Sheet 6, "Stochastic Analysis"

To hand in until May 15, 15:00

Problem 1 (Continuous mapping theorem, 2 Pt)

Let $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ and μ be measures on a metric space (Ω, \mathcal{A}). Suppose that $\mu_{n} \rightarrow \mu$ weakly. Let $f: \Omega \mapsto \Omega$ be a bounded and continuous function with inverse image f^{-1}. Show that

$$
\mu_{n} \circ f^{-1} \rightarrow \mu \circ f^{-1} \quad \text { weakly. }
$$

Problem 2 (Converging together lemma, 2 Pt)

Suppose that a sequence of random variables $\left(X_{n}\right)_{n \in \mathbb{N}}$ on a metric space S converges weakly to a limiting random variable Z. Suppose that there is a second sequence $\left(Y_{n}\right)_{n \in \mathbb{N}}$ such that $\left|X_{n}-Y_{n}\right| \rightarrow 0$ in probability. Show that then also $Y_{n} \rightarrow Z$ weakly.

Hint: You can use Proposition 9.15 from the lecture notes (also known as PortmanteauTheorem).

Problem 3 (Topology on the space of measures, 3 Pt)

The space of measures $M_{+}\left(\mathbb{R}^{d}\right)$ equipped with the vague topology can be turned into a complete and separable space. This topology has as a neighborhood basis \mathcal{U} (every open neighborhood contains a set in \mathcal{U}) of the sets of the form

$$
U_{\epsilon, h_{1}, \ldots, h_{n}}(\mu):=\left\{\nu \in M_{+}\left(\mathbb{R}^{d}\right): \quad\left|\mu\left(h_{i}\right)-\nu\left(h_{i}\right)\right|<\epsilon, \quad i=1, \ldots, n\right\}
$$

where $h_{i} \in C_{0}^{+}\left(\mathbb{R}^{d}\right)$. A topological space S is called locally compact, if for every $x \in S$, there exists an open neighborhood O and a compact set K such that $x \in O \subseteq K$.

- Is $M_{+}(\mathbb{R})$ equipped with the vague topology locally compact?
- On $M_{+}(\mathbb{R})$, find a sequence that converges vaguely but not weakly.
- Construct a metric on $M_{+}(\mathbb{R})$, such that $\mu_{n} \rightarrow \mu$ vaguely if and only if $d\left(\mu_{n}, \mu\right) \rightarrow 0$. Hint: Find a countable set of functions $\left\{g_{i}\right\}_{i \in \mathbb{N}}$, such that $\mu_{n}\left(g_{i}\right) \rightarrow \mu\left(g_{i}\right)$ for all i if and only if $\mu_{n} \rightarrow \mu$.

Problem 4 (Tightness of random measures, 3 Pt)

Given a polish space S, show that a sequence of point processes $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ is tight in $M_{+}(S)$ if and only if for every measurable and relatively compact set $B \subset S$:

$$
\lim _{t \rightarrow \infty} \limsup _{n \rightarrow \infty} \mathbb{P}\left[\xi_{n}(B)>t\right]=0
$$

