Sheet 4, "Stochastic Analysis"

To be discussed on May 12, 2021

Problem 1 (Scale function: recurrence and exit times)

Suppose that $\left(X_{t}\right)_{0 \leq t \leq \xi}$ is a strong solution of the SDE

$$
\begin{aligned}
d X_{t} & =b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}, \quad t \in[0, \xi), \\
X_{0} & =x_{0}
\end{aligned}
$$

for a one-dimensional Brownian motion B_{t}, an initial value $x_{0} \in(0, \infty)$ and continuous b, σ. For simplicity, we fix the left boundary to 0 and define the explosion time ξ as

$$
\xi:=\sup _{\epsilon, r>0} T_{\epsilon, r}, \quad T_{\epsilon, r}=\inf \left\{t \geq 0 \mid X_{t} \notin(\epsilon, r)\right\} .
$$

The scale-function $s:(0, \infty) \rightarrow \mathbb{R}$ of this process is given by

$$
s(x):=\int_{x_{0}}^{x} \exp \left[-\int_{x_{0}}^{z} \frac{2 b(y)}{\sigma(y)^{2}} d y\right] d z .
$$

One can easily show that

$$
\mathbb{P}\left[T_{\epsilon}<T_{r}\right]=\frac{s(r)-s(x)}{s(r)-s(\epsilon)}
$$

1) Conclude that:
1. If $s(0)>-\infty$ and $s(\infty)<\infty$, then

$$
\mathbb{P}\left[\lim _{t \rightarrow \xi} X_{t}=0\right]=\frac{s(\infty)-s\left(x_{0}\right)}{s(\infty)-s(0)}
$$

2. If $s(0)>-\infty$ and $s(\infty)=\infty$, then $\lim _{t \rightarrow \xi} X_{t}=0$ a.s. .
3. If $s(0)=-\infty$ and $s(\infty)<\infty$, then $\lim _{t \rightarrow \xi} X_{t}=\infty$ a.s. .
4. If $s(0)=-\infty$ and $s(\infty)=\infty$, then X_{t} is recurrent. For any $x_{0}, y \in(0, \infty)$:

$$
\mathbb{P}\left[X_{t}=y \text { for some } t \in[0, \xi)\right]=1
$$

2) Let $\alpha \in \mathbb{R}$ and $\sigma>0$. Let $\left(S_{t}\right)_{0 \leq t<\xi}$ be a Geometric Brownian motion, a strong solution of the SDE

$$
d S_{t}=\alpha S_{t} d t+\sigma S_{t} d B_{t}, \quad S_{0}=x_{0}>0
$$

Analyze the asymptotic behavior of S_{t}.
3) Let $\beta \in \mathbb{R}$ and $\sigma>0$. Let $\left(F_{t}\right)_{0 \leq t<\xi}$ be a strong solution of Feller's branching diffusion:

$$
d F_{t}=\beta F_{t} d t+\sigma \sqrt{F_{t}} d B_{t}, \quad F_{0}=x_{0}>0
$$

Analyze the asymptotic behavior of F_{t}.
Remark: The process F_{t} is the diffusive limit of a discrete Galton-Watson branching process, describing a population in which the number N of offsprings of each individual has the following properties: $\mathbb{E}[N]=1+\beta, \operatorname{Var}[N]=\sigma^{2}$. Hence, $\mathbb{P}[F(\xi)=0]$ is the probability that this population dies out.

Problem 2 (Local time and mode of continuity of Brownian motion)

Let $\left(B_{t}\right)_{t \geq 0}$ be a one-dimensional standard Brownian motion and let Γ_{t} be the occupation measure as defined in the lecture. Its density l_{t}^{x} is jointly continuous in t and x almost surely. Show that for almost all ω, the path $t \mapsto B_{t}(\omega)$ is not locally Lipschitz continuous.

Hint: Consider $\Gamma_{t+h}\left(S_{h}\right)-\Gamma_{t}\left(S_{h}\right)$ for suitable sets S_{h}.

