Sheet 9, "Stochastic Analysis"

To be discussed on June 23, 2021

Information from the Student Council: This year the Maths Summer Party will take place virtually on Friday, June 25, starting at 18 c.t.. Latest information can be found here. Come by!

Problem 1 (The Skorokhod metric, part 1)

Prove that the Skorokhod metric (see Definition 6.6. in the lecture notes) fulfills the triangle inequality.

Problem 2 (The Skorokhod metric, part 2)

Prove that on $D_{E}([0, \infty), \mathbb{R})$ equipped with the Skorokhod metric:

$$
x_{n}(t):=\mathbb{1}_{[1+1 / n, \infty]}(t) \rightarrow x(t):=\mathbb{1}_{[1, \infty]}(t) \quad \text { as } n \rightarrow \infty .
$$

Does it also hold that $\mathbb{1}_{[1 / n, \infty]}(t) \rightarrow \mathbb{1}_{[0, \infty]}(t)$?

Problem 3 (A simpler tightness criterion)

Show that a sequence of probability measures $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ on $W=C([0, \infty), \mathbb{R})$ is tight if

1. for every $\epsilon>0$, there exist $A \in \mathbb{R}$ and $n_{0} \in \mathbb{N}$, such that

$$
\mu_{n}[|\omega(0)>A|]<\epsilon \quad \text { for all } n \geq n_{0}
$$

2. for any $N>0$ and $\epsilon, \eta>0$, there exist $\delta \in(0,1)$ and $n_{0} \in \mathbb{N}$, such that

$$
\delta^{-1} \mu_{n}\left[\sup _{s \in[t, t+\delta]}|\omega(s)-\omega(t)| \geq \epsilon\right] \leq \eta \quad \text { for all } n \geq n_{0} \text { and } t \in[0, N] .
$$

Problem 4 (Donsker's invariance principle)

Let $\left\{Y_{i}\right\}_{i \in \mathbb{N}}$ be i.i.d. random variables with mean 0 and variance $\sigma>0$. Additionally assume that $E\left[Y_{i}^{4}\right]<\infty$. Let $S_{n}:=\sum_{i=1}^{n} Y_{i}$ and define the piecewise linear function

$$
X_{t}^{n}(\omega):=\frac{1}{\sigma \sqrt{n}} S_{\lfloor n t\rfloor}+(n t-\lfloor n t\rfloor) \frac{1}{\sigma \sqrt{n}} Y_{\lfloor n t\rfloor+1} .
$$

We denote the law of X^{n} as μ_{n}. We show that as $n \rightarrow \infty$, the series μ_{n} converges weakly to the law μ of a Brownian motion. If we assume that μ exists in $\mathcal{M}_{1}(W)$ and if we lean on the theory which is developed in chapter 6 of the lecture, then it suffices to check the following two statements:

1. All finite dimensional distributions of μ_{n} converge to those of μ.
2. The family $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ is tight in $\mathcal{M}_{1}(W)$.

For part 1, use the central limit theorem. For part 2, first prove the following lemma with the help of Doob's maximal inequality:

There exists a finite constant $K \in \mathbb{R}$ and some $n_{1} \in \mathbb{N}$, such that for every $k \in \mathbb{N}$:

$$
\mathbb{P}\left[\max _{i \leq n}\left|S_{i+k}-S_{k}\right|>\lambda \sigma \sqrt{n}\right] \leq K \lambda^{-4} \quad \text { for all } n \geq n_{1} \text { and } \lambda>0
$$

Then, given $\epsilon, \eta \in(0,1)$, choose $\lambda \gg 1$ large enough such that $K \lambda^{-2}<\eta \epsilon^{2}$ holds. Set $\delta:=\epsilon^{2} \lambda^{-2}$. Show that there exists $n_{0} \in \mathbb{N}$, such that

$$
\delta^{-1} \mathbb{P}\left[\max _{i \leq\lceil n \delta\rceil}\left|S_{i+k}-S_{k}\right|>\epsilon \sigma \sqrt{n}\right] \leq \eta \quad \text { for all } n \geq n_{0}
$$

Finally, verify the tightness condition given in Problem 3.
Remark: You can use without proof that $\mathbb{E}\left[S_{n}^{4}\right]=n \mathbb{E}\left[Y_{i}^{4}\right]+3 n(n-1) \sigma^{4}$. Moreover, the assumption $E\left[Y_{i}^{4}\right]<\infty$ is not necessary, one can use a truncation argument and approximate the Y_{i} 's by bounded functions.

