Sheet 12, "Stochastic Analysis"

For discussion in the tutorials

Problem 1 (Sums of exponentials of random variables)

Let $\left\{Z_{i}\right\}_{i \in \mathbb{N}}$ be i.i.d. random variables such that there exist sequences $c_{n}>0, b_{n} \in \mathbb{R}$:

$$
n \mathbb{P}\left[Z_{1}>\frac{\ln \left(c_{n}\right)+z}{b_{n}}\right] \rightarrow e^{-z} \quad \text { as } n \rightarrow \infty
$$

Let $X_{i}^{n}:=\exp \left(\frac{b_{n} Z_{i}}{\alpha}\right)$. First, recapitulate that the previous statement implies

$$
n \mathbb{P}\left[X_{1}^{n}>c_{n}^{1 / \alpha} x\right] \rightarrow x^{-\alpha} \quad \text { as } n \rightarrow \infty .
$$

Assume that this convergence holds in a strong sense for some $\alpha \in(0,1)$:

$$
\int_{-\infty}^{0} e^{z} \cdot n \mathbb{P}\left[Z_{1}>\frac{\ln \left(c_{n}\right)+z}{b_{n}}\right] d z \rightarrow \int_{-\infty}^{0} e^{(1-\alpha) x} d x \quad \text { as } n \rightarrow \infty .
$$

In this setting, Theorem 6.23 states that $c_{n}^{-1 / \alpha} \sum_{i=1}^{[t \cdot n]} X_{i}^{n} \rightarrow V_{\alpha}(t)$, where V_{α} is the Lévy subordinator with intensity measure

$$
v_{\alpha}(d x)=\alpha x^{-(1+\alpha)} d x \mathbb{1}_{x>0} .
$$

The proof relies on Theorem 6.13. Finish it by showing that

$$
\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{n}{c_{n}^{1 / \alpha}} \mathbb{E}\left[\mathbb{1}\left\{X_{1}^{n} \leq c_{n}^{1 / \alpha} \epsilon\right\} \cdot X_{1}^{n}\right]=0 .
$$

