuous function on R* ([35], Korollar 4.8).

We are now in a position to assign an additive functional A(p) to each measure
I € Mo.

(2.11) Construction of the map A: (Mg, ~) — A, (following [7]).
Step 1. If u is a Kato measure there exists a unique additive functional A(p)

according to (2.9).
Step 2. If u has density f with respect to a suitable Kato measure v we define

A) = Alf )= f-4G): e lig [ 106) A0,

Step 3. For an arbitrary measure 4 € M, we choose f € B, and v € K, satisfying
f v~ u and define
Ap) = A(f ).
The important fact is that this definition does not depend on the particular choice
of f and v. In other words,

Alp)=A(v)as. <= pu~v
([7]). Therefore, the map A : Mo — A, induces an injective map A: (Mg,~) — A,.

This map is actually bijective. In order to see this we should know a little bit more
on the structure of general additive functionals A € A..

(2.12) Decomposition of additive functionals. Let us consider the function
etz ]E"j e A et di
0

on R% It is easy to see that always 0 < ¢ <1 and that ©* is finely continuous and
upper semicontinuous on JR?. This implies that the sets G4 := {¢* > 1} are finely
open and the sets F! := {¢* > 1} are closed (not only finely closed). Of course,

GAcFAc Ga,1 C (FA,)/~™ (:= fine interior of FA..) and
UGr=U F!={¢*>0}.
n=1 n=1

In particular, E* := {* > 0} turns out to be a finely open F,-set. This set B4 is
called the set of permanent points for A.
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By means of this function ¢*, we can decompose any additive functional A € Ay
in a unique way into a "singular” part and into a "smooth” part. In order to see this
note that

Ay = oo if (and only if) t > To(R*\ E4)
and
where 154 - A is a Dynkin functional. (For the precise definition of the product 174 - A
we refer to [36].)

This decomposition enables us to assign a measure g = p(A) to each additive
functional A € A,. In fact, this measure will be maximal.

(2.13) Construction of the map u: A, — M, (following [36]).
For A € Ay we define

#(A) = lepa -0 + T lim p,

where p, is the uniquely determined Dynkin measure associated with the Dynkin
functional 1g4 - A, n € IN. The measure u(A) defined in this way is always maximal.
Therefore, we have indeed a map p: A, — M.

According to [36], this is the converse map to the map A : Mgy — A, defined
above. Hence, we obtain

(2.14) Theorem.  The maps p : Ay — My from (2.13) and A : (Mo, ~) — Ay
from (2.11) establish a one-to-one correspondence between additive functionals and
equivalence classes of measures in M,.

Let us mention that the map A : (Mo,~) — Aj is linear and order preserving
(which is a reason to consider additive functionals rather than multiplicative functio-
nals). To be precise, for @y, @z € IRy and gy, 2 € Mo the following holds a.s.:

Alon - +az-pa) = o A(m) + a2 A(p2)
p1 S pp = A(m) < A(pa)-

Actually, one has also the following version of "nearly” o-additivity: for every sequence
(#tn)nen in My there exists a set Q' C Q of full measure such that

A (Z pﬂ) (W) = 21_1‘1012 Appe(pin)(w) forallt >0 and all w € &
n=1 n=1

(i.e. A(Zpn) coincides a.s. with the right continuous modification of 3= A(un)). For
further versions of "nearly” o-additivity, we refer to [36], chap. 4.

Finally, we are going to identify the additive functional A(x) in some of the most
important cases.
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(2.15) Examples. a) For every Borel function V > 0 the additive functional
associated with the measure V-mis V-1, i.e.
t+e

AV -m) = ling : V(X,) ds.

b) For every Borel set ' C IR? the additive functional associated with the measure

lp-00-mis 00 lsp oo, i-€-

Qi for t < Sk
g cfoh > Sk

A,(lF-oo-m)={

where SF is the penetration time of F'.
c¢) In contrast to that, the additive functional associated with the measure 15 - 50
is 00 * 1{iTp ooff; 1-€-
e 0, for t<Tp
A(lr - ) = { oo, for t>Tr
where Tr is the hitting time of F.

