

# Sheet 2, "Stochastic Analysis"

### To be discussed on April 28, 2021

### Problem 1 (Regularity of open sets in $\mathbb{R}^1$ )

Let  $D \subset \mathbb{R}^1$  be an open and bounded interval with boundary  $\partial D$ . Show that  $\partial D$  is regular.

## Problem 2 (Regularity of C<sup>1</sup>-boundaries)

Let  $D = \{x \in \mathbb{R}^d : g(x) < 0\}$ , where  $g \in C^1(\mathbb{R}^d, \mathbb{R})$ . Assume that  $\nabla g(x) \neq 0$  for all  $x \in \partial D$ . Show that  $\partial D$  is regular.

#### Problem 3 (Uniqueness of the inhomogeneous heat equation)

Suppose that  $g(t,x) : [0,\infty) \times \mathbb{R}^d \to \mathbb{R}$  is a bounded and continuous function. Assume that  $h(t,x) \in C^{1,2}((0,\infty) \times \mathbb{R}^d,\mathbb{R})$  solves

$$\frac{dh}{dt} = \frac{1}{2} \Delta_x h + g(t, x), \tag{1}$$

h(0, x) = 0, and h is continuous up to the boundary  $\{t = 0\}$ . (2)

For simplicity, assume that h(t, x) is bounded on  $[0, T] \times \mathbb{R}^d$  for any finite time-horizon T.

1) Show that, for a finite time-horizon T > 0:

$$M_s := h(T - s, B_s) + \int_0^s g(T - r, B_r) \, dr$$

is a martingale on [0, T). Here, under the measure  $\mathbb{P}_x$ ,  $B_t$  is a Brownian motion starting in x.

2) Show that h(x,t) = v(x,t), where v(x,t) is defined as

$$v(x,t) := \mathbb{E}_x \Big[ \int_0^t g(t-s, B_s) \, ds \Big].$$

3) Now, conversely, assume that v(t, x) as defined before lies in  $C^{1,2}((0, \infty) \times \mathbb{R}^d, \mathbb{R})$ . Show that v fulfills (1) and (2) (without assuming the existence of h(t, x)).

*Remark*: A solution for  $u(0,x) = f_0(x) \neq 0$  can be constructed as a sum of  $u_1$  and  $u_2$ , where  $u_1$  solves the homogeneous equation  $u_t = \frac{1}{2} \Delta_x u, u(0,x) = f_0(x)$ , and  $u_2$  solves the inhomogeneous equation  $u_t = \frac{1}{2} \Delta_x u + f, u(0,x) = 0, u(0,x) = 0$ .