Institute for Applied Mathematics WS 2020/21

Prof. Dr. Anton Bovier, Florian Kreten

Sheet 4, "Introduction to Stochastic Analysis"

Due on November 27, 2020

1. (Where is the randomness?)

[5 Pt]

Let $f:[0,1]\to\mathbb{R}$ be a Lipschitz function, namely $|f(x)-f(y)|\leq K|x-y|$ for some K>0, and $x,y\in[0,1]$. Let furthermore f_n be the function obtained from f through linear interpolation at the points $\{k2^{-n}\}_{0\leq k\leq 2^n}$. Define

$$M_n(x) = \begin{cases} f'_n(x) & x \neq k2^{-n}, 0 \le k \le 2^n \\ \lim_{(x_m) \downarrow x} f'_n(x_m), & x = k2^{-n}, 0 \le k \le 2^n - 1 \\ f(1), & x = 1 \end{cases}$$

- 1. Show that $(M_n)_{n\in\mathbb{N}}$ is a martingale (for some, to be given, suitable filtered probability space).
- 2. Use 1. to show that there exists a measurable, bounded function $g:[0,1]\to\mathbb{R}$ such that for all $x\in[0,1]$

$$f(x) = f(0) + \int_0^x g(y)dy.$$

Hint: Use Theorem 1.27 from the lecture notes.

Exercise 2 [5 Pt]

Let B be a one-dimensional, continuous process with B(0) = 0. Assume that the process

$$M_t^{\alpha} := \exp\left(\alpha B_t - \frac{\alpha^2}{2}t\right)$$

is a martingale w.r.t. $(\mathcal{F}_t)_{t\geq 0}$ for each $\alpha\in\mathbb{R}$. Show that B is a \mathcal{F}_t -Brownian motion.

Hint: Let $n \in \mathbb{N}$ and let X_1, \ldots, X_n be random variables. Then the distribution of $X = (X_1, \ldots, X_n)$ is completely characterized by its Laplace transform $\mathbb{E}[e^{\langle \lambda, X \rangle}]$ (if it exists), where $\lambda \in \mathbb{R}^n$.

Exercise 3 [10 Pt]

Let $(\Omega, \mathfrak{G} : \mathbb{P}, (\mathfrak{G}_t, t \in \mathbb{R}_+))$ be a filtered space. Let S, T be \mathfrak{G}_t -stopping times. Show that:

- 1. $T + \theta$ is a \mathfrak{G}_t -stopping time, where $\theta > 0$.
- 2. T + S is a \mathfrak{G}_t -stopping time.
- 3. $T \wedge S = \min\{T, S\}$ and $T \vee S = \max\{T, S\}$ are \mathfrak{G}_t -stopping times.
- 4. If $F \in \mathfrak{G}_S$, then $F \cap \{S \leq T\} \in \mathfrak{G}_T$.
- 5. If $S \leq T$ on Ω , then $\mathfrak{G}_S \subset \mathfrak{G}_T$.
- 6. $\mathfrak{G}_{T \wedge S} = \mathfrak{G}_T \cap \mathfrak{G}_S$.
- 7. $\{\{T < S\}, \{T \le S\}, \{T = S\}\} \subset \mathfrak{G}_T \cap \mathfrak{G}_S$.