Institute for Applied Mathematics SS 2021 Prof. Dr. Anton Bovier, Florian Kreten

Sheet 8, "Stochastic Analysis"

To be discussed on June 16, 2021

Problem 1 (Construction of a two-dimensional PPP)

Let $\xi = \sum_i \delta_{X_i}$ be a Poisson point process on \mathbb{R} with a σ -finite intensity measure μ . Let $K : \mathbb{R} \times \mathscr{B}(\mathbb{R}) \to [0, 1]$ be a probability kernel and let $\{Y_i\}_{i \in \mathbb{N}}$ be \mathbb{R} -valued random variables which are conditionally independent given $\{X_i\}_{i \in \mathbb{N}}$, such that

$$\mathbb{P}\left[Y_n \in A \mid \{X_i\}_{i \in \mathbb{N}}\right] = K(X_n, A),$$

for any n and $A \in \mathscr{B}(\mathbb{R})$. Show that

$$\zeta := \sum_{i} \delta_{(X_i, Y_i)}$$

is a Poisson point process on \mathbb{R}^2 and compute its Laplace functional.

Problem 2 (A limit theorem for dependent variables)

For each $n \in \mathbb{N}$, let $\{X_i^n\}_{i \in \mathbb{N}}$ be a sequence of random variables with values on $(\mathbb{R}_+, \mathscr{B}(\mathbb{R}_+))$, with filtration $\mathcal{F}_i^n = \sigma(X_1^n, \ldots, X_i^n)$. Let μ be a finite measure on \mathbb{R}_+ . Assume that there is a sequence $\{a_n\}_{n \in \mathbb{N}}$ (a linear time-scale), such that for all t > 0, x > 0, in probability:

$$\lim_{n \to \infty} \sum_{i=1}^{\lceil a_n \cdot t \rceil} \mathbb{P} \left[X_i^n > x \, \big| \, \mathcal{F}_{i-1}^n \right] = t \cdot \mu((x, \infty)),$$
$$\lim_{n \to \infty} \sum_{i=1}^{\lceil a_n \cdot t \rceil} \left(\mathbb{P} \left[X_i^n > x \, \big| \, \mathcal{F}_{i-1}^n \right] \right)^2 = 0.$$

- 1. Compute $\lim_{n\to\infty} \mathbb{P}\left[\max_{i\leq \lceil a_n\cdot t\rceil} X_i^n \leq x\right]$.
- 2. Next, we define a sequence of Point Processes $\xi_n := \sum_{i \in \mathbb{N}} \delta_{(i/a_n, X_i^n)}$. Prove that $\xi_n \to \mathscr{P}$, where \mathscr{P} is a Poisson Point process on \mathbb{R}^2_+ with intensity $dt \times d\mu$.

Hints: The following identity helps:

$$\mathbb{P}\left[\forall_{i=1}^{k} X_{i}^{n} \in A_{i}\right] = \exp\left(\sum_{i=1}^{k} \ln \mathbb{P}\left[X_{i}^{n} \in A_{i} \mid \mathcal{F}_{i-1}^{n}\right]\right).$$

For the second part, use Kallenberg's Theorem (Theorem 4.19).