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Problem 1 (Boundedness of a Lévy process, 5 Pt)
Let Vα,c(t) be a Lévy process with Lévy triple (0, 0, vα,c), where vα,c(dx) = cαx−α−11x>0dx
for some α ∈ (0, 1), c > 0. Show by a truncation argument that for every T > 0 and every
δ > 0, there exists a finite constant K, such that

P
[

sup
t∈[0,T ]

Vα,c(t) ≥ K
]
≤ δ.

Hint : For 0 < ε < B <∞, consider the process with intensity measure vα,c(dx)1[ε,B](x).

Now take a sequence {Xi}i∈N of random variables such that nP[X1 > n1/α] → cx−α as
n→∞ and define Sn(t) := n−1/α

∑[nt]
i=1Xi. Conclude - with the help of Theorem 6.5. - that

for every T > 0 and every ε > 0, there exists a finite constant K, such that for all n ∈ N:

P[ sup
t∈[0,T ]

Sn(t) ≥ K] ≤ ε.

Problem 2 (Boundedness of tight càdlàg processes, 5 Pt)
Let E be a complete metric space. Show that if a sequence of stochastic processes {Xn}n∈N
is tight in DE[0,∞) equipped with the Skorohod metric, then the following holds:

For every ε > 0 and T ≥ 0, there exists a compact set Γ ⊂ E, such that for all n ∈ N:

P
[
Xn(t) ∈ Γ for all 0 ≤ t ≤ T

]
≥ 1− ε.


