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Problem 1 (Normal comparison, 2 Pt)

Let {ξi}i=1,...,n be centred normal variables with covariance matrix Λ, and let {νi}i=1,...,n

be i.i.d. centred normal variables. Show that

P
(
ξ1 ≤ u1, . . . , ξn ≤ un

)
− P

(
ν1 ≤ u1, . . . , νn ≤ un

)
≤ 1

2π

∑
i<j

(Λij)+√
1− Λ2

ij

exp
(
−

u2i + u2j
2(1 + |Λij|)

)
. (1)

Similarly, show that if |Λij| ≤ δ < 1:
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Problem 2 (Extremes of a weakly correlated normal sequence, 2 Pt)

Let {ξn}n∈N be a stationary normal sequence with covariance Λij = r|i−j|, and let Mn be
its extremal process. Assume that supn rn ≤ δ < 1, and that for a sequence {un}n∈N:
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Prove that

n(1− Φ(un))→ τ ⇔ P(Mn ≤ un)→ e−τ . (4)

Problem 3 (The Berman condition, 6 Pt)

For τ ∈ (0,∞), let
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2 log n
, (5)



such that n(1−Φ(un))→ τ . As before, let {ξn}n∈N be a stationary normal sequence with
covariance Λij = r|i−j|, where |rn| ≤ δ < 1. Prove that Condition (3) holds if

rn log(n)→ 0. (6)

Hints : Write, for some α ∈ (0, 1):

n
n∑
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1. For the second summand, where i > nα, use that

− u2n
1 + |ri|

= −u2n +
un|ri|

1 + |ri|
,

then estimate n|ri| exp(−un)2 and the remaining expression separately.

2. For the first summand, where i < nα, choose α in dependency of δ, such that the
sum contains sufficiently few terms.

For both parts, focus on the leading terms of un and u2n (5).


