Sheet 9, "Introduction to Stochastic Analysis"

Due on January 15, 2021

Remark on informal stochastic calculus:

To compute the cross-variation $[X, Y]$ of two processes X and Y, one can use the following rule:

$$
d[X, Y]= \begin{cases}0 & \text { if either } X \text { is of bounded variation or } Y \\ d X \cdot d Y & \text { else. }\end{cases}
$$

Think about, why this works!

Exercise 1

Show that there exists a local martingale, which is not a martingale.

Exercise 2

Let W be a standard Brownian motion and let the process Γ be the solution of

$$
\Gamma_{0}=1, \quad d \Gamma_{t}=\Gamma_{t}\left(\beta_{t} d t+\gamma_{t} d W_{t}\right)
$$

Here β and γ are bounded, adapted processes. Assume that there is a $c>0$ such that $\gamma_{s}>c$ for all s. Finally, let $T \in(0, \infty)$.
(a) Show that $\Gamma_{t} \exp \left(-\int_{0}^{t} \beta_{s} d s\right)$ is a local martingale.
(b) Find a probability measure \mathbb{Q}_{T} s.t. $\left(\Gamma_{t}\right)_{t \leq T}$ is a local martingale under \mathbb{Q}_{T}.
(c) Compute $d \Gamma_{t}^{-1}$.
(d) Find a probability measure \mathbb{R}_{T} s.t. $\left(\Gamma_{t}^{-1}\right)_{t \leq T}$ is a local martingale under \mathbb{R}_{T}.

Exercise 3

Let B be standard Brownian motion on a probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), \mathbb{P}\right)$ and \mathbb{P}^{b} a measure defined on \mathcal{F}_{T} through

$$
d \mathbb{P}^{b}=\exp \left(-b \int_{0}^{T} B_{s} d B_{s}-\frac{b^{2}}{2} \int_{0}^{T} B_{s}^{2} d s\right) d \mathbb{P}
$$

You may assume that P^{b} is a probability measure (why is this true?).
(a) Show that the process

$$
W_{t}=B_{t}+b \int_{0}^{t} B_{s} d s, \quad 0 \leq t \leq T
$$

is a \mathbb{P}^{b}-Brownian motion.
(b) Show that

$$
\int_{0}^{t} B_{s} d B_{s}=\frac{1}{2}\left(B_{t}^{2}-t\right)
$$

P^{b}-almost surely.
(c) Show that for all $t \leq T$:

$$
\mathbb{E}_{\mathbb{P}}\left[\exp \left(-\alpha B_{t}^{2}-\frac{b^{2}}{2} \int_{0}^{t} B_{s}^{2} d s\right)\right]=\mathbb{E}_{\mathbb{P}^{b}}\left[\exp \left(-\alpha B_{t}^{2}+\frac{b}{2}\left(B_{t}^{2}-t\right)\right)\right]
$$

Exercise 4

Let B be a standard Brownian motion.
(a) Let f be a continuous function on $[0,1]$ and consider

$$
Z:=\int_{0}^{1} f(s) d B_{s}
$$

Show that Z is a Gaussian random variable and compute the variance.
(b) Let $m \in N$ and define the following stochastic integrals:

$$
A_{m}=\sqrt{2} \int_{0}^{1} \cos (2 \pi m t) d B_{t}, \quad B_{m}=\sqrt{2} \int_{0}^{1} \sin (2 \pi m t) d B_{t} .
$$

Show that the following holds true for any $m \geq 1$:
(i) $A_{m}, B_{m} \sim \mathcal{N}(0,1)$.
(ii) A_{m} and B_{m} are uncorrelated.

[^0]
[^0]: Invitation from the working group on equality in Mathematics: We invite all female, non-binary, intersexual and trans math students to join us in the online networking event Tea Time with Women in Mathematics on January 16th, 3-6 pm. You will have the opportunity to connect to other students as well as to ask questions to female Mathematicians at more advanced career stages over a cup of tea. Please register here. We are looking forward to meeting you!

