Sheet 6, "Introduction to Stochastic Analysis" Due on December 11, 2020

Exercise 1

Let $g : \mathbb{R}_+ \to \mathbb{R}$ and $t \in \mathbb{R}_+$.

1. Let g be of bounded variation and let $s \mapsto R_g(s)$ denote the corresponding variation of g, defined in Section 3.1 from the lecture notes. Show that g is right-continuous, if and only if R_g is right-continuous.

Hint: Show that $|R_g(s) - R_g(s+)| = |g(s) - g(s+)|$.

- 2. Let g be right-continuous. Show that the following statements are equivalent.
 - (a) g is of bounded variation on [0, t],
 - (b) there exist two unique measures μ_{g_1} and μ_{g_2} on \mathbb{R}_+ such that for all $0 \le r \le s \le t$

$$\mu_{g_1}((r,s]) - \mu_{g_2}((r,s]) = g(s) - g(r), \quad \text{and}$$
$$\mu_{g_1}((0,s]), \mu_{g_2}([0,s]) < \infty.$$

3. Let g be right-continuous and $f : \mathbb{R}_+ \to \mathbb{R}$ be left-continuous and locally bounded. Following the notation from Section 3.1 from the lecture notes, show that for any $t \in [0, \infty)$:

$$\int_{0}^{t} f d\mu_{g_{1}} - \int_{0}^{t} f d\mu_{g_{2}} = \lim_{m \uparrow \infty} \sum_{I(m)} f dg =: \int_{0}^{t} f dg.$$

Exercise 2

Let T, y > 1. Compute the following integrals explicitly:

- i) $\int_0^T \sin(x) d\cos(x) + \int_0^T \cos(x) d\sin(x)$ ii) $\int_0^T \mathbf{1}_{[1,y)}(x) d|x-2|$
- iii) $\int_0^T |x-2| d\mathbf{1}_{[1,y)}(x)$

 $\begin{bmatrix} 4 & Pt \end{bmatrix}$

 $\begin{bmatrix} 6 & Pt \end{bmatrix}$

You may use that the Stieltjes integral coincides with the usual Riemann integral as soon as the integrator is a smooth function; in other words, for $g \in C^1(\mathbb{R}_+)$ and a locally bounded, Borel-measurable function $f : \mathbb{R}_+ \to \mathbb{R}$ it holds:

$$\int_0^t f(s)dg(s) = \int_0^t f(s)g'(s)ds$$

Exercise 3

 $\begin{bmatrix} 5 \ Pt \end{bmatrix}$

Let $g: [0,1] \to \mathbb{R}$ be right-continuous and I^n a sequence of partitions of the interval [0,1], i.e. a sequence of families of points $0 = u_0^n < u_1^n < \cdots < u_n^n = 1$ such that $\lim_{n\to\infty} ||I^n|| = 0$, where $||I^n|| = \max_{k=1,\dots,n} (u_k^n - u_{k-1}^n)$. For any continuous $f \in C([0,1])$ define the sum

$$S_n(f) := \sum_{k:t_k, t_{k+1} \in I^n} f(t_k) \Big(g(t_{k+1}) - g(t_k) \Big),$$

and assume that the limit $\lim_{n\to\infty} S_n(f)$ exists and is finite for all $f \in C([0,1])$. Show that g is necessarily of finite variation.

Use the following statement, which is called Banach-Steinhaus Theorem: Let X be a Banach space, Y a normed vector space and $\{T_i\}, i \in I$ be a family of bounded linear operators $T_i: X \to Y$. If $\sup_i ||T_ix|| < \infty$ for all $x \in X$, then even $\sup_i ||T_i|| < \infty$.

Exercise 4

 $\begin{bmatrix} 5 \ Pt \end{bmatrix}$

Let M be a continuous martingale. Show that, if $\mathbb{P}(\sup_{t\geq 0} [M]_t < \infty) = 1$, then $\lim_{t\to\infty} M_t$ exists almost surely.

Information from the Fachschaft: This year's Math Christmas party will take place at Thursday, the 17.12. starting 18 ct. online via zoom. All current information can be found **here**. Swing by!