These examples together with the uniqueness result in Theorem (2.14) immediately
yield

(2.16) Corollary. For every Borel set F C IR®
SF=TFa.s. <~ lp-co-mn~I1p-3o3.

Combining that with (1.19) gives sufficient geometric conditions on F for Sr being
indistinguishable from Tr (cf. also [23] and [39]).

(2.17) Corollary. If F is quasi-open or if reg(CF) = reg(CF) then

SF = TF a.s.

2.3 Feynman-Kac Semigroups and Schrodinger Semigroups

Up to now we have considered the Feynman-Kac semigroup (P);s0 only as a semigroup
of kernels on (IR?, B(IR%)). It can of course also be regarded as a semigroup of operators
on the Banach space of bounded Borel functions on IR? which obviously extends to a
semigroup of operators on L*(IR?*, m) (since P;*(z,dy) < P,(z,dy) << m(dy) for every
z € R and every t > 0). This semigroup in turn extends in a canonical way to a
semigroup of operators 7/, ¢t > 0, on L*(IR%, m). We call it extended Feynman-Kac
semigroup.

(2.18) Theorem. The additive functional A € A, corresponds to the measure
u € My in the sense of Theorem (2.14) if and only if the extended Feynman-Kac
semigroup (T{)i50 on L*(IR%, m) coincides with the Schrédinger semigroup (e=*H*),50.
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In other words:
A=A(p) <= TA=¢" fort>0.

Proof. This identity is well-known for measures and additive functionals in the Kato
class (cf. [2 - 6], [8 - 10]). According to (1.23), however, the general case follows by a
simple monotone convergence argument (cf. also [7]). O

(2.19) Corollary.  The negative generator of the extended Feynman-Kac semigroup
(T*)es0 on L*(IR?, m) is the Schridinger operator (H*, D(H*)) (as defined in Theorem
(1.8)) where pu corresponds to A according to Theorem (2.14).

This correspondence between the analytic approach (via symmetric forms, self-
adjoint operators and semigroups on L?(IR? m)) and the probabilistic approach (via
semigroups of kernels on (IR, B(IR?))) has a particularly natural form in the case where
p=V-m (and hence A=V .I).

(2.20) Corollary. For every Borel function V > 0 the Schrdodinger semigroup
(e )is0 on LE(IR*,m) associated with the Schrédinger operator H = -1A+V
(form sum) is given by the Feynman-Kac formula, i.e. for f € L*(IR*,m) the function
e~tH" f € L2(IR%, m) is given for m-a.e. z € R? by

et f(z) = B [ Ve £,

Of course, also the resolvent and the symmetric form derived from an additive
functional A € A, by means of the extended Feynman-Kac semigroup (7}*):>0 coincide
with the corresponding quantities derived from the associated measure u = p(A) € Mo
by means of the symmetric form (£*, D(E¥)).

Note, however, that if A = A(u) then the semigroup (P{!):s0 of operators on
By, the set of bounded Borel functions on IR®, bears more information than its ex-
tension (e~*")i50 to L2(R?,m). In particular, one can not obtain (P/);so directly
from (e”*7");50. Besides (e~*f"),5 it is reasonable also to investigate the semigroup
(P{)es0 := (P,A (u )),>o. For the set E4() we also use the notation E*.

One of the main advantages of the semigroup (P} )i»o is that it has a pointwise
well-defined density. Note that, in general, one can not expect that there exists a
continuous (and therefore pointwise uniquely defined) density p(t,z,y) for P(z,dy).
A sufficient condition to ensure continuity is that u € Ko ([10]).

