Institute for Applied Mathematics SS 2023

Prof. Dr. Anton Bovier, Florian Kreten

Sheet 11, "Stochastic Analysis"

For discussion in the tutorials

Problem 1 (Tightness of a sequence of càdlàg random variables)

Let $\{X_i\}_{i\in\mathbb{N}}$ be i.i.d. random variables with support on $\mathbb{R}_{\geq 0}$ and assume that

$$n\mathbb{P}\left[X_1 > nx\right] \to cx^{-1}$$
 as $n \to \infty$,

for some c > 0. Theorem 6.12 in the lecture notes states that

$$S_n(t) := \frac{1}{cn\ln(n)} \sum_{i=1}^{[nt]} X_i \to t$$
 as $n \to \infty$,

in law with respect to the Skorokhod J_1 -topology. Complete the proof by showing that the sequence S_n is tight in the J_1 -topology.

Hint: Mimic the tightness proof of Theorem 6.5. The present case is even easier since $S_n(t) \to t$ for every fixed $t \ge 0$.