
Universität Bonn Institut für Angewandte Mathematik
Sommersemester 2025 Johannes Alt

Graduate seminar on Probability Theory:
Topics in Random Matrix Theory

Tuesdays at 16 (c.t.) (duration: 90 minutes)
Room N 0.003

List of Talks

No. Date Title and references Speaker
0 April 8 Introduction

• Simulations
• Eigenvalues, singular values, Weyl’s inequality
• Some basics about Schwartz functions (on C) and (tempered) distri-

butions

Johannes Alt

1 April 15 Wigner’s semicircle law
Define empirical eigenvalue measure (or empirical spectral measure), state
Wigner’s semicircle law (without proof!): [Kem22, Theorem 2.3] (or [AGZ10,
Theorem 2.1.1]).
Prove the convergence of moments in expectation [Kem22, Proposition 4.1,
Section 4.1] (alternatively: [AGZ10, Lemma 2.1.6 and its proof] and its
prerequisites).
Optional: Proof sketch of Wigner’s semicircle law in expectation.

D.M.

2 April 22 Matrices with iid entries and the circular law
Define empirical eigenvalue measure, empirical singular value measure and
weak convergence of measures (see [BC12, Section 1]).
[BC12, Example 1.2]. Define tightness of family of probability measures.
[BC12, Section 2] without historical comments. [BC12, Lemma 3.1] and its

proof.

R.U.

3 April 29 Circular law for complex Ginibre matrix
[BC12, Section 3] until the end of the proof of Theorem 3.5 without

Lemma 3.1 and its proof.
In particular, define Complex Ginibre Ensemble (matrix) and conclude its
diagonalisability. Add more details from [Meh04] in the proof of Theorem 3.4.
Optional: more details in the proof of Theorem 3.5 from [Hwa86].

D.W.

4 May 6 Logarithmic potential and Hermitization
[BC12, Section 4.1] without Remarks 4.4, 4.6, 4.7 and 4.8.

P.A.

5 May 13 Circular law for general iid matrices
Proof of [BC12, Theorem 2.2] for general matrices with iid entries (iid
matrices): [BC12, Section 4.2].
Proofs of Lemmata 4.11, 4.13 and 4.14: [BC12, Section 4.3].

T.M.
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No. Date Title and references Speaker
6 May 20 Convergence of singular value measures

Proof of Corollary 4.10: [BC12, Section 4.5]
H.S.

7 May 27 Smallest singular value – Part 1
Proof of [BC12, Lemma 4.12] with bounded density assumption in [BC12,
Section 4.4].
[BC12, Appendix A] until the end of the proof of Lemma A.2, in particular,

statement of Lemma A.1, overview of its proof.

J.K.

8 June 3 Smallest singular value – Part 2
[BC12, Appendix A] starting after the proof of Lemma A.2.

Optional: Proof sketch of circular law in probability using [BC12,
Lemma A.1]

J.S.

9 June 17 Fluctuation of spectral radius of complex Ginibre matrix
Theorem 1 of [Rid03] and its proof.
(Compare also [BC12, Theorems 3.6 and 3.7]. A part of [BC12, Theorem 3.6]
is proved inside [Rid03, proof of Theorem 1].)

J.L.

10 June 24 Convergence of spectral radius for iid matrices
Theorems 1.1 and 1.2 of [BCGZ22] and their proofs.

S.W.

References and how to access them

The references [AGZ10] and [Kem22] are freely and legally available via the given links. All
other references listed below (with the exception of [Hwa86]) can be accessed digitally from the
network of the University of Bonn. For [BC12], [BCGZ22] and [Rid03], the links should work. The
books [Meh04] and [For10] can be accessed digitally via the webpage of the Bonn University library
at https://www.ulb.uni-bonn.de/en. The books [AGZ10], [Meh04], [Hwa86] or [For10] can be
found in the library.

If you experience difficulties to access a reference then please contact Johannes Alt via email.
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