(2.21) Theorem ([37]).  For any measure p € Mo there ezists a unique integral
kernel p* : IR}, x E x E — IR, with the following properties:

1. for allt > 0 and z € E the function p*(t,z,.) is a density for P{(z,.), i.e. for
any Borel function f > 0 on R*

[Ptey fdy = Pf@)
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which implies that for any f € L*(R%,m) and for m-a.e. T € R
[P e f)dy = e f2);

. for all z € E the function p*(.,z,.) : (t,y) — p*(t,z,y) is space-time finely
continuous on IR, x E* (and is identically 0 on IR} X (R*\ E*)), t.e. for all
t>0 and all z,y € IR® the function

s = pA(t—s,z,X,) is right continuous on {s € [0,¢]: X, € E*} PY-—a.s.
(and identically 0 on {s € [0,t] : X, & E*});
. p*(t,x,y) is symmetric in z and y for all t >0 and z,y € R?, i.e.
Pt z,y) = P4y, e)
. p* satisfies the Chapman-Kolmogorov equation, i.e. foralls,t >0 andz,y € Re:
P+t z,y) = fp“(s,x, z) - p*(t, 2,y) dz;
. if (ftn)nen is any increasing sequences of Kato measures satisfying

T him pn ~ p
then p* is the pointwise decreasing limit of (p"" )nen, i-e. for all t > 0 and
d
z,y€ R
Pt z,y) = L limp* (¢ 2,)-

The uniqueness of this function p* follozt;s already from the first two properties, i.e.
from being a space-time finely continuous density for P*.

In the case of usual Schrodinger operators ——;-A + V the density p¥ admits a nice
representation (cf. also [17]).

(2.22) Proposition ([37]). Let V > 0 be any Borel function. Then the pointwise
uniquely defined density p* associated (by the preceding construction) to the measure
V -m is given by

¢
pv(t,x,y) it p(t,:c,y) 5 ]Et“; [e'fn V(X.)d,] :

where IE?; denotes ezpectation with respect to the Brownian bridge starting in = at time
0 and arriving in y at time £ > 0.




404 K.T. Sturm

3 The Set of Permanent Points

Throughout this chapter we assume that p is a given (fixed) measure in M, and that
A = A(p) is the associated additive functional.

3.1 Local Characterizations of E¥

(3.1) Definition. We define the set E* of permanent points for u to be the set of all
points z € IR? for which
Ao =0 P*-ass.

Note that for every z € IR® we have either Ao =0 P®as. or A= o0 P*as,
according to the additivity of A and to Blumenthal’s 0-1 law. Therefore, this definition
is consistent with the definition E* = {z € R? : *(z) = 0} used in chapter 2. Due
to (2.12), E* is always a finely open Borel set (even a F,-set).

(3.2) Examples. a) If g = lcg - & with a Borel set G C R? then
E* = reg(G).

b) If p = V - m with a Borel function ¥V > 0 on IR®* then z € E* if and only if

P‘”{IEV(X,)ds<oo forsomee>0}>0.
o

(3.3) Theorem ([7]). E* is the set of all points x € IR? which have a finely open
neighbourhood G C IR* satisfying

(*) . Kl =yl u(dy) < co.

(3.4) Remarks. a) The conditon (%) can equivalently be replaced by the condition
fakfllz —y|)p(dy) <oo  forall z € R

or even by
sup [ k(llz — yll) u(dy) < o,
2€Rd /G

which is to say 1g - p € Ko ([36], Theorem (5.1)).

b) The set E* is closely related with the set F'*, the set of finiteness for p, which
is by definiton the union F* of all finely open sets G with finite y-measure. In other
words, F* is the set of all points z € IR? which have a finely open neighbourhood
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G C IR satisfying u(G) < co. Obviously, the set F* is finely open. It is also easy to
see that E* C F* and that F* \ E* is always polar. Hence, the sets

E* and F* differ at most by a polar set.

In many of the following analytic statements one is therefore allowed to replace E* by
F*. However, the probabilistic approach shows that the right quantity to look at is
indeed E*.

The set of permanent points (as well as the set of finiteness) can also be used to
characterize the equivalence relation ~.

