

Sheet 1, "Introduction to Stochastic Analysis"

Due on November 06, 2020 Details about this in the exercise classes

Exercise 1

 $\begin{bmatrix} 5 \ Pt \end{bmatrix}$

Consider a random variable X_1 with a $\mathcal{N}(0,1)$ distribution. Let Y be another random variable which is independent of X_1 and for which we have $\mathbb{P}(Y = 1) = \frac{1}{2} = \mathbb{P}(Y = -1)$. Further, define $X_2 := Y \cdot X_1$. Clearly, X_2 has a $\mathcal{N}(0,1)$ distribution. Show that the following statements hold:

- 1. X_1 and X_2 are uncorrelated but not independent.
- 2. (X_1, X_2) does not have a two-dimensional Gaussian distribution.

Definition

A process $(B_t)_{t \in \mathbb{R}_+}$ that is adapted to a filtration $(\mathcal{F}_t)_{t \ge 0}$ is called (standard) Brownian motion if it has the following properties:

- $B_0 = 0$ a.s.
- B has independent increments: for every $t > s \ge 0$, $W_t W_s$ is independent of \mathcal{F}_s
- B has Gaussian increments: for $u \ge 0$, $B_{t+u} B_t$ is normally distributed with mean 0 and variance u.
- For almost all ω , the path $(B_t)_{t \in \mathbb{R}_+}(\omega)$ is continuous in t (B is a.s. continuous)

Exercise 2

[3 Pt]

 $\begin{bmatrix} 6 & Pt \end{bmatrix}$

Show that $(B_t)_{t \in \mathbb{R}_+}$ is the one-dimensional Brownian motion, if and only if $(B_t)_{t \in \mathbb{R}_+}$ is a centered Gaussian process with continuous paths and such that $Cov(B_t, B_s) = t \wedge s$ for all $s, t \geq 0$.

Hint: take a look at section 3 in the script of **Stochastic Processes**.

Exercise 3

Let $(B_t)_{t \in \mathbb{R}_+}$ be the Brownian motion. Define the processes $(B_t^{(1)})_{t \in \mathbb{R}_+}, (B_t^{(2)})_{t \in \mathbb{R}_+}, (B_t^{(3)})_{t \in \mathbb{R}_+}$ by

1. $B_t^{(1)} = -B_t$, 2. $B_t^{(2)} = B_{t+r} - B_r$ for some r > 0, 3. $B_t^{(3)} = \frac{1}{c} B_{c^2 t}$ for some c > 0.

Show that $(B_t^{(1)})_{t \in \mathbb{R}_+}, (B_t^{(2)})_{t \in \mathbb{R}_+}, (B_t^{(3)})_{t \in \mathbb{R}_+}$ are Brownian motions as well.

Exercise 4

$$\begin{bmatrix} 6 & Pt \end{bmatrix}$$

Let $(B_t, t \in \mathbb{R}_+)$ be a (one-dimensional) standard Brownian motion.

- 1. Let $Z := \sup_{t \ge 0} B_t$. Show that $cZ \stackrel{(d)}{=} Z$ for all c > 0 (i.e., cZ and Z have the same laws). Conclude that the law of Z is concentrated on $\{0, \infty\}$.
- 2. Show that $\mathbb{P}(Z = 0) \leq \mathbb{P}(B_1 \leq 0)\mathbb{P}(\sup_{t\geq 0}(B_{1+t} B_1) = 0)$ and conclude that $\mathbb{P}(Z = 0) = 0$.
- 3. Conclude that $\mathbb{P}(\sup_{t\geq 0} B_t = +\infty, \inf_{t\geq 0} B_t = -\infty) = 1$. In other words, paths of the Brownian motion oscillate a.s. infinitely often between $+\infty$ and $-\infty$. Another proof of this fact goes through the so-called "law of the iterated logarithm", but it is way less elementary!