Institute for Applied Mathematics SS 2021 Prof. Dr. Anton Bovier, Florian Kreten

Sheet 7, "Stochastic Analysis"

To be discussed on June 09, 2021

Problem 1 (Continuous mapping theorem)

Let $\{\mu_n\}_{n\in\mathbb{N}}$ and μ be measures on a metric space (Ω, \mathcal{A}) . Suppose that $\mu_n \to \mu$ weakly. Let $f: \Omega \mapsto \Omega$ be a bounded and continuous function with inverse image f^{-1} . Show that

$$\mu_n \circ f^{-1} \to \mu \circ f^{-1}$$
 weakly.

Problem 2 (Converging together lemma)

Suppose that a sequence of random variables $(X_n)_{n \in \mathbb{N}}$ on a metric space S converges weakly to a limiting random variable Z. Suppose that there is a second sequence $(Y_n)_{n \in \mathbb{N}}$ such that $|X_n - Y_n| \to 0$ in probability. Show that then also $Y_n \to Z$ weakly.

Hint: One way of proving this uses Proposition 8.15 (ii) from the lecture notes (also known as **Portmanteau-Theorem**).

Problem 3 (Topology on the space of measures)

The space of measures $M_+(\mathbb{R}^d)$ equipped with the vague topology can be turned into a complete and separable space. This topology has as a *neighborhood basis* \mathcal{U} (every open neighborhood contains a set in \mathcal{U}) of the sets of the form

$$U_{\epsilon,h_1,\dots,h_n}(\mu) := \Big\{ \nu \in M_+(\mathbb{R}^d) : |\mu(h_i) - \nu(h_i)| < \epsilon, \quad i = 1,\dots,n \Big\},\$$

where $h_i \in C_0^+(\mathbb{R}^d)$. A topological space S is called *locally compact*, if for every $x \in S$, there exists an open neighborhood O and a compact set K such that $x \in O \subseteq K$.

- Is $M_+(\mathbb{R})$ equipped with the vague topology locally compact?
- On $M_+(\mathbb{R})$, find a sequence that converges vaguely but not weakly.
- Construct a metric on $M_+(\mathbb{R})$, such that $\mu_n \to \mu$ vaguely if and only if $d(\mu_n, \mu) \to 0$. *Hint*: Find a countable set of functions $\{g_i\}_{i\in\mathbb{N}}$, such that $\mu_n(g_i) \to \mu(g_i)$ for all i if and only if $\mu_n \to \mu$.

Problem 4 (Tightness of random measures)

Given a polish space S, show that a sequence of point processes $(\xi_n)_{n \in \mathbb{N}}$ is tight in $M_+(S)$ if and only if for every measurable and relatively compact set $B \subset S$:

 $\lim_{t\to\infty}\limsup_{n\to\infty}\mathbb{P}[\xi_n(B)>t]=0.$