(8.5) Lemma ([36]). Two measures y and v in My are equivalent if and only if
B =B and lgw - p=1ge - 0.
In particular, every measure p € My is equivalent to the measure
B o= lcgn 00+ lgu - p

which is the unique mazimal (resp. quasi-regular) measure equivalent to p.

Be careful: the equivalence of p and & does not imply that 1cgu - u is equivalent to
legn - 00

3.2 Decomposition Theorem
The measures g € My which we have considered up to now have

e either been extremely singular, like 4, = l¢cg -5 with G € B(IR?) (which implies
D(EM) = We (@)

e or rather smooth, like y; € Ko (which implies D(£*2) = W2(R?)).

Of course, we can compose such measures in order to obtain a measure u = gy + o
which is "singular” on CG and "smooth” on G.

However, much more interesting is the converse question, namely whether one can
decompose an arbitrary measure p € M, into a "singular” part y; and a "smooth”
part g2. The main result in this section is that such a decomposition is always possible.

(3.6) Theorem ([386]).
a) On CE* the measure p is "singular” in the sense that

o~ legs -0+ lgu - p.
b) On E* the measure pu is "smooth” in the sense that forn € IV

].F,")uexoo



406 K. T. Sturm

where F, := {¢* > L}. Note that (F,)aen is an increasing sequence of closed sets with
the property that the fine interiors F{~™ of the sets F), increase to E*.

This "smoothness” property of 4 on E* is indeed closely related to the notion of
smoothness in the sense of [21], cf. also [36], chap. 8.

(3.7) Definition. A measure p is called smooth on a finely open set G C R? iff
it € Mg and there exists an increasing sequence of compact sets F,, C G satisfying

o cap(K\ F,) == 0 for any compact set K C G and

e lp, -u is a Radon measure for any n € IV.

(3.8) Remarks. a) Due to Ph. Blanchard and Z. M. Ma ([9], Theorem 2.1), the
condition ”1g, - s is a Radon measure” may be replaced by the condition "1f, - p is a
Kato measure (i.e. 1, - 4 € Ko)".

b) According to [36], the following conditions are equivalent:

o cap(K \ F,) == 0 for compact sets K C G;
¢ G\ U, Ff~™ is polar;
o 7(F,) =% 7(G) P*-as. for qe. z € R’
(3.9) Corollary. A measure p is smooth on a finely open set G C R iff
G\ E* is polar.
In particular, u is smooth on IR® if and only if
R*\ E* is polar.

The condition that JR®\ E* is polar plays also a crucial réle in the proof of a
multidimensional analogue to the 0-1-law of Engelbert-Schmidt ([24]). We refer to
[24] for various analytic and probabilistic conditions equivalent to that condition. For
further conditions equivalent to it, we refer to (3.12.a) and (3.17) below.

3.3 Characterization of D(£#)

We are now in a position to characterize the form domain D(€*) for an arbitrary
measure ¢ € M,. For that purpose, let G% := {¢* > 1}, n € IN, and recall that
EY 1= {4 > 0}

(3.10) Theorem. For every n € IN the following holds

Wo?(G) C D(E*) C Wo*(E*).
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Proof. The first inclusion follows immediately from Theorem (3.6.b) and Proposi-
tion (1.24), the second one from Theorem (3.6.a) and Example (1.6). O

(3.11) Corollary.
a) The closure of D(E*) in WY2(IR?) is

WEA(E*) = {f € W*(R*): f=0 g.e. on CE*}.
b) The closure of D(E*) in L*(IR*, m) is
L(E*,m) = {f € L*(R*,m): f=0m-ae. onCE"}.

(3.12) Corollary.
a) D(E*) is dense in Wl'z(ﬂd) = cap(R* \ E*) = 0.
b) D(E*) is dense in L*(R*,m) = m(R?\ E*) = 0.
In other words, the last assertion says that (£*,D(E*)) is a densely defined form

on L*(IR%,m) if and only if the set JR? \ E* has Lebesgue measure 0. A quite different
criterion for (£#,D(£*)) being densely defined was given by P. Stollmann [33].

