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Exercise 1 [6 Pt ]

Let (Ω,F , (Ft)t≥0,P) be a standard filtered probability space, B a one-dimensional Brow-
nian motion, and σt an adapted process such that E[

∫∞
0
σ2
sds] <∞. Define the process

Yt = exp

(∫ t

0

σsdBs −
1

2

∫ t

0

σ2
sds

)
. (1)

(a) Use Ito’s formula to show that

dYt = σtYtdBt

(b) Prove that (Yt)t≥0 is a supermartingale.

(c) If σt is constant, i.e. σt = σ, prove that Yt is a martingale.

Exercise 2 [7 Pt ]

Let B be a d-dimensional Brownian motion starting at x 6= 0. For a > 0 define the stopping
time Ta = inf{t ≥ 0 : |Bt| = a}.

1. Let d = 2 and 0 < r < |x| < R. Show that log(|Bt∧Tr∧TR |) is a bounded martingale
and prove that

P [Tr < TR] =
logR− log |x|
logR− log r

.

Deduce that B never hits the origin a.s.

2. Let d = 3. Show that |Bt∧Tr∧TR |−1 is a bounded martingale and that

P [Tr < TR] =
R−1 − |x|−1

R−1 − r−1
.

Deduce that P[Tr <∞] = r|x|−1.



Exercise 3 [7 Pt ]

1. Let M be a continuous local martingale. Show that for all a < b and on a set of
probability one,

[M ]a (ω) = [M ]b (ω)⇔ ∀t∈[a,b] : Mt(ω) = Ma(ω).

2. Consider two independent, continuous martingales M,N . Show that [M,N ] = 0.
Hint: If (Ft)t and (Gt)t are the canonical filtrations of M and N respectively, then

σ(Ft ∪Gt) = σ

({
A1 ∩ A2

∣∣∣A1 ∈ Ft, A2 ∈ Gt

})
.

Remarks : (1) This implies that [Bi, Bj] = δijt, ifB = (B1, . . . , Bd) is a d−dimensional
Brownian motion. (2) The statement holds also for local martingales.

The stochastic analysis team wishes you a merry Christmas
and a good start into the new year!

The following exercises will neither be graded nor discussed in detail during the exercise
classes. They should encourage you to not visit your whole family and instead think about
the solutions during the holidays :)

Exercise 4 [0 Pt ]

Let B be a one-dimensional Brownian motion and h ∈ L2([0, 1], λ) be a deterministic
function. Consider the Itō-integral

It :=

∫ t

0

h(s)dBs for 0 ≤ t ≤ 1.

1. Show that It is normally distributed with mean zero and variance

τ(t) =

∫ t

0

h(r)2dr.



2. Prove that the increments of (It)t∈[0,1] are independent with law

It − Is ∼ N(0, τ(t)− τ(s)) for 0 ≤ s ≤ t.

3. Conclude that the process (It)t∈[0,1] has the same law as the time-changed Brow-
nian motion t→ Bτ(t).

Exercise 5 [0 Pt ]

Let P and Q be probability measures on (Ω,A) such that Q is absolutely continuous w.r.t.
P (for all A ∈ A: if P(A) = 0 then also Q(A) = 0). We will show a version of the famous
Radon-Nikodym theorem using the martingale theory we have learned so far, proving
the existence of a relative density under the assumption of absolute continuity. A relative
density of Q w.r.t P is a measurable random variable Z : Ω → [0,∞), such that for all
A ∈ A:

Q(A) =

∫
A

Z(ω)dP(ω).

Let A = σ(∪nFn), where (Fn)n∈N is a filtration of A consisting of finite σ-algebras Fn, i.e.
Fn = σ(Bn,1, . . . , Bn,kn) such that ∪iBn,i = Ω.

1. Write down a relative density Zn of Q w.r.t P on Fn and show that (Zn)n∈N is a
non-negative martingale under P.

2. Show that the limit Z∞ exists P-almost surely and in L1(Ω,A,P).

3. Conclude that Z∞ is a relative density of Q w.r.t P on A.

https://en.wikipedia.org/wiki/Radon-Nikodym_theorem