3.4 Limits of Schrodinger Operators

The characterization of the form domain D(£¥*) allows the investigation of the limits
of the sequences (L - u)nen as well as (n - p)nen with respect to y-convergence. In the
case of the sequence (n - p)nen We obviously have n- p — oo - p (for n — co) in the
sense of y-convergence (and in the sense of monotone convergence). It is also easy to
see that co - py ~ lggeos O = lgpeon + 0.

(3.13) Proposition. In the sense of y-convergence, for n — oo
n-pu— lepeou - 00

where F>* (the set of finiteness for the measure co- ) coincides with the fine support
f-supp(p) of p.

(3.14) Corollary. The Schrodinger operators H"* = —1A + n - p converge for
n — oo in the strong resolvent sense to (—3 times) the Dirichlet Laplacian on the finely
open set f-supp(p).

If 4 = 1¢g - m with a Borel set G C IR? which is either quasi-closed or satisfies
reg(G) = reg(G) (cf. (1.19) or (2.17)), then the operators H™* converge for n — co in
the strong resolvent sense to (—3 times) the Dirichlet Laplacian on G (or, which comes
to the same, on reg(G)). For similar results we refer to [17].

On the other hand, we have in the case of the sequence (1 - p)nen
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(3.15) Proposition. In the sense of y-convergence, for n — oo

1
— - — lcgs - O0.
n

(3.16) Corollary. The Schrodinger operators Hi# = —1A+ 1.4 converge for
n — oo in the strong resolvent sense to (—% times) the Dirichlet Laplacian on the finely
open set E*.

(3.17) Corollary.  The following statements are equivalent:
g
o IR*\ E* is polar
° % -u— 0 (for n — oc) in the sense of y-convergence

o« Hi# — H° = —1A (for n — o) in the strong resolvent sense.

For related results, cf. [33] and [40].

Appendix: Potential Theoretic Notions

All potential theoretic notions like fine, polar, etc. are those of classical potential
theory. The underlying Markov process X will always be the Brownian motion in R*
(with Q = C(RRy, RY)).

By cap we denote the capacity (Newtonian resp. logarithmical). A statement is
said to hold g.e. (=quasi everywhere) (on IR?) if it holds except on a polar subset of
IR®. The phrase a.s. is used to say that a statement holds P*-a.s. (on ) for every
z € R%.

It is well-known (and can also be used as a definition) that a Borel function u on
IR? is finely continuous if and only if a.s. the map

t — u(X,) is continuous on [0, o[
and that a Borel set F' C R? is finely open if and only if a.s. the set

{te R, :X,€ F} isopenin R,.

The fine topology is the coarsest topology rendering all superharmonic (resp. all a-
excessive) functions continuous.

There is a close connection between fine continuity and quasi-continuity. We recall
that by definition a numerical function u on R? is quasi-continuous iff for any € > 0
there exists an open set D = D, such that cap(D) < € and

ulep : CD — R is continuous.
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Indeed, a numerical function u on R? is quasi-continuous if and only if it is finely
continuous q.e. It should be clear that similar results also hold for quasi-open (resp.
quasi-closed) sets and finely open (resp. finely closed) sets. For instance, a set F C R?
is quasi-open if and only if it is the union of a finely open set and a polar set. In
particular, every finely open set G is quasi-open, that is, for any € > 0 there exists an
open set [, such that cap(D,) < € and such that the set G, := G'U D, is open.

We define the regularization reg(G) of a (nearly) Borel set G C IR® to be the finely
open Borel set

{zeﬁd:P’{T(Rd\G)>0}=l}.

Do not confuse reg(G) with the set of regular points for the stopping time T(R*\ G)
(which in the literature is often denoted by (IR?\ G)" and which coincides with R \
reg(G)).

reg(G) is the largest finely open set such that reg(G) \ G is polar. The initial set G
is finely open if and only if G C reg(G) and it is quasi-open if and only if G \ reg(G)
is polar. G is called regular iff G = reg(G